xref: /titanic_44/usr/src/uts/common/fs/zfs/zio.c (revision 8d2b0ea9d2a9f0e441345ec63219b0f8b91021f8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/fm/fs/zfs.h>
28 #include <sys/spa.h>
29 #include <sys/txg.h>
30 #include <sys/spa_impl.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/zio_impl.h>
33 #include <sys/zio_compress.h>
34 #include <sys/zio_checksum.h>
35 
36 /*
37  * ==========================================================================
38  * I/O priority table
39  * ==========================================================================
40  */
41 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
42 	0,	/* ZIO_PRIORITY_NOW		*/
43 	0,	/* ZIO_PRIORITY_SYNC_READ	*/
44 	0,	/* ZIO_PRIORITY_SYNC_WRITE	*/
45 	6,	/* ZIO_PRIORITY_ASYNC_READ	*/
46 	4,	/* ZIO_PRIORITY_ASYNC_WRITE	*/
47 	4,	/* ZIO_PRIORITY_FREE		*/
48 	0,	/* ZIO_PRIORITY_CACHE_FILL	*/
49 	0,	/* ZIO_PRIORITY_LOG_WRITE	*/
50 	10,	/* ZIO_PRIORITY_RESILVER	*/
51 	20,	/* ZIO_PRIORITY_SCRUB		*/
52 };
53 
54 /*
55  * ==========================================================================
56  * I/O type descriptions
57  * ==========================================================================
58  */
59 char *zio_type_name[ZIO_TYPES] = {
60 	"null", "read", "write", "free", "claim", "ioctl" };
61 
62 #define	SYNC_PASS_DEFERRED_FREE	1	/* defer frees after this pass */
63 #define	SYNC_PASS_DONT_COMPRESS	4	/* don't compress after this pass */
64 #define	SYNC_PASS_REWRITE	1	/* rewrite new bps after this pass */
65 
66 /*
67  * ==========================================================================
68  * I/O kmem caches
69  * ==========================================================================
70  */
71 kmem_cache_t *zio_cache;
72 kmem_cache_t *zio_link_cache;
73 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
74 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
75 
76 #ifdef _KERNEL
77 extern vmem_t *zio_alloc_arena;
78 #endif
79 
80 /*
81  * An allocating zio is one that either currently has the DVA allocate
82  * stage set or will have it later in its lifetime.
83  */
84 #define	IO_IS_ALLOCATING(zio) \
85 	((zio)->io_orig_pipeline & (1U << ZIO_STAGE_DVA_ALLOCATE))
86 
87 void
88 zio_init(void)
89 {
90 	size_t c;
91 	vmem_t *data_alloc_arena = NULL;
92 
93 #ifdef _KERNEL
94 	data_alloc_arena = zio_alloc_arena;
95 #endif
96 	zio_cache = kmem_cache_create("zio_cache",
97 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
98 	zio_link_cache = kmem_cache_create("zio_link_cache",
99 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
100 
101 	/*
102 	 * For small buffers, we want a cache for each multiple of
103 	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
104 	 * for each quarter-power of 2.  For large buffers, we want
105 	 * a cache for each multiple of PAGESIZE.
106 	 */
107 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
108 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
109 		size_t p2 = size;
110 		size_t align = 0;
111 
112 		while (p2 & (p2 - 1))
113 			p2 &= p2 - 1;
114 
115 		if (size <= 4 * SPA_MINBLOCKSIZE) {
116 			align = SPA_MINBLOCKSIZE;
117 		} else if (P2PHASE(size, PAGESIZE) == 0) {
118 			align = PAGESIZE;
119 		} else if (P2PHASE(size, p2 >> 2) == 0) {
120 			align = p2 >> 2;
121 		}
122 
123 		if (align != 0) {
124 			char name[36];
125 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
126 			zio_buf_cache[c] = kmem_cache_create(name, size,
127 			    align, NULL, NULL, NULL, NULL, NULL, KMC_NODEBUG);
128 
129 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
130 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
131 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
132 			    KMC_NODEBUG);
133 		}
134 	}
135 
136 	while (--c != 0) {
137 		ASSERT(zio_buf_cache[c] != NULL);
138 		if (zio_buf_cache[c - 1] == NULL)
139 			zio_buf_cache[c - 1] = zio_buf_cache[c];
140 
141 		ASSERT(zio_data_buf_cache[c] != NULL);
142 		if (zio_data_buf_cache[c - 1] == NULL)
143 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
144 	}
145 
146 	zio_inject_init();
147 }
148 
149 void
150 zio_fini(void)
151 {
152 	size_t c;
153 	kmem_cache_t *last_cache = NULL;
154 	kmem_cache_t *last_data_cache = NULL;
155 
156 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
157 		if (zio_buf_cache[c] != last_cache) {
158 			last_cache = zio_buf_cache[c];
159 			kmem_cache_destroy(zio_buf_cache[c]);
160 		}
161 		zio_buf_cache[c] = NULL;
162 
163 		if (zio_data_buf_cache[c] != last_data_cache) {
164 			last_data_cache = zio_data_buf_cache[c];
165 			kmem_cache_destroy(zio_data_buf_cache[c]);
166 		}
167 		zio_data_buf_cache[c] = NULL;
168 	}
169 
170 	kmem_cache_destroy(zio_link_cache);
171 	kmem_cache_destroy(zio_cache);
172 
173 	zio_inject_fini();
174 }
175 
176 /*
177  * ==========================================================================
178  * Allocate and free I/O buffers
179  * ==========================================================================
180  */
181 
182 /*
183  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
184  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
185  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
186  * excess / transient data in-core during a crashdump.
187  */
188 void *
189 zio_buf_alloc(size_t size)
190 {
191 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
192 
193 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
194 
195 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
196 }
197 
198 /*
199  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
200  * crashdump if the kernel panics.  This exists so that we will limit the amount
201  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
202  * of kernel heap dumped to disk when the kernel panics)
203  */
204 void *
205 zio_data_buf_alloc(size_t size)
206 {
207 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
208 
209 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
210 
211 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
212 }
213 
214 void
215 zio_buf_free(void *buf, size_t size)
216 {
217 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
218 
219 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
220 
221 	kmem_cache_free(zio_buf_cache[c], buf);
222 }
223 
224 void
225 zio_data_buf_free(void *buf, size_t size)
226 {
227 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
228 
229 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
230 
231 	kmem_cache_free(zio_data_buf_cache[c], buf);
232 }
233 
234 /*
235  * ==========================================================================
236  * Push and pop I/O transform buffers
237  * ==========================================================================
238  */
239 static void
240 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
241 	zio_transform_func_t *transform)
242 {
243 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
244 
245 	zt->zt_orig_data = zio->io_data;
246 	zt->zt_orig_size = zio->io_size;
247 	zt->zt_bufsize = bufsize;
248 	zt->zt_transform = transform;
249 
250 	zt->zt_next = zio->io_transform_stack;
251 	zio->io_transform_stack = zt;
252 
253 	zio->io_data = data;
254 	zio->io_size = size;
255 }
256 
257 static void
258 zio_pop_transforms(zio_t *zio)
259 {
260 	zio_transform_t *zt;
261 
262 	while ((zt = zio->io_transform_stack) != NULL) {
263 		if (zt->zt_transform != NULL)
264 			zt->zt_transform(zio,
265 			    zt->zt_orig_data, zt->zt_orig_size);
266 
267 		zio_buf_free(zio->io_data, zt->zt_bufsize);
268 
269 		zio->io_data = zt->zt_orig_data;
270 		zio->io_size = zt->zt_orig_size;
271 		zio->io_transform_stack = zt->zt_next;
272 
273 		kmem_free(zt, sizeof (zio_transform_t));
274 	}
275 }
276 
277 /*
278  * ==========================================================================
279  * I/O transform callbacks for subblocks and decompression
280  * ==========================================================================
281  */
282 static void
283 zio_subblock(zio_t *zio, void *data, uint64_t size)
284 {
285 	ASSERT(zio->io_size > size);
286 
287 	if (zio->io_type == ZIO_TYPE_READ)
288 		bcopy(zio->io_data, data, size);
289 }
290 
291 static void
292 zio_decompress(zio_t *zio, void *data, uint64_t size)
293 {
294 	if (zio->io_error == 0 &&
295 	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
296 	    zio->io_data, zio->io_size, data, size) != 0)
297 		zio->io_error = EIO;
298 }
299 
300 /*
301  * ==========================================================================
302  * I/O parent/child relationships and pipeline interlocks
303  * ==========================================================================
304  */
305 /*
306  * NOTE - Callers to zio_walk_parents() and zio_walk_children must
307  *        continue calling these functions until they return NULL.
308  *        Otherwise, the next caller will pick up the list walk in
309  *        some indeterminate state.  (Otherwise every caller would
310  *        have to pass in a cookie to keep the state represented by
311  *        io_walk_link, which gets annoying.)
