xref: /titanic_44/usr/src/uts/common/fs/zfs/zvol.c (revision 0aa3b377a7a09e571b7be5753343ade81a04bba9)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * ZFS volume emulation driver.
28  *
29  * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30  * Volumes are accessed through the symbolic links named:
31  *
32  * /dev/zvol/dsk/<pool_name>/<dataset_name>
33  * /dev/zvol/rdsk/<pool_name>/<dataset_name>
34  *
35  * These links are created by the ZFS-specific devfsadm link generator.
36  * Volumes are persistent through reboot.  No user command needs to be
37  * run before opening and using a device.
38  */
39 
40 #include <sys/types.h>
41 #include <sys/param.h>
42 #include <sys/errno.h>
43 #include <sys/uio.h>
44 #include <sys/buf.h>
45 #include <sys/modctl.h>
46 #include <sys/open.h>
47 #include <sys/kmem.h>
48 #include <sys/conf.h>
49 #include <sys/cmn_err.h>
50 #include <sys/stat.h>
51 #include <sys/zap.h>
52 #include <sys/spa.h>
53 #include <sys/zio.h>
54 #include <sys/dmu_traverse.h>
55 #include <sys/dnode.h>
56 #include <sys/dsl_dataset.h>
57 #include <sys/dsl_prop.h>
58 #include <sys/dkio.h>
59 #include <sys/efi_partition.h>
60 #include <sys/byteorder.h>
61 #include <sys/pathname.h>
62 #include <sys/ddi.h>
63 #include <sys/sunddi.h>
64 #include <sys/crc32.h>
65 #include <sys/dirent.h>
66 #include <sys/policy.h>
67 #include <sys/fs/zfs.h>
68 #include <sys/zfs_ioctl.h>
69 #include <sys/mkdev.h>
70 #include <sys/zil.h>
71 #include <sys/refcount.h>
72 #include <sys/zfs_znode.h>
73 #include <sys/zfs_rlock.h>
74 #include <sys/vdev_disk.h>
75 #include <sys/vdev_impl.h>
76 #include <sys/zvol.h>
77 #include <sys/dumphdr.h>
78 #include <sys/zil_impl.h>
79 
80 #include "zfs_namecheck.h"
81 
82 static void *zvol_state;
83 
84 #define	ZVOL_DUMPSIZE		"dumpsize"
85 
86 /*
87  * This lock protects the zvol_state structure from being modified
88  * while it's being used, e.g. an open that comes in before a create
89  * finishes.  It also protects temporary opens of the dataset so that,
90  * e.g., an open doesn't get a spurious EBUSY.
91  */
92 static kmutex_t zvol_state_lock;
93 static uint32_t zvol_minors;
94 
95 typedef struct zvol_extent {
96 	list_node_t	ze_node;
97 	dva_t		ze_dva;		/* dva associated with this extent */
98 	uint64_t	ze_nblks;	/* number of blocks in extent */
99 } zvol_extent_t;
100 
101 /*
102  * The in-core state of each volume.
103  */
104 typedef struct zvol_state {
105 	char		zv_name[MAXPATHLEN]; /* pool/dd name */
106 	uint64_t	zv_volsize;	/* amount of space we advertise */
107 	uint64_t	zv_volblocksize; /* volume block size */
108 	minor_t		zv_minor;	/* minor number */
109 	uint8_t		zv_min_bs;	/* minimum addressable block shift */
110 	uint8_t		zv_flags;	/* readonly, dumpified, etc. */
111 	objset_t	*zv_objset;	/* objset handle */
112 	uint32_t	zv_mode;	/* DS_MODE_* flags at open time */
113 	uint32_t	zv_open_count[OTYPCNT];	/* open counts */
114 	uint32_t	zv_total_opens;	/* total open count */
115 	zilog_t		*zv_zilog;	/* ZIL handle */
116 	list_t		zv_extents;	/* List of extents for dump */
117 	znode_t		zv_znode;	/* for range locking */
118 } zvol_state_t;
119 
120 /*
121  * zvol specific flags
122  */
123 #define	ZVOL_RDONLY	0x1
124 #define	ZVOL_DUMPIFIED	0x2
125 #define	ZVOL_EXCL	0x4
126 #define	ZVOL_WCE	0x8
127 
128 /*
129  * zvol maximum transfer in one DMU tx.
130  */
131 int zvol_maxphys = DMU_MAX_ACCESS/2;
132 
133 extern int zfs_set_prop_nvlist(const char *, nvlist_t *);
134 static int zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio);
135 static int zvol_dumpify(zvol_state_t *zv);
136 static int zvol_dump_fini(zvol_state_t *zv);
137 static int zvol_dump_init(zvol_state_t *zv, boolean_t resize);
138 
139 static void
140 zvol_size_changed(zvol_state_t *zv, major_t maj)
141 {
142 	dev_t dev = makedevice(maj, zv->zv_minor);
143 
144 	VERIFY(ddi_prop_update_int64(dev, zfs_dip,
145 	    "Size", zv->zv_volsize) == DDI_SUCCESS);
146 	VERIFY(ddi_prop_update_int64(dev, zfs_dip,
147 	    "Nblocks", lbtodb(zv->zv_volsize)) == DDI_SUCCESS);
148 
149 	/* Notify specfs to invalidate the cached size */
150 	spec_size_invalidate(dev, VBLK);
151 	spec_size_invalidate(dev, VCHR);
152 }
153 
154 int
155 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
156 {
157 	if (volsize == 0)
158 		return (EINVAL);
159 
160 	if (volsize % blocksize != 0)
161 		return (EINVAL);
162 
163 #ifdef _ILP32
164 	if (volsize - 1 > SPEC_MAXOFFSET_T)
165 		return (EOVERFLOW);
166 #endif
167 	return (0);
168 }
169 
170 int
171 zvol_check_volblocksize(uint64_t volblocksize)
172 {
173 	if (volblocksize < SPA_MINBLOCKSIZE ||
174 	    volblocksize > SPA_MAXBLOCKSIZE ||
175 	    !ISP2(volblocksize))
176 		return (EDOM);
177 
178 	return (0);
179 }
180 
181 static void
182 zvol_readonly_changed_cb(void *arg, uint64_t newval)
183 {
184 	zvol_state_t *zv = arg;
185 
186 	if (newval)
187 		zv->zv_flags |= ZVOL_RDONLY;
188 	else
189 		zv->zv_flags &= ~ZVOL_RDONLY;
190 }
191 
192 int
193 zvol_get_stats(objset_t *os, nvlist_t *nv)
194 {
195 	int error;
196 	dmu_object_info_t doi;
197 	uint64_t val;
198 
199 
200 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
201 	if (error)
202 		return (error);
203 
204 	dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
205 
206 	error = dmu_object_info(os, ZVOL_OBJ, &doi);
207 
208 	if (error == 0) {
209 		dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
210 		    doi.doi_data_block_size);
211 	}
212 
213 	return (error);
214 }
215 
216 /*
217  * Find a free minor number.
218  */
219 static minor_t
220 zvol_minor_alloc(void)
221 {
222 	minor_t minor;
223 
224 	ASSERT(MUTEX_HELD(&zvol_state_lock));
225 
226 	for (minor = 1; minor <= ZVOL_MAX_MINOR; minor++)
227 		if (ddi_get_soft_state(zvol_state, minor) == NULL)
228 			return (minor);
229 
230 	return (0);
231 }
232 
233 static zvol_state_t *
234 zvol_minor_lookup(const char *name)
235 {
236 	minor_t minor;
237 	zvol_state_t *zv;
238 
239 	ASSERT(MUTEX_HELD(&zvol_state_lock));
240 
241 	for (minor = 1; minor <= ZVOL_MAX_MINOR; minor++) {
242 		zv = ddi_get_soft_state(zvol_state, minor);
243 		if (zv == NULL)
244 			continue;
245 		if (strcmp(zv->zv_name, name) == 0)
246 			break;
247 	}
248 
249 	return (zv);
250 }
251 
252 /* extent mapping arg */
253 struct maparg {
254 	zvol_state_t	*ma_zv;
255 	uint64_t	ma_blks;
256 };
257 
258 /*ARGSUSED*/
259 static int
260 zvol_map_block(spa_t *spa, blkptr_t *bp, const zbookmark_t *zb,
261     const dnode_phys_t *dnp, void *arg)
262 {
263 	struct maparg *ma = arg;
264 	zvol_extent_t *ze;
265 	int bs = ma->ma_zv->zv_volblocksize;
266 
267 	if (bp == NULL || zb->zb_object != ZVOL_OBJ || zb->zb_level != 0)
268 		return (0);
269 
270 	VERIFY3U(ma->ma_blks, ==, zb->zb_blkid);
271 	ma->ma_blks++;
272 
273 	/* Abort immediately if we have encountered gang blocks */
274 	if (BP_IS_GANG(bp))
275 		return (EFRAGS);
276 
277 	/*
278 	 * See if the block is at the end of the previous extent.
