1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/txg.h> 32 #include <sys/spa_impl.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/zio_impl.h> 35 #include <sys/zio_compress.h> 36 #include <sys/zio_checksum.h> 37 38 /* 39 * ========================================================================== 40 * I/O priority table 41 * ========================================================================== 42 */ 43 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = { 44 0, /* ZIO_PRIORITY_NOW */ 45 0, /* ZIO_PRIORITY_SYNC_READ */ 46 0, /* ZIO_PRIORITY_SYNC_WRITE */ 47 6, /* ZIO_PRIORITY_ASYNC_READ */ 48 4, /* ZIO_PRIORITY_ASYNC_WRITE */ 49 4, /* ZIO_PRIORITY_FREE */ 50 0, /* ZIO_PRIORITY_CACHE_FILL */ 51 0, /* ZIO_PRIORITY_LOG_WRITE */ 52 10, /* ZIO_PRIORITY_RESILVER */ 53 20, /* ZIO_PRIORITY_SCRUB */ 54 }; 55 56 /* 57 * ========================================================================== 58 * I/O type descriptions 59 * ========================================================================== 60 */ 61 char *zio_type_name[ZIO_TYPES] = { 62 "null", "read", "write", "free", "claim", "ioctl" }; 63 64 /* At or above this size, force gang blocking - for testing */ 65 uint64_t zio_gang_bang = SPA_MAXBLOCKSIZE + 1; 66 67 typedef struct zio_sync_pass { 68 int zp_defer_free; /* defer frees after this pass */ 69 int zp_dontcompress; /* don't compress after this pass */ 70 int zp_rewrite; /* rewrite new bps after this pass */ 71 } zio_sync_pass_t; 72 73 zio_sync_pass_t zio_sync_pass = { 74 1, /* zp_defer_free */ 75 4, /* zp_dontcompress */ 76 1, /* zp_rewrite */ 77 }; 78 79 /* 80 * ========================================================================== 81 * I/O kmem caches 82 * ========================================================================== 83 */ 84 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 85 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT]; 86 87 #ifdef _KERNEL 88 extern vmem_t *zio_alloc_arena; 89 #endif 90 91 void 92 zio_init(void) 93 { 94 size_t c; 95 vmem_t *data_alloc_arena = NULL; 96 97 #ifdef _KERNEL 98 data_alloc_arena = zio_alloc_arena; 99 #endif 100 101 /* 102 * For small buffers, we want a cache for each multiple of 103 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache 104 * for each quarter-power of 2. For large buffers, we want 105 * a cache for each multiple of PAGESIZE. 106 */ 107 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 108 size_t size = (c + 1) << SPA_MINBLOCKSHIFT; 109 size_t p2 = size; 110 size_t align = 0; 111 112 while (p2 & (p2 - 1)) 113 p2 &= p2 - 1; 114 115 if (size <= 4 * SPA_MINBLOCKSIZE) { 116 align = SPA_MINBLOCKSIZE; 117 } else if (P2PHASE(size, PAGESIZE) == 0) { 118 align = PAGESIZE; 119 } else if (P2PHASE(size, p2 >> 2) == 0) { 120 align = p2 >> 2; 121 } 122 123 if (align != 0) { 124 char name[36]; 125 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size); 126 zio_buf_cache[c] = kmem_cache_create(name, size, 127 align, NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG); 128 129 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size); 130 zio_data_buf_cache[c] = kmem_cache_create(name, size, 131 align, NULL, NULL, NULL, NULL, data_alloc_arena, 132 KMC_NODEBUG); 133 134 dprintf("creating cache for size %5lx align %5lx\n", 135 size, align); 136 } 137 } 138 139 while (--c != 0) { 140 ASSERT(zio_buf_cache[c] != NULL); 141 if (zio_buf_cache[c - 1] == NULL) 142 zio_buf_cache[c - 1] = zio_buf_cache[c]; 143 144 ASSERT(zio_data_buf_cache[c] != NULL); 145 if (zio_data_buf_cache[c - 1] == NULL) 146 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c]; 147 } 148 149 zio_inject_init(); 150 } 151 152 void 153 zio_fini(void) 154 { 155 size_t c; 156 kmem_cache_t *last_cache = NULL; 157 kmem_cache_t *last_data_cache = NULL; 158 159 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) { 160 if (zio_buf_cache[c] != last_cache) { 161 last_cache = zio_buf_cache[c]; 162 kmem_cache_destroy(zio_buf_cache[c]); 163 } 164 zio_buf_cache[c] = NULL; 165 166 if (zio_data_buf_cache[c] != last_data_cache) { 167 last_data_cache = zio_data_buf_cache[c]; 168 kmem_cache_destroy(zio_data_buf_cache[c]); 169 } 170 zio_data_buf_cache[c] = NULL; 171 } 172 173 zio_inject_fini(); 174 } 175 176 /* 177 * ========================================================================== 178 * Allocate and free I/O buffers 179 * ========================================================================== 180 */ 181 182 /* 183 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a 184 * crashdump if the kernel panics, so use it judiciously. Obviously, it's 185 * useful to inspect ZFS metadata, but if possible, we should avoid keeping 186 * excess / transient data in-core during a crashdump. 187 */ 188 void * 189 zio_buf_alloc(size_t size) 190 { 191 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 192 193 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 194 195 return (kmem_cache_alloc(zio_buf_cache[c], KM_SLEEP)); 196 } 197 198 /* 199 * Use zio_data_buf_alloc to allocate data. The data will not appear in a 200 * crashdump if the kernel panics. This exists so that we will limit the amount 201 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount 202 * of kernel heap dumped to disk when the kernel panics) 203 */ 204 void * 205 zio_data_buf_alloc(size_t size) 206 { 207 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 208 209 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 210 211 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_SLEEP)); 212 } 213 214 void 215 zio_buf_free(void *buf, size_t size) 216 { 217 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 218 219 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 220 221 kmem_cache_free(zio_buf_cache[c], buf); 222 } 223 224 void 225 zio_data_buf_free(void *buf, size_t size) 226 { 227 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT; 228 229 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT); 230 231 kmem_cache_free(zio_data_buf_cache[c], buf); 232 } 233 234 /* 235 * ========================================================================== 236 * Push and pop I/O transform buffers 237 * ========================================================================== 238 */ 239 static void 240 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize) 241 { 242 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP); 243 244 zt->zt_data = data; 245 zt->zt_size = size; 246 zt->zt_bufsize = bufsize; 247 248 zt->zt_next = zio->io_transform_stack; 249 zio->io_transform_stack = zt; 250 251 zio->io_data = data; 252 zio->io_size = size; 253 } 254 255 static void 256 zio_pop_transform(zio_t *zio, void **data, uint64_t *size, uint64_t *bufsize) 257 { 258 zio_transform_t *zt = zio->io_transform_stack; 259 260 *data = zt->zt_data; 261 *size = zt->zt_size; 262 *bufsize = zt->zt_bufsize; 263 264 zio->io_transform_stack = zt->zt_next; 265 kmem_free(zt, sizeof (zio_transform_t)); 266 267 if ((zt = zio->io_transform_stack) != NULL) { 268 zio->io_data = zt->zt_data; 269 zio->io_size = zt->zt_size; 270 } 271 } 272 273 static void 274 zio_clear_transform_stack(zio_t *zio) 275 { 276 void *data; 277 uint64_t size, bufsize; 278 279 ASSERT(zio->io_transform_stack != NULL); 280 281 zio_pop_transform(zio, &data, &size, &bufsize); 282 while (zio->io_transform_stack != NULL) { 283 zio_buf_free(data, bufsize); 284 zio_pop_transform(zio, &data, &size, &bufsize); 285 } 286 } 287 288 /* 289 * ========================================================================== 290 * Create the various types of I/O (read, write, free) 291 * ========================================================================== 292 */ 293 static zio_t * 294 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 295 void *data, uint64_t size, zio_done_func_t *done, void *private, 296 zio_type_t type, int priority, int flags, uint8_t stage, uint32_t pipeline) 297 { 298 zio_t *zio; 299 300 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 301 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 302 303 zio = kmem_zalloc(sizeof (zio_t), KM_SLEEP); 304 zio->io_parent = pio; 305 zio->io_spa = spa; 306 zio->io_txg = txg; 307 if (bp != NULL) { 308 zio->io_bp = bp; 309 zio->io_bp_copy = *bp; 310 zio->io_bp_orig = *bp; 311 } 312 zio->io_done = done; 313 zio->io_private = private; 314 zio->io_type = type; 315 zio->io_priority = priority; 316 zio->io_stage = stage; 317 zio->io_pipeline = pipeline; 318 zio->io_async_stages = ZIO_ASYNC_PIPELINE_STAGES; 319 zio->io_timestamp = lbolt64; 320 zio->io_flags = flags; 321 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL); 322 zio_push_transform(zio, data, size, size); 323 324 /* 325 * Note on config lock: 326 * 327 * If CONFIG_HELD is set, then the caller already has the config 328 * lock, so we don't need it for this io. 329 * 330 * We set CONFIG_GRABBED to indicate that we have grabbed the 331 * config lock on behalf of this io, so it should be released 332 * in zio_done. 333 * 334 * Unless CONFIG_HELD is set, we will grab the config lock for 335 * any top-level (parent-less) io, *except* NULL top-level ios. 336 * The NULL top-level ios rarely have any children, so we delay 337 * grabbing the lock until the first child is added (but it is 338 * still grabbed on behalf of the top-level i/o, so additional 339 * children don't need to also grab it). This greatly reduces 340 * contention on the config lock. 341 */ 342 if (pio == NULL) { 343 if (type != ZIO_TYPE_NULL && 344 !(flags & ZIO_FLAG_CONFIG_HELD)) { 345 spa_config_enter(zio->io_spa, RW_READER, zio); 346 zio->io_flags |= ZIO_FLAG_CONFIG_GRABBED; 347 } 348 zio->io_root = zio; 349 } else { 350 zio->io_root = pio->io_root; 351 if (!(flags & ZIO_FLAG_NOBOOKMARK)) 352 zio->io_logical = pio->io_logical; 353 mutex_enter(&pio->io_lock); 354 if (pio->io_parent == NULL && 355 pio->io_type == ZIO_TYPE_NULL && 356 !(pio->io_flags & ZIO_FLAG_CONFIG_GRABBED) && 357 !(pio->io_flags & ZIO_FLAG_CONFIG_HELD)) { 358 pio->io_flags |= ZIO_FLAG_CONFIG_GRABBED; 359 spa_config_enter(zio->io_spa, RW_READER, pio); 360 } 361 if (stage < ZIO_STAGE_READY) 362 pio->io_children_notready++; 363 pio->io_children_notdone++; 364 zio->io_sibling_next = pio->io_child; 365 zio->io_sibling_prev = NULL; 366 if (pio->io_child != NULL) 367 pio->io_child->io_sibling_prev = zio; 368 pio->io_child = zio; 369 zio->io_ndvas = pio->io_ndvas; 370 mutex_exit(&pio->io_lock); 371 } 372 373 return (zio); 374 } 375 376 zio_t * 377 zio_null(zio_t *pio, spa_t *spa, zio_done_func_t *done, void *private, 378 int flags) 379 { 380 zio_t *zio; 381 382 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 383 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, ZIO_STAGE_OPEN, 384 ZIO_WAIT_FOR_CHILDREN_PIPELINE); 385 386 return (zio); 387 } 388 389 zio_t * 390 zio_root(spa_t *spa, zio_done_func_t *done, void *private, int flags) 391 { 392 return (zio_null(NULL, spa, done, private, flags)); 393 } 394 395 zio_t * 396 zio_read(zio_t *pio, spa_t *spa, blkptr_t *bp, void *data, 397 uint64_t size, zio_done_func_t *done, void *private, 398 int priority, int flags, zbookmark_t *zb) 399 { 400 zio_t *zio; 401 402 ASSERT3U(size, ==, BP_GET_LSIZE(bp)); 403 404 zio = zio_create(pio, spa, bp->blk_birth, bp, data, size, done, private, 405 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_USER, 406 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE); 407 zio->io_bookmark = *zb; 408 409 zio->io_logical = zio; 410 411 /* 412 * Work off our copy of the bp so the caller can free it. 413 */ 414 zio->io_bp = &zio->io_bp_copy; 415 416 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) { 417 uint64_t csize = BP_GET_PSIZE(bp); 418 void *cbuf = zio_buf_alloc(csize); 419 420 zio_push_transform(zio, cbuf, csize, csize); 421 zio->io_pipeline |= 1U << ZIO_STAGE_READ_DECOMPRESS; 422 } 423 424 if (BP_IS_GANG(bp)) { 425 uint64_t gsize = SPA_GANGBLOCKSIZE; 426 void *gbuf = zio_buf_alloc(gsize); 427 428 zio_push_transform(zio, gbuf, gsize, gsize); 429 zio->io_pipeline |= 1U << ZIO_STAGE_READ_GANG_MEMBERS; 430 } 431 432 return (zio); 433 } 434 435 zio_t * 436 zio_write(zio_t *pio, spa_t *spa, int checksum, int compress, int ncopies, 437 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 438 zio_done_func_t *ready, zio_done_func_t *done, void *private, int priority, 439 int flags, zbookmark_t *zb) 440 { 441 zio_t *zio; 442 443 ASSERT(checksum >= ZIO_CHECKSUM_OFF && 444 checksum < ZIO_CHECKSUM_FUNCTIONS); 445 446 ASSERT(compress >= ZIO_COMPRESS_OFF && 447 compress < ZIO_COMPRESS_FUNCTIONS); 448 449 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 450 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_USER, 451 ZIO_STAGE_OPEN, ZIO_WRITE_PIPELINE); 452 453 zio->io_ready = ready; 454 455 zio->io_bookmark = *zb; 456 457 zio->io_logical = zio; 458 459 zio->io_checksum = checksum; 460 zio->io_compress = compress; 461 zio->io_ndvas = ncopies; 462 463 if (compress != ZIO_COMPRESS_OFF) 464 zio->io_async_stages |= 1U << ZIO_STAGE_WRITE_COMPRESS; 465 466 if (bp->blk_birth != txg) { 467 /* XXX the bp usually (always?) gets re-zeroed later */ 468 BP_ZERO(bp); 469 BP_SET_LSIZE(bp, size); 470 BP_SET_PSIZE(bp, size); 471 } else { 472 /* Make sure someone doesn't change their mind on overwrites */ 473 ASSERT(MIN(zio->io_ndvas + BP_IS_GANG(bp), 474 spa_max_replication(spa)) == BP_GET_NDVAS(bp)); 475 } 476 477 return (zio); 478 } 479 480 zio_t * 481 zio_rewrite(zio_t *pio, spa_t *spa, int checksum, 482 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 483 zio_done_func_t *done, void *private, int priority, int flags, 484 zbookmark_t *zb) 485 { 486 zio_t *zio; 487 488 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 489 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_USER, 490 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE); 491 492 zio->io_bookmark = *zb; 493 zio->io_checksum = checksum; 494 zio->io_compress = ZIO_COMPRESS_OFF; 495 496 if (pio != NULL) 497 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(bp)); 498 499 return (zio); 500 } 501 502 static zio_t * 503 zio_write_allocate(zio_t *pio, spa_t *spa, int checksum, 504 uint64_t txg, blkptr_t *bp, void *data, uint64_t size, 505 zio_done_func_t *done, void *private, int priority, int flags) 506 { 507 zio_t *zio; 508 509 BP_ZERO(bp); 510 BP_SET_LSIZE(bp, size); 511 BP_SET_PSIZE(bp, size); 512 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 513 514 zio = zio_create(pio, spa, txg, bp, data, size, done, private, 515 ZIO_TYPE_WRITE, priority, flags, 516 ZIO_STAGE_OPEN, ZIO_WRITE_ALLOCATE_PIPELINE); 517 518 zio->io_checksum = checksum; 519 zio->io_compress = ZIO_COMPRESS_OFF; 520 521 return (zio); 522 } 523 524 zio_t * 525 zio_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 526 zio_done_func_t *done, void *private) 527 { 528 zio_t *zio; 529 530 ASSERT(!BP_IS_HOLE(bp)); 531 532 if (txg == spa->spa_syncing_txg && 533 spa->spa_sync_pass > zio_sync_pass.zp_defer_free) { 534 bplist_enqueue_deferred(&spa->spa_sync_bplist, bp); 535 return (zio_null(pio, spa, NULL, NULL, 0)); 536 } 537 538 zio = zio_create(pio, spa, txg, bp, NULL, 0, done, private, 539 ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, ZIO_FLAG_USER, 540 ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE); 541 542 zio->io_bp = &zio->io_bp_copy; 543 544 return (zio); 545 } 546 547 zio_t * 548 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, 549 zio_done_func_t *done, void *private) 550 { 551 zio_t *zio; 552 553 /* 554 * A claim is an allocation of a specific block. Claims are needed 555 * to support immediate writes in the intent log. The issue is that 556 * immediate writes contain committed data, but in a txg that was 557 * *not* committed. Upon opening the pool after an unclean shutdown, 558 * the intent log claims all blocks that contain immediate write data 559 * so that the SPA knows they're in use. 560 * 561 * All claims *must* be resolved in the first txg -- before the SPA 562 * starts allocating blocks -- so that nothing is allocated twice. 563 */ 564 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa)); 565 ASSERT3U(spa_first_txg(spa), <=, txg); 566 567 zio = zio_create(pio, spa, txg, bp, NULL, 0, done, private, 568 ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, 0, 569 ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE); 570 571 zio->io_bp = &zio->io_bp_copy; 572 573 return (zio); 574 } 575 576 zio_t * 577 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd, 578 zio_done_func_t *done, void *private, int priority, int flags) 579 { 580 zio_t *zio; 581 int c; 582 583 if (vd->vdev_children == 0) { 584 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private, 585 ZIO_TYPE_IOCTL, priority, flags, 586 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE); 587 588 zio->io_vd = vd; 589 zio->io_cmd = cmd; 590 } else { 591 zio = zio_null(pio, spa, NULL, NULL, flags); 592 593 for (c = 0; c < vd->vdev_children; c++) 594 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd, 595 done, private, priority, flags)); 596 } 597 598 return (zio); 599 } 600 601 static void 602 zio_phys_bp_init(vdev_t *vd, blkptr_t *bp, uint64_t offset, uint64_t size, 603 int checksum) 604 { 605 ASSERT(vd->vdev_children == 0); 606 607 ASSERT(size <= SPA_MAXBLOCKSIZE); 608 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0); 609 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0); 610 611 ASSERT(offset + size <= VDEV_LABEL_START_SIZE || 612 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE); 613 ASSERT3U(offset + size, <=, vd->vdev_psize); 614 615 BP_ZERO(bp); 616 617 BP_SET_LSIZE(bp, size); 618 BP_SET_PSIZE(bp, size); 619 620 BP_SET_CHECKSUM(bp, checksum); 621 BP_SET_COMPRESS(bp, ZIO_COMPRESS_OFF); 622 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 623 624 if (checksum != ZIO_CHECKSUM_OFF) 625 ZIO_SET_CHECKSUM(&bp->blk_cksum, offset, 0, 0, 0); 626 } 627 628 zio_t * 629 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 630 void *data, int checksum, zio_done_func_t *done, void *private, 631 int priority, int flags) 632 { 633 zio_t *zio; 634 blkptr_t blk; 635 636 zio_phys_bp_init(vd, &blk, offset, size, checksum); 637 638 zio = zio_create(pio, vd->vdev_spa, 0, &blk, data, size, done, private, 639 ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, 640 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE); 641 642 zio->io_vd = vd; 643 zio->io_offset = offset; 644 645 /* 646 * Work off our copy of the bp so the caller can free it. 647 */ 648 zio->io_bp = &zio->io_bp_copy; 649 650 return (zio); 651 } 652 653 zio_t * 654 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size, 655 void *data, int checksum, zio_done_func_t *done, void *private, 656 int priority, int flags) 657 { 658 zio_block_tail_t *zbt; 659 void *wbuf; 660 zio_t *zio; 661 blkptr_t blk; 662 663 zio_phys_bp_init(vd, &blk, offset, size, checksum); 664 665 zio = zio_create(pio, vd->vdev_spa, 0, &blk, data, size, done, private, 666 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, 667 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE); 668 669 zio->io_vd = vd; 670 zio->io_offset = offset; 671 672 zio->io_bp = &zio->io_bp_copy; 673 zio->io_checksum = checksum; 674 675 if (zio_checksum_table[checksum].ci_zbt) { 676 /* 677 * zbt checksums are necessarily destructive -- they modify 678 * one word of the write buffer to hold the verifier/checksum. 679 * Therefore, we must make a local copy in case the data is 680 * being written to multiple places. 