312  */
313 zio_t *
314 zio_walk_parents(zio_t *cio)
315 {
316 	zio_link_t *zl = cio->io_walk_link;
317 	list_t *pl = &cio->io_parent_list;
318 
319 	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
320 	cio->io_walk_link = zl;
321 
322 	if (zl == NULL)
323 		return (NULL);
324 
325 	ASSERT(zl->zl_child == cio);
326 	return (zl->zl_parent);
327 }
328 
329 zio_t *
330 zio_walk_children(zio_t *pio)
331 {
332 	zio_link_t *zl = pio->io_walk_link;
333 	list_t *cl = &pio->io_child_list;
334 
335 	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
336 	pio->io_walk_link = zl;
337 
338 	if (zl == NULL)
339 		return (NULL);
340 
341 	ASSERT(zl->zl_parent == pio);
342 	return (zl->zl_child);
343 }
344 
345 zio_t *
346 zio_unique_parent(zio_t *cio)
347 {
348 	zio_t *pio = zio_walk_parents(cio);
349 
350 	VERIFY(zio_walk_parents(cio) == NULL);
351 	return (pio);
352 }
353 
354 void
355 zio_add_child(zio_t *pio, zio_t *cio)
356 {
357 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
358 
359 	/*
360 	 * Logical I/Os can have logical, gang, or vdev children.
361 	 * Gang I/Os can have gang or vdev children.
362 	 * Vdev I/Os can only have vdev children.
363 	 * The following ASSERT captures all of these constraints.
364 	 */
365 	ASSERT(cio->io_child_type <= pio->io_child_type);
366 
367 	zl->zl_parent = pio;
368 	zl->zl_child = cio;
369 
370 	mutex_enter(&cio->io_lock);
371 	mutex_enter(&pio->io_lock);
372 
373 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
374 
375 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
376 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
377 
378 	list_insert_head(&pio->io_child_list, zl);
379 	list_insert_head(&cio->io_parent_list, zl);
380 
381 	mutex_exit(&pio->io_lock);
382 	mutex_exit(&cio->io_lock);
383 }
384 
385 static void
386 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
387 {
388 	ASSERT(zl->zl_parent == pio);
389 	ASSERT(zl->zl_child == cio);
390 
391 	mutex_enter(&cio->io_lock);
392 	mutex_enter(&pio->io_lock);
393 
394 	list_remove(&pio->io_child_list, zl);
395 	list_remove(&cio->io_parent_list, zl);
396 
397 	mutex_exit(&pio->io_lock);
398 	mutex_exit(&cio->io_lock);
399 
400 	kmem_cache_free(zio_link_cache, zl);
401 }
402 
403 static boolean_t
404 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
405 {
406 	uint64_t *countp = &zio->io_children[child][wait];
407 	boolean_t waiting = B_FALSE;
408 
409 	mutex_enter(&zio->io_lock);
410 	ASSERT(zio->io_stall == NULL);
411 	if (*countp != 0) {
412 		zio->io_stage--;
413 		zio->io_stall = countp;
414 		waiting = B_TRUE;
415 	}
416 	mutex_exit(&zio->io_lock);
417 
418 	return (waiting);
419 }
420 
421 static void
422 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
423 {
424 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
425 	int *errorp = &pio->io_child_error[zio->io_child_type];
426 
427 	mutex_enter(&pio->io_lock);
428 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
429 		*errorp = zio_worst_error(*errorp, zio->io_error);
430 	pio->io_reexecute |= zio->io_reexecute;
431 	ASSERT3U(*countp, >, 0);
432 	if (--*countp == 0 && pio->io_stall == countp) {
433 		pio->io_stall = NULL;
434 		mutex_exit(&pio->io_lock);
435 		zio_execute(pio);
436 	} else {
437 		mutex_exit(&pio->io_lock);
438 	}
439 }
440 
441 static void
442 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
443 {
444 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
445 		zio->io_error = zio->io_child_error[c];
446 }
447 
448 /*
449  * ==========================================================================
450  * Create the various types of I/O (read, write, free, etc)
451  * ==========================================================================
452  */
453 static zio_t *
454 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
455     void *data, uint64_t size, zio_done_func_t *done, void *private,
456     zio_type_t type, int priority, int flags, vdev_t *vd, uint64_t offset,
457     const zbookmark_t *zb, uint8_t stage, uint32_t pipeline)
458 {
459 	zio_t *zio;
460 
461 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
462 	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
463 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
464 
465 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
466 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
467 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
468 
469 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
470 	bzero(zio, sizeof (zio_t));
471 
472 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
473 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
474 
475 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
476 	    offsetof(zio_link_t, zl_parent_node));
477 	list_create(&zio->io_child_list, sizeof (zio_link_t),
478 	    offsetof(zio_link_t, zl_child_node));
479 
480 	if (vd != NULL)
481 		zio->io_child_type = ZIO_CHILD_VDEV;
482 	else if (flags & ZIO_FLAG_GANG_CHILD)
483 		zio->io_child_type = ZIO_CHILD_GANG;
484 	else
485 		zio->io_child_type = ZIO_CHILD_LOGICAL;
486 
487 	if (bp != NULL) {
488 		zio->io_bp = bp;
489 		zio->io_bp_copy = *bp;
490 		zio->io_bp_orig = *bp;
491 		if (type != ZIO_TYPE_WRITE)
492 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
493 		if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
494 			if (BP_IS_GANG(bp))
495 				pipeline |= ZIO_GANG_STAGES;
496 			zio->io_logical = zio;
497 		}
498 	}
499 
500 	zio->io_spa = spa;
501 	zio->io_txg = txg;
502 	zio->io_data = data;
503 	zio->io_size = size;
504 	zio->io_done = done;
505 	zio->io_private = private;
506 	zio->io_type = type;
507 	zio->io_priority = priority;
508 	zio->io_vd = vd;
509 	zio->io_offset = offset;
510 	zio->io_orig_flags = zio->io_flags = flags;
511 	zio->io_orig_stage = zio->io_stage = stage;
512 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
513 
514 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
515 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
516 
517 	if (zb != NULL)
518 		zio->io_bookmark = *zb;
519 
520 	if (pio != NULL) {
521 		if (zio->io_logical == NULL)
522 			zio->io_logical = pio->io_logical;
523 		zio_add_child(pio, zio);
524 	}
525 
526 	return (zio);
527 }
528 
529 static void
530 zio_destroy(zio_t *zio)
531 {
532 	spa_t *spa = zio->io_spa;
533 	uint8_t async_root = zio->io_async_root;
534 
535 	list_destroy(&zio->io_parent_list);
536 	list_destroy(&zio->io_child_list);
537 	mutex_destroy(&zio->io_lock);
538 	cv_destroy(&zio->io_cv);
539 	kmem_cache_free(zio_cache, zio);
540 
541 	if (async_root) {
542 		mutex_enter(&spa->spa_async_root_lock);
543 		if (--spa->spa_async_root_count == 0)
544 			cv_broadcast(&spa->spa_async_root_cv);
545 		mutex_exit(&spa->spa_async_root_lock);
546 	}
547 }
548 
549 zio_t *
550 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
551     void *private, int flags)
552 {
553 	zio_t *zio;
554 
555 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
556 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
557 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
558 
559 	return (zio);
560 }
561 
562 zio_t *
563 zio_root(spa_t *spa, zio_done_func_t *done, void *private, int flags)
564 {
565 	return (zio_null(NULL, spa, NULL, done, private, flags));
566 }
567 
568 zio_t *
569 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
570     void *data, uint64_t size, zio_done_func_t *done, void *private,
571     int priority, int flags, const zbookmark_t *zb)
572 {
573 	zio_t *zio;
574 
575 	zio = zio_create(pio, spa, bp->blk_birth, (blkptr_t *)bp,
576 	    data, size, done, private,
577 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
578 	    ZIO_STAGE_OPEN, ZIO_READ_PIPELINE);
579 
580 	return (zio);
581 }
582 
583 void
584 zio_skip_write(zio_t *zio)
585 {
586 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
587 	ASSERT(zio->io_stage == ZIO_STAGE_READY);
588 	ASSERT(!BP_IS_GANG(zio->io_bp));
589 
590 	zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
591 }
592 
593 zio_t *
594 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
595     void *data, uint64_t size, zio_prop_t *zp,
596     zio_done_func_t *ready, zio_done_func_t *done, void *private,
597     int priority, int flags, const zbookmark_t *zb)
598 {
599 	zio_t *zio;
600 
601 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
602 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
603 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
604 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
605 	    zp->zp_type < DMU_OT_NUMTYPES &&
606 	    zp->zp_level < 32 &&
607 	    zp->zp_ndvas > 0 &&
608 	    zp->zp_ndvas <= spa_max_replication(spa));
609 	ASSERT(ready != NULL);
610 
611 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
612 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
613 	    ZIO_STAGE_OPEN, ZIO_WRITE_PIPELINE);
614 
615 	zio->io_ready = ready;
616 	zio->io_prop = *zp;
617 
618 	return (zio);
619 }
620 
621 zio_t *
622 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
623     uint64_t size, zio_done_func_t *done, void *private, int priority,
624     int flags, zbookmark_t *zb)
625 {
626 	zio_t *zio;
627 
628 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
629 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
630 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
631 
632 	return (zio);
633 }
634 
635 zio_t *
636 zio_free(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
637     zio_done_func_t *done, void *private, int flags)
638 {
639 	zio_t *zio;
640 
641 	ASSERT(!BP_IS_HOLE(bp));
642 
643 	if (bp->blk_fill == BLK_FILL_ALREADY_FREED)
644 		return (zio_null(pio, spa, NULL, NULL, NULL, flags));
645 
646 	if (txg == spa->spa_syncing_txg &&
647 	    spa_sync_pass(spa) > SYNC_PASS_DEFERRED_FREE) {
648 		bplist_enqueue_deferred(&spa->spa_sync_bplist, bp);
649 		return (zio_null(pio, spa, NULL, NULL, NULL, flags));
650 	}
651 
652 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
653 	    done, private, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
654 	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
655 
656 	return (zio);
657 }
658 
659 zio_t *
660 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
661     zio_done_func_t *done, void *private, int flags)
662 {
663 	zio_t *zio;
664 
665 	/*
666 	 * A claim is an allocation of a specific block.  Claims are needed
667 	 * to support immediate writes in the intent log.  The issue is that
668 	 * immediate writes contain committed data, but in a txg that was
669 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
670 	 * the intent log claims all blocks that contain immediate write data
671 	 * so that the SPA knows they're in use.