279 	 */
280 	ze = list_tail(&ma->ma_zv->zv_extents);
281 	if (ze &&
282 	    DVA_GET_VDEV(BP_IDENTITY(bp)) == DVA_GET_VDEV(&ze->ze_dva) &&
283 	    DVA_GET_OFFSET(BP_IDENTITY(bp)) ==
284 	    DVA_GET_OFFSET(&ze->ze_dva) + ze->ze_nblks * bs) {
285 		ze->ze_nblks++;
286 		return (0);
287 	}
288 
289 	dprintf_bp(bp, "%s", "next blkptr:");
290 
291 	/* start a new extent */
292 	ze = kmem_zalloc(sizeof (zvol_extent_t), KM_SLEEP);
293 	ze->ze_dva = bp->blk_dva[0];	/* structure assignment */
294 	ze->ze_nblks = 1;
295 	list_insert_tail(&ma->ma_zv->zv_extents, ze);
296 	return (0);
297 }
298 
299 static void
300 zvol_free_extents(zvol_state_t *zv)
301 {
302 	zvol_extent_t *ze;
303 
304 	while (ze = list_head(&zv->zv_extents)) {
305 		list_remove(&zv->zv_extents, ze);
306 		kmem_free(ze, sizeof (zvol_extent_t));
307 	}
308 }
309 
310 static int
311 zvol_get_lbas(zvol_state_t *zv)
312 {
313 	struct maparg	ma;
314 	int		err;
315 
316 	ma.ma_zv = zv;
317 	ma.ma_blks = 0;
318 	zvol_free_extents(zv);
319 
320 	err = traverse_dataset(dmu_objset_ds(zv->zv_objset), 0,
321 	    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, zvol_map_block, &ma);
322 	if (err || ma.ma_blks != (zv->zv_volsize / zv->zv_volblocksize)) {
323 		zvol_free_extents(zv);
324 		return (err ? err : EIO);
325 	}
326 
327 	return (0);
328 }
329 
330 /* ARGSUSED */
331 void
332 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
333 {
334 	zfs_creat_t *zct = arg;
335 	nvlist_t *nvprops = zct->zct_props;
336 	int error;
337 	uint64_t volblocksize, volsize;
338 
339 	VERIFY(nvlist_lookup_uint64(nvprops,
340 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
341 	if (nvlist_lookup_uint64(nvprops,
342 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
343 		volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
344 
345 	/*
346 	 * These properties must be removed from the list so the generic
347 	 * property setting step won't apply to them.
348 	 */
349 	VERIFY(nvlist_remove_all(nvprops,
350 	    zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
351 	(void) nvlist_remove_all(nvprops,
352 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
353 
354 	error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
355 	    DMU_OT_NONE, 0, tx);
356 	ASSERT(error == 0);
357 
358 	error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
359 	    DMU_OT_NONE, 0, tx);
360 	ASSERT(error == 0);
361 
362 	error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
363 	ASSERT(error == 0);
364 }
365 
366 /*
367  * Replay a TX_WRITE ZIL transaction that didn't get committed
368  * after a system failure
369  */
370 static int
371 zvol_replay_write(zvol_state_t *zv, lr_write_t *lr, boolean_t byteswap)
372 {
373 	objset_t *os = zv->zv_objset;
374 	char *data = (char *)(lr + 1);	/* data follows lr_write_t */
375 	uint64_t off = lr->lr_offset;
376 	uint64_t len = lr->lr_length;
377 	dmu_tx_t *tx;
378 	int error;
379 
380 	if (byteswap)
381 		byteswap_uint64_array(lr, sizeof (*lr));
382 
383 	tx = dmu_tx_create(os);
384 	dmu_tx_hold_write(tx, ZVOL_OBJ, off, len);
385 	error = dmu_tx_assign(tx, TXG_WAIT);
386 	if (error) {
387 		dmu_tx_abort(tx);
388 	} else {
389 		dmu_write(os, ZVOL_OBJ, off, len, data, tx);
390 		dmu_tx_commit(tx);
391 	}
392 
393 	return (error);
394 }
395 
396 /* ARGSUSED */
397 static int
398 zvol_replay_err(zvol_state_t *zv, lr_t *lr, boolean_t byteswap)
399 {
400 	return (ENOTSUP);
401 }
402 
403 /*
404  * Callback vectors for replaying records.
405  * Only TX_WRITE is needed for zvol.
406  */
407 zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = {
408 	zvol_replay_err,	/* 0 no such transaction type */
409 	zvol_replay_err,	/* TX_CREATE */
410 	zvol_replay_err,	/* TX_MKDIR */
411 	zvol_replay_err,	/* TX_MKXATTR */
412 	zvol_replay_err,	/* TX_SYMLINK */
413 	zvol_replay_err,	/* TX_REMOVE */
414 	zvol_replay_err,	/* TX_RMDIR */
415 	zvol_replay_err,	/* TX_LINK */
416 	zvol_replay_err,	/* TX_RENAME */
417 	zvol_replay_write,	/* TX_WRITE */
418 	zvol_replay_err,	/* TX_TRUNCATE */
419 	zvol_replay_err,	/* TX_SETATTR */
420 	zvol_replay_err,	/* TX_ACL */
421 };
422 
423 /*
424  * Create a minor node (plus a whole lot more) for the specified volume.
425  */
426 int
427 zvol_create_minor(const char *name, major_t maj)
428 {
429 	zvol_state_t *zv;
430 	objset_t *os;
431 	dmu_object_info_t doi;
432 	uint64_t volsize;
433 	minor_t minor = 0;
434 	struct pathname linkpath;
435 	int ds_mode = DS_MODE_OWNER;
436 	vnode_t *vp = NULL;
437 	char *devpath;
438 	size_t devpathlen = strlen(ZVOL_FULL_DEV_DIR) + strlen(name) + 1;
439 	char chrbuf[30], blkbuf[30];
440 	int error;
441 
442 	mutex_enter(&zvol_state_lock);
443 
444 	if ((zv = zvol_minor_lookup(name)) != NULL) {
445 		mutex_exit(&zvol_state_lock);
446 		return (EEXIST);
447 	}
448 
449 	if (strchr(name, '@') != 0)
450 		ds_mode |= DS_MODE_READONLY;
451 
452 	error = dmu_objset_open(name, DMU_OST_ZVOL, ds_mode, &os);
453 
454 	if (error) {
455 		mutex_exit(&zvol_state_lock);
456 		return (error);
457 	}
458 
459 	error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
460 
461 	if (error) {
462 		dmu_objset_close(os);
463 		mutex_exit(&zvol_state_lock);
464 		return (error);
465 	}
466 
467 	/*
468 	 * If there's an existing /dev/zvol symlink, try to use the
469 	 * same minor number we used last time.
470 	 */
471 	devpath = kmem_alloc(devpathlen, KM_SLEEP);
472 
473 	(void) sprintf(devpath, "%s%s", ZVOL_FULL_DEV_DIR, name);
474 
475 	error = lookupname(devpath, UIO_SYSSPACE, NO_FOLLOW, NULL, &vp);
476 
477 	kmem_free(devpath, devpathlen);
478 
479 	if (error == 0 && vp->v_type != VLNK)
480 		error = EINVAL;
481 
482 	if (error == 0) {
483 		pn_alloc(&linkpath);
484 		error = pn_getsymlink(vp, &linkpath, kcred);
485 		if (error == 0) {
486 			char *ms = strstr(linkpath.pn_path, ZVOL_PSEUDO_DEV);
487 			if (ms != NULL) {
488 				ms += strlen(ZVOL_PSEUDO_DEV);
489 				minor = stoi(&ms);
490 			}
491 		}
492 		pn_free(&linkpath);
493 	}
494 
495 	if (vp != NULL)
496 		VN_RELE(vp);
497 
498 	/*
499 	 * If we found a minor but it's already in use, we must pick a new one.