681 */ 682 wbuf = zio_buf_alloc(size); 683 bcopy(data, wbuf, size); 684 zio_push_transform(zio, wbuf, size, size); 685 686 zbt = (zio_block_tail_t *)((char *)wbuf + size) - 1; 687 zbt->zbt_cksum = blk.blk_cksum; 688 } 689 690 return (zio); 691 } 692 693 /* 694 * Create a child I/O to do some work for us. It has no associated bp. 695 */ 696 zio_t * 697 zio_vdev_child_io(zio_t *zio, blkptr_t *bp, vdev_t *vd, uint64_t offset, 698 void *data, uint64_t size, int type, int priority, int flags, 699 zio_done_func_t *done, void *private) 700 { 701 uint32_t pipeline = ZIO_VDEV_CHILD_PIPELINE; 702 zio_t *cio; 703 704 if (type == ZIO_TYPE_READ && bp != NULL) { 705 /* 706 * If we have the bp, then the child should perform the 707 * checksum and the parent need not. This pushes error 708 * detection as close to the leaves as possible and 709 * eliminates redundant checksums in the interior nodes. 710 */ 711 pipeline |= 1U << ZIO_STAGE_CHECKSUM_VERIFY; 712 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 713 } 714 715 cio = zio_create(zio, zio->io_spa, zio->io_txg, bp, data, size, 716 done, private, type, priority, 717 (zio->io_flags & ZIO_FLAG_VDEV_INHERIT) | ZIO_FLAG_CANFAIL | flags, 718 ZIO_STAGE_VDEV_IO_START - 1, pipeline); 719 720 cio->io_vd = vd; 721 cio->io_offset = offset; 722 723 return (cio); 724 } 725 726 /* 727 * ========================================================================== 728 * Initiate I/O, either sync or async 729 * ========================================================================== 730 */ 731 int 732 zio_wait(zio_t *zio) 733 { 734 int error; 735 736 ASSERT(zio->io_stage == ZIO_STAGE_OPEN); 737 738 zio->io_waiter = curthread; 739 740 zio_next_stage_async(zio); 741 742 mutex_enter(&zio->io_lock); 743 while (zio->io_stalled != ZIO_STAGE_DONE) 744 cv_wait(&zio->io_cv, &zio->io_lock); 745 mutex_exit(&zio->io_lock); 746 747 error = zio->io_error; 748 mutex_destroy(&zio->io_lock); 749 kmem_free(zio, sizeof (zio_t)); 750 751 return (error); 752 } 753 754 void 755 zio_nowait(zio_t *zio) 756 { 757 zio_next_stage_async(zio); 758 } 759 760 /* 761 * ========================================================================== 762 * I/O pipeline interlocks: parent/child dependency scoreboarding 763 * ========================================================================== 764 */ 765 static void 766 zio_wait_for_children(zio_t *zio, uint32_t stage, uint64_t *countp) 767 { 768 mutex_enter(&zio->io_lock); 769 if (*countp == 0) { 770 ASSERT(zio->io_stalled == 0); 771 mutex_exit(&zio->io_lock); 772 zio_next_stage(zio); 773 } else { 774 zio->io_stalled = stage; 775 mutex_exit(&zio->io_lock); 776 } 777 } 778 779 static void 780 zio_notify_parent(zio_t *zio, uint32_t stage, uint64_t *countp) 781 { 782 zio_t *pio = zio->io_parent; 783 784 mutex_enter(&pio->io_lock); 785 if (pio->io_error == 0 && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 786 pio->io_error = zio->io_error; 787 if (--*countp == 0 && pio->io_stalled == stage) { 788 pio->io_stalled = 0; 789 mutex_exit(&pio->io_lock); 790 zio_next_stage_async(pio); 791 } else { 792 mutex_exit(&pio->io_lock); 793 } 794 } 795 796 static void 797 zio_wait_children_ready(zio_t *zio) 798 { 799 zio_wait_for_children(zio, ZIO_STAGE_WAIT_CHILDREN_READY, 800 &zio->io_children_notready); 801 } 802 803 void 804 zio_wait_children_done(zio_t *zio) 805 { 806 zio_wait_for_children(zio, ZIO_STAGE_WAIT_CHILDREN_DONE, 807 &zio->io_children_notdone); 808 } 809 810 static void 811 zio_ready(zio_t *zio) 812 { 813 zio_t *pio = zio->io_parent; 814 815 if (zio->io_ready) 816 zio->io_ready(zio); 817 818 if (pio != NULL) 819 zio_notify_parent(zio, ZIO_STAGE_WAIT_CHILDREN_READY, 820 &pio->io_children_notready); 821 822 if (zio->io_bp) 823 zio->io_bp_copy = *zio->io_bp; 824 825 zio_next_stage(zio); 826 } 827 828 static void 829 zio_done(zio_t *zio) 830 { 831 zio_t *pio = zio->io_parent; 832 spa_t *spa = zio->io_spa; 833 blkptr_t *bp = zio->io_bp; 834 vdev_t *vd = zio->io_vd; 835 836 ASSERT(zio->io_children_notready == 0); 837 ASSERT(zio->io_children_notdone == 0); 838 839 if (bp != NULL) { 840 ASSERT(bp->blk_pad[0] == 0); 841 ASSERT(bp->blk_pad[1] == 0); 842 ASSERT(bp->blk_pad[2] == 0); 843 ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0); 844 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) && 845 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) { 846 ASSERT(!BP_SHOULD_BYTESWAP(bp)); 847 if (zio->io_ndvas != 0) 848 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(bp)); 849 ASSERT(BP_COUNT_GANG(bp) == 0 || 850 (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp))); 851 } 852 } 853 854 if (vd != NULL) 855 vdev_stat_update(zio); 856 857 if (zio->io_error) { 858 /* 859 * If this I/O is attached to a particular vdev, 860 * generate an error message describing the I/O failure 861 * at the block level. We ignore these errors if the 862 * device is currently unavailable. 863 */ 864 if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd)) 865 zfs_ereport_post(FM_EREPORT_ZFS_IO, 866 zio->io_spa, vd, zio, 0, 0); 867 868 if ((zio->io_error == EIO || 869 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) && 870 zio->io_logical == zio) { 871 /* 872 * For root I/O requests, tell the SPA to log the error 873 * appropriately. Also, generate a logical data 874 * ereport. 875 */ 876 spa_log_error(zio->io_spa, zio); 877 878 zfs_ereport_post(FM_EREPORT_ZFS_DATA, 879 zio->io_spa, NULL, zio, 0, 0); 880 } 881 882 /* 883 * For I/O requests that cannot fail, panic appropriately. 884 */ 885 if (!(zio->io_flags & ZIO_FLAG_CANFAIL)) { 886 char *blkbuf; 887 888 blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_NOSLEEP); 889 if (blkbuf) { 890 sprintf_blkptr(blkbuf, BP_SPRINTF_LEN, 891 bp ? bp : &zio->io_bp_copy); 892 } 893 panic("ZFS: %s (%s on %s off %llx: zio %p %s): error " 894 "%d", zio->io_error == ECKSUM ? 