xref: /titanic_44/usr/src/uts/common/fs/zfs/zrlock.c (revision 1db2880b3a411e3c56e50c7dc42d3b137fcc4e48)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2014 by Delphix. All rights reserved.
24  */
25 
26 /*
27  * A Zero Reference Lock (ZRL) is a reference count that can lock out new
28  * references only when the count is zero and only without waiting if the count
29  * is not already zero. It is similar to a read-write lock in that it allows
30  * multiple readers and only a single writer, but it does not allow a writer to
31  * block while waiting for readers to exit, and therefore the question of
32  * reader/writer priority is moot (no WRWANT bit). Since the equivalent of
33  * rw_enter(&lock, RW_WRITER) is disallowed and only tryenter() is allowed, it
34  * is perfectly safe for the same reader to acquire the same lock multiple
35  * times. The fact that a ZRL is reentrant for readers (through multiple calls
36  * to zrl_add()) makes it convenient for determining whether something is
37  * actively referenced without the fuss of flagging lock ownership across
38  * function calls.
39  */
40 #include <sys/zrlock.h>
41 
42 /*
43  * A ZRL can be locked only while there are zero references, so ZRL_LOCKED is
44  * treated as zero references.
45  */
46 #define	ZRL_LOCKED	-1
47 #define	ZRL_DESTROYED	-2
48 
49 void
50 zrl_init(zrlock_t *zrl)
51 {
52 	mutex_init(&zrl->zr_mtx, NULL, MUTEX_DEFAULT, NULL);
53 	zrl->zr_refcount = 0;
54 	cv_init(&zrl->zr_cv, NULL, CV_DEFAULT, NULL);
55 #ifdef	ZFS_DEBUG
56 	zrl->zr_owner = NULL;
57 	zrl->zr_caller = NULL;
58 #endif
59 }
60 
61 void
62 zrl_destroy(zrlock_t *zrl)
63 {
64 	ASSERT0(zrl->zr_refcount);
65 
66 	mutex_destroy(&zrl->zr_mtx);
67 	zrl->zr_refcount = ZRL_DESTROYED;
68 	cv_destroy(&zrl->zr_cv);
69 }
70 
71 void
72 #ifdef	ZFS_DEBUG
73 zrl_add_debug(zrlock_t *zrl, const char *zc)
74 #else
75 zrl_add(zrlock_t *zrl)
76 #endif
77 {
78 	uint32_t n = (uint32_t)zrl->zr_refcount;
79 
80 	while (n != ZRL_LOCKED) {
81 		uint32_t cas = atomic_cas_32(
82 		    (uint32_t *)&zrl->zr_refcount, n, n + 1);
83 		if (cas == n) {
84 			ASSERT3S((int32_t)n, >=, 0);
85 #ifdef	ZFS_DEBUG
86 			if (zrl->zr_owner == curthread) {
87 				DTRACE_PROBE2(zrlock__reentry,
88 				    zrlock_t *, zrl, uint32_t, n);
89 			}
90 			zrl->zr_owner = curthread;
91 			zrl->zr_caller = zc;
92 #endif
93 			return;
94 		}
95 		n = cas;
96 	}
97 
98 	mutex_enter(&zrl->zr_mtx);
99 	while (zrl->zr_refcount == ZRL_LOCKED) {
100 		cv_wait(&zrl->zr_cv, &zrl->zr_mtx);
101 	}
102 	ASSERT3S(zrl->zr_refcount, >=, 0);
103 	zrl->zr_refcount++;
104 #ifdef	ZFS_DEBUG
105 	zrl->zr_owner = curthread;
106 	zrl->zr_caller = zc;
107 #endif
108 	mutex_exit(&zrl->zr_mtx);
109 }
110 
111 void
112 zrl_remove(zrlock_t *zrl)
113 {
114 	uint32_t n;
115 
116 #ifdef	ZFS_DEBUG
117 	if (zrl->zr_owner == curthread) {
118 		zrl->zr_owner = NULL;
119 		zrl->zr_caller = NULL;
120 	}
121 #endif
122 	n = atomic_dec_32_nv((uint32_t *)&zrl->zr_refcount);
123 	ASSERT3S((int32_t)n, >=, 0);
124 }
125 
126 int
127 zrl_tryenter(zrlock_t *zrl)
128 {
129 	uint32_t n = (uint32_t)zrl->zr_refcount;
130 
131 	if (n == 0) {
132 		uint32_t cas = atomic_cas_32(
133 		    (uint32_t *)&zrl->zr_refcount, 0, ZRL_LOCKED);
134 		if (cas == 0) {
135 #ifdef	ZFS_DEBUG
136 			ASSERT3P(zrl->zr_owner, ==, NULL);
137 			zrl->zr_owner = curthread;
138 #endif
139 			return (1);
140 		}
141 	}
142 
143 	ASSERT3S((int32_t)n, >, ZRL_DESTROYED);
144 
145 	return (0);
146 }
147 
148 void
149 zrl_exit(zrlock_t *zrl)
150 {
151 	ASSERT3S(zrl->zr_refcount, ==, ZRL_LOCKED);
152 
153 	mutex_enter(&zrl->zr_mtx);
154 #ifdef	ZFS_DEBUG
155 	ASSERT3P(zrl->zr_owner, ==, curthread);
156 	zrl->zr_owner = NULL;
157 	membar_producer();	/* make sure the owner store happens first */
158 #endif
159 	zrl->zr_refcount = 0;
160 	cv_broadcast(&zrl->zr_cv);
161 	mutex_exit(&zrl->zr_mtx);
162 }
163 
164 int
165 zrl_refcount(zrlock_t *zrl)
166 {
167 	ASSERT3S(zrl->zr_refcount, >, ZRL_DESTROYED);
168 
169 	int n = (int)zrl->zr_refcount;
170 	return (n <= 0 ? 0 : n);
171 }
172 
173 int
174 zrl_is_zero(zrlock_t *zrl)
175 {
176 	ASSERT3S(zrl->zr_refcount, >, ZRL_DESTROYED);
177 
178 	return (zrl->zr_refcount <= 0);
179 }
180 
181 int
182 zrl_is_locked(zrlock_t *zrl)
183 {
184 	ASSERT3S(zrl->zr_refcount, >, ZRL_DESTROYED);
185 
186 	return (zrl->zr_refcount == ZRL_LOCKED);
187 }
188 
189 #ifdef	ZFS_DEBUG
190 kthread_t *
191 zrl_owner(zrlock_t *zrl)
192 {
193 	return (zrl->zr_owner);
194 }
195 #endif
196