500 	 */
501 	if (minor != 0 && ddi_get_soft_state(zvol_state, minor) != NULL)
502 		minor = 0;
503 
504 	if (minor == 0)
505 		minor = zvol_minor_alloc();
506 
507 	if (minor == 0) {
508 		dmu_objset_close(os);
509 		mutex_exit(&zvol_state_lock);
510 		return (ENXIO);
511 	}
512 
513 	if (ddi_soft_state_zalloc(zvol_state, minor) != DDI_SUCCESS) {
514 		dmu_objset_close(os);
515 		mutex_exit(&zvol_state_lock);
516 		return (EAGAIN);
517 	}
518 
519 	(void) ddi_prop_update_string(minor, zfs_dip, ZVOL_PROP_NAME,
520 	    (char *)name);
521 
522 	(void) sprintf(chrbuf, "%uc,raw", minor);
523 
524 	if (ddi_create_minor_node(zfs_dip, chrbuf, S_IFCHR,
525 	    minor, DDI_PSEUDO, 0) == DDI_FAILURE) {
526 		ddi_soft_state_free(zvol_state, minor);
527 		dmu_objset_close(os);
528 		mutex_exit(&zvol_state_lock);
529 		return (EAGAIN);
530 	}
531 
532 	(void) sprintf(blkbuf, "%uc", minor);
533 
534 	if (ddi_create_minor_node(zfs_dip, blkbuf, S_IFBLK,
535 	    minor, DDI_PSEUDO, 0) == DDI_FAILURE) {
536 		ddi_remove_minor_node(zfs_dip, chrbuf);
537 		ddi_soft_state_free(zvol_state, minor);
538 		dmu_objset_close(os);
539 		mutex_exit(&zvol_state_lock);
540 		return (EAGAIN);
541 	}
542 
543 	zv = ddi_get_soft_state(zvol_state, minor);
544 
545 	(void) strcpy(zv->zv_name, name);
546 	zv->zv_min_bs = DEV_BSHIFT;
547 	zv->zv_minor = minor;
548 	zv->zv_volsize = volsize;
549 	zv->zv_objset = os;
550 	zv->zv_mode = ds_mode;
551 	zv->zv_zilog = zil_open(os, zvol_get_data);
552 	mutex_init(&zv->zv_znode.z_range_lock, NULL, MUTEX_DEFAULT, NULL);
553 	avl_create(&zv->zv_znode.z_range_avl, zfs_range_compare,
554 	    sizeof (rl_t), offsetof(rl_t, r_node));
555 	list_create(&zv->zv_extents, sizeof (zvol_extent_t),
556 	    offsetof(zvol_extent_t, ze_node));
557 	/* get and cache the blocksize */
558 	error = dmu_object_info(os, ZVOL_OBJ, &doi);
559 	ASSERT(error == 0);
560 	zv->zv_volblocksize = doi.doi_data_block_size;
561 
562 	zil_replay(os, zv, zvol_replay_vector);
563 	zvol_size_changed(zv, maj);
564 
565 	/* XXX this should handle the possible i/o error */
566 	VERIFY(dsl_prop_register(dmu_objset_ds(zv->zv_objset),
567 	    "readonly", zvol_readonly_changed_cb, zv) == 0);
568 
569 	zvol_minors++;
570 
571 	mutex_exit(&zvol_state_lock);
572 
573 	return (0);
574 }
575 
576 /*
577  * Remove minor node for the specified volume.
578  */
579 int
580 zvol_remove_minor(const char *name)
581 {
582 	zvol_state_t *zv;
583 	char namebuf[30];
584 
585 	mutex_enter(&zvol_state_lock);
586 
587 	if ((zv = zvol_minor_lookup(name)) == NULL) {
588 		mutex_exit(&zvol_state_lock);
589 		return (ENXIO);
590 	}
591 
592 	if (zv->zv_total_opens != 0) {
593 		mutex_exit(&zvol_state_lock);
594 		return (EBUSY);
595 	}
596 
597 	(void) sprintf(namebuf, "%uc,raw", zv->zv_minor);
598 	ddi_remove_minor_node(zfs_dip, namebuf);
599 
600 	(void) sprintf(namebuf, "%uc", zv->zv_minor);
601 	ddi_remove_minor_node(zfs_dip, namebuf);
602 
603 	VERIFY(dsl_prop_unregister(dmu_objset_ds(zv->zv_objset),
604 	    "readonly", zvol_readonly_changed_cb, zv) == 0);
605 
606 	zil_close(zv->zv_zilog);
607 	zv->zv_zilog = NULL;
608 	dmu_objset_close(zv->zv_objset);
609 	zv->zv_objset = NULL;
610 	avl_destroy(&zv->zv_znode.z_range_avl);
611 	mutex_destroy(&zv->zv_znode.z_range_lock);
612 
613 	ddi_soft_state_free(zvol_state, zv->zv_minor);
614 
615 	zvol_minors--;
616 
617 	mutex_exit(&zvol_state_lock);
618 
619 	return (0);
620 }
621 
622 int
623 zvol_prealloc(zvol_state_t *zv)
624 {
625 	objset_t *os = zv->zv_objset;
626 	dmu_tx_t *tx;
627 	uint64_t refd, avail, usedobjs, availobjs;
628 	uint64_t resid = zv->zv_volsize;
629 	uint64_t off = 0;
630 
631 	/* Check the space usage before attempting to allocate the space */
632 	dmu_objset_space(os, &refd, &avail, &usedobjs, &availobjs);
633 	if (avail < zv->zv_volsize)
634 		return (ENOSPC);
635 
636 	/* Free old extents if they exist */
637 	zvol_free_extents(zv);
638 
639 	while (resid != 0) {
640 		int error;
641 		uint64_t bytes = MIN(resid, SPA_MAXBLOCKSIZE);
642 
643 		tx = dmu_tx_create(os);
644 		dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes);
645 		error = dmu_tx_assign(tx, TXG_WAIT);
646 		if (error) {
647 			dmu_tx_abort(tx);
648 			(void) dmu_free_long_range(os, ZVOL_OBJ, 0, off);
649 			return (error);
650 		}
651 		dmu_prealloc(os, ZVOL_OBJ, off, bytes, tx);
652 		dmu_tx_commit(tx);
653 		off += bytes;
654 		resid -= bytes;
655 	}
656 	txg_wait_synced(dmu_objset_pool(os), 0);
657 
658 	return (0);
659 }
660 
661 int
662 zvol_update_volsize(zvol_state_t *zv, major_t maj, uint64_t volsize)
663 {
664 	dmu_tx_t *tx;
665 	int error;
666 
667 	ASSERT(MUTEX_HELD(&zvol_state_lock));
668 
669 	tx = dmu_tx_create(zv->zv_objset);
670 	dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
671 	error = dmu_tx_assign(tx, TXG_WAIT);
672 	if (error) {
673 		dmu_tx_abort(tx);
674 		return (error);
675 	}
676 
677 	error = zap_update(zv->zv_objset, ZVOL_ZAP_OBJ, "size", 8, 1,
678 	    &volsize, tx);
679 	dmu_tx_commit(tx);
680 
681 	if (error == 0)
682 		error = dmu_free_long_range(zv->zv_objset,
683 		    ZVOL_OBJ, volsize, DMU_OBJECT_END);
684 
685 	/*
686 	 * If we are using a faked-up state (zv_minor == 0) then don't
687 	 * try to update the in-core zvol state.
688 	 */
689 	if (error == 0 && zv->zv_minor) {
690 		zv->zv_volsize = volsize;
691 		zvol_size_changed(zv, maj);
692 	}
693 	return (error);
694 }
695 
696 int
697 zvol_set_volsize(const char *name, major_t maj, uint64_t volsize)
698 {
699 	zvol_state_t *zv;
700 	int error;
701 	dmu_object_info_t doi;
702 	uint64_t old_volsize = 0ULL;
703 	zvol_state_t state = { 0 };
704 
705 	mutex_enter(&zvol_state_lock);
706 
707 	if ((zv = zvol_minor_lookup(name)) == NULL) {
708 		/*
709 		 * If we are doing a "zfs clone -o volsize=", then the
710 		 * minor node won't exist yet.