895 "bad checksum" : "I/O failure", 896 zio_type_name[zio->io_type], 897 vdev_description(vd), 898 (u_longlong_t)zio->io_offset, 899 zio, blkbuf ? blkbuf : "", zio->io_error); 900 } 901 } 902 zio_clear_transform_stack(zio); 903 904 if (zio->io_done) 905 zio->io_done(zio); 906 907 ASSERT(zio->io_delegate_list == NULL); 908 ASSERT(zio->io_delegate_next == NULL); 909 910 if (pio != NULL) { 911 zio_t *next, *prev; 912 913 mutex_enter(&pio->io_lock); 914 next = zio->io_sibling_next; 915 prev = zio->io_sibling_prev; 916 if (next != NULL) 917 next->io_sibling_prev = prev; 918 if (prev != NULL) 919 prev->io_sibling_next = next; 920 if (pio->io_child == zio) 921 pio->io_child = next; 922 mutex_exit(&pio->io_lock); 923 924 zio_notify_parent(zio, ZIO_STAGE_WAIT_CHILDREN_DONE, 925 &pio->io_children_notdone); 926 } 927 928 /* 929 * Note: this I/O is now done, and will shortly be 930 * kmem_free()'d, so there is no need to clear this (or any 931 * other) flag. 932 */ 933 if (zio->io_flags & ZIO_FLAG_CONFIG_GRABBED) 934 spa_config_exit(spa, zio); 935 936 if (zio->io_waiter != NULL) { 937 mutex_enter(&zio->io_lock); 938 ASSERT(zio->io_stage == ZIO_STAGE_DONE); 939 zio->io_stalled = zio->io_stage; 940 cv_broadcast(&zio->io_cv); 941 mutex_exit(&zio->io_lock); 942 } else { 943 kmem_free(zio, sizeof (zio_t)); 944 } 945 } 946 947 /* 948 * ========================================================================== 949 * Compression support 950 * ========================================================================== 951 */ 952 static void 953 zio_write_compress(zio_t *zio) 954 { 955 int compress = zio->io_compress; 956 blkptr_t *bp = zio->io_bp; 957 void *cbuf; 958 uint64_t lsize = zio->io_size; 959 uint64_t csize = lsize; 960 uint64_t cbufsize = 0; 961 int pass; 962 963 if (bp->blk_birth == zio->io_txg) { 964 /* 965 * We're rewriting an existing block, which means we're 966 * working on behalf of spa_sync(). For spa_sync() to 967 * converge, it must eventually be the case that we don't 968 * have to allocate new blocks. But compression changes 969 * the blocksize, which forces a reallocate, and makes 970 * convergence take longer. Therefore, after the first 971 * few passes, stop compressing to ensure convergence. 972 */ 973 pass = spa_sync_pass(zio->io_spa); 974 if (pass > zio_sync_pass.zp_dontcompress) 975 compress = ZIO_COMPRESS_OFF; 976 } else { 977 ASSERT(BP_IS_HOLE(bp)); 978 pass = 1; 979 } 980 981 if (compress != ZIO_COMPRESS_OFF) 982 if (!zio_compress_data(compress, zio->io_data, zio->io_size, 983 &cbuf, &csize, &cbufsize)) 984 compress = ZIO_COMPRESS_OFF; 985 986 if (compress != ZIO_COMPRESS_OFF && csize != 0) 987 zio_push_transform(zio, cbuf, csize, cbufsize); 988 989 /* 990 * The final pass of spa_sync() must be all rewrites, but the first 991 * few passes offer a trade-off: allocating blocks defers convergence, 992 * but newly allocated blocks are sequential, so they can be written 993 * to disk faster. Therefore, we allow the first few passes of 994 * spa_sync() to reallocate new blocks, but force rewrites after that. 995 * There should only be a handful of blocks after pass 1 in any case. 996 */ 997 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == csize && 998 pass > zio_sync_pass.zp_rewrite) { 999 ASSERT(csize != 0); 1000 BP_SET_LSIZE(bp, lsize); 1001 BP_SET_COMPRESS(bp, compress); 1002 zio->io_pipeline = ZIO_REWRITE_PIPELINE; 1003 } else { 1004 if (bp->blk_birth == zio->io_txg) { 1005 ASSERT3U(BP_GET_LSIZE(bp), ==, lsize); 1006 bzero(bp, sizeof (blkptr_t)); 1007 } 1008 if (csize == 0) { 1009 BP_ZERO(bp); 1010 zio->io_pipeline = ZIO_WAIT_FOR_CHILDREN_PIPELINE; 1011 } else { 1012 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1013 BP_SET_LSIZE(bp, lsize); 1014 BP_SET_PSIZE(bp, csize); 1015 BP_SET_COMPRESS(bp, compress); 1016 zio->io_pipeline = ZIO_WRITE_ALLOCATE_PIPELINE; 1017 } 1018 } 1019 1020 zio_next_stage(zio); 1021 } 1022 1023 static void 1024 zio_read_decompress(zio_t *zio) 1025 { 1026 blkptr_t *bp = zio->io_bp; 1027 void *data; 1028 uint64_t size; 1029 uint64_t bufsize; 1030 int compress = BP_GET_COMPRESS(bp); 1031 1032 ASSERT(compress != ZIO_COMPRESS_OFF); 1033 1034 zio_pop_transform(zio, &data, &size, &bufsize); 1035 1036 if (zio_decompress_data(compress, data, size, 1037 zio->io_data, zio->io_size)) 1038 zio->io_error = EIO; 1039 1040 zio_buf_free(data, bufsize); 1041 1042 zio_next_stage(zio); 1043 } 1044 1045 /* 1046 * ========================================================================== 1047 * Gang block support 1048 * ========================================================================== 1049 */ 1050 static void 1051 zio_gang_pipeline(zio_t *zio) 1052 { 1053 /* 1054 * By default, the pipeline assumes that we're dealing with a gang 1055 * block. If we're not, strip out any gang-specific stages. 1056 */ 1057 if (!BP_IS_GANG(zio->io_bp)) 1058 zio->io_pipeline &= ~ZIO_GANG_STAGES; 1059 1060 zio_next_stage(zio); 1061 } 1062 1063 static void 1064 zio_gang_byteswap(zio_t *zio) 1065 { 1066 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE); 1067 1068 if (BP_SHOULD_BYTESWAP(zio->io_bp)) 1069 byteswap_uint64_array(zio->io_data, zio->io_size); 1070 } 1071 1072 static void 1073 zio_get_gang_header(zio_t *zio) 1074 { 1075 blkptr_t *bp = zio->io_bp; 1076 uint64_t gsize = SPA_GANGBLOCKSIZE; 1077 void *gbuf = zio_buf_alloc(gsize); 1078 1079 ASSERT(BP_IS_GANG(bp)); 1080 1081 zio_push_transform(zio, gbuf, gsize, gsize); 1082 1083 zio_nowait(zio_create(zio, zio->io_spa, bp->blk_birth, bp, gbuf, gsize, 1084 NULL, NULL, ZIO_TYPE_READ, zio->io_priority, 1085 zio->io_flags & ZIO_FLAG_GANG_INHERIT, 1086 ZIO_STAGE_OPEN, ZIO_READ_PIPELINE)); 1087 1088 zio_wait_children_done(zio); 1089 } 1090 1091 static void 1092 zio_read_gang_members(zio_t *zio) 1093 { 1094 zio_gbh_phys_t *gbh; 1095 uint64_t gsize, gbufsize, loff, lsize; 1096 int i; 1097 1098 ASSERT(BP_IS_GANG(zio->io_bp)); 1099 1100 zio_gang_byteswap(zio); 1101 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1102 1103 for (loff = 0, i = 0; loff != zio->io_size; loff += lsize, i++) { 1104 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1105 lsize = BP_GET_PSIZE(gbp); 1106 1107 ASSERT(BP_GET_COMPRESS(gbp) == ZIO_COMPRESS_OFF); 1108 ASSERT3U(lsize, ==, BP_GET_LSIZE(gbp)); 1109 ASSERT3U(loff + lsize, <=, zio->io_size); 1110 ASSERT(i < SPA_GBH_NBLKPTRS); 1111 ASSERT(!BP_IS_HOLE(gbp)); 1112 1113 zio_nowait(zio_read(zio, zio->io_spa, gbp, 1114 (char *)zio->io_data + loff, lsize, NULL, NULL, 1115 zio->io_priority, zio->io_flags & ZIO_FLAG_GANG_INHERIT, 1116 &zio->io_bookmark)); 1117 } 1118 1119 zio_buf_free(gbh, gbufsize); 1120 zio_wait_children_done(zio); 1121 } 1122 1123 static void 1124 zio_rewrite_gang_members(zio_t *zio) 1125 { 1126 zio_gbh_phys_t *gbh; 1127 uint64_t gsize, gbufsize, loff, lsize; 1128 int i; 1129 1130 ASSERT(BP_IS_GANG(zio->io_bp)); 1131 ASSERT3U(zio->io_size, ==, SPA_GANGBLOCKSIZE); 1132 1133 zio_gang_byteswap(zio); 1134 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1135 1136 ASSERT(gsize == gbufsize); 1137 1138 