672 	 *
673 	 * All claims *must* be resolved in the first txg -- before the SPA
674 	 * starts allocating blocks -- so that nothing is allocated twice.
675 	 */
676 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
677 	ASSERT3U(spa_first_txg(spa), <=, txg);
678 
679 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
680 	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
681 	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
682 
683 	return (zio);
684 }
685 
686 zio_t *
687 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
688     zio_done_func_t *done, void *private, int priority, int flags)
689 {
690 	zio_t *zio;
691 	int c;
692 
693 	if (vd->vdev_children == 0) {
694 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
695 		    ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
696 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
697 
698 		zio->io_cmd = cmd;
699 	} else {
700 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
701 
702 		for (c = 0; c < vd->vdev_children; c++)
703 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
704 			    done, private, priority, flags));
705 	}
706 
707 	return (zio);
708 }
709 
710 zio_t *
711 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
712     void *data, int checksum, zio_done_func_t *done, void *private,
713     int priority, int flags, boolean_t labels)
714 {
715 	zio_t *zio;
716 
717 	ASSERT(vd->vdev_children == 0);
718 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
719 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
720 	ASSERT3U(offset + size, <=, vd->vdev_psize);
721 
722 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
723 	    ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
724 	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
725 
726 	zio->io_prop.zp_checksum = checksum;
727 
728 	return (zio);
729 }
730 
731 zio_t *
732 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
733     void *data, int checksum, zio_done_func_t *done, void *private,
734     int priority, int flags, boolean_t labels)
735 {
736 	zio_t *zio;
737 
738 	ASSERT(vd->vdev_children == 0);
739 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
740 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
741 	ASSERT3U(offset + size, <=, vd->vdev_psize);
742 
743 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
744 	    ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
745 	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
746 
747 	zio->io_prop.zp_checksum = checksum;
748 
749 	if (zio_checksum_table[checksum].ci_zbt) {
750 		/*
751 		 * zbt checksums are necessarily destructive -- they modify
752 		 * the end of the write buffer to hold the verifier/checksum.
753 		 * Therefore, we must make a local copy in case the data is
754 		 * being written to multiple places in parallel.
755 		 */
756 		void *wbuf = zio_buf_alloc(size);
757 		bcopy(data, wbuf, size);
758 		zio_push_transform(zio, wbuf, size, size, NULL);
759 	}
760 
761 	return (zio);
762 }
763 
764 /*
765  * Create a child I/O to do some work for us.
766  */
767 zio_t *
768 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
769 	void *data, uint64_t size, int type, int priority, int flags,
770 	zio_done_func_t *done, void *private)
771 {
772 	uint32_t pipeline = ZIO_VDEV_CHILD_PIPELINE;
773 	zio_t *zio;
774 
775 	ASSERT(vd->vdev_parent ==
776 	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
777 
778 	if (type == ZIO_TYPE_READ && bp != NULL) {
779 		/*
780 		 * If we have the bp, then the child should perform the
781 		 * checksum and the parent need not.  This pushes error
782 		 * detection as close to the leaves as possible and
783 		 * eliminates redundant checksums in the interior nodes.
784 		 */
785 		pipeline |= 1U << ZIO_STAGE_CHECKSUM_VERIFY;
786 		pio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY);
787 	}
788 
789 	if (vd->vdev_children == 0)
790 		offset += VDEV_LABEL_START_SIZE;
791 
792 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
793 	    done, private, type, priority,
794 	    (pio->io_flags & ZIO_FLAG_VDEV_INHERIT) |
795 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | flags,
796 	    vd, offset, &pio->io_bookmark,
797 	    ZIO_STAGE_VDEV_IO_START - 1, pipeline);
798 
799 	return (zio);
800 }
801 
802 zio_t *
803 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
804 	int type, int priority, int flags, zio_done_func_t *done, void *private)
805 {
806 	zio_t *zio;
807 
808 	ASSERT(vd->vdev_ops->vdev_op_leaf);
809 
810 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
811 	    data, size, done, private, type, priority,
812 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
813 	    vd, offset, NULL,
814 	    ZIO_STAGE_VDEV_IO_START - 1, ZIO_VDEV_CHILD_PIPELINE);
815 
816 	return (zio);
817 }
818 
819 void
820 zio_flush(zio_t *zio, vdev_t *vd)
821 {
822 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
823 	    NULL, NULL, ZIO_PRIORITY_NOW,
824 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
825 }
826 
827 /*
828  * ==========================================================================
829  * Prepare to read and write logical blocks
830  * ==========================================================================
831  */
832 
833 static int
834 zio_read_bp_init(zio_t *zio)
835 {
836 	blkptr_t *bp = zio->io_bp;
837 
838 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
839 	    zio->io_logical == zio && !(zio->io_flags & ZIO_FLAG_RAW)) {
840 		uint64_t csize = BP_GET_PSIZE(bp);
841 		void *cbuf = zio_buf_alloc(csize);
842 
843 		zio_push_transform(zio, cbuf, csize, csize, zio_decompress);
844 	}
845 
846 	if (!dmu_ot[BP_GET_TYPE(bp)].ot_metadata && BP_GET_LEVEL(bp) == 0)
847 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
848 
849 	return (ZIO_PIPELINE_CONTINUE);
850 }
851 
852 static int
853 zio_write_bp_init(zio_t *zio)
854 {
855 	zio_prop_t *zp = &zio->io_prop;
856 	int compress = zp->zp_compress;
857 	blkptr_t *bp = zio->io_bp;
858 	void *cbuf;
859 	uint64_t lsize = zio->io_size;
860 	uint64_t csize = lsize;
861 	uint64_t cbufsize = 0;
862 	int pass = 1;
863 
864 	/*
865 	 * If our children haven't all reached the ready stage,
866 	 * wait for them and then repeat this pipeline stage.
867 	 */
868 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
869 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
870 		return (ZIO_PIPELINE_STOP);
871 
872 	if (!IO_IS_ALLOCATING(zio))
873 		return (ZIO_PIPELINE_CONTINUE);
874 
875 	ASSERT(compress != ZIO_COMPRESS_INHERIT);
876 
877 	if (bp->blk_birth == zio->io_txg) {
878 		/*
879 		 * We're rewriting an existing block, which means we're
880 		 * working on behalf of spa_sync().  For spa_sync() to
881 		 * converge, it must eventually be the case that we don't
882 		 * have to allocate new blocks.  But compression changes
883 		 * the blocksize, which forces a reallocate, and makes
884 		 * convergence take longer.  Therefore, after the first
885 		 * few passes, stop compressing to ensure convergence.
886 		 */
887 		pass = spa_sync_pass(zio->io_spa);
888 		ASSERT(pass > 1);
889 
890 		if (pass > SYNC_PASS_DONT_COMPRESS)
891 			compress = ZIO_COMPRESS_OFF;
892 
893 		/*
894 		 * Only MOS (objset 0) data should need to be rewritten.
895 		 */
896 		ASSERT(zio->io_logical->io_bookmark.zb_objset == 0);
897 
898 		/* Make sure someone doesn't change their mind on overwrites */
899 		ASSERT(MIN(zp->zp_ndvas + BP_IS_GANG(bp),
900 		    spa_max_replication(zio->io_spa)) == BP_GET_NDVAS(bp));
901 	}
902 
903 	if (compress != ZIO_COMPRESS_OFF) {
904 		if (!zio_compress_data(compress, zio->io_data, zio->io_size,
905 		    &cbuf, &csize, &cbufsize)) {
906 			compress = ZIO_COMPRESS_OFF;
907 		} else if (csize != 0) {
908 			zio_push_transform(zio, cbuf, csize, cbufsize, NULL);
909 		}
910 	}
911 
912 	/*
913 	 * The final pass of spa_sync() must be all rewrites, but the first
914 	 * few passes offer a trade-off: allocating blocks defers convergence,
915 	 * but newly allocated blocks are sequential, so they can be written
916 	 * to disk faster.  Therefore, we allow the first few passes of
917 	 * spa_sync() to allocate new blocks, but force rewrites after that.
918 	 * There should only be a handful of blocks after pass 1 in any case.