711 		 */
712 		error = dmu_objset_open(name, DMU_OST_ZVOL, DS_MODE_OWNER,
713 		    &state.zv_objset);
714 		if (error != 0)
715 			goto out;
716 		zv = &state;
717 	}
718 	old_volsize = zv->zv_volsize;
719 
720 	if ((error = dmu_object_info(zv->zv_objset, ZVOL_OBJ, &doi)) != 0 ||
721 	    (error = zvol_check_volsize(volsize,
722 	    doi.doi_data_block_size)) != 0)
723 		goto out;
724 
725 	if (zv->zv_flags & ZVOL_RDONLY || (zv->zv_mode & DS_MODE_READONLY)) {
726 		error = EROFS;
727 		goto out;
728 	}
729 
730 	error = zvol_update_volsize(zv, maj, volsize);
731 
732 	/*
733 	 * Reinitialize the dump area to the new size. If we
734 	 * failed to resize the dump area then restore the it back to
735 	 * it's original size.
736 	 */
737 	if (error == 0 && zv->zv_flags & ZVOL_DUMPIFIED) {
738 		if ((error = zvol_dumpify(zv)) != 0 ||
739 		    (error = dumpvp_resize()) != 0) {
740 			(void) zvol_update_volsize(zv, maj, old_volsize);
741 			error = zvol_dumpify(zv);
742 		}
743 	}
744 
745 out:
746 	if (state.zv_objset)
747 		dmu_objset_close(state.zv_objset);
748 
749 	mutex_exit(&zvol_state_lock);
750 
751 	return (error);
752 }
753 
754 int
755 zvol_set_volblocksize(const char *name, uint64_t volblocksize)
756 {
757 	zvol_state_t *zv;
758 	dmu_tx_t *tx;
759 	int error;
760 	boolean_t needlock;
761 
762 	/*
763 	 * The lock may already be held if we are being called from
764 	 * zvol_dump_init().
765 	 */
766 	needlock = !MUTEX_HELD(&zvol_state_lock);
767 	if (needlock)
768 		mutex_enter(&zvol_state_lock);
769 
770 	if ((zv = zvol_minor_lookup(name)) == NULL) {
771 		if (needlock)
772 			mutex_exit(&zvol_state_lock);
773 		return (ENXIO);
774 	}
775 	if (zv->zv_flags & ZVOL_RDONLY || (zv->zv_mode & DS_MODE_READONLY)) {
776 		if (needlock)
777 			mutex_exit(&zvol_state_lock);
778 		return (EROFS);
779 	}
780 
781 	tx = dmu_tx_create(zv->zv_objset);
782 	dmu_tx_hold_bonus(tx, ZVOL_OBJ);
783 	error = dmu_tx_assign(tx, TXG_WAIT);
784 	if (error) {
785 		dmu_tx_abort(tx);
786 	} else {
787 		error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ,
788 		    volblocksize, 0, tx);
789 		if (error == ENOTSUP)
790 			error = EBUSY;
791 		dmu_tx_commit(tx);
792 		if (error == 0)
793 			zv->zv_volblocksize = volblocksize;
794 	}
795 
796 	if (needlock)
797 		mutex_exit(&zvol_state_lock);
798 
799 	return (error);
800 }
801 
802 /*ARGSUSED*/
803 int
804 zvol_open(dev_t *devp, int flag, int otyp, cred_t *cr)
805 {
806 	minor_t minor = getminor(*devp);
807 	zvol_state_t *zv;
808 
809 	if (minor == 0)			/* This is the control device */
810 		return (0);
811 
812 	mutex_enter(&zvol_state_lock);
813 
814 	zv = ddi_get_soft_state(zvol_state, minor);
815 	if (zv == NULL) {
816 		mutex_exit(&zvol_state_lock);
817 		return (ENXIO);
818 	}
819 
820 	ASSERT(zv->zv_objset != NULL);
821 
822 	if ((flag & FWRITE) &&
823 	    (zv->zv_flags & ZVOL_RDONLY || (zv->zv_mode & DS_MODE_READONLY))) {
824 		mutex_exit(&zvol_state_lock);
825 		return (EROFS);
826 	}
827 	if (zv->zv_flags & ZVOL_EXCL) {
828 		mutex_exit(&zvol_state_lock);
829 		return (EBUSY);
830 	}
831 	if (flag & FEXCL) {
832 		if (zv->zv_total_opens != 0) {
833 			mutex_exit(&zvol_state_lock);
834 			return (EBUSY);
835 		}
836 		zv->zv_flags |= ZVOL_EXCL;
837 	}
838 
839 	if (zv->zv_open_count[otyp] == 0 || otyp == OTYP_LYR) {
840 		zv->zv_open_count[otyp]++;
841 		zv->zv_total_opens++;
842 	}
843 
844 	mutex_exit(&zvol_state_lock);
845 
846 	return (0);
847 }
848 
849 /*ARGSUSED*/
850 int
851 zvol_close(dev_t dev, int flag, int otyp, cred_t *cr)
852 {
853 	minor_t minor = getminor(dev);
854 	zvol_state_t *zv;
855 
856 	if (minor == 0)		/* This is the control device */
857 		return (0);
858 
859 	mutex_enter(&zvol_state_lock);
860 
861 	zv = ddi_get_soft_state(zvol_state, minor);
862 	if (zv == NULL) {
863 		mutex_exit(&zvol_state_lock);
864 		return (ENXIO);
865 	}
866 
867 	if (zv->zv_flags & ZVOL_EXCL) {
868 		ASSERT(zv->zv_total_opens == 1);
869 		zv->zv_flags &= ~ZVOL_EXCL;
870 	}
871 
872 	/*
873 	 * If the open count is zero, this is a spurious close.
874 	 * That indicates a bug in the kernel / DDI framework.
875 	 */
876 	ASSERT(zv->zv_open_count[otyp] != 0);
877 	ASSERT(zv->zv_total_opens != 0);
878 
879 	/*
880 	 * You may get multiple opens, but only one close.
881 	 */
882 	zv->zv_open_count[otyp]--;
883 	zv->zv_total_opens--;
884 
885 	mutex_exit(&zvol_state_lock);
886 
887 	return (0);
888 }
889 
890 static void
891 zvol_get_done(dmu_buf_t *db, void *vzgd)
892 {
893 	zgd_t *zgd = (zgd_t *)vzgd;
894 	rl_t *rl = zgd->zgd_rl;
895 
896 	dmu_buf_rele(db, vzgd);
897 	zfs_range_unlock(rl);
898 	zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
899 	kmem_free(zgd, sizeof (zgd_t));
900 }
901 
902 /*
903  * Get data to generate a TX_WRITE intent log record.
904  */
905 static int
906 zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
907 {
908 	zvol_state_t *zv = arg;
909 	objset_t *os = zv->zv_objset;
910 	dmu_buf_t *db;
911 	rl_t *rl;
912 	zgd_t *zgd;
913 	uint64_t boff; 			/* block starting offset */
914 	int dlen = lr->lr_length;	/* length of user data */
915 	int error;
916 
917 	ASSERT(zio);
918 	ASSERT(dlen != 0);
919 
920 	/*
921 	 * Write records come in two flavors: immediate and indirect.
922 	 * For small writes it's cheaper to store the data with the
923 	 * log record (immediate); for large writes it's cheaper to
924 	 * sync the data and get a pointer to it (indirect) so that
925 	 * we don't have to write the data twice.
926 	 */
927 	if (buf != NULL) /* immediate write */
928 		return (dmu_read(os, ZVOL_OBJ, lr->lr_offset, dlen, buf));
929 
930 	zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP);
931 	zgd->zgd_zilog = zv->zv_zilog;
932 	zgd->zgd_bp = &lr->lr_blkptr;
933 
934 	/*
935 	 * Lock the range of the block to ensure that when the data is
936 	 * written out and its checksum is being calculated that no other
937 	 * thread can change the block.
938 	 */
939 	boff = P2ALIGN_TYPED(lr->lr_offset, zv->zv_volblocksize, uint64_t);
940 	rl = zfs_range_lock(&zv->zv_znode, boff, zv->zv_volblocksize,
941 	    RL_READER);
942 	zgd->zgd_rl = rl;
943 
944 	VERIFY(0 == dmu_buf_hold(os, ZVOL_OBJ, lr->lr_offset, zgd, &db));
945 	error = dmu_sync(zio, db, &lr->lr_blkptr,
946 	    lr->lr_common.lrc_txg, zvol_get_done, zgd);
947 	if (error == 0)
948 		zil_add_block(zv->zv_zilog, &lr->lr_blkptr);
949 	/*
950 	 * If we get EINPROGRESS, then we need to wait for a
951 	 * write IO initiated by dmu_sync() to complete before
952 	 * we can release this dbuf.  We will finish everything
953 	 * up in the zvol_get_done() callback.
