xref: /titanic_44/usr/src/uts/common/fs/zfs/zio.c (revision 13c8743e4d3cc6d9653687512c0d48d2b653513d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25  */
26 
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/txg.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio_impl.h>
34 #include <sys/zio_compress.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/arc.h>
38 #include <sys/ddt.h>
39 
40 /*
41  * ==========================================================================
42  * I/O priority table
43  * ==========================================================================
44  */
45 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
46 	0,	/* ZIO_PRIORITY_NOW		*/
47 	0,	/* ZIO_PRIORITY_SYNC_READ	*/
48 	0,	/* ZIO_PRIORITY_SYNC_WRITE	*/
49 	0,	/* ZIO_PRIORITY_LOG_WRITE	*/
50 	1,	/* ZIO_PRIORITY_CACHE_FILL	*/
51 	1,	/* ZIO_PRIORITY_AGG		*/
52 	4,	/* ZIO_PRIORITY_FREE		*/
53 	4,	/* ZIO_PRIORITY_ASYNC_WRITE	*/
54 	6,	/* ZIO_PRIORITY_ASYNC_READ	*/
55 	10,	/* ZIO_PRIORITY_RESILVER	*/
56 	20,	/* ZIO_PRIORITY_SCRUB		*/
57 	2,	/* ZIO_PRIORITY_DDT_PREFETCH	*/
58 };
59 
60 /*
61  * ==========================================================================
62  * I/O type descriptions
63  * ==========================================================================
64  */
65 char *zio_type_name[ZIO_TYPES] = {
66 	"zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
67 	"zio_ioctl"
68 };
69 
70 /*
71  * ==========================================================================
72  * I/O kmem caches
73  * ==========================================================================
74  */
75 kmem_cache_t *zio_cache;
76 kmem_cache_t *zio_link_cache;
77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 
80 #ifdef _KERNEL
81 extern vmem_t *zio_alloc_arena;
82 #endif
83 extern int zfs_mg_alloc_failures;
84 
85 /*
86  * The following actions directly effect the spa's sync-to-convergence logic.
87  * The values below define the sync pass when we start performing the action.
88  * Care should be taken when changing these values as they directly impact
89  * spa_sync() performance. Tuning these values may introduce subtle performance
90  * pathologies and should only be done in the context of performance analysis.
91  * These tunables will eventually be removed and replaced with #defines once
92  * enough analysis has been done to determine optimal values.
93  *
94  * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
95  * regular blocks are not deferred.
96  */
97 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
98 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
99 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
100 
101 /*
102  * An allocating zio is one that either currently has the DVA allocate
103  * stage set or will have it later in its lifetime.
104  */
105 #define	IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
106 
107 boolean_t	zio_requeue_io_start_cut_in_line = B_TRUE;
108 
109 #ifdef ZFS_DEBUG
110 int zio_buf_debug_limit = 16384;
111 #else
112 int zio_buf_debug_limit = 0;
113 #endif
114 
115 void
116 zio_init(void)
117 {
118 	size_t c;
119 	vmem_t *data_alloc_arena = NULL;
120 
121 #ifdef _KERNEL
122 	data_alloc_arena = zio_alloc_arena;
123 #endif
124 	zio_cache = kmem_cache_create("zio_cache",
125 	    sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
126 	zio_link_cache = kmem_cache_create("zio_link_cache",
127 	    sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
128 
129 	/*
130 	 * For small buffers, we want a cache for each multiple of
131 	 * SPA_MINBLOCKSIZE.  For medium-size buffers, we want a cache
132 	 * for each quarter-power of 2.  For large buffers, we want
133 	 * a cache for each multiple of PAGESIZE.
134 	 */
135 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
136 		size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
137 		size_t p2 = size;
138 		size_t align = 0;
139 		size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
140 
141 		while (p2 & (p2 - 1))
142 			p2 &= p2 - 1;
143 
144 #ifndef _KERNEL
145 		/*
146 		 * If we are using watchpoints, put each buffer on its own page,
147 		 * to eliminate the performance overhead of trapping to the
148 		 * kernel when modifying a non-watched buffer that shares the
149 		 * page with a watched buffer.
150 		 */
151 		if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
152 			continue;
153 #endif
154 		if (size <= 4 * SPA_MINBLOCKSIZE) {
155 			align = SPA_MINBLOCKSIZE;
156 		} else if (IS_P2ALIGNED(size, PAGESIZE)) {
157 			align = PAGESIZE;
158 		} else if (IS_P2ALIGNED(size, p2 >> 2)) {
159 			align = p2 >> 2;
160 		}
161 
162 		if (align != 0) {
163 			char name[36];
164 			(void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
165 			zio_buf_cache[c] = kmem_cache_create(name, size,
166 			    align, NULL, NULL, NULL, NULL, NULL, cflags);
167 
168 			/*
169 			 * Since zio_data bufs do not appear in crash dumps, we
170 			 * pass KMC_NOTOUCH so that no allocator metadata is
171 			 * stored with the buffers.
172 			 */
173 			(void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
174 			zio_data_buf_cache[c] = kmem_cache_create(name, size,
175 			    align, NULL, NULL, NULL, NULL, data_alloc_arena,
176 			    cflags | KMC_NOTOUCH);
177 		}
178 	}
179 
180 	while (--c != 0) {
181 		ASSERT(zio_buf_cache[c] != NULL);
182 		if (zio_buf_cache[c - 1] == NULL)
183 			zio_buf_cache[c - 1] = zio_buf_cache[c];
184 
185 		ASSERT(zio_data_buf_cache[c] != NULL);
186 		if (zio_data_buf_cache[c - 1] == NULL)
187 			zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
188 	}
189 
190 	/*
191 	 * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
192 	 * to fail 3 times per txg or 8 failures, whichever is greater.