919 	 */
920 	if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == csize &&
921 	    pass > SYNC_PASS_REWRITE) {
922 		ASSERT(csize != 0);
923 		uint32_t gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
924 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
925 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
926 	} else {
927 		BP_ZERO(bp);
928 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
929 	}
930 
931 	if (csize == 0) {
932 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
933 	} else {
934 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
935 		BP_SET_LSIZE(bp, lsize);
936 		BP_SET_PSIZE(bp, csize);
937 		BP_SET_COMPRESS(bp, compress);
938 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
939 		BP_SET_TYPE(bp, zp->zp_type);
940 		BP_SET_LEVEL(bp, zp->zp_level);
941 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
942 	}
943 
944 	return (ZIO_PIPELINE_CONTINUE);
945 }
946 
947 /*
948  * ==========================================================================
949  * Execute the I/O pipeline
950  * ==========================================================================
951  */
952 
953 static void
954 zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q)
955 {
956 	zio_type_t t = zio->io_type;
957 
958 	/*
959 	 * If we're a config writer, the normal issue and interrupt threads
960 	 * may all be blocked waiting for the config lock.  In this case,
961 	 * select the otherwise-unused taskq for ZIO_TYPE_NULL.
962 	 */
963 	if (zio->io_flags & ZIO_FLAG_CONFIG_WRITER)
964 		t = ZIO_TYPE_NULL;
965 
966 	/*
967 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
968 	 */
969 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
970 		t = ZIO_TYPE_NULL;
971 
972 	(void) taskq_dispatch(zio->io_spa->spa_zio_taskq[t][q],
973 	    (task_func_t *)zio_execute, zio, TQ_SLEEP);
974 }
975 
976 static boolean_t
977 zio_taskq_member(zio_t *zio, enum zio_taskq_type q)
978 {
979 	kthread_t *executor = zio->io_executor;
980 	spa_t *spa = zio->io_spa;
981 
982 	for (zio_type_t t = 0; t < ZIO_TYPES; t++)
983 		if (taskq_member(spa->spa_zio_taskq[t][q], executor))
984 			return (B_TRUE);
985 
986 	return (B_FALSE);
987 }
988 
989 static int
990 zio_issue_async(zio_t *zio)
991 {
992 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE);
993 
994 	return (ZIO_PIPELINE_STOP);
995 }
996 
997 void
998 zio_interrupt(zio_t *zio)
999 {
1000 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT);
1001 }
1002 
1003 /*
1004  * Execute the I/O pipeline until one of the following occurs:
1005  * (1) the I/O completes; (2) the pipeline stalls waiting for
1006  * dependent child I/Os; (3) the I/O issues, so we're waiting
1007  * for an I/O completion interrupt; (4) the I/O is delegated by
1008  * vdev-level caching or aggregation; (5) the I/O is deferred
1009  * due to vdev-level queueing; (6) the I/O is handed off to
1010  * another thread.  In all cases, the pipeline stops whenever
1011  * there's no CPU work; it never burns a thread in cv_wait().
1012  *
1013  * There's no locking on io_stage because there's no legitimate way
1014  * for multiple threads to be attempting to process the same I/O.
1015  */
1016 static zio_pipe_stage_t *zio_pipeline[ZIO_STAGES];
1017 
1018 void
1019 zio_execute(zio_t *zio)
1020 {
1021 	zio->io_executor = curthread;
1022 
1023 	while (zio->io_stage < ZIO_STAGE_DONE) {
1024 		uint32_t pipeline = zio->io_pipeline;
1025 		zio_stage_t stage = zio->io_stage;
1026 		int rv;
1027 
1028 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1029 
1030 		while (((1U << ++stage) & pipeline) == 0)
1031 			continue;
1032 
1033 		ASSERT(stage <= ZIO_STAGE_DONE);
1034 		ASSERT(zio->io_stall == NULL);
1035 
1036 		/*
1037 		 * If we are in interrupt context and this pipeline stage
1038 		 * will grab a config lock that is held across I/O,
1039 		 * issue async to avoid deadlock.
1040 		 */
1041 		if (((1U << stage) & ZIO_CONFIG_LOCK_BLOCKING_STAGES) &&
1042 		    zio->io_vd == NULL &&
1043 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1044 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE);
1045 			return;
1046 		}
1047 
1048 		zio->io_stage = stage;
1049 		rv = zio_pipeline[stage](zio);
1050 
1051 		if (rv == ZIO_PIPELINE_STOP)
1052 			return;
1053 
1054 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1055 	}
1056 }
1057 
1058 /*
1059  * ==========================================================================
1060  * Initiate I/O, either sync or async
1061  * ==========================================================================
1062  */
1063 int
1064 zio_wait(zio_t *zio)
1065 {
1066 	int error;
1067 
1068 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1069 	ASSERT(zio->io_executor == NULL);
1070 
1071 	zio->io_waiter = curthread;
1072 
1073 	zio_execute(zio);
1074 
1075 	mutex_enter(&zio->io_lock);
1076 	while (zio->io_executor != NULL)
1077 		cv_wait(&zio->io_cv, &zio->io_lock);
1078 	mutex_exit(&zio->io_lock);
1079 
1080 	error = zio->io_error;
1081 	zio_destroy(zio);
1082 
1083 	return (error);
1084 }
1085 
1086 void
1087 zio_nowait(zio_t *zio)
1088 {
1089 	ASSERT(zio->io_executor == NULL);
1090 
1091 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1092 	    zio_unique_parent(zio) == NULL) {
1093 		/*
1094 		 * This is a logical async I/O with no parent to wait for it.
1095 		 * Track how many outstanding I/Os of this type exist so
1096 		 * that spa_unload() knows when they are all done.
1097 		 */
1098 		spa_t *spa = zio->io_spa;
1099 		zio->io_async_root = B_TRUE;
1100 		mutex_enter(&spa->spa_async_root_lock);
1101 		spa->spa_async_root_count++;
1102 		mutex_exit(&spa->spa_async_root_lock);
1103 	}
1104 
1105 	zio_execute(zio);
1106 }
1107 
1108 /*
1109  * ==========================================================================
1110  * Reexecute or suspend/resume failed I/O
1111  * ==========================================================================
1112  */
1113 
1114 static void
1115 zio_reexecute(zio_t *pio)
1116 {
1117 	zio_t *cio, *cio_next;
1118 
1119 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1120 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1121 
1122 	pio->io_flags = pio->io_orig_flags;
1123 	pio->io_stage = pio->io_orig_stage;
1124 	pio->io_pipeline = pio->io_orig_pipeline;
1125 	pio->io_reexecute = 0;
1126 	pio->io_error = 0;
1127 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1128 		pio->io_state[w] = 0;
1129 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1130 		pio->io_child_error[c] = 0;
1131 
1132 	if (IO_IS_ALLOCATING(pio)) {
1133 		/*
1134 		 * Remember the failed bp so that the io_ready() callback
1135 		 * can update its accounting upon reexecution.  The block
1136 		 * was already freed in zio_done(); we indicate this with
1137 		 * a fill count of -1 so that zio_free() knows to skip it.
1138 		 */
1139 		blkptr_t *bp = pio->io_bp;
1140 		ASSERT(bp->blk_birth == 0 || bp->blk_birth == pio->io_txg);
1141 		bp->blk_fill = BLK_FILL_ALREADY_FREED;
1142 		pio->io_bp_orig = *bp;
1143 		BP_ZERO(bp);
1144 	}
1145 
1146 	/*
1147 	 * As we reexecute pio's children, new children could be created.
1148 	 * New children go to the head of pio's io_child_list, however,
1149 	 * so we will (correctly) not reexecute them.  The key is that
1150 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1151 	 * cannot be affected by any side effects of reexecuting 'cio'.
1152 	 */
1153 	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1154 		cio_next = zio_walk_children(pio);
1155 		mutex_enter(&pio->io_lock);
1156 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1157 			pio->io_children[cio->io_child_type][w]++;
1158 		mutex_exit(&pio->io_lock);
1159 		zio_reexecute(cio);
1160 	}
1161 
1162 	/*
1163 	 * Now that all children have been reexecuted, execute the parent.
1164 	 */
1165 	zio_execute(pio);
1166 }
1167 
1168 void
1169 zio_suspend(spa_t *spa, zio_t *zio)
1170 {
1171 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1172 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1173 		    "failure and the failure mode property for this pool "
1174 		    "is set to panic.", spa_name(spa));
1175 
1176 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1177 
1178 	mutex_enter(&spa->spa_suspend_lock);
1179 
1180 	if (spa->spa_suspend_zio_root == NULL)
1181 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL, 0);
1182 
1183 	spa->spa_suspended = B_TRUE;
1184 
1185 	if (zio != NULL) {
1186 		ASSERT(zio != spa->spa_suspend_zio_root);
1187 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1188 		ASSERT(zio_unique_parent(zio) == NULL);
1189 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1190 		zio_add_child(spa->spa_suspend_zio_root, zio);
1191 	}
1192 
1193 	mutex_exit(&spa->spa_suspend_lock);
1194 }
1195 
1196 void
1197 zio_resume(spa_t *spa)
1198 {
1199 	zio_t *pio, *cio, *cio_next;
1200 
1201 	/*
1202 	 * Reexecute all previously suspended i/o.