954 	 */
955 	if (error == EINPROGRESS)
956 		return (0);
957 	dmu_buf_rele(db, zgd);
958 	zfs_range_unlock(rl);
959 	kmem_free(zgd, sizeof (zgd_t));
960 	return (error);
961 }
962 
963 /*
964  * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
965  *
966  * We store data in the log buffers if it's small enough.
967  * Otherwise we will later flush the data out via dmu_sync().
968  */
969 ssize_t zvol_immediate_write_sz = 32768;
970 
971 static void
972 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, offset_t off, ssize_t len)
973 {
974 	uint32_t blocksize = zv->zv_volblocksize;
975 	zilog_t *zilog = zv->zv_zilog;
976 	lr_write_t *lr;
977 
978 	if (zilog->zl_replay) {
979 		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
980 		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
981 		    zilog->zl_replaying_seq;
982 		return;
983 	}
984 
985 	while (len) {
986 		ssize_t nbytes = MIN(len, blocksize - P2PHASE(off, blocksize));
987 		itx_t *itx = zil_itx_create(TX_WRITE, sizeof (*lr));
988 
989 		itx->itx_wr_state =
990 		    len > zvol_immediate_write_sz ?  WR_INDIRECT : WR_NEED_COPY;
991 		itx->itx_private = zv;
992 		lr = (lr_write_t *)&itx->itx_lr;
993 		lr->lr_foid = ZVOL_OBJ;
994 		lr->lr_offset = off;
995 		lr->lr_length = nbytes;
996 		lr->lr_blkoff = off - P2ALIGN_TYPED(off, blocksize, uint64_t);
997 		BP_ZERO(&lr->lr_blkptr);
998 
999 		(void) zil_itx_assign(zilog, itx, tx);
1000 		len -= nbytes;
1001 		off += nbytes;
1002 	}
1003 }
1004 
1005 static int
1006 zvol_dumpio_vdev(vdev_t *vd, void *addr, uint64_t offset, uint64_t size,
1007     boolean_t doread, boolean_t isdump)
1008 {
1009 	vdev_disk_t *dvd;
1010 	int c;
1011 	int numerrors = 0;
1012 
1013 	for (c = 0; c < vd->vdev_children; c++) {
1014 		ASSERT(vd->vdev_ops == &vdev_mirror_ops);
1015 		int err = zvol_dumpio_vdev(vd->vdev_child[c],
1016 		    addr, offset, size, doread, isdump);
1017 		if (err != 0) {
1018 			numerrors++;
1019 		} else if (doread) {
1020 			break;
1021 		}
1022 	}
1023 
1024 	if (!vd->vdev_ops->vdev_op_leaf)
1025 		return (numerrors < vd->vdev_children ? 0 : EIO);
1026 
1027 	if (doread && !vdev_readable(vd))
1028 		return (EIO);
1029 	else if (!doread && !vdev_writeable(vd))
1030 		return (EIO);
1031 
1032 	dvd = vd->vdev_tsd;
1033 	ASSERT3P(dvd, !=, NULL);
1034 	offset += VDEV_LABEL_START_SIZE;
1035 
1036 	if (ddi_in_panic() || isdump) {
1037 		ASSERT(!doread);
1038 		if (doread)
1039 			return (EIO);
1040 		return (ldi_dump(dvd->vd_lh, addr, lbtodb(offset),
1041 		    lbtodb(size)));
1042 	} else {
1043 		return (vdev_disk_physio(dvd->vd_lh, addr, size, offset,
1044 		    doread ? B_READ : B_WRITE));
1045 	}
1046 }
1047 
1048 static int
1049 zvol_dumpio(zvol_state_t *zv, void *addr, uint64_t offset, uint64_t size,
1050     boolean_t doread, boolean_t isdump)
1051 {
1052 	vdev_t *vd;
1053 	int error;
1054 	zvol_extent_t *ze;
1055 	spa_t *spa = dmu_objset_spa(zv->zv_objset);
1056 
1057 	/* Must be sector aligned, and not stradle a block boundary. */
1058 	if (P2PHASE(offset, DEV_BSIZE) || P2PHASE(size, DEV_BSIZE) ||
1059 	    P2BOUNDARY(offset, size, zv->zv_volblocksize)) {
1060 		return (EINVAL);
1061 	}
1062 	ASSERT(size <= zv->zv_volblocksize);
1063 
1064 	/* Locate the extent this belongs to */
1065 	ze = list_head(&zv->zv_extents);
1066 	while (offset >= ze->ze_nblks * zv->zv_volblocksize) {
1067 		offset -= ze->ze_nblks * zv->zv_volblocksize;
1068 		ze = list_next(&zv->zv_extents, ze);
1069 	}
1070 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1071 	vd = vdev_lookup_top(spa, DVA_GET_VDEV(&ze->ze_dva));
1072 	offset += DVA_GET_OFFSET(&ze->ze_dva);
1073 	error = zvol_dumpio_vdev(vd, addr, offset, size, doread, isdump);
1074 	spa_config_exit(spa, SCL_STATE, FTAG);
1075 	return (error);
1076 }
1077 
1078 int
1079 zvol_strategy(buf_t *bp)
1080 {
1081 	zvol_state_t *zv = ddi_get_soft_state(zvol_state, getminor(bp->b_edev));
1082 	uint64_t off, volsize;
1083 	size_t resid;
1084 	char *addr;
1085 	objset_t *os;
1086 	rl_t *rl;
1087 	int error = 0;
1088 	boolean_t doread = bp->b_flags & B_READ;
1089 	boolean_t is_dump = zv->zv_flags & ZVOL_DUMPIFIED;
1090 
1091 	if (zv == NULL) {
1092 		bioerror(bp, ENXIO);
1093 		biodone(bp);
1094 		return (0);
1095 	}
1096 
1097 	if (getminor(bp->b_edev) == 0) {
1098 		bioerror(bp, EINVAL);
1099 		biodone(bp);
1100 		return (0);
1101 	}
1102 
1103 	if (!(bp->b_flags & B_READ) &&
1104 	    (zv->zv_flags & ZVOL_RDONLY ||
1105 	    zv->zv_mode & DS_MODE_READONLY)) {
1106 		bioerror(bp, EROFS);
1107 		biodone(bp);
1108 		return (0);
1109 	}
1110 
1111 	off = ldbtob(bp->b_blkno);
1112 	volsize = zv->zv_volsize;
1113 
1114 	os = zv->zv_objset;
1115 	ASSERT(os != NULL);
1116 
1117 	bp_mapin(bp);
1118 	addr = bp->b_un.b_addr;
1119 	resid = bp->b_bcount;
1120 
1121 	if (resid > 0 && (off < 0 || off >= volsize)) {
1122 		bioerror(bp, EIO);
1123 		biodone(bp);
1124 		return (0);
1125 	}
1126 
1127 	/*
1128 	 * There must be no buffer changes when doing a dmu_sync() because
1129 	 * we can't change the data whilst calculating the checksum.
1130 	 */
1131 	rl = zfs_range_lock(&zv->zv_znode, off, resid,
1132 	    doread ? RL_READER : RL_WRITER);
1133 
1134 	while (resid != 0 && off < volsize) {
1135 		size_t size = MIN(resid, zvol_maxphys);
1136 		if (is_dump) {
1137 			size = MIN(size, P2END(off, zv->zv_volblocksize) - off);
1138 			error = zvol_dumpio(zv, addr, off, size,
1139 			    doread, B_FALSE);
1140 		} else if (doread) {
1141 			error = dmu_read(os, ZVOL_OBJ, off, size, addr);
1142 		} else {
1143 			dmu_tx_t *tx = dmu_tx_create(os);
1144 			dmu_tx_hold_write(tx, ZVOL_OBJ, off, size);
1145 			error = dmu_tx_assign(tx, TXG_WAIT);
1146 			if (error) {
1147 				dmu_tx_abort(tx);
1148 			} else {
1149 				dmu_write(os, ZVOL_OBJ, off, size, addr, tx);
1150 				zvol_log_write(zv, tx, off, size);
1151 				dmu_tx_commit(tx);
1152 			}
1153 		}
1154 		if (error) {
1155 			/* convert checksum errors into IO errors */
1156 			if (error == ECKSUM)
1157 				error = EIO;
1158 			break;
1159 		}
1160 		off += size;
1161 		addr += size;
1162 		resid -= size;
1163 	}
1164 	zfs_range_unlock(rl);
1165 
1166 	if ((bp->b_resid = resid) == bp->b_bcount)
1167 		bioerror(bp, off > volsize ? EINVAL : error);
1168 
1169 	if (!(bp->b_flags & B_ASYNC) && !doread && !zil_disable &&
1170 	    !is_dump && !(zv->zv_flags & ZVOL_WCE))
1171 		zil_commit(zv->zv_zilog, UINT64_MAX, ZVOL_OBJ);
1172 	biodone(bp);
1173 
1174 	return (0);
1175 }
1176 
1177 /*
1178  * Set the buffer count to the zvol maximum transfer.