193 	 */
194 	zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
195 
196 	zio_inject_init();
197 }
198 
199 void
200 zio_fini(void)
201 {
202 	size_t c;
203 	kmem_cache_t *last_cache = NULL;
204 	kmem_cache_t *last_data_cache = NULL;
205 
206 	for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
207 		if (zio_buf_cache[c] != last_cache) {
208 			last_cache = zio_buf_cache[c];
209 			kmem_cache_destroy(zio_buf_cache[c]);
210 		}
211 		zio_buf_cache[c] = NULL;
212 
213 		if (zio_data_buf_cache[c] != last_data_cache) {
214 			last_data_cache = zio_data_buf_cache[c];
215 			kmem_cache_destroy(zio_data_buf_cache[c]);
216 		}
217 		zio_data_buf_cache[c] = NULL;
218 	}
219 
220 	kmem_cache_destroy(zio_link_cache);
221 	kmem_cache_destroy(zio_cache);
222 
223 	zio_inject_fini();
224 }
225 
226 /*
227  * ==========================================================================
228  * Allocate and free I/O buffers
229  * ==========================================================================
230  */
231 
232 /*
233  * Use zio_buf_alloc to allocate ZFS metadata.  This data will appear in a
234  * crashdump if the kernel panics, so use it judiciously.  Obviously, it's
235  * useful to inspect ZFS metadata, but if possible, we should avoid keeping
236  * excess / transient data in-core during a crashdump.
237  */
238 void *
239 zio_buf_alloc(size_t size)
240 {
241 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
242 
243 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
244 
245 	return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
246 }
247 
248 /*
249  * Use zio_data_buf_alloc to allocate data.  The data will not appear in a
250  * crashdump if the kernel panics.  This exists so that we will limit the amount
251  * of ZFS data that shows up in a kernel crashdump.  (Thus reducing the amount
252  * of kernel heap dumped to disk when the kernel panics)
253  */
254 void *
255 zio_data_buf_alloc(size_t size)
256 {
257 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
258 
259 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
260 
261 	return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
262 }
263 
264 void
265 zio_buf_free(void *buf, size_t size)
266 {
267 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
268 
269 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
270 
271 	kmem_cache_free(zio_buf_cache[c], buf);
272 }
273 
274 void
275 zio_data_buf_free(void *buf, size_t size)
276 {
277 	size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
278 
279 	ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
280 
281 	kmem_cache_free(zio_data_buf_cache[c], buf);
282 }
283 
284 /*
285  * ==========================================================================
286  * Push and pop I/O transform buffers
287  * ==========================================================================
288  */
289 static void
290 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
291 	zio_transform_func_t *transform)
292 {
293 	zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
294 
295 	zt->zt_orig_data = zio->io_data;
296 	zt->zt_orig_size = zio->io_size;
297 	zt->zt_bufsize = bufsize;
298 	zt->zt_transform = transform;
299 
300 	zt->zt_next = zio->io_transform_stack;
301 	zio->io_transform_stack = zt;
302 
303 	zio->io_data = data;
304 	zio->io_size = size;
305 }
306 
307 static void
308 zio_pop_transforms(zio_t *zio)
309 {
310 	zio_transform_t *zt;
311 
312 	while ((zt = zio->io_transform_stack) != NULL) {
313 		if (zt->zt_transform != NULL)
314 			zt->zt_transform(zio,
315 			    zt->zt_orig_data, zt->zt_orig_size);
316 
317 		if (zt->zt_bufsize != 0)
318 			zio_buf_free(zio->io_data, zt->zt_bufsize);
319 
320 		zio->io_data = zt->zt_orig_data;
321 		zio->io_size = zt->zt_orig_size;
322 		zio->io_transform_stack = zt->zt_next;
323 
324 		kmem_free(zt, sizeof (zio_transform_t));
325 	}
326 }
327 
328 /*
329  * ==========================================================================
330  * I/O transform callbacks for subblocks and decompression
331  * ==========================================================================
332  */
333 static void
334 zio_subblock(zio_t *zio, void *data, uint64_t size)
335 {
336 	ASSERT(zio->io_size > size);
337 
338 	if (zio->io_type == ZIO_TYPE_READ)
339 		bcopy(zio->io_data, data, size);
340 }
341 
342 static void
343 zio_decompress(zio_t *zio, void *data, uint64_t size)
344 {
345 	if (zio->io_error == 0 &&
346 	    zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
347 	    zio->io_data, data, zio->io_size, size) != 0)
348 		zio->io_error = SET_ERROR(EIO);
349 }
350 
351 /*
352  * ==========================================================================
353  * I/O parent/child relationships and pipeline interlocks
354  * ==========================================================================
355  */
356 /*
357  * NOTE - Callers to zio_walk_parents() and zio_walk_children must
358  *        continue calling these functions until they return NULL.
359  *        Otherwise, the next caller will pick up the list walk in
360  *        some indeterminate state.  (Otherwise every caller would
361  *        have to pass in a cookie to keep the state represented by
362  *        io_walk_link, which gets annoying.)