1203 	 */
1204 	mutex_enter(&spa->spa_suspend_lock);
1205 	spa->spa_suspended = B_FALSE;
1206 	cv_broadcast(&spa->spa_suspend_cv);
1207 	pio = spa->spa_suspend_zio_root;
1208 	spa->spa_suspend_zio_root = NULL;
1209 	mutex_exit(&spa->spa_suspend_lock);
1210 
1211 	if (pio == NULL)
1212 		return;
1213 
1214 	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1215 		zio_link_t *zl = pio->io_walk_link;
1216 		cio_next = zio_walk_children(pio);
1217 		zio_remove_child(pio, cio, zl);
1218 		zio_reexecute(cio);
1219 	}
1220 
1221 	ASSERT(pio->io_children[ZIO_CHILD_LOGICAL][ZIO_WAIT_DONE] == 0);
1222 
1223 	(void) zio_wait(pio);
1224 }
1225 
1226 void
1227 zio_resume_wait(spa_t *spa)
1228 {
1229 	mutex_enter(&spa->spa_suspend_lock);
1230 	while (spa_suspended(spa))
1231 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1232 	mutex_exit(&spa->spa_suspend_lock);
1233 }
1234 
1235 /*
1236  * ==========================================================================
1237  * Gang blocks.
1238  *
1239  * A gang block is a collection of small blocks that looks to the DMU
1240  * like one large block.  When zio_dva_allocate() cannot find a block
1241  * of the requested size, due to either severe fragmentation or the pool
1242  * being nearly full, it calls zio_write_gang_block() to construct the
1243  * block from smaller fragments.
1244  *
1245  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1246  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1247  * an indirect block: it's an array of block pointers.  It consumes
1248  * only one sector and hence is allocatable regardless of fragmentation.
1249  * The gang header's bps point to its gang members, which hold the data.
1250  *
1251  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1252  * as the verifier to ensure uniqueness of the SHA256 checksum.
1253  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1254  * not the gang header.  This ensures that data block signatures (needed for
1255  * deduplication) are independent of how the block is physically stored.
1256  *
1257  * Gang blocks can be nested: a gang member may itself be a gang block.
1258  * Thus every gang block is a tree in which root and all interior nodes are
1259  * gang headers, and the leaves are normal blocks that contain user data.
1260  * The root of the gang tree is called the gang leader.
1261  *
1262  * To perform any operation (read, rewrite, free, claim) on a gang block,
1263  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1264  * in the io_gang_tree field of the original logical i/o by recursively
1265  * reading the gang leader and all gang headers below it.  This yields
1266  * an in-core tree containing the contents of every gang header and the
1267  * bps for every constituent of the gang block.
1268  *
1269  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1270  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1271  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1272  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1273  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1274  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1275  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1276  * of the gang header plus zio_checksum_compute() of the data to update the
1277  * gang header's blk_cksum as described above.
1278  *
1279  * The two-phase assemble/issue model solves the problem of partial failure --
1280  * what if you'd freed part of a gang block but then couldn't read the
1281  * gang header for another part?  Assembling the entire gang tree first
1282  * ensures that all the necessary gang header I/O has succeeded before
1283  * starting the actual work of free, claim, or write.  Once the gang tree
1284  * is assembled, free and claim are in-memory operations that cannot fail.
1285  *
1286  * In the event that a gang write fails, zio_dva_unallocate() walks the
1287  * gang tree to immediately free (i.e. insert back into the space map)
1288  * everything we've allocated.  This ensures that we don't get ENOSPC
1289  * errors during repeated suspend/resume cycles due to a flaky device.
1290  *
1291  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1292  * the gang tree, we won't modify the block, so we can safely defer the free
1293  * (knowing that the block is still intact).  If we *can* assemble the gang
1294  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1295  * each constituent bp and we can allocate a new block on the next sync pass.
1296  *
1297  * In all cases, the gang tree allows complete recovery from partial failure.
1298  * ==========================================================================
1299  */
1300 
1301 static zio_t *
1302 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1303 {
1304 	if (gn != NULL)
1305 		return (pio);
1306 
1307 	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1308 	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1309 	    &pio->io_bookmark));
1310 }
1311 
1312 zio_t *
1313 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1314 {
1315 	zio_t *zio;
1316 
1317 	if (gn != NULL) {
1318 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1319 		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1320 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1321 		/*
1322 		 * As we rewrite each gang header, the pipeline will compute
1323 		 * a new gang block header checksum for it; but no one will
1324 		 * compute a new data checksum, so we do that here.  The one
1325 		 * exception is the gang leader: the pipeline already computed
1326 		 * its data checksum because that stage precedes gang assembly.
1327 		 * (Presently, nothing actually uses interior data checksums;
1328 		 * this is just good hygiene.)
1329 		 */
1330 		if (gn != pio->io_logical->io_gang_tree) {
1331 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1332 			    data, BP_GET_PSIZE(bp));
1333 		}
1334 	} else {
1335 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1336 		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1337 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1338 	}
1339 
1340 	return (zio);
1341 }
1342 
1343 /* ARGSUSED */
1344 zio_t *
1345 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1346 {
1347 	return (zio_free(pio, pio->io_spa, pio->io_txg, bp,
1348 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1349 }
1350 
1351 /* ARGSUSED */
1352 zio_t *
1353 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1354 {
1355 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1356 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1357 }
1358 
1359 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1360 	NULL,
1361 	zio_read_gang,
1362 	zio_rewrite_gang,
1363 	zio_free_gang,
1364 	zio_claim_gang,
1365 	NULL
1366 };
1367 
1368 static void zio_gang_tree_assemble_done(zio_t *zio);
1369 
1370 static zio_gang_node_t *
1371 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1372 {
1373 	zio_gang_node_t *gn;
1374 
1375 	ASSERT(*gnpp == NULL);
1376 
1377 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1378 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1379 	*gnpp = gn;
1380 
1381 	return (gn);
1382 }
1383 
1384 static void
1385 zio_gang_node_free(zio_gang_node_t **gnpp)
1386 {
1387 	zio_gang_node_t *gn = *gnpp;
1388 
1389 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1390 		ASSERT(gn->gn_child[g] == NULL);
1391 
1392 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1393 	kmem_free(gn, sizeof (*gn));
1394 	*gnpp = NULL;
1395 }
1396 
1397 static void
1398 zio_gang_tree_free(zio_gang_node_t **gnpp)
1399 {
1400 	zio_gang_node_t *gn = *gnpp;
1401 
1402 	if (gn == NULL)
1403 		return;
1404 
1405 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1406 		zio_gang_tree_free(&gn->gn_child[g]);
1407 
1408 	zio_gang_node_free(gnpp);
1409 }
1410 
1411 static void
1412 zio_gang_tree_assemble(zio_t *lio, blkptr_t *bp, zio_gang_node_t **gnpp)
1413 {
1414 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1415 
1416 	ASSERT(lio->io_logical == lio);
1417 	ASSERT(BP_IS_GANG(bp));
1418 
1419 	zio_nowait(zio_read(lio, lio->io_spa, bp, gn->gn_gbh,
1420 	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1421 	    lio->io_priority, ZIO_GANG_CHILD_FLAGS(lio), &lio->io_bookmark));
1422 }
1423 
1424 static void
1425 zio_gang_tree_assemble_done(zio_t *zio)
1426 {
1427 	zio_t *lio = zio->io_logical;
1428 	zio_gang_node_t *gn = zio->io_private;
1429 	blkptr_t *bp = zio->io_bp;
1430 	zio_t *pio = zio_unique_parent(zio);
1431 
1432 	ASSERT(pio == lio);
1433 	ASSERT(zio_walk_children(zio) == NULL);
1434 
1435 	if (zio->io_error)
1436 		return;
1437 
1438 	if (BP_SHOULD_BYTESWAP(bp))
1439 		byteswap_uint64_array(zio->io_data, zio->io_size);
1440 
1441 	ASSERT(zio->io_data == gn->gn_gbh);
1442 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1443 	ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC);
1444 
1445 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1446 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1447 		if (!BP_IS_GANG(gbp))
1448 			continue;
1449 		zio_gang_tree_assemble(lio, gbp, &gn->gn_child[g]);
1450 	}
1451 }
1452 
1453 static void
1454 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1455 {
1456 	zio_t *lio = pio->io_logical;
1457 	zio_t *zio;
1458 
1459 	ASSERT(BP_IS_GANG(bp) == !!gn);
1460 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(lio->io_bp));
1461 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == lio->io_gang_tree);
1462 
1463 	/*
1464 	 * If you're a gang header, your data is in gn->gn_gbh.
1465 	 * If you're a gang member, your data is in 'data' and gn == NULL.