1179  * Using our own routine instead of the default minphys()
1180  * means that for larger writes we write bigger buffers on X86
1181  * (128K instead of 56K) and flush the disk write cache less often
1182  * (every zvol_maxphys - currently 1MB) instead of minphys (currently
1183  * 56K on X86 and 128K on sparc).
1184  */
1185 void
1186 zvol_minphys(struct buf *bp)
1187 {
1188 	if (bp->b_bcount > zvol_maxphys)
1189 		bp->b_bcount = zvol_maxphys;
1190 }
1191 
1192 int
1193 zvol_dump(dev_t dev, caddr_t addr, daddr_t blkno, int nblocks)
1194 {
1195 	minor_t minor = getminor(dev);
1196 	zvol_state_t *zv;
1197 	int error = 0;
1198 	uint64_t size;
1199 	uint64_t boff;
1200 	uint64_t resid;
1201 
1202 	if (minor == 0)			/* This is the control device */
1203 		return (ENXIO);
1204 
1205 	zv = ddi_get_soft_state(zvol_state, minor);
1206 	if (zv == NULL)
1207 		return (ENXIO);
1208 
1209 	boff = ldbtob(blkno);
1210 	resid = ldbtob(nblocks);
1211 
1212 	VERIFY3U(boff + resid, <=, zv->zv_volsize);
1213 
1214 	while (resid) {
1215 		size = MIN(resid, P2END(boff, zv->zv_volblocksize) - boff);
1216 		error = zvol_dumpio(zv, addr, boff, size, B_FALSE, B_TRUE);
1217 		if (error)
1218 			break;
1219 		boff += size;
1220 		addr += size;
1221 		resid -= size;
1222 	}
1223 
1224 	return (error);
1225 }
1226 
1227 /*ARGSUSED*/
1228 int
1229 zvol_read(dev_t dev, uio_t *uio, cred_t *cr)
1230 {
1231 	minor_t minor = getminor(dev);
1232 	zvol_state_t *zv;
1233 	uint64_t volsize;
1234 	rl_t *rl;
1235 	int error = 0;
1236 
1237 	if (minor == 0)			/* This is the control device */
1238 		return (ENXIO);
1239 
1240 	zv = ddi_get_soft_state(zvol_state, minor);
1241 	if (zv == NULL)
1242 		return (ENXIO);
1243 
1244 	volsize = zv->zv_volsize;
1245 	if (uio->uio_resid > 0 &&
1246 	    (uio->uio_loffset < 0 || uio->uio_loffset >= volsize))
1247 		return (EIO);
1248 
1249 	if (zv->zv_flags & ZVOL_DUMPIFIED) {
1250 		error = physio(zvol_strategy, NULL, dev, B_READ,
1251 		    zvol_minphys, uio);
1252 		return (error);
1253 	}
1254 
1255 	rl = zfs_range_lock(&zv->zv_znode, uio->uio_loffset, uio->uio_resid,
1256 	    RL_READER);
1257 	while (uio->uio_resid > 0 && uio->uio_loffset < volsize) {
1258 		uint64_t bytes = MIN(uio->uio_resid, DMU_MAX_ACCESS >> 1);
1259 
1260 		/* don't read past the end */
1261 		if (bytes > volsize - uio->uio_loffset)
1262 			bytes = volsize - uio->uio_loffset;
1263 
1264 		error =  dmu_read_uio(zv->zv_objset, ZVOL_OBJ, uio, bytes);
1265 		if (error) {
1266 			/* convert checksum errors into IO errors */
1267 			if (error == ECKSUM)
1268 				error = EIO;
1269 			break;
1270 		}
1271 	}
1272 	zfs_range_unlock(rl);
1273 	return (error);
1274 }
1275 
1276 /*ARGSUSED*/
1277 int
1278 zvol_write(dev_t dev, uio_t *uio, cred_t *cr)
1279 {
1280 	minor_t minor = getminor(dev);
1281 	zvol_state_t *zv;
1282 	uint64_t volsize;
1283 	rl_t *rl;
1284 	int error = 0;
1285 
1286 	if (minor == 0)			/* This is the control device */
1287 		return (ENXIO);
1288 
1289 	zv = ddi_get_soft_state(zvol_state, minor);
1290 	if (zv == NULL)
1291 		return (ENXIO);
1292 
1293 	volsize = zv->zv_volsize;
1294 	if (uio->uio_resid > 0 &&
1295 	    (uio->uio_loffset < 0 || uio->uio_loffset >= volsize))
1296 		return (EIO);
1297 
1298 	if (zv->zv_flags & ZVOL_DUMPIFIED) {
1299 		error = physio(zvol_strategy, NULL, dev, B_WRITE,
1300 		    zvol_minphys, uio);
1301 		return (error);
1302 	}
1303 
1304 	rl = zfs_range_lock(&zv->zv_znode, uio->uio_loffset, uio->uio_resid,
1305 	    RL_WRITER);
1306 	while (uio->uio_resid > 0 && uio->uio_loffset < volsize) {
1307 		uint64_t bytes = MIN(uio->uio_resid, DMU_MAX_ACCESS >> 1);
1308 		uint64_t off = uio->uio_loffset;
1309 		dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
1310 
1311 		if (bytes > volsize - off)	/* don't write past the end */
1312 			bytes = volsize - off;
1313 
1314 		dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes);
1315 		error = dmu_tx_assign(tx, TXG_WAIT);
1316 		if (error) {
1317 			dmu_tx_abort(tx);
1318 			break;
1319 		}
1320 		error = dmu_write_uio(zv->zv_objset, ZVOL_OBJ, uio, bytes, tx);
1321 		if (error == 0)
1322 			zvol_log_write(zv, tx, off, bytes);
1323 		dmu_tx_commit(tx);
1324 
1325 		if (error)
1326 			break;
1327 	}
1328 	zfs_range_unlock(rl);
1329 	if (!zil_disable && !(zv->zv_flags & ZVOL_WCE))
1330 		zil_commit(zv->zv_zilog, UINT64_MAX, ZVOL_OBJ);
1331 	return (error);
1332 }
1333 
1334 int
1335 zvol_getefi(void *arg, int flag, uint64_t vs, uint8_t bs)
1336 {
1337 	struct uuid uuid = EFI_RESERVED;
1338 	efi_gpe_t gpe = { 0 };
1339 	uint32_t crc;
1340 	dk_efi_t efi;
1341 	int length;
1342 	char *ptr;
1343 
1344 	if (ddi_copyin(arg, &efi, sizeof (dk_efi_t), flag))
1345 		return (EFAULT);
1346 	ptr = (char *)(uintptr_t)efi.dki_data_64;
1347 	length = efi.dki_length;
1348 	/*
1349 	 * Some clients may attempt to request a PMBR for the
1350 	 * zvol.  Currently this interface will return EINVAL to
1351 	 * such requests.  These requests could be supported by
1352 	 * adding a check for lba == 0 and consing up an appropriate
1353 	 * PMBR.