363  */
364 zio_t *
365 zio_walk_parents(zio_t *cio)
366 {
367 	zio_link_t *zl = cio->io_walk_link;
368 	list_t *pl = &cio->io_parent_list;
369 
370 	zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
371 	cio->io_walk_link = zl;
372 
373 	if (zl == NULL)
374 		return (NULL);
375 
376 	ASSERT(zl->zl_child == cio);
377 	return (zl->zl_parent);
378 }
379 
380 zio_t *
381 zio_walk_children(zio_t *pio)
382 {
383 	zio_link_t *zl = pio->io_walk_link;
384 	list_t *cl = &pio->io_child_list;
385 
386 	zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
387 	pio->io_walk_link = zl;
388 
389 	if (zl == NULL)
390 		return (NULL);
391 
392 	ASSERT(zl->zl_parent == pio);
393 	return (zl->zl_child);
394 }
395 
396 zio_t *
397 zio_unique_parent(zio_t *cio)
398 {
399 	zio_t *pio = zio_walk_parents(cio);
400 
401 	VERIFY(zio_walk_parents(cio) == NULL);
402 	return (pio);
403 }
404 
405 void
406 zio_add_child(zio_t *pio, zio_t *cio)
407 {
408 	zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
409 
410 	/*
411 	 * Logical I/Os can have logical, gang, or vdev children.
412 	 * Gang I/Os can have gang or vdev children.
413 	 * Vdev I/Os can only have vdev children.
414 	 * The following ASSERT captures all of these constraints.
415 	 */
416 	ASSERT(cio->io_child_type <= pio->io_child_type);
417 
418 	zl->zl_parent = pio;
419 	zl->zl_child = cio;
420 
421 	mutex_enter(&cio->io_lock);
422 	mutex_enter(&pio->io_lock);
423 
424 	ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
425 
426 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
427 		pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
428 
429 	list_insert_head(&pio->io_child_list, zl);
430 	list_insert_head(&cio->io_parent_list, zl);
431 
432 	pio->io_child_count++;
433 	cio->io_parent_count++;
434 
435 	mutex_exit(&pio->io_lock);
436 	mutex_exit(&cio->io_lock);
437 }
438 
439 static void
440 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
441 {
442 	ASSERT(zl->zl_parent == pio);
443 	ASSERT(zl->zl_child == cio);
444 
445 	mutex_enter(&cio->io_lock);
446 	mutex_enter(&pio->io_lock);
447 
448 	list_remove(&pio->io_child_list, zl);
449 	list_remove(&cio->io_parent_list, zl);
450 
451 	pio->io_child_count--;
452 	cio->io_parent_count--;
453 
454 	mutex_exit(&pio->io_lock);
455 	mutex_exit(&cio->io_lock);
456 
457 	kmem_cache_free(zio_link_cache, zl);
458 }
459 
460 static boolean_t
461 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
462 {
463 	uint64_t *countp = &zio->io_children[child][wait];
464 	boolean_t waiting = B_FALSE;
465 
466 	mutex_enter(&zio->io_lock);
467 	ASSERT(zio->io_stall == NULL);
468 	if (*countp != 0) {
469 		zio->io_stage >>= 1;
470 		zio->io_stall = countp;
471 		waiting = B_TRUE;
472 	}
473 	mutex_exit(&zio->io_lock);
474 
475 	return (waiting);
476 }
477 
478 static void
479 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
480 {
481 	uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
482 	int *errorp = &pio->io_child_error[zio->io_child_type];
483 
484 	mutex_enter(&pio->io_lock);
485 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
486 		*errorp = zio_worst_error(*errorp, zio->io_error);
487 	pio->io_reexecute |= zio->io_reexecute;
488 	ASSERT3U(*countp, >, 0);
489 	if (--*countp == 0 && pio->io_stall == countp) {
490 		pio->io_stall = NULL;
491 		mutex_exit(&pio->io_lock);
492 		zio_execute(pio);
493 	} else {
494 		mutex_exit(&pio->io_lock);
495 	}
496 }
497 
498 static void
499 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
500 {
501 	if (zio->io_child_error[c] != 0 && zio->io_error == 0)
502 		zio->io_error = zio->io_child_error[c];
503 }
504 
505 /*
506  * ==========================================================================
507  * Create the various types of I/O (read, write, free, etc)
508  * ==========================================================================
509  */
510 static zio_t *
511 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
512     void *data, uint64_t size, zio_done_func_t *done, void *private,
513     zio_type_t type, int priority, enum zio_flag flags,
514     vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
515     enum zio_stage stage, enum zio_stage pipeline)
516 {
517 	zio_t *zio;
518 
519 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
520 	ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
521 	ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
522 
523 	ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
524 	ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
525 	ASSERT(vd || stage == ZIO_STAGE_OPEN);
526 
527 	zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
528 	bzero(zio, sizeof (zio_t));
529 
530 	mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
531 	cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
532 
533 	list_create(&zio->io_parent_list, sizeof (zio_link_t),
534 	    offsetof(zio_link_t, zl_parent_node));
535 	list_create(&zio->io_child_list, sizeof (zio_link_t),
536 	    offsetof(zio_link_t, zl_child_node));
537 
538 	if (vd != NULL)
539 		zio->io_child_type = ZIO_CHILD_VDEV;
540 	else if (flags & ZIO_FLAG_GANG_CHILD)
541 		zio->io_child_type = ZIO_CHILD_GANG;
542 	else if (flags & ZIO_FLAG_DDT_CHILD)
543 		zio->io_child_type = ZIO_CHILD_DDT;
544 	else
545 		zio->io_child_type = ZIO_CHILD_LOGICAL;
546 
547 	if (bp != NULL) {
548 		zio->io_bp = (blkptr_t *)bp;
549 		zio->io_bp_copy = *bp;
550 		zio->io_bp_orig = *bp;
551 		if (type != ZIO_TYPE_WRITE ||
552 		    zio->io_child_type == ZIO_CHILD_DDT)
553 			zio->io_bp = &zio->io_bp_copy;	/* so caller can free */
554 		if (zio->io_child_type == ZIO_CHILD_LOGICAL)
555 			zio->io_logical = zio;
556 		if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
557 			pipeline |= ZIO_GANG_STAGES;
558 	}
559 
560 	zio->io_spa = spa;
561 	zio->io_txg = txg;
562 	zio->io_done = done;
563 	zio->io_private = private;
564 	zio->io_type = type;