1466 	 */
1467 	zio = zio_gang_issue_func[lio->io_type](pio, bp, gn, data);
1468 
1469 	if (gn != NULL) {
1470 		ASSERT(gn->gn_gbh->zg_tail.zbt_magic == ZBT_MAGIC);
1471 
1472 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1473 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1474 			if (BP_IS_HOLE(gbp))
1475 				continue;
1476 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1477 			data = (char *)data + BP_GET_PSIZE(gbp);
1478 		}
1479 	}
1480 
1481 	if (gn == lio->io_gang_tree)
1482 		ASSERT3P((char *)lio->io_data + lio->io_size, ==, data);
1483 
1484 	if (zio != pio)
1485 		zio_nowait(zio);
1486 }
1487 
1488 static int
1489 zio_gang_assemble(zio_t *zio)
1490 {
1491 	blkptr_t *bp = zio->io_bp;
1492 
1493 	ASSERT(BP_IS_GANG(bp) && zio == zio->io_logical);
1494 
1495 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1496 
1497 	return (ZIO_PIPELINE_CONTINUE);
1498 }
1499 
1500 static int
1501 zio_gang_issue(zio_t *zio)
1502 {
1503 	zio_t *lio = zio->io_logical;
1504 	blkptr_t *bp = zio->io_bp;
1505 
1506 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1507 		return (ZIO_PIPELINE_STOP);
1508 
1509 	ASSERT(BP_IS_GANG(bp) && zio == lio);
1510 
1511 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1512 		zio_gang_tree_issue(lio, lio->io_gang_tree, bp, lio->io_data);
1513 	else
1514 		zio_gang_tree_free(&lio->io_gang_tree);
1515 
1516 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1517 
1518 	return (ZIO_PIPELINE_CONTINUE);
1519 }
1520 
1521 static void
1522 zio_write_gang_member_ready(zio_t *zio)
1523 {
1524 	zio_t *pio = zio_unique_parent(zio);
1525 	zio_t *lio = zio->io_logical;
1526 	dva_t *cdva = zio->io_bp->blk_dva;
1527 	dva_t *pdva = pio->io_bp->blk_dva;
1528 	uint64_t asize;
1529 
1530 	if (BP_IS_HOLE(zio->io_bp))
1531 		return;
1532 
1533 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1534 
1535 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1536 	ASSERT3U(zio->io_prop.zp_ndvas, ==, lio->io_prop.zp_ndvas);
1537 	ASSERT3U(zio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(zio->io_bp));
1538 	ASSERT3U(pio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(pio->io_bp));
1539 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1540 
1541 	mutex_enter(&pio->io_lock);
1542 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1543 		ASSERT(DVA_GET_GANG(&pdva[d]));
1544 		asize = DVA_GET_ASIZE(&pdva[d]);
1545 		asize += DVA_GET_ASIZE(&cdva[d]);
1546 		DVA_SET_ASIZE(&pdva[d], asize);
1547 	}
1548 	mutex_exit(&pio->io_lock);
1549 }
1550 
1551 static int
1552 zio_write_gang_block(zio_t *pio)
1553 {
1554 	spa_t *spa = pio->io_spa;
1555 	blkptr_t *bp = pio->io_bp;
1556 	zio_t *lio = pio->io_logical;
1557 	zio_t *zio;
1558 	zio_gang_node_t *gn, **gnpp;
1559 	zio_gbh_phys_t *gbh;
1560 	uint64_t txg = pio->io_txg;
1561 	uint64_t resid = pio->io_size;
1562 	uint64_t lsize;
1563 	int ndvas = lio->io_prop.zp_ndvas;
1564 	int gbh_ndvas = MIN(ndvas + 1, spa_max_replication(spa));
1565 	zio_prop_t zp;
1566 	int error;
1567 
1568 	error = metaslab_alloc(spa, spa->spa_normal_class, SPA_GANGBLOCKSIZE,
1569 	    bp, gbh_ndvas, txg, pio == lio ? NULL : lio->io_bp,
1570 	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1571 	if (error) {
1572 		pio->io_error = error;
1573 		return (ZIO_PIPELINE_CONTINUE);
1574 	}
1575 
1576 	if (pio == lio) {
1577 		gnpp = &lio->io_gang_tree;
1578 	} else {
1579 		gnpp = pio->io_private;
1580 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1581 	}
1582 
1583 	gn = zio_gang_node_alloc(gnpp);
1584 	gbh = gn->gn_gbh;
1585 	bzero(gbh, SPA_GANGBLOCKSIZE);
1586 
1587 	/*
1588 	 * Create the gang header.
1589 	 */
1590 	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1591 	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1592 
1593 	/*
1594 	 * Create and nowait the gang children.
1595 	 */
1596 	for (int g = 0; resid != 0; resid -= lsize, g++) {
1597 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1598 		    SPA_MINBLOCKSIZE);
1599 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1600 
1601 		zp.zp_checksum = lio->io_prop.zp_checksum;
1602 		zp.zp_compress = ZIO_COMPRESS_OFF;
1603 		zp.zp_type = DMU_OT_NONE;
1604 		zp.zp_level = 0;
1605 		zp.zp_ndvas = lio->io_prop.zp_ndvas;
1606 
1607 		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1608 		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1609 		    zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1610 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1611 		    &pio->io_bookmark));
1612 	}
1613 
1614 	/*
1615 	 * Set pio's pipeline to just wait for zio to finish.
1616 	 */
1617 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1618 
1619 	zio_nowait(zio);
1620 
1621 	return (ZIO_PIPELINE_CONTINUE);
1622 }
1623 
1624 /*
1625  * ==========================================================================
1626  * Allocate and free blocks
1627  * ==========================================================================
1628  */
1629 
1630 static int
1631 zio_dva_allocate(zio_t *zio)
1632 {
1633 	spa_t *spa = zio->io_spa;
1634 	metaslab_class_t *mc = spa->spa_normal_class;
1635 	blkptr_t *bp = zio->io_bp;
1636 	int error;
1637 
1638 	ASSERT(BP_IS_HOLE(bp));
1639 	ASSERT3U(BP_GET_NDVAS(bp), ==, 0);
1640 	ASSERT3U(zio->io_prop.zp_ndvas, >, 0);
1641 	ASSERT3U(zio->io_prop.zp_ndvas, <=, spa_max_replication(spa));
1642 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
1643 
1644 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
1645 	    zio->io_prop.zp_ndvas, zio->io_txg, NULL, 0);
1646 
1647 	if (error) {
1648 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
1649 			return (zio_write_gang_block(zio));
1650 		zio->io_error = error;
1651 	}
1652 
1653 	return (ZIO_PIPELINE_CONTINUE);
1654 }
1655 
1656 static int
1657 zio_dva_free(zio_t *zio)
1658 {
1659 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
1660 
1661 	return (ZIO_PIPELINE_CONTINUE);
1662 }
1663 
1664 static int
1665 zio_dva_claim(zio_t *zio)
1666 {
1667 	int error;
1668 
1669 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
1670 	if (error)
1671 		zio->io_error = error;
1672 
1673 	return (ZIO_PIPELINE_CONTINUE);
1674 }
1675 
1676 /*
1677  * Undo an allocation.  This is used by zio_done() when an I/O fails
1678  * and we want to give back the block we just allocated.
1679  * This handles both normal blocks and gang blocks.
1680  */
1681 static void
1682 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
1683 {
1684 	spa_t *spa = zio->io_spa;
1685 	boolean_t now = !(zio->io_flags & ZIO_FLAG_IO_REWRITE);
1686 
1687 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
1688 
1689 	if (zio->io_bp == bp && !now) {
1690 		/*
1691 		 * This is a rewrite for sync-to-convergence.
1692 		 * We can't do a metaslab_free(NOW) because bp wasn't allocated
1693 		 * during this sync pass, which means that metaslab_sync()
1694 		 * already committed the allocation.
1695 		 */
1696 		ASSERT(DVA_EQUAL(BP_IDENTITY(bp),
1697 		    BP_IDENTITY(&zio->io_bp_orig)));
1698 		ASSERT(spa_sync_pass(spa) > 1);
1699 
1700 		if (BP_IS_GANG(bp) && gn == NULL) {
1701 			/*
1702 			 * This is a gang leader whose gang header(s) we
1703 			 * couldn't read now, so defer the free until later.
1704 			 * The block should still be intact because without
1705 			 * the headers, we'd never even start the rewrite.
1706 			 */
1707 			bplist_enqueue_deferred(&spa->spa_sync_bplist, bp);
1708 			return;
1709 		}
1710 	}
1711 
1712 	if (!BP_IS_HOLE(bp))
1713 		metaslab_free(spa, bp, bp->blk_birth, now);
1714 
1715 	if (gn != NULL) {
1716 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1717 			zio_dva_unallocate(zio, gn->gn_child[g],
1718 			    &gn->gn_gbh->zg_blkptr[g]);
1719 		}
1720 	}
1721 }
1722 
1723 /*
1724  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
1725  */
1726 int
1727 zio_alloc_blk(spa_t *spa, uint64_t size, blkptr_t *new_bp, blkptr_t *old_bp,
1728     uint64_t txg)
1729 {
1730 	int error;
1731 
1732 	error = metaslab_alloc(spa, spa->spa_log_class, size,
1733 	    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID);
1734 
1735 	if (error)
1736 		error = metaslab_alloc(spa, spa->spa_normal_class, size,
1737 		    new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID);
1738 
1739 	if (error == 0) {
1740 		BP_SET_LSIZE(new_bp, size);
1741 		BP_SET_PSIZE(new_bp, size);
1742 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
1743 		BP_SET_CHECKSUM(new_bp, ZIO_CHECKSUM_ZILOG);
1744 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
1745 		BP_SET_LEVEL(new_bp, 0);
1746 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
1747 	}
1748 
1749 	return (error);
1750 }
1751 
1752 /*
1753  * Free an intent log block.  We know it can't be a gang block, so there's
1754  * nothing to do except metaslab_free() it.