1354 	 */
1355 	if (efi.dki_lba < 1 || efi.dki_lba > 2 || length <= 0)
1356 		return (EINVAL);
1357 
1358 	gpe.efi_gpe_StartingLBA = LE_64(34ULL);
1359 	gpe.efi_gpe_EndingLBA = LE_64((vs >> bs) - 1);
1360 	UUID_LE_CONVERT(gpe.efi_gpe_PartitionTypeGUID, uuid);
1361 
1362 	if (efi.dki_lba == 1) {
1363 		efi_gpt_t gpt = { 0 };
1364 
1365 		gpt.efi_gpt_Signature = LE_64(EFI_SIGNATURE);
1366 		gpt.efi_gpt_Revision = LE_32(EFI_VERSION_CURRENT);
1367 		gpt.efi_gpt_HeaderSize = LE_32(sizeof (gpt));
1368 		gpt.efi_gpt_MyLBA = LE_64(1ULL);
1369 		gpt.efi_gpt_FirstUsableLBA = LE_64(34ULL);
1370 		gpt.efi_gpt_LastUsableLBA = LE_64((vs >> bs) - 1);
1371 		gpt.efi_gpt_PartitionEntryLBA = LE_64(2ULL);
1372 		gpt.efi_gpt_NumberOfPartitionEntries = LE_32(1);
1373 		gpt.efi_gpt_SizeOfPartitionEntry =
1374 		    LE_32(sizeof (efi_gpe_t));
1375 		CRC32(crc, &gpe, sizeof (gpe), -1U, crc32_table);
1376 		gpt.efi_gpt_PartitionEntryArrayCRC32 = LE_32(~crc);
1377 		CRC32(crc, &gpt, sizeof (gpt), -1U, crc32_table);
1378 		gpt.efi_gpt_HeaderCRC32 = LE_32(~crc);
1379 		if (ddi_copyout(&gpt, ptr, MIN(sizeof (gpt), length),
1380 		    flag))
1381 			return (EFAULT);
1382 		ptr += sizeof (gpt);
1383 		length -= sizeof (gpt);
1384 	}
1385 	if (length > 0 && ddi_copyout(&gpe, ptr, MIN(sizeof (gpe),
1386 	    length), flag))
1387 		return (EFAULT);
1388 	return (0);
1389 }
1390 
1391 /*
1392  * Dirtbag ioctls to support mkfs(1M) for UFS filesystems.  See dkio(7I).
1393  */
1394 /*ARGSUSED*/
1395 int
1396 zvol_ioctl(dev_t dev, int cmd, intptr_t arg, int flag, cred_t *cr, int *rvalp)
1397 {
1398 	zvol_state_t *zv;
1399 	struct dk_cinfo dki;
1400 	struct dk_minfo dkm;
1401 	struct dk_callback *dkc;
1402 	int error = 0;
1403 	rl_t *rl;
1404 
1405 	mutex_enter(&zvol_state_lock);
1406 
1407 	zv = ddi_get_soft_state(zvol_state, getminor(dev));
1408 
1409 	if (zv == NULL) {
1410 		mutex_exit(&zvol_state_lock);
1411 		return (ENXIO);
1412 	}
1413 	ASSERT(zv->zv_total_opens > 0);
1414 
1415 	switch (cmd) {
1416 
1417 	case DKIOCINFO:
1418 		bzero(&dki, sizeof (dki));
1419 		(void) strcpy(dki.dki_cname, "zvol");
1420 		(void) strcpy(dki.dki_dname, "zvol");
1421 		dki.dki_ctype = DKC_UNKNOWN;
1422 		dki.dki_maxtransfer = 1 << (SPA_MAXBLOCKSHIFT - zv->zv_min_bs);
1423 		mutex_exit(&zvol_state_lock);
1424 		if (ddi_copyout(&dki, (void *)arg, sizeof (dki), flag))
1425 			error = EFAULT;
1426 		return (error);
1427 
1428 	case DKIOCGMEDIAINFO:
1429 		bzero(&dkm, sizeof (dkm));
1430 		dkm.dki_lbsize = 1U << zv->zv_min_bs;
1431 		dkm.dki_capacity = zv->zv_volsize >> zv->zv_min_bs;
1432 		dkm.dki_media_type = DK_UNKNOWN;
1433 		mutex_exit(&zvol_state_lock);
1434 		if (ddi_copyout(&dkm, (void *)arg, sizeof (dkm), flag))
1435 			error = EFAULT;
1436 		return (error);
1437 
1438 	case DKIOCGETEFI:
1439 		{
1440 			uint64_t vs = zv->zv_volsize;
1441 			uint8_t bs = zv->zv_min_bs;
1442 
1443 			mutex_exit(&zvol_state_lock);
1444 			error = zvol_getefi((void *)arg, flag, vs, bs);
1445 			return (error);
1446 		}
1447 
1448 	case DKIOCFLUSHWRITECACHE:
1449 		dkc = (struct dk_callback *)arg;
1450 		mutex_exit(&zvol_state_lock);
1451 		zil_commit(zv->zv_zilog, UINT64_MAX, ZVOL_OBJ);
1452 		if ((flag & FKIOCTL) && dkc != NULL && dkc->dkc_callback) {
1453 			(*dkc->dkc_callback)(dkc->dkc_cookie, error);
1454 			error = 0;
1455 		}
1456 		return (error);
1457 
1458 	case DKIOCGETWCE:
1459 		{
1460 			int wce = (zv->zv_flags & ZVOL_WCE) ? 1 : 0;
1461 			if (ddi_copyout(&wce, (void *)arg, sizeof (int),
1462 			    flag))
1463 				error = EFAULT;
1464 			break;
1465 		}
1466 	case DKIOCSETWCE:
1467 		{
1468 			int wce;
1469 			if (ddi_copyin((void *)arg, &wce, sizeof (int),
1470 			    flag)) {
1471 				error = EFAULT;
1472 				break;
1473 			}
1474 			if (wce) {
1475 				zv->zv_flags |= ZVOL_WCE;
1476 				mutex_exit(&zvol_state_lock);
1477 			} else {
1478 				zv->zv_flags &= ~ZVOL_WCE;
1479 				mutex_exit(&zvol_state_lock);
1480 				zil_commit(zv->zv_zilog, UINT64_MAX, ZVOL_OBJ);
1481 			}
1482 			return (0);
1483 		}
1484 
1485 	case DKIOCGGEOM:
1486 	case DKIOCGVTOC:
1487 		/*
1488 		 * commands using these (like prtvtoc) expect ENOTSUP
1489 		 * since we're emulating an EFI label
1490 		 */
1491 		error = ENOTSUP;
1492 		break;
1493 
1494 	case DKIOCDUMPINIT:
1495 		rl = zfs_range_lock(&zv->zv_znode, 0, zv->zv_volsize,
1496 		    RL_WRITER);
1497 		error = zvol_dumpify(zv);
1498 		zfs_range_unlock(rl);
1499 		break;
1500 
1501 	case DKIOCDUMPFINI:
1502 		if (!(zv->zv_flags & ZVOL_DUMPIFIED))
1503 			break;
1504 		rl = zfs_range_lock(&zv->zv_znode, 0, zv->zv_volsize,
1505 		    RL_WRITER);
1506 		error = zvol_dump_fini(zv);
1507 		zfs_range_unlock(rl);
1508 		break;
1509 
1510 	default:
1511 		error = ENOTTY;
1512 		break;
1513 
1514 	}
1515 	mutex_exit(&zvol_state_lock);
1516 	return (error);
1517 }
1518 
1519 int
1520 zvol_busy(void)
1521 {
1522 	return (zvol_minors != 0);
1523 }
1524 
1525 void
1526 zvol_init(void)
1527 {
1528 	VERIFY(ddi_soft_state_init(&zvol_state, sizeof (zvol_state_t), 1) == 0);
1529 	mutex_init(&zvol_state_lock, NULL, MUTEX_DEFAULT, NULL);
1530 }
1531 
1532 void
1533 zvol_fini(void)
1534 {
1535 	mutex_destroy(&zvol_state_lock);
1536 	ddi_soft_state_fini(&zvol_state);
1537 }
1538 
1539 static boolean_t
1540 zvol_is_swap(zvol_state_t *zv)
1541 {
1542 	vnode_t *vp;
1543 	boolean_t ret = B_FALSE;
1544 	char *devpath;
1545 	size_t devpathlen;
1546 	int error;
1547 
1548 	devpathlen = strlen(ZVOL_FULL_DEV_DIR) + strlen(zv->zv_name) + 1;
1549 	devpath = kmem_alloc(devpathlen, KM_SLEEP);
1550 	(void) sprintf(devpath, "%s%s", ZVOL_FULL_DEV_DIR, zv->zv_name);
1551 	error = lookupname(devpath, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);
1552 	kmem_free(devpath, devpathlen);
1553 
1554 	ret = !error && IS_SWAPVP(common_specvp(vp));
1555 
1556 	if (vp != NULL)
1557 		VN_RELE(vp);
1558 
1559 	return (ret);
1560 }
1561 
1562 static int
1563 zvol_dump_init(zvol_state_t *zv, boolean_t resize)
1564 {
1565 	dmu_tx_t *tx;
1566 	int error = 0;
1567 	objset_t *os = zv->zv_objset;
1568 	nvlist_t *nv = NULL;
1569 
1570 	ASSERT(MUTEX_HELD(&zvol_state_lock));
1571 
1572 	tx = dmu_tx_create(os);
1573 	dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
1574 	error = dmu_tx_assign(tx, TXG_WAIT);
1575 	if (error) {
1576 		dmu_tx_abort(tx);
1577 		return (error);
1578 	}
1579 
1580 	/*
1581 	 * If we are resizing the dump device then we only need to
1582 	 * update the refreservation to match the newly updated
1583 	 * zvolsize. Otherwise, we save off the original state of the
1584 	 * zvol so that we can restore them if the zvol is ever undumpified.