565 	zio->io_priority = priority;
566 	zio->io_vd = vd;
567 	zio->io_offset = offset;
568 	zio->io_orig_data = zio->io_data = data;
569 	zio->io_orig_size = zio->io_size = size;
570 	zio->io_orig_flags = zio->io_flags = flags;
571 	zio->io_orig_stage = zio->io_stage = stage;
572 	zio->io_orig_pipeline = zio->io_pipeline = pipeline;
573 
574 	zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
575 	zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
576 
577 	if (zb != NULL)
578 		zio->io_bookmark = *zb;
579 
580 	if (pio != NULL) {
581 		if (zio->io_logical == NULL)
582 			zio->io_logical = pio->io_logical;
583 		if (zio->io_child_type == ZIO_CHILD_GANG)
584 			zio->io_gang_leader = pio->io_gang_leader;
585 		zio_add_child(pio, zio);
586 	}
587 
588 	return (zio);
589 }
590 
591 static void
592 zio_destroy(zio_t *zio)
593 {
594 	list_destroy(&zio->io_parent_list);
595 	list_destroy(&zio->io_child_list);
596 	mutex_destroy(&zio->io_lock);
597 	cv_destroy(&zio->io_cv);
598 	kmem_cache_free(zio_cache, zio);
599 }
600 
601 zio_t *
602 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
603     void *private, enum zio_flag flags)
604 {
605 	zio_t *zio;
606 
607 	zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
608 	    ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
609 	    ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
610 
611 	return (zio);
612 }
613 
614 zio_t *
615 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
616 {
617 	return (zio_null(NULL, spa, NULL, done, private, flags));
618 }
619 
620 zio_t *
621 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
622     void *data, uint64_t size, zio_done_func_t *done, void *private,
623     int priority, enum zio_flag flags, const zbookmark_t *zb)
624 {
625 	zio_t *zio;
626 
627 	zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
628 	    data, size, done, private,
629 	    ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
630 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
631 	    ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
632 
633 	return (zio);
634 }
635 
636 zio_t *
637 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
638     void *data, uint64_t size, const zio_prop_t *zp,
639     zio_done_func_t *ready, zio_done_func_t *done, void *private,
640     int priority, enum zio_flag flags, const zbookmark_t *zb)
641 {
642 	zio_t *zio;
643 
644 	ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
645 	    zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
646 	    zp->zp_compress >= ZIO_COMPRESS_OFF &&
647 	    zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
648 	    DMU_OT_IS_VALID(zp->zp_type) &&
649 	    zp->zp_level < 32 &&
650 	    zp->zp_copies > 0 &&
651 	    zp->zp_copies <= spa_max_replication(spa));
652 
653 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
654 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
655 	    ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
656 	    ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
657 
658 	zio->io_ready = ready;
659 	zio->io_prop = *zp;
660 
661 	return (zio);
662 }
663 
664 zio_t *
665 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
666     uint64_t size, zio_done_func_t *done, void *private, int priority,
667     enum zio_flag flags, zbookmark_t *zb)
668 {
669 	zio_t *zio;
670 
671 	zio = zio_create(pio, spa, txg, bp, data, size, done, private,
672 	    ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
673 	    ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
674 
675 	return (zio);
676 }
677 
678 void
679 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
680 {
681 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
682 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
683 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
684 	ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
685 
686 	/*
687 	 * We must reset the io_prop to match the values that existed
688 	 * when the bp was first written by dmu_sync() keeping in mind
689 	 * that nopwrite and dedup are mutually exclusive.
690 	 */
691 	zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
692 	zio->io_prop.zp_nopwrite = nopwrite;
693 	zio->io_prop.zp_copies = copies;
694 	zio->io_bp_override = bp;
695 }
696 
697 void
698 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
699 {
700 	metaslab_check_free(spa, bp);
701 	bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
702 }
703 
704 zio_t *
705 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
706     enum zio_flag flags)
707 {
708 	zio_t *zio;
709 
710 	dprintf_bp(bp, "freeing in txg %llu, pass %u",
711 	    (longlong_t)txg, spa->spa_sync_pass);
712 
713 	ASSERT(!BP_IS_HOLE(bp));
714 	ASSERT(spa_syncing_txg(spa) == txg);
715 	ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
716 
717 	metaslab_check_free(spa, bp);
718 	arc_freed(spa, bp);
719 
720 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
721 	    NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
722 	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
723 
724 	return (zio);
725 }
726 
727 zio_t *
728 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
729     zio_done_func_t *done, void *private, enum zio_flag flags)
730 {
731 	zio_t *zio;
732 
733 	/*
734 	 * A claim is an allocation of a specific block.  Claims are needed
735 	 * to support immediate writes in the intent log.  The issue is that
736 	 * immediate writes contain committed data, but in a txg that was
737 	 * *not* committed.  Upon opening the pool after an unclean shutdown,
738 	 * the intent log claims all blocks that contain immediate write data
739 	 * so that the SPA knows they're in use.
740 	 *
741 	 * All claims *must* be resolved in the first txg -- before the SPA
742 	 * starts allocating blocks -- so that nothing is allocated twice.
743 	 * If txg == 0 we just verify that the block is claimable.