for (loff = 0, i = 0; loff != zio->io_size; loff += lsize, i++) { 1139 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1140 lsize = BP_GET_PSIZE(gbp); 1141 1142 ASSERT(BP_GET_COMPRESS(gbp) == ZIO_COMPRESS_OFF); 1143 ASSERT3U(lsize, ==, BP_GET_LSIZE(gbp)); 1144 ASSERT3U(loff + lsize, <=, zio->io_size); 1145 ASSERT(i < SPA_GBH_NBLKPTRS); 1146 ASSERT(!BP_IS_HOLE(gbp)); 1147 1148 zio_nowait(zio_rewrite(zio, zio->io_spa, zio->io_checksum, 1149 zio->io_txg, gbp, (char *)zio->io_data + loff, lsize, 1150 NULL, NULL, zio->io_priority, zio->io_flags, 1151 &zio->io_bookmark)); 1152 } 1153 1154 zio_push_transform(zio, gbh, gsize, gbufsize); 1155 zio_wait_children_ready(zio); 1156 } 1157 1158 static void 1159 zio_free_gang_members(zio_t *zio) 1160 { 1161 zio_gbh_phys_t *gbh; 1162 uint64_t gsize, gbufsize; 1163 int i; 1164 1165 ASSERT(BP_IS_GANG(zio->io_bp)); 1166 1167 zio_gang_byteswap(zio); 1168 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1169 1170 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1171 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1172 1173 if (BP_IS_HOLE(gbp)) 1174 continue; 1175 zio_nowait(zio_free(zio, zio->io_spa, zio->io_txg, 1176 gbp, NULL, NULL)); 1177 } 1178 1179 zio_buf_free(gbh, gbufsize); 1180 zio_next_stage(zio); 1181 } 1182 1183 static void 1184 zio_claim_gang_members(zio_t *zio) 1185 { 1186 zio_gbh_phys_t *gbh; 1187 uint64_t gsize, gbufsize; 1188 int i; 1189 1190 ASSERT(BP_IS_GANG(zio->io_bp)); 1191 1192 zio_gang_byteswap(zio); 1193 zio_pop_transform(zio, (void **)&gbh, &gsize, &gbufsize); 1194 1195 for (i = 0; i < SPA_GBH_NBLKPTRS; i++) { 1196 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1197 if (BP_IS_HOLE(gbp)) 1198 continue; 1199 zio_nowait(zio_claim(zio, zio->io_spa, zio->io_txg, 1200 gbp, NULL, NULL)); 1201 } 1202 1203 zio_buf_free(gbh, gbufsize); 1204 zio_next_stage(zio); 1205 } 1206 1207 static void 1208 zio_write_allocate_gang_member_done(zio_t *zio) 1209 { 1210 zio_t *pio = zio->io_parent; 1211 dva_t *cdva = zio->io_bp->blk_dva; 1212 dva_t *pdva = pio->io_bp->blk_dva; 1213 uint64_t asize; 1214 int d; 1215 1216 ASSERT3U(pio->io_ndvas, ==, zio->io_ndvas); 1217 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp)); 1218 ASSERT3U(zio->io_ndvas, <=, BP_GET_NDVAS(zio->io_bp)); 1219 ASSERT3U(pio->io_ndvas, <=, BP_GET_NDVAS(pio->io_bp)); 1220 1221 mutex_enter(&pio->io_lock); 1222 for (d = 0; d < BP_GET_NDVAS(pio->io_bp); d++) { 1223 ASSERT(DVA_GET_GANG(&pdva[d])); 1224 asize = DVA_GET_ASIZE(&pdva[d]); 1225 asize += DVA_GET_ASIZE(&cdva[d]); 1226 DVA_SET_ASIZE(&pdva[d], asize); 1227 } 1228 mutex_exit(&pio->io_lock); 1229 } 1230 1231 static void 1232 zio_write_allocate_gang_members(zio_t *zio) 1233 { 1234 blkptr_t *bp = zio->io_bp; 1235 dva_t *dva = bp->blk_dva; 1236 spa_t *spa = zio->io_spa; 1237 zio_gbh_phys_t *gbh; 1238 uint64_t txg = zio->io_txg; 1239 uint64_t resid = zio->io_size; 1240 uint64_t maxalloc = P2ROUNDUP(zio->io_size >> 1, SPA_MINBLOCKSIZE); 1241 uint64_t gsize, loff, lsize; 1242 uint32_t gbps_left; 1243 int ndvas = zio->io_ndvas; 1244 int gbh_ndvas = MIN(ndvas + 1, spa_max_replication(spa)); 1245 int error; 1246 int i, d; 1247 1248 gsize = SPA_GANGBLOCKSIZE; 1249 gbps_left = SPA_GBH_NBLKPTRS; 1250 1251 error = metaslab_alloc(spa, gsize, bp, gbh_ndvas, txg, NULL, B_FALSE); 1252 if (error == ENOSPC) 1253 panic("can't allocate gang block header"); 1254 ASSERT(error == 0); 1255 1256 for (d = 0; d < gbh_ndvas; d++) 1257 DVA_SET_GANG(&dva[d], 1); 1258 1259 bp->blk_birth = txg; 1260 1261 gbh = zio_buf_alloc(gsize); 1262 bzero(gbh, gsize); 1263 1264 /* We need to test multi-level gang blocks */ 1265 if (maxalloc >= zio_gang_bang && (lbolt & 0x1) == 0) 1266 maxalloc = MAX(maxalloc >> 2, SPA_MINBLOCKSIZE); 1267 1268 for (loff = 0, i = 0; loff != zio->io_size; 1269 loff += lsize, resid -= lsize, gbps_left--, i++) { 1270 blkptr_t *gbp = &gbh->zg_blkptr[i]; 1271 dva = gbp->blk_dva; 1272 1273 ASSERT(gbps_left != 0); 1274 maxalloc = MIN(maxalloc, resid); 1275 1276 while (resid <= maxalloc * gbps_left) { 1277 error = metaslab_alloc(spa, maxalloc, gbp, ndvas, 1278 txg, bp, B_FALSE); 1279 if (error == 0) 1280 break; 1281 ASSERT3U(error, ==, ENOSPC); 1282 if (maxalloc == SPA_MINBLOCKSIZE) 1283 panic("really out of space"); 1284 maxalloc = P2ROUNDUP(maxalloc >> 1, SPA_MINBLOCKSIZE); 1285 } 1286 1287 if (resid <= maxalloc * gbps_left) { 1288 lsize = maxalloc; 1289 BP_SET_LSIZE(gbp, lsize); 1290 BP_SET_PSIZE(gbp, lsize); 1291 BP_SET_COMPRESS(gbp, ZIO_COMPRESS_OFF); 1292 gbp->blk_birth = txg; 1293 zio_nowait(zio_rewrite(zio, spa, 1294 zio->io_checksum, txg, gbp, 1295 (char *)zio->io_data + loff, lsize, 1296 zio_write_allocate_gang_member_done, NULL, 1297 zio->io_priority, zio->io_flags, 1298 &zio->io_bookmark)); 1299 } else { 1300 lsize = P2ROUNDUP(resid / gbps_left, SPA_MINBLOCKSIZE); 1301 ASSERT(lsize != SPA_MINBLOCKSIZE); 1302 zio_nowait(zio_write_allocate(zio, spa, 1303 zio->io_checksum, txg, gbp, 1304 (char *)zio->io_data + loff, lsize, 1305 zio_write_allocate_gang_member_done, NULL, 1306 zio->io_priority, zio->io_flags)); 1307 } 1308 } 1309 1310 ASSERT(resid == 0 && loff == zio->io_size); 1311 1312 zio->io_pipeline |= 1U << ZIO_STAGE_GANG_CHECKSUM_GENERATE; 1313 1314 zio_push_transform(zio, gbh, gsize, gsize); 1315 /* 1316 * As much as we'd like this to be zio_wait_children_ready(), 1317 * updating our ASIZE doesn't happen until the io_done callback, 1318 * so we have to wait for that to finish in order for our BP 1319 * to be stable. 1320 */ 1321 zio_wait_children_done(zio); 1322 } 1323 1324 /* 1325 * ========================================================================== 1326 * Allocate and free blocks 1327 * ========================================================================== 1328 */ 1329 static void 1330 zio_dva_allocate(zio_t *zio) 1331 { 1332 blkptr_t *bp = zio->io_bp; 1333 int error; 1334 1335 ASSERT(BP_IS_HOLE(bp)); 1336 ASSERT3U(BP_GET_NDVAS(bp), ==, 0); 1337 ASSERT3U(zio->io_ndvas, >, 0); 1338 ASSERT3U(zio->io_ndvas, <=, spa_max_replication(zio->io_spa)); 1339 1340 /* For testing, make some blocks above a certain size be gang blocks */ 1341 if (zio->io_size >= zio_gang_bang && (lbolt & 0x3) == 0) { 1342 zio_write_allocate_gang_members(zio); 1343 return; 1344 } 1345 1346 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1347 1348 error = metaslab_alloc(zio->io_spa, zio->io_size, bp, zio->io_ndvas, 1349 zio->io_txg, NULL, B_FALSE); 1350 1351 if (error == 0) { 1352 bp->blk_birth = zio->io_txg; 1353 } else if (error == ENOSPC) { 1354 if (zio->io_size == SPA_MINBLOCKSIZE) 1355 panic("really, truly out of space"); 1356 zio_write_allocate_gang_members(zio); 1357 return; 1358 } else { 1359 zio->io_error = error; 1360 } 1361 zio_next_stage(zio); 1362 } 1363 1364 static void 1365 zio_dva_free(zio_t *zio) 1366 { 1367 blkptr_t *bp = zio->io_bp; 1368 1369 metaslab_free(zio->io_spa, bp, zio->io_txg, B_FALSE); 1370 1371 BP_ZERO(bp); 1372 1373 zio_next_stage(zio); 1374 } 1375 1376 static void 1377 zio_dva_claim(zio_t *zio) 1378 { 1379 zio->io_error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg); 1380 1381 zio_next_stage(zio); 1382 } 1383 1384 /* 1385 * ========================================================================== 1386 * Read and write to physical devices 1387 * ========================================================================== 1388 */ 1389 1390 static void 1391 zio_vdev_io_start(zio_t *zio) 1392 { 1393 vdev_t *vd = zio->io_vd; 1394 vdev_t *tvd = vd ? vd->vdev_top : NULL; 1395 blkptr_t *bp = zio->io_bp; 1396 uint64_t align; 1397 1398 if (vd == NULL) { 1399 /* The mirror_ops handle multiple DVAs in a single BP */ 1400 vdev_mirror_ops.vdev_op_io_start(zio); 1401 return; 1402 } 1403 1404 align = 1ULL << tvd->vdev_ashift; 1405 1406 if (zio->io_retries == 0 && vd == tvd) 1407 zio->io_flags |= ZIO_FLAG_FAILFAST; 1408 1409 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) && 1410 vd->vdev_children == 0) { 1411 zio->io_flags |= ZIO_FLAG_PHYSICAL; 1412 zio->io_offset += VDEV_LABEL_START_SIZE; 1413 } 1414 1415 if (P2PHASE(zio->io_size, align) != 0) { 1416 uint64_t asize = P2ROUNDUP(zio->io_size, align); 1417 char *abuf = zio_buf_alloc(asize); 1418 ASSERT(vd == tvd); 1419 if (zio->io_type == ZIO_TYPE_WRITE) { 1420 bcopy(zio->io_data, abuf, zio->io_size); 1421 bzero(abuf + zio->io_size, asize - zio->io_size); 1422 } 1423 zio_push_transform(zio, abuf, asize, asize); 1424 ASSERT(!(zio->io_flags & ZIO_FLAG_SUBBLOCK)); 1425 zio->io_flags |= ZIO_FLAG_SUBBLOCK; 1426 } 1427 1428 ASSERT(P2PHASE(zio->io_offset, align) == 0); 1429 ASSERT(P2PHASE(zio->io_size, align) == 0); 1430 ASSERT(bp == NULL || 1431 P2ROUNDUP(ZIO_GET_IOSIZE(zio), align) == zio->io_size); 1432 ASSERT(zio->io_type != ZIO_TYPE_WRITE || (spa_mode & FWRITE)); 1433 1434 vdev_io_start(zio); 1435 1436 /* zio_next_stage_async() gets called from io completion interrupt */ 1437 } 1438 1439 static void 1440 zio_vdev_io_done(zio_t *zio) 1441 { 1442 if (zio->io_vd == NULL) 1443 /* The mirror_ops handle multiple DVAs in a single BP */ 1444 vdev_mirror_ops.vdev_op_io_done(zio); 1445 else 1446 vdev_io_done(zio); 1447 } 1448 1449 /* XXPOLICY */ 1450 boolean_t 1451 zio_should_retry(zio_t *zio) 1452 { 1453 vdev_t *vd = zio->io_vd; 1454 1455 if (zio->io_error == 0) 1456 return (B_FALSE); 1457 if (zio->io_delegate_list != NULL) 1458 return (B_FALSE); 1459 if (vd && vd != vd->vdev_top) 1460 return (B_FALSE); 1461 if (zio->io_flags & ZIO_FLAG_DONT_RETRY) 1462 return (B_FALSE); 1463 if (zio->io_retries > 0) 1464 return (B_FALSE); 1465 1466 return (B_TRUE); 1467 } 1468 1469 static void 1470 zio_vdev_io_assess(zio_t *zio) 1471 { 1472 vdev_t *vd = zio->io_vd; 1473 vdev_t *tvd = vd ? vd->vdev_top : NULL; 1474 1475 ASSERT(zio->io_vsd == NULL); 1476 1477 if (zio->io_flags & ZIO_FLAG_SUBBLOCK) { 1478 void *abuf; 1479 uint64_t asize; 1480 ASSERT(vd == tvd); 1481 zio_pop_transform(zio, &abuf, &asize, &asize); 1482 if (zio->io_type == ZIO_TYPE_READ) 1483 bcopy(abuf, zio->io_data, zio->io_size); 1484 zio_buf_free(abuf, asize); 1485 zio->io_flags &= ~ZIO_FLAG_SUBBLOCK; 1486 } 1487 1488 if (zio_injection_enabled && !zio->io_error) 1489 zio->io_error = zio_handle_fault_injection(zio, EIO); 1490 1491 /* 1492 * If the I/O failed, determine whether we should attempt to retry it. 1493 */ 1494 /* XXPOLICY */ 1495 if (zio_should_retry(zio)) { 1496 ASSERT(tvd == vd); 1497 1498 zio->io_retries++; 1499 zio->io_error = 0; 1500 zio->io_flags &= ZIO_FLAG_VDEV_INHERIT | 1501 ZIO_FLAG_CONFIG_GRABBED; 1502 /* XXPOLICY */ 1503 zio->io_flags &= ~ZIO_FLAG_FAILFAST; 1504 zio->io_flags |= ZIO_FLAG_DONT_CACHE; 1505 zio->io_stage = ZIO_STAGE_VDEV_IO_START - 1; 1506 1507 dprintf("retry #%d for %s to %s offset %llx\n", 1508 zio->io_retries, zio_type_name[zio->io_type], 1509 vdev_description(vd), zio->io_offset); 1510 1511 zio_next_stage_async(zio); 1512 return; 1513 } 1514 1515 if (zio->io_error != 0 && zio->io_error != ECKSUM && 1516 !(zio->io_flags & ZIO_FLAG_SPECULATIVE) && vd) { 1517 /* 1518 * Poor man's hotplug support. Even if we're done retrying this 1519 * I/O, try to reopen the vdev to see if it's still attached. 1520 * To avoid excessive thrashing, we only try it once a minute. 1521 * This also has the effect of detecting when missing devices 1522 * have come back, by polling the device once a minute. 1523 * 1524 * We need to do this asynchronously because we can't grab 1525 * all the necessary locks way down here. 1526 */ 1527 if (gethrtime() - vd->vdev_last_try > 60ULL * NANOSEC) { 1528 vd->vdev_last_try = gethrtime(); 1529 tvd->vdev_reopen_wanted = 1; 1530 spa_async_request(vd->vdev_spa, SPA_ASYNC_REOPEN); 1531 } 1532 } 1533 1534 zio_next_stage(zio); 1535 } 1536 1537 void 1538 zio_vdev_io_reissue(zio_t *zio) 1539 { 1540 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1541 ASSERT(zio->io_error == 0); 1542 1543 zio->io_stage--; 1544 } 1545 1546 void 1547 zio_vdev_io_redone(zio_t *zio) 1548 { 1549 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE); 1550 1551 zio->io_stage--; 1552 } 1553 1554 void 1555 zio_vdev_io_bypass(zio_t *zio) 1556 { 1557 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START); 1558 ASSERT(zio->io_error == 0); 1559 1560 zio->io_flags |= ZIO_FLAG_IO_BYPASS; 1561 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS - 1; 1562 } 1563 1564 /* 1565 * ========================================================================== 1566 * Generate and verify checksums 1567 * ========================================================================== 1568 */ 1569 static void 1570 zio_checksum_generate(zio_t *zio) 1571 { 1572 int checksum = zio->io_checksum; 1573 blkptr_t *bp = zio->io_bp; 1574 1575 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp)); 1576 1577 BP_SET_CHECKSUM(bp, checksum); 1578 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER); 1579 1580 zio_checksum(checksum, &bp->blk_cksum, zio->io_data, zio->io_size); 1581 1582 zio_next_stage(zio); 1583 } 1584 1585 static void 1586 zio_gang_checksum_generate(zio_t *zio) 1587 { 1588 zio_cksum_t zc; 1589 zio_gbh_phys_t *gbh = zio->io_data; 1590 1591 ASSERT(BP_IS_GANG(zio->io_bp)); 1592 ASSERT3U(zio->io_size, ==, SPA_GANGBLOCKSIZE); 1593 1594 zio_set_gang_verifier(zio, &gbh->zg_tail.zbt_cksum); 1595 1596 zio_checksum(ZIO_CHECKSUM_GANG_HEADER, &zc, zio->io_data, zio->io_size); 1597 1598 zio_next_stage(zio); 1599 } 1600 1601 static void 1602 zio_checksum_verify(zio_t *zio) 1603 { 1604 if (zio->io_bp != NULL) { 1605 zio->io_error = zio_checksum_error(zio); 1606 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) 1607 zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM, 1608 zio->io_spa, zio->io_vd, zio, 0, 0); 1609 } 1610 1611 zio_next_stage(zio); 1612 } 1613 1614 /* 1615 * Called by RAID-Z to ensure we don't compute the checksum twice. 