1755  */
1756 void
1757 zio_free_blk(spa_t *spa, blkptr_t *bp, uint64_t txg)
1758 {
1759 	ASSERT(!BP_IS_GANG(bp));
1760 
1761 	metaslab_free(spa, bp, txg, B_FALSE);
1762 }
1763 
1764 /*
1765  * ==========================================================================
1766  * Read and write to physical devices
1767  * ==========================================================================
1768  */
1769 static int
1770 zio_vdev_io_start(zio_t *zio)
1771 {
1772 	vdev_t *vd = zio->io_vd;
1773 	uint64_t align;
1774 	spa_t *spa = zio->io_spa;
1775 
1776 	ASSERT(zio->io_error == 0);
1777 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
1778 
1779 	if (vd == NULL) {
1780 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
1781 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
1782 
1783 		/*
1784 		 * The mirror_ops handle multiple DVAs in a single BP.
1785 		 */
1786 		return (vdev_mirror_ops.vdev_op_io_start(zio));
1787 	}
1788 
1789 	align = 1ULL << vd->vdev_top->vdev_ashift;
1790 
1791 	if (P2PHASE(zio->io_size, align) != 0) {
1792 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
1793 		char *abuf = zio_buf_alloc(asize);
1794 		ASSERT(vd == vd->vdev_top);
1795 		if (zio->io_type == ZIO_TYPE_WRITE) {
1796 			bcopy(zio->io_data, abuf, zio->io_size);
1797 			bzero(abuf + zio->io_size, asize - zio->io_size);
1798 		}
1799 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
1800 	}
1801 
1802 	ASSERT(P2PHASE(zio->io_offset, align) == 0);
1803 	ASSERT(P2PHASE(zio->io_size, align) == 0);
1804 	ASSERT(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
1805 
1806 	/*
1807 	 * If this is a repair I/O, and there's no self-healing involved --
1808 	 * that is, we're just resilvering what we expect to resilver --
1809 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
1810 	 * This prevents spurious resilvering with nested replication.
1811 	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
1812 	 * A is out of date, we'll read from C+D, then use the data to
1813 	 * resilver A+B -- but we don't actually want to resilver B, just A.
1814 	 * The top-level mirror has no way to know this, so instead we just
1815 	 * discard unnecessary repairs as we work our way down the vdev tree.
1816 	 * The same logic applies to any form of nested replication:
1817 	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
1818 	 */
1819 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
1820 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
1821 	    zio->io_txg != 0 &&	/* not a delegated i/o */
1822 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
1823 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1824 		zio_vdev_io_bypass(zio);
1825 		return (ZIO_PIPELINE_CONTINUE);
1826 	}
1827 
1828 	if (vd->vdev_ops->vdev_op_leaf &&
1829 	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
1830 
1831 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
1832 			return (ZIO_PIPELINE_CONTINUE);
1833 
1834 		if ((zio = vdev_queue_io(zio)) == NULL)
1835 			return (ZIO_PIPELINE_STOP);
1836 
1837 		if (!vdev_accessible(vd, zio)) {
1838 			zio->io_error = ENXIO;
1839 			zio_interrupt(zio);
1840 			return (ZIO_PIPELINE_STOP);
1841 		}
1842 	}
1843 
1844 	return (vd->vdev_ops->vdev_op_io_start(zio));
1845 }
1846 
1847 static int
1848 zio_vdev_io_done(zio_t *zio)
1849 {
1850 	vdev_t *vd = zio->io_vd;
1851 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
1852 	boolean_t unexpected_error = B_FALSE;
1853 
1854 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
1855 		return (ZIO_PIPELINE_STOP);
1856 
1857 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
1858 
1859 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
1860 
1861 		vdev_queue_io_done(zio);
1862 
1863 		if (zio->io_type == ZIO_TYPE_WRITE)
1864 			vdev_cache_write(zio);
1865 
1866 		if (zio_injection_enabled && zio->io_error == 0)
1867 			zio->io_error = zio_handle_device_injection(vd, EIO);
1868 
1869 		if (zio_injection_enabled && zio->io_error == 0)
1870 			zio->io_error = zio_handle_label_injection(zio, EIO);
1871 
1872 		if (zio->io_error) {
1873 			if (!vdev_accessible(vd, zio)) {
1874 				zio->io_error = ENXIO;
1875 			} else {
1876 				unexpected_error = B_TRUE;
1877 			}
1878 		}
1879 	}
1880 
1881 	ops->vdev_op_io_done(zio);
1882 
1883 	if (unexpected_error)
1884 		VERIFY(vdev_probe(vd, zio) == NULL);
1885 
1886 	return (ZIO_PIPELINE_CONTINUE);
1887 }
1888 
1889 static int
1890 zio_vdev_io_assess(zio_t *zio)
1891 {
1892 	vdev_t *vd = zio->io_vd;
1893 
1894 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
1895 		return (ZIO_PIPELINE_STOP);
1896 
1897 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
1898 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
1899 
1900 	if (zio->io_vsd != NULL) {
1901 		zio->io_vsd_free(zio);
1902 		zio->io_vsd = NULL;
1903 	}
1904 
1905 	if (zio_injection_enabled && zio->io_error == 0)
1906 		zio->io_error = zio_handle_fault_injection(zio, EIO);
1907 
1908 	/*
1909 	 * If the I/O failed, determine whether we should attempt to retry it.
1910 	 */
1911 	if (zio->io_error && vd == NULL &&
1912 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
1913 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
1914 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
1915 		zio->io_error = 0;
1916 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
1917 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
1918 		zio->io_stage = ZIO_STAGE_VDEV_IO_START - 1;
1919 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE);
1920 		return (ZIO_PIPELINE_STOP);
1921 	}
1922 
1923 	/*
1924 	 * If we got an error on a leaf device, convert it to ENXIO
1925 	 * if the device is not accessible at all.
1926 	 */
1927 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
1928 	    !vdev_accessible(vd, zio))
1929 		zio->io_error = ENXIO;
1930 
1931 	/*
1932 	 * If we can't write to an interior vdev (mirror or RAID-Z),
1933 	 * set vdev_cant_write so that we stop trying to allocate from it.
1934 	 */
1935 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
1936 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf)
1937 		vd->vdev_cant_write = B_TRUE;
1938 
1939 	if (zio->io_error)
1940 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1941 
1942 	return (ZIO_PIPELINE_CONTINUE);
1943 }
1944 
1945 void
1946 zio_vdev_io_reissue(zio_t *zio)
1947 {
1948 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
1949 	ASSERT(zio->io_error == 0);
1950 
1951 	zio->io_stage--;
1952 }
1953 
1954 void
1955 zio_vdev_io_redone(zio_t *zio)
1956 {
1957 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
1958 
1959 	zio->io_stage--;
1960 }
1961 
1962 void
1963 zio_vdev_io_bypass(zio_t *zio)
1964 {
1965 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
1966 	ASSERT(zio->io_error == 0);
1967 
1968 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
1969 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS - 1;
1970 }
1971 
1972 /*
1973  * ==========================================================================
1974  * Generate and verify checksums
1975  * ==========================================================================
1976  */
1977 static int
1978 zio_checksum_generate(zio_t *zio)
1979 {
1980 	blkptr_t *bp = zio->io_bp;
1981 	enum zio_checksum checksum;
1982 
1983 	if (bp == NULL) {
1984 		/*
1985 		 * This is zio_write_phys().
1986 		 * We're either generating a label checksum, or none at all.
1987 		 */
1988 		checksum = zio->io_prop.zp_checksum;
1989 
1990 		if (checksum == ZIO_CHECKSUM_OFF)
1991 			return (ZIO_PIPELINE_CONTINUE);
1992 
1993 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
1994 	} else {
1995 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
1996 			ASSERT(!IO_IS_ALLOCATING(zio));
1997 			checksum = ZIO_CHECKSUM_GANG_HEADER;
1998 		} else {
1999 			checksum = BP_GET_CHECKSUM(bp);
2000 		}
2001 	}
2002 
2003 	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2004 
2005 	return (ZIO_PIPELINE_CONTINUE);
2006 }
2007 
2008 static int
2009 zio_checksum_verify(zio_t *zio)
2010 {
2011 	blkptr_t *bp = zio->io_bp;
2012 	int error;
2013 
2014 	if (bp == NULL) {
2015 		/*
2016 		 * This is zio_read_phys().
2017 		 * We're either verifying a label checksum, or nothing at all.
2018 		 */
2019 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2020 			return (ZIO_PIPELINE_CONTINUE);
2021 
2022 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2023 	}
2024 
2025 	if ((error = zio_checksum_error(zio)) != 0) {
2026 		zio->io_error = error;
2027 		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2028 			zfs_ereport_post(FM_EREPORT_ZFS_CHECKSUM,
2029 			    zio->io_spa, zio->io_vd, zio, 0, 0);
2030 		}
2031 	}
2032 
2033 	return (ZIO_PIPELINE_CONTINUE);
2034 }
2035 
2036 /*
2037  * Called by RAID-Z to ensure we don't compute the checksum twice.
2038  */
2039 void
2040 zio_checksum_verified(zio_t *zio)
2041 {
2042 	zio->io_pipeline &= ~(1U << ZIO_STAGE_CHECKSUM_VERIFY);
2043 }
2044 
2045 /*
2046  * ==========================================================================
2047  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2048  * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2049  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2050  * indicate errors that are specific to one I/O, and most likely permanent.
2051  * Any other error is presumed to be worse because we weren't expecting it.