744 	 */
745 	ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
746 	ASSERT(txg == spa_first_txg(spa) || txg == 0);
747 	ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa));	/* zdb(1M) */
748 
749 	zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
750 	    done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
751 	    NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
752 
753 	return (zio);
754 }
755 
756 zio_t *
757 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
758     zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
759 {
760 	zio_t *zio;
761 	int c;
762 
763 	if (vd->vdev_children == 0) {
764 		zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
765 		    ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
766 		    ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
767 
768 		zio->io_cmd = cmd;
769 	} else {
770 		zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
771 
772 		for (c = 0; c < vd->vdev_children; c++)
773 			zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
774 			    done, private, priority, flags));
775 	}
776 
777 	return (zio);
778 }
779 
780 zio_t *
781 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
782     void *data, int checksum, zio_done_func_t *done, void *private,
783     int priority, enum zio_flag flags, boolean_t labels)
784 {
785 	zio_t *zio;
786 
787 	ASSERT(vd->vdev_children == 0);
788 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
789 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
790 	ASSERT3U(offset + size, <=, vd->vdev_psize);
791 
792 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
793 	    ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
794 	    ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
795 
796 	zio->io_prop.zp_checksum = checksum;
797 
798 	return (zio);
799 }
800 
801 zio_t *
802 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
803     void *data, int checksum, zio_done_func_t *done, void *private,
804     int priority, enum zio_flag flags, boolean_t labels)
805 {
806 	zio_t *zio;
807 
808 	ASSERT(vd->vdev_children == 0);
809 	ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
810 	    offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
811 	ASSERT3U(offset + size, <=, vd->vdev_psize);
812 
813 	zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
814 	    ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
815 	    ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
816 
817 	zio->io_prop.zp_checksum = checksum;
818 
819 	if (zio_checksum_table[checksum].ci_eck) {
820 		/*
821 		 * zec checksums are necessarily destructive -- they modify
822 		 * the end of the write buffer to hold the verifier/checksum.
823 		 * Therefore, we must make a local copy in case the data is
824 		 * being written to multiple places in parallel.
825 		 */
826 		void *wbuf = zio_buf_alloc(size);
827 		bcopy(data, wbuf, size);
828 		zio_push_transform(zio, wbuf, size, size, NULL);
829 	}
830 
831 	return (zio);
832 }
833 
834 /*
835  * Create a child I/O to do some work for us.
836  */
837 zio_t *
838 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
839 	void *data, uint64_t size, int type, int priority, enum zio_flag flags,
840 	zio_done_func_t *done, void *private)
841 {
842 	enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
843 	zio_t *zio;
844 
845 	ASSERT(vd->vdev_parent ==
846 	    (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
847 
848 	if (type == ZIO_TYPE_READ && bp != NULL) {
849 		/*
850 		 * If we have the bp, then the child should perform the
851 		 * checksum and the parent need not.  This pushes error
852 		 * detection as close to the leaves as possible and
853 		 * eliminates redundant checksums in the interior nodes.
854 		 */
855 		pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
856 		pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
857 	}
858 
859 	if (vd->vdev_children == 0)
860 		offset += VDEV_LABEL_START_SIZE;
861 
862 	flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
863 
864 	/*
865 	 * If we've decided to do a repair, the write is not speculative --
866 	 * even if the original read was.
867 	 */
868 	if (flags & ZIO_FLAG_IO_REPAIR)
869 		flags &= ~ZIO_FLAG_SPECULATIVE;
870 
871 	zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
872 	    done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
873 	    ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
874 
875 	return (zio);
876 }
877 
878 zio_t *
879 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
880 	int type, int priority, enum zio_flag flags,
881 	zio_done_func_t *done, void *private)
882 {
883 	zio_t *zio;
884 
885 	ASSERT(vd->vdev_ops->vdev_op_leaf);
886 
887 	zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
888 	    data, size, done, private, type, priority,
889 	    flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
890 	    vd, offset, NULL,
891 	    ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
892 
893 	return (zio);
894 }
895 
896 void
897 zio_flush(zio_t *zio, vdev_t *vd)
898 {
899 	zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
900 	    NULL, NULL, ZIO_PRIORITY_NOW,
901 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
902 }
903 
904 void
905 zio_shrink(zio_t *zio, uint64_t size)
906 {
907 	ASSERT(zio->io_executor == NULL);
908 	ASSERT(zio->io_orig_size == zio->io_size);
909 	ASSERT(size <= zio->io_size);
910 
911 	/*
912 	 * We don't shrink for raidz because of problems with the
913 	 * reconstruction when reading back less than the block size.
914 	 * Note, BP_IS_RAIDZ() assumes no compression.
915 	 */
916 	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
917 	if (!BP_IS_RAIDZ(zio->io_bp))
918 		zio->io_orig_size = zio->io_size = size;
919 }
920 
921 /*
922  * ==========================================================================
923  * Prepare to read and write logical blocks
924  * ==========================================================================
925  */
926 
927 static int
928 zio_read_bp_init(zio_t *zio)
929 {
930 	blkptr_t *bp = zio->io_bp;
931 
932 	if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
933 	    zio->io_child_type == ZIO_CHILD_LOGICAL &&
934 	    !(zio->io_flags & ZIO_FLAG_RAW)) {
935 		uint64_t psize = BP_GET_PSIZE(bp);
936 		void *cbuf = zio_buf_alloc(psize);
937 
938 		zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
939 	}
940 
941 	if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
942 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
943 
944 	if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
945 		zio->io_flags |= ZIO_FLAG_DONT_CACHE;
946 
947 	if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
948 		zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
949 
950 	return (ZIO_PIPELINE_CONTINUE);
951 }
952 
953 static int
954 zio_write_bp_init(zio_t *zio)
955 {
956 	spa_t *spa = zio->io_spa;
957 	zio_prop_t *zp = &zio->io_prop;
958 	enum zio_compress compress = zp->zp_compress;
959 	blkptr_t *bp = zio->io_bp;
960 	uint64_t lsize = zio->io_size;
961 	uint64_t psize = lsize;
962 	int pass = 1;
963 
964 	/*
965 	 * If our children haven't all reached the ready stage,
966 	 * wait for them and then repeat this pipeline stage.