1616 */ 1617 void 1618 zio_checksum_verified(zio_t *zio) 1619 { 1620 zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY); 1621 } 1622 1623 /* 1624 * Set the external verifier for a gang block based on stuff in the bp 1625 */ 1626 void 1627 zio_set_gang_verifier(zio_t *zio, zio_cksum_t *zcp) 1628 { 1629 blkptr_t *bp = zio->io_bp; 1630 1631 zcp->zc_word[0] = DVA_GET_VDEV(BP_IDENTITY(bp)); 1632 zcp->zc_word[1] = DVA_GET_OFFSET(BP_IDENTITY(bp)); 1633 zcp->zc_word[2] = bp->blk_birth; 1634 zcp->zc_word[3] = 0; 1635 } 1636 1637 /* 1638 * ========================================================================== 1639 * Define the pipeline 1640 * ========================================================================== 1641 */ 1642 typedef void zio_pipe_stage_t(zio_t *zio); 1643 1644 static void 1645 zio_badop(zio_t *zio) 1646 { 1647 panic("Invalid I/O pipeline stage %u for zio %p", zio->io_stage, zio); 1648 } 1649 1650 zio_pipe_stage_t *zio_pipeline[ZIO_STAGE_DONE + 2] = { 1651 zio_badop, 1652 zio_wait_children_ready, 1653 zio_write_compress, 1654 zio_checksum_generate, 1655 zio_gang_pipeline, 1656 zio_get_gang_header, 1657 zio_rewrite_gang_members, 1658 zio_free_gang_members, 1659 zio_claim_gang_members, 1660 zio_dva_allocate, 1661 zio_dva_free, 1662 zio_dva_claim, 1663 zio_gang_checksum_generate, 1664 zio_ready, 1665 zio_vdev_io_start, 1666 zio_vdev_io_done, 1667 zio_vdev_io_assess, 1668 zio_wait_children_done, 1669 zio_checksum_verify, 1670 zio_read_gang_members, 1671 zio_read_decompress, 1672 zio_done, 1673 zio_badop 1674 }; 1675 1676 /* 1677 * Move an I/O to the next stage of the pipeline and execute that stage. 1678 * There's no locking on io_stage because there's no legitimate way for 1679 * multiple threads to be attempting to process the same I/O. 1680 */ 1681 void 1682 zio_next_stage(zio_t *zio) 1683 { 1684 uint32_t pipeline = zio->io_pipeline; 1685 1686 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1687 1688 if (zio->io_error) { 1689 dprintf("zio %p vdev %s offset %llx stage %d error %d\n", 1690 zio, vdev_description(zio->io_vd), 1691 zio->io_offset, zio->io_stage, zio->io_error); 1692 if (((1U << zio->io_stage) & ZIO_VDEV_IO_PIPELINE) == 0) 1693 pipeline &= ZIO_ERROR_PIPELINE_MASK; 1694 } 1695 1696 while (((1U << ++zio->io_stage) & pipeline) == 0) 1697 continue; 1698 1699 ASSERT(zio->io_stage <= ZIO_STAGE_DONE); 1700 ASSERT(zio->io_stalled == 0); 1701 1702 zio_pipeline[zio->io_stage](zio); 1703 } 1704 1705 void 1706 zio_next_stage_async(zio_t *zio) 1707 { 1708 taskq_t *tq; 1709 uint32_t pipeline = zio->io_pipeline; 1710 1711 ASSERT(!MUTEX_HELD(&zio->io_lock)); 1712 1713 if (zio->io_error) { 1714 dprintf("zio %p vdev %s offset %llx stage %d error %d\n", 1715 zio, vdev_description(zio->io_vd), 1716 zio->io_offset, zio->io_stage, zio->io_error); 1717 if (((1U << zio->io_stage) & ZIO_VDEV_IO_PIPELINE) == 0) 1718 pipeline &= ZIO_ERROR_PIPELINE_MASK; 1719 } 1720 1721 while (((1U << ++zio->io_stage) & pipeline) == 0) 1722 continue; 1723 1724 ASSERT(zio->io_stage <= ZIO_STAGE_DONE); 1725 ASSERT(zio->io_stalled == 0); 1726 1727 /* 1728 * For performance, we'll probably want two sets of task queues: 1729 * per-CPU issue taskqs and per-CPU completion taskqs. The per-CPU 1730 * part is for read performance: since we have to make a pass over 1731 * the data to checksum it anyway, we want to do this on the same CPU 1732 * that issued the read, because (assuming CPU scheduling affinity) 1733 * that thread is probably still there. Getting this optimization 1734 * right avoids performance-hostile cache-to-cache transfers. 1735 * 1736 * Note that having two sets of task queues is also necessary for 1737 * correctness: if all of the issue threads get bogged down waiting 1738 * for dependent reads (e.g. metaslab freelist) to complete, then 1739 * there won't be any threads available to service I/O completion 1740 * interrupts. 1741 */ 1742 if ((1U << zio->io_stage) & zio->io_async_stages) { 1743 if (zio->io_stage < ZIO_STAGE_VDEV_IO_DONE) 1744 tq = zio->io_spa->spa_zio_issue_taskq[zio->io_type]; 1745 else 1746 tq = zio->io_spa->spa_zio_intr_taskq[zio->io_type]; 1747 (void) taskq_dispatch(tq, 1748 (task_func_t *)zio_pipeline[zio->io_stage], zio, TQ_SLEEP); 1749 } else { 1750 zio_pipeline[zio->io_stage](zio); 1751 } 1752 } 1753 1754 /* 1755 * Try to allocate an intent log block. Return 0 on success, errno on failure. 1756 */ 1757 int 1758 zio_alloc_blk(spa_t *spa, uint64_t size, blkptr_t *new_bp, blkptr_t *old_bp, 1759 uint64_t txg) 1760 { 1761 int error; 1762 1763 spa_config_enter(spa, RW_READER, FTAG); 1764 1765 /* 1766 * We were passed the previous log blocks dva_t in bp->blk_dva[0]. 1767 */ 1768 error = metaslab_alloc(spa, size, new_bp, 1, txg, old_bp, B_TRUE); 1769 1770 if (error == 0) { 1771 BP_SET_LSIZE(new_bp, size); 1772 BP_SET_PSIZE(new_bp, size); 1773 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF); 1774 BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG); 1775 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG); 1776 BP_SET_LEVEL(new_bp, 0); 1777 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER); 1778 new_bp->blk_birth = txg; 1779 } 1780 1781 spa_config_exit(spa, FTAG); 1782 1783 return (error); 1784 } 1785 1786 /* 1787 * Free an intent log block. We know it can't be a gang block, so there's 1788 * nothing to do except metaslab_free() it. 1789 */ 1790 void 1791 zio_free_blk(spa_t *spa, blkptr_t *bp, uint64_t txg) 1792 { 1793 ASSERT(!BP_IS_GANG(bp)); 1794 1795 spa_config_enter(spa, RW_READER, FTAG); 1796 1797 metaslab_free(spa, bp, txg, B_FALSE); 1798 1799 spa_config_exit(spa, FTAG); 1800 } 1801