2052  * ==========================================================================
2053  */
2054 int
2055 zio_worst_error(int e1, int e2)
2056 {
2057 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2058 	int r1, r2;
2059 
2060 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2061 		if (e1 == zio_error_rank[r1])
2062 			break;
2063 
2064 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2065 		if (e2 == zio_error_rank[r2])
2066 			break;
2067 
2068 	return (r1 > r2 ? e1 : e2);
2069 }
2070 
2071 /*
2072  * ==========================================================================
2073  * I/O completion
2074  * ==========================================================================
2075  */
2076 static int
2077 zio_ready(zio_t *zio)
2078 {
2079 	blkptr_t *bp = zio->io_bp;
2080 	zio_t *pio, *pio_next;
2081 
2082 	if (zio->io_ready) {
2083 		if (BP_IS_GANG(bp) &&
2084 		    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY))
2085 			return (ZIO_PIPELINE_STOP);
2086 
2087 		ASSERT(IO_IS_ALLOCATING(zio));
2088 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2089 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2090 
2091 		zio->io_ready(zio);
2092 	}
2093 
2094 	if (bp != NULL && bp != &zio->io_bp_copy)
2095 		zio->io_bp_copy = *bp;
2096 
2097 	if (zio->io_error)
2098 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2099 
2100 	mutex_enter(&zio->io_lock);
2101 	zio->io_state[ZIO_WAIT_READY] = 1;
2102 	pio = zio_walk_parents(zio);
2103 	mutex_exit(&zio->io_lock);
2104 
2105 	/*
2106 	 * As we notify zio's parents, new parents could be added.
2107 	 * New parents go to the head of zio's io_parent_list, however,
2108 	 * so we will (correctly) not notify them.  The remainder of zio's
2109 	 * io_parent_list, from 'pio_next' onward, cannot change because
2110 	 * all parents must wait for us to be done before they can be done.
2111 	 */
2112 	for (; pio != NULL; pio = pio_next) {
2113 		pio_next = zio_walk_parents(zio);
2114 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2115 	}
2116 
2117 	return (ZIO_PIPELINE_CONTINUE);
2118 }
2119 
2120 static int
2121 zio_done(zio_t *zio)
2122 {
2123 	spa_t *spa = zio->io_spa;
2124 	zio_t *lio = zio->io_logical;
2125 	blkptr_t *bp = zio->io_bp;
2126 	vdev_t *vd = zio->io_vd;
2127 	uint64_t psize = zio->io_size;
2128 	zio_t *pio, *pio_next;
2129 
2130 	/*
2131 	 * If our of children haven't all completed,
2132 	 * wait for them and then repeat this pipeline stage.
2133 	 */
2134 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2135 	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2136 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2137 		return (ZIO_PIPELINE_STOP);
2138 
2139 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2140 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2141 			ASSERT(zio->io_children[c][w] == 0);
2142 
2143 	if (bp != NULL) {
2144 		ASSERT(bp->blk_pad[0] == 0);
2145 		ASSERT(bp->blk_pad[1] == 0);
2146 		ASSERT(bp->blk_pad[2] == 0);
2147 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2148 		    (bp == zio_unique_parent(zio)->io_bp));
2149 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2150 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2151 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
2152 			ASSERT3U(zio->io_prop.zp_ndvas, <=, BP_GET_NDVAS(bp));
2153 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
2154 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2155 		}
2156 	}
2157 
2158 	/*
2159 	 * If there were child vdev or gang errors, they apply to us now.
2160 	 */
2161 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2162 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2163 
2164 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
2165 
2166 	vdev_stat_update(zio, psize);
2167 
2168 	if (zio->io_error) {
2169 		/*
2170 		 * If this I/O is attached to a particular vdev,
2171 		 * generate an error message describing the I/O failure
2172 		 * at the block level.  We ignore these errors if the
2173 		 * device is currently unavailable.
2174 		 */
2175 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
2176 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
2177 
2178 		if ((zio->io_error == EIO ||
2179 		    !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) && zio == lio) {
2180 			/*
2181 			 * For logical I/O requests, tell the SPA to log the
2182 			 * error and generate a logical data ereport.
2183 			 */
2184 			spa_log_error(spa, zio);
2185 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
2186 			    0, 0);
2187 		}
2188 	}
2189 
2190 	if (zio->io_error && zio == lio) {
2191 		/*
2192 		 * Determine whether zio should be reexecuted.  This will
2193 		 * propagate all the way to the root via zio_notify_parent().
2194 		 */
2195 		ASSERT(vd == NULL && bp != NULL);
2196 
2197 		if (IO_IS_ALLOCATING(zio))
2198 			if (zio->io_error != ENOSPC)
2199 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2200 			else
2201 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2202 
2203 		if ((zio->io_type == ZIO_TYPE_READ ||
2204 		    zio->io_type == ZIO_TYPE_FREE) &&
2205 		    zio->io_error == ENXIO &&
2206 		    spa->spa_load_state == SPA_LOAD_NONE &&
2207 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
2208 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2209 
2210 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2211 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2212 	}
2213 
2214 	/*
2215 	 * If there were logical child errors, they apply to us now.
2216 	 * We defer this until now to avoid conflating logical child
2217 	 * errors with errors that happened to the zio itself when
2218 	 * updating vdev stats and reporting FMA events above.
2219 	 */
2220 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2221 
2222 	if (zio->io_reexecute) {
2223 		/*
2224 		 * This is a logical I/O that wants to reexecute.
2225 		 *
2226 		 * Reexecute is top-down.  When an i/o fails, if it's not
2227 		 * the root, it simply notifies its parent and sticks around.
2228 		 * The parent, seeing that it still has children in zio_done(),
2229 		 * does the same.  This percolates all the way up to the root.
2230 		 * The root i/o will reexecute or suspend the entire tree.
2231 		 *
2232 		 * This approach ensures that zio_reexecute() honors
2233 		 * all the original i/o dependency relationships, e.g.
2234 		 * parents not executing until children are ready.
2235 		 */
2236 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2237 
2238 		if (IO_IS_ALLOCATING(zio))
2239 			zio_dva_unallocate(zio, zio->io_gang_tree, bp);
2240 
2241 		zio_gang_tree_free(&zio->io_gang_tree);
2242 
2243 		mutex_enter(&zio->io_lock);
2244 		zio->io_state[ZIO_WAIT_DONE] = 1;
2245 		mutex_exit(&zio->io_lock);
2246 
2247 		if ((pio = zio_unique_parent(zio)) != NULL) {
2248 			/*
2249 			 * We're not a root i/o, so there's nothing to do
2250 			 * but notify our parent.  Don't propagate errors
2251 			 * upward since we haven't permanently failed yet.
2252 			 */
2253 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
2254 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2255 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
2256 			/*
2257 			 * We'd fail again if we reexecuted now, so suspend
2258 			 * until conditions improve (e.g. device comes online).
2259 			 */
2260 			zio_suspend(spa, zio);
2261 		} else {
2262 			/*
2263 			 * Reexecution is potentially a huge amount of work.
2264 			 * Hand it off to the otherwise-unused claim taskq.
2265 			 */
2266 			(void) taskq_dispatch(
2267 			    spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
2268 			    (task_func_t *)zio_reexecute, zio, TQ_SLEEP);
2269 		}
2270 		return (ZIO_PIPELINE_STOP);
2271 	}
2272 
2273 	ASSERT(zio_walk_children(zio) == NULL);
2274 	ASSERT(zio->io_reexecute == 0);
2275 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
2276 
2277 	/*
2278 	 * It is the responsibility of the done callback to ensure that this
2279 	 * particular zio is no longer discoverable for adoption, and as
2280 	 * such, cannot acquire any new parents.
2281 	 */
2282 	if (zio->io_done)
2283 		zio->io_done(zio);
2284 
2285 	zio_gang_tree_free(&zio->io_gang_tree);
2286 
2287 	mutex_enter(&zio->io_lock);
2288 	zio->io_state[ZIO_WAIT_DONE] = 1;
2289 	mutex_exit(&zio->io_lock);
2290 
2291 	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
2292 		zio_link_t *zl = zio->io_walk_link;
2293 		pio_next = zio_walk_parents(zio);
2294 		zio_remove_child(pio, zio, zl);
2295 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2296 	}
2297 
2298 	if (zio->io_waiter != NULL) {
2299 		mutex_enter(&zio->io_lock);
2300 		zio->io_executor = NULL;
2301 		cv_broadcast(&zio->io_cv);
2302 		mutex_exit(&zio->io_lock);
2303 	} else {
2304 		zio_destroy(zio);
2305 	}
2306 
2307 	return (ZIO_PIPELINE_STOP);
2308 }
2309 
2310 /*
2311  * ==========================================================================
2312  * I/O pipeline definition
2313  * ==========================================================================
2314  */
2315 static zio_pipe_stage_t *zio_pipeline[ZIO_STAGES] = {
2316 	NULL,
2317 	zio_issue_async,
2318 	zio_read_bp_init,
2319 	zio_write_bp_init,
2320 	zio_checksum_generate,
2321 	zio_gang_assemble,
2322 	zio_gang_issue,
2323 	zio_dva_allocate,
2324 	zio_dva_free,
2325 	zio_dva_claim,
2326 	zio_ready,
2327 	zio_vdev_io_start,
2328 	zio_vdev_io_done,
2329 	zio_vdev_io_assess,
2330 	zio_checksum_verify,
2331 	zio_done
2332 };
2333