967 	 */
968 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
969 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
970 		return (ZIO_PIPELINE_STOP);
971 
972 	if (!IO_IS_ALLOCATING(zio))
973 		return (ZIO_PIPELINE_CONTINUE);
974 
975 	ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
976 
977 	if (zio->io_bp_override) {
978 		ASSERT(bp->blk_birth != zio->io_txg);
979 		ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
980 
981 		*bp = *zio->io_bp_override;
982 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
983 
984 		/*
985 		 * If we've been overridden and nopwrite is set then
986 		 * set the flag accordingly to indicate that a nopwrite
987 		 * has already occurred.
988 		 */
989 		if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
990 			ASSERT(!zp->zp_dedup);
991 			zio->io_flags |= ZIO_FLAG_NOPWRITE;
992 			return (ZIO_PIPELINE_CONTINUE);
993 		}
994 
995 		ASSERT(!zp->zp_nopwrite);
996 
997 		if (BP_IS_HOLE(bp) || !zp->zp_dedup)
998 			return (ZIO_PIPELINE_CONTINUE);
999 
1000 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1001 		    zp->zp_dedup_verify);
1002 
1003 		if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1004 			BP_SET_DEDUP(bp, 1);
1005 			zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1006 			return (ZIO_PIPELINE_CONTINUE);
1007 		}
1008 		zio->io_bp_override = NULL;
1009 		BP_ZERO(bp);
1010 	}
1011 
1012 	if (bp->blk_birth == zio->io_txg) {
1013 		/*
1014 		 * We're rewriting an existing block, which means we're
1015 		 * working on behalf of spa_sync().  For spa_sync() to
1016 		 * converge, it must eventually be the case that we don't
1017 		 * have to allocate new blocks.  But compression changes
1018 		 * the blocksize, which forces a reallocate, and makes
1019 		 * convergence take longer.  Therefore, after the first
1020 		 * few passes, stop compressing to ensure convergence.
1021 		 */
1022 		pass = spa_sync_pass(spa);
1023 
1024 		ASSERT(zio->io_txg == spa_syncing_txg(spa));
1025 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1026 		ASSERT(!BP_GET_DEDUP(bp));
1027 
1028 		if (pass >= zfs_sync_pass_dont_compress)
1029 			compress = ZIO_COMPRESS_OFF;
1030 
1031 		/* Make sure someone doesn't change their mind on overwrites */
1032 		ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1033 		    spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1034 	}
1035 
1036 	if (compress != ZIO_COMPRESS_OFF) {
1037 		void *cbuf = zio_buf_alloc(lsize);
1038 		psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1039 		if (psize == 0 || psize == lsize) {
1040 			compress = ZIO_COMPRESS_OFF;
1041 			zio_buf_free(cbuf, lsize);
1042 		} else {
1043 			ASSERT(psize < lsize);
1044 			zio_push_transform(zio, cbuf, psize, lsize, NULL);
1045 		}
1046 	}
1047 
1048 	/*
1049 	 * The final pass of spa_sync() must be all rewrites, but the first
1050 	 * few passes offer a trade-off: allocating blocks defers convergence,
1051 	 * but newly allocated blocks are sequential, so they can be written
1052 	 * to disk faster.  Therefore, we allow the first few passes of
1053 	 * spa_sync() to allocate new blocks, but force rewrites after that.
1054 	 * There should only be a handful of blocks after pass 1 in any case.
1055 	 */
1056 	if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1057 	    pass >= zfs_sync_pass_rewrite) {
1058 		ASSERT(psize != 0);
1059 		enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1060 		zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1061 		zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1062 	} else {
1063 		BP_ZERO(bp);
1064 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
1065 	}
1066 
1067 	if (psize == 0) {
1068 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1069 	} else {
1070 		ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1071 		BP_SET_LSIZE(bp, lsize);
1072 		BP_SET_PSIZE(bp, psize);
1073 		BP_SET_COMPRESS(bp, compress);
1074 		BP_SET_CHECKSUM(bp, zp->zp_checksum);
1075 		BP_SET_TYPE(bp, zp->zp_type);
1076 		BP_SET_LEVEL(bp, zp->zp_level);
1077 		BP_SET_DEDUP(bp, zp->zp_dedup);
1078 		BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1079 		if (zp->zp_dedup) {
1080 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1081 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1082 			zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1083 		}
1084 		if (zp->zp_nopwrite) {
1085 			ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1086 			ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1087 			zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1088 		}
1089 	}
1090 
1091 	return (ZIO_PIPELINE_CONTINUE);
1092 }
1093 
1094 static int
1095 zio_free_bp_init(zio_t *zio)
1096 {
1097 	blkptr_t *bp = zio->io_bp;
1098 
1099 	if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1100 		if (BP_GET_DEDUP(bp))
1101 			zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1102 	}
1103 
1104 	return (ZIO_PIPELINE_CONTINUE);
1105 }
1106 
1107 /*
1108  * ==========================================================================
1109  * Execute the I/O pipeline
1110  * ==========================================================================
1111  */
1112 
1113 static void
1114 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1115 {
1116 	spa_t *spa = zio->io_spa;
1117 	zio_type_t t = zio->io_type;
1118 	int flags = (cutinline ? TQ_FRONT : 0);
1119 
1120 	/*
1121 	 * If we're a config writer or a probe, the normal issue and
1122 	 * interrupt threads may all be blocked waiting for the config lock.