1585 	 */
1586 	if (resize) {
1587 		error = zap_update(os, ZVOL_ZAP_OBJ,
1588 		    zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 8, 1,
1589 		    &zv->zv_volsize, tx);
1590 	} else {
1591 		uint64_t checksum, compress, refresrv, vbs;
1592 
1593 		error = dsl_prop_get_integer(zv->zv_name,
1594 		    zfs_prop_to_name(ZFS_PROP_COMPRESSION), &compress, NULL);
1595 		error = error ? error : dsl_prop_get_integer(zv->zv_name,
1596 		    zfs_prop_to_name(ZFS_PROP_CHECKSUM), &checksum, NULL);
1597 		error = error ? error : dsl_prop_get_integer(zv->zv_name,
1598 		    zfs_prop_to_name(ZFS_PROP_REFRESERVATION), &refresrv, NULL);
1599 		error = error ? error : dsl_prop_get_integer(zv->zv_name,
1600 		    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &vbs, NULL);
1601 
1602 		error = error ? error : zap_update(os, ZVOL_ZAP_OBJ,
1603 		    zfs_prop_to_name(ZFS_PROP_COMPRESSION), 8, 1,
1604 		    &compress, tx);
1605 		error = error ? error : zap_update(os, ZVOL_ZAP_OBJ,
1606 		    zfs_prop_to_name(ZFS_PROP_CHECKSUM), 8, 1, &checksum, tx);
1607 		error = error ? error : zap_update(os, ZVOL_ZAP_OBJ,
1608 		    zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 8, 1,
1609 		    &refresrv, tx);
1610 		error = error ? error : zap_update(os, ZVOL_ZAP_OBJ,
1611 		    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), 8, 1,
1612 		    &vbs, tx);
1613 	}
1614 	dmu_tx_commit(tx);
1615 
1616 	/* Truncate the file */
1617 	if (!error)
1618 		error = dmu_free_long_range(zv->zv_objset,
1619 		    ZVOL_OBJ, 0, DMU_OBJECT_END);
1620 
1621 	if (error)
1622 		return (error);
1623 
1624 	/*
1625 	 * We only need update the zvol's property if we are initializing
1626 	 * the dump area for the first time.
1627 	 */
1628 	if (!resize) {
1629 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1630 		VERIFY(nvlist_add_uint64(nv,
1631 		    zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 0) == 0);
1632 		VERIFY(nvlist_add_uint64(nv,
1633 		    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
1634 		    ZIO_COMPRESS_OFF) == 0);
1635 		VERIFY(nvlist_add_uint64(nv,
1636 		    zfs_prop_to_name(ZFS_PROP_CHECKSUM),
1637 		    ZIO_CHECKSUM_OFF) == 0);
1638 		VERIFY(nvlist_add_uint64(nv,
1639 		    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE),
1640 		    SPA_MAXBLOCKSIZE) == 0);
1641 
1642 		error = zfs_set_prop_nvlist(zv->zv_name, nv);
1643 		nvlist_free(nv);
1644 
1645 		if (error)
1646 			return (error);
1647 	}
1648 
1649 	/* Allocate the space for the dump */
1650 	error = zvol_prealloc(zv);
1651 	return (error);
1652 }
1653 
1654 static int
1655 zvol_dumpify(zvol_state_t *zv)
1656 {
1657 	int error = 0;
1658 	uint64_t dumpsize = 0;
1659 	dmu_tx_t *tx;
1660 	objset_t *os = zv->zv_objset;
1661 
1662 	if (zv->zv_flags & ZVOL_RDONLY || (zv->zv_mode & DS_MODE_READONLY))
1663 		return (EROFS);
1664 
1665 	/*
1666 	 * We do not support swap devices acting as dump devices.
1667 	 */
1668 	if (zvol_is_swap(zv))
1669 		return (ENOTSUP);
1670 
1671 	if (zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ, ZVOL_DUMPSIZE,
1672 	    8, 1, &dumpsize) != 0 || dumpsize != zv->zv_volsize) {
1673 		boolean_t resize = (dumpsize > 0) ? B_TRUE : B_FALSE;
1674 
1675 		if ((error = zvol_dump_init(zv, resize)) != 0) {
1676 			(void) zvol_dump_fini(zv);
1677 			return (error);
1678 		}
1679 	}
1680 
1681 	/*
1682 	 * Build up our lba mapping.
1683 	 */
1684 	error = zvol_get_lbas(zv);
1685 	if (error) {
1686 		(void) zvol_dump_fini(zv);
1687 		return (error);
1688 	}
1689 
1690 	tx = dmu_tx_create(os);
1691 	dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
1692 	error = dmu_tx_assign(tx, TXG_WAIT);
1693 	if (error) {
1694 		dmu_tx_abort(tx);
1695 		(void) zvol_dump_fini(zv);
1696 		return (error);
1697 	}
1698 
1699 	zv->zv_flags |= ZVOL_DUMPIFIED;
1700 	error = zap_update(os, ZVOL_ZAP_OBJ, ZVOL_DUMPSIZE, 8, 1,
1701 	    &zv->zv_volsize, tx);
1702 	dmu_tx_commit(tx);
1703 
1704 	if (error) {
1705 		(void) zvol_dump_fini(zv);
1706 		return (error);
1707 	}
1708 
1709 	txg_wait_synced(dmu_objset_pool(os), 0);
1710 	return (0);
1711 }
1712 
1713 static int
1714 zvol_dump_fini(zvol_state_t *zv)
1715 {
1716 	dmu_tx_t *tx;
1717 	objset_t *os = zv->zv_objset;
1718 	nvlist_t *nv;
1719 	int error = 0;
1720 	uint64_t checksum, compress, refresrv, vbs;
1721 
1722 	/*
1723 	 * Attempt to restore the zvol back to its pre-dumpified state.
1724 	 * This is a best-effort attempt as it's possible that not all
1725 	 * of these properties were initialized during the dumpify process
1726 	 * (i.e. error during zvol_dump_init).
1727 	 */
1728 
1729 	tx = dmu_tx_create(os);
1730 	dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
1731 	error = dmu_tx_assign(tx, TXG_WAIT);
1732 	if (error) {
1733 		dmu_tx_abort(tx);
1734 		return (error);
1735 	}
1736 	(void) zap_remove(os, ZVOL_ZAP_OBJ, ZVOL_DUMPSIZE, tx);
1737 	dmu_tx_commit(tx);
1738 
1739 	(void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ,
1740 	    zfs_prop_to_name(ZFS_PROP_CHECKSUM), 8, 1, &checksum);
1741 	(void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ,
1742 	    zfs_prop_to_name(ZFS_PROP_COMPRESSION), 8, 1, &compress);
1743 	(void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ,
1744 	    zfs_prop_to_name(ZFS_PROP_REFRESERVATION), 8, 1, &refresrv);
1745 	(void) zap_lookup(zv->zv_objset, ZVOL_ZAP_OBJ,
1746 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), 8, 1, &vbs);
1747 
1748 	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1749 	(void) nvlist_add_uint64(nv,
1750 	    zfs_prop_to_name(ZFS_PROP_CHECKSUM), checksum);
1751 	(void) nvlist_add_uint64(nv,
1752 	    zfs_prop_to_name(ZFS_PROP_COMPRESSION), compress);
1753 	(void) nvlist_add_uint64(nv,
1754 	    zfs_prop_to_name(ZFS_PROP_REFRESERVATION), refresrv);
1755 	(void) nvlist_add_uint64(nv,
1756 	    zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), vbs);
1757 	(void) zfs_set_prop_nvlist(zv->zv_name, nv);
1758 	nvlist_free(nv);
1759 
1760 	zvol_free_extents(zv);
1761 	zv->zv_flags &= ~ZVOL_DUMPIFIED;
1762 	(void) dmu_free_long_range(os, ZVOL_OBJ, 0, DMU_OBJECT_END);
1763 
1764 	return (0);
1765 }
1766