1123 	 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1124 	 */
1125 	if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1126 		t = ZIO_TYPE_NULL;
1127 
1128 	/*
1129 	 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1130 	 */
1131 	if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1132 		t = ZIO_TYPE_NULL;
1133 
1134 	/*
1135 	 * If this is a high priority I/O, then use the high priority taskq if
1136 	 * available.
1137 	 */
1138 	if (zio->io_priority == ZIO_PRIORITY_NOW &&
1139 	    spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1140 		q++;
1141 
1142 	ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1143 
1144 	/*
1145 	 * NB: We are assuming that the zio can only be dispatched
1146 	 * to a single taskq at a time.  It would be a grievous error
1147 	 * to dispatch the zio to another taskq at the same time.
1148 	 */
1149 	ASSERT(zio->io_tqent.tqent_next == NULL);
1150 	spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1151 	    flags, &zio->io_tqent);
1152 }
1153 
1154 static boolean_t
1155 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1156 {
1157 	kthread_t *executor = zio->io_executor;
1158 	spa_t *spa = zio->io_spa;
1159 
1160 	for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1161 		spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1162 		uint_t i;
1163 		for (i = 0; i < tqs->stqs_count; i++) {
1164 			if (taskq_member(tqs->stqs_taskq[i], executor))
1165 				return (B_TRUE);
1166 		}
1167 	}
1168 
1169 	return (B_FALSE);
1170 }
1171 
1172 static int
1173 zio_issue_async(zio_t *zio)
1174 {
1175 	zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1176 
1177 	return (ZIO_PIPELINE_STOP);
1178 }
1179 
1180 void
1181 zio_interrupt(zio_t *zio)
1182 {
1183 	zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1184 }
1185 
1186 /*
1187  * Execute the I/O pipeline until one of the following occurs:
1188  *
1189  *	(1) the I/O completes
1190  *	(2) the pipeline stalls waiting for dependent child I/Os
1191  *	(3) the I/O issues, so we're waiting for an I/O completion interrupt
1192  *	(4) the I/O is delegated by vdev-level caching or aggregation
1193  *	(5) the I/O is deferred due to vdev-level queueing
1194  *	(6) the I/O is handed off to another thread.
1195  *
1196  * In all cases, the pipeline stops whenever there's no CPU work; it never
1197  * burns a thread in cv_wait().
1198  *
1199  * There's no locking on io_stage because there's no legitimate way
1200  * for multiple threads to be attempting to process the same I/O.
1201  */
1202 static zio_pipe_stage_t *zio_pipeline[];
1203 
1204 void
1205 zio_execute(zio_t *zio)
1206 {
1207 	zio->io_executor = curthread;
1208 
1209 	while (zio->io_stage < ZIO_STAGE_DONE) {
1210 		enum zio_stage pipeline = zio->io_pipeline;
1211 		enum zio_stage stage = zio->io_stage;
1212 		int rv;
1213 
1214 		ASSERT(!MUTEX_HELD(&zio->io_lock));
1215 		ASSERT(ISP2(stage));
1216 		ASSERT(zio->io_stall == NULL);
1217 
1218 		do {
1219 			stage <<= 1;
1220 		} while ((stage & pipeline) == 0);
1221 
1222 		ASSERT(stage <= ZIO_STAGE_DONE);
1223 
1224 		/*
1225 		 * If we are in interrupt context and this pipeline stage
1226 		 * will grab a config lock that is held across I/O,
1227 		 * or may wait for an I/O that needs an interrupt thread
1228 		 * to complete, issue async to avoid deadlock.
1229 		 *
1230 		 * For VDEV_IO_START, we cut in line so that the io will
1231 		 * be sent to disk promptly.
1232 		 */
1233 		if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1234 		    zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1235 			boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1236 			    zio_requeue_io_start_cut_in_line : B_FALSE;
1237 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1238 			return;
1239 		}
1240 
1241 		zio->io_stage = stage;
1242 		rv = zio_pipeline[highbit(stage) - 1](zio);
1243 
1244 		if (rv == ZIO_PIPELINE_STOP)
1245 			return;
1246 
1247 		ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1248 	}
1249 }
1250 
1251 /*
1252  * ==========================================================================
1253  * Initiate I/O, either sync or async
1254  * ==========================================================================
1255  */
1256 int
1257 zio_wait(zio_t *zio)
1258 {
1259 	int error;
1260 
1261 	ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1262 	ASSERT(zio->io_executor == NULL);
1263 
1264 	zio->io_waiter = curthread;
1265 
1266 	zio_execute(zio);
1267 
1268 	mutex_enter(&zio->io_lock);
1269 	while (zio->io_executor != NULL)
1270 		cv_wait(&zio->io_cv, &zio->io_lock);
1271 	mutex_exit(&zio->io_lock);
1272 
1273 	error = zio->io_error;
1274 	zio_destroy(zio);
1275 
1276 	return (error);
1277 }
1278 
1279 void
1280 zio_nowait(zio_t *zio)
1281 {
1282 	ASSERT(zio->io_executor == NULL);
1283 
1284 	if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1285 	    zio_unique_parent(zio) == NULL) {
1286 		/*
1287 		 * This is a logical async I/O with no parent to wait for it.
1288 		 * We add it to the spa_async_root_zio "Godfather" I/O which
1289 		 * will ensure they complete prior to unloading the pool.
1290 		 */
1291 		spa_t *spa = zio->io_spa;
1292 
1293 		zio_add_child(spa->spa_async_zio_root, zio);
1294 	}
1295 
1296 	zio_execute(zio);
1297 }
1298 
1299 /*
1300  * ==========================================================================
1301  * Reexecute or suspend/resume failed I/O
1302  * ==========================================================================
1303  */
1304 
1305 static void
1306 zio_reexecute(zio_t *pio)
1307 {
1308 	zio_t *cio, *cio_next;
1309 
1310 	ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1311 	ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1312 	ASSERT(pio->io_gang_leader == NULL);
1313 	ASSERT(pio->io_gang_tree == NULL);
1314 
1315 	pio->io_flags = pio->io_orig_flags;
1316 	pio->io_stage = pio->io_orig_stage;
1317 	pio->io_pipeline = pio->io_orig_pipeline;
1318 	pio->io_reexecute = 0;
1319 	pio->io_flags |= ZIO_FLAG_REEXECUTED;
1320 	pio->io_error = 0;
1321 	for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1322 		pio->io_state[w] = 0;
1323 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1324 		pio->io_child_error[c] = 0;
1325 
1326 	if (IO_IS_ALLOCATING(pio))
1327 		BP_ZERO(pio->io_bp);
1328 
1329 	/*
1330 	 * As we reexecute pio's children, new children could be created.
1331 	 * New children go to the head of pio's io_child_list, however,
1332 	 * so we will (correctly) not reexecute them.  The key is that
1333 	 * the remainder of pio's io_child_list, from 'cio_next' onward,
1334 	 * cannot be affected by any side effects of reexecuting 'cio'.
1335 	 */
1336 	for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1337 		cio_next = zio_walk_children(pio);
1338 		mutex_enter(&pio->io_lock);
1339 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1340 			pio->io_children[cio->io_child_type][w]++;
1341 		mutex_exit(&pio->io_lock);
1342 		zio_reexecute(cio);
1343 	}
1344 
1345 	/*
1346 	 * Now that all children have been reexecuted, execute the parent.
1347 	 * We don't reexecute "The Godfather" I/O here as it's the
1348 	 * responsibility of the caller to wait on him.
1349 	 */
1350 	if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1351 		zio_execute(pio);
1352 }
1353 
1354 void
1355 zio_suspend(spa_t *spa, zio_t *zio)
1356 {
1357 	if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1358 		fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1359 		    "failure and the failure mode property for this pool "
1360 		    "is set to panic.", spa_name(spa));
1361 
1362 	zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1363 
1364 	mutex_enter(&spa->spa_suspend_lock);
1365 
1366 	if (spa->spa_suspend_zio_root == NULL)
1367 		spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1368 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1369 		    ZIO_FLAG_GODFATHER);
1370 
1371 	spa->spa_suspended = B_TRUE;
1372 
1373 	if (zio != NULL) {
1374 		ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1375 		ASSERT(zio != spa->spa_suspend_zio_root);
1376 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1377 		ASSERT(zio_unique_parent(zio) == NULL);
1378 		ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1379 		zio_add_child(spa->spa_suspend_zio_root, zio);
1380 	}
1381 
1382 	mutex_exit(&spa->spa_suspend_lock);
1383 }
1384 
1385 int
1386 zio_resume(spa_t *spa)
1387 {
1388 	zio_t *pio;
1389 
1390 	/*
1391 	 * Reexecute all previously suspended i/o.
1392 	 */
1393 	mutex_enter(&spa->spa_suspend_lock);
1394 	spa->spa_suspended = B_FALSE;
1395 	cv_broadcast(&spa->spa_suspend_cv);
1396 	pio = spa->spa_suspend_zio_root;
1397 	spa->spa_suspend_zio_root = NULL;
1398 	mutex_exit(&spa->spa_suspend_lock);
1399 
1400 	if (pio == NULL)
1401 		return (0);
1402 
1403 	zio_reexecute(pio);
1404 	return (zio_wait(pio));
1405 }
1406 
1407 void
1408 zio_resume_wait(spa_t *spa)
1409 {
1410 	mutex_enter(&spa->spa_suspend_lock);
1411 	while (spa_suspended(spa))
1412 		cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1413 	mutex_exit(&spa->spa_suspend_lock);
1414 }
1415 
1416 /*
1417  * ==========================================================================
1418  * Gang blocks.
1419  *
1420  * A gang block is a collection of small blocks that looks to the DMU
1421  * like one large block.  When zio_dva_allocate() cannot find a block
1422  * of the requested size, due to either severe fragmentation or the pool
1423  * being nearly full, it calls zio_write_gang_block() to construct the
1424  * block from smaller fragments.
1425  *
1426  * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1427  * three (SPA_GBH_NBLKPTRS) gang members.  The gang header is just like
1428  * an indirect block: it's an array of block pointers.  It consumes
1429  * only one sector and hence is allocatable regardless of fragmentation.
1430  * The gang header's bps point to its gang members, which hold the data.
1431  *
1432  * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1433  * as the verifier to ensure uniqueness of the SHA256 checksum.
1434  * Critically, the gang block bp's blk_cksum is the checksum of the data,
1435  * not the gang header.  This ensures that data block signatures (needed for
1436  * deduplication) are independent of how the block is physically stored.
1437  *
1438  * Gang blocks can be nested: a gang member may itself be a gang block.
1439  * Thus every gang block is a tree in which root and all interior nodes are
1440  * gang headers, and the leaves are normal blocks that contain user data.
1441  * The root of the gang tree is called the gang leader.
1442  *
1443  * To perform any operation (read, rewrite, free, claim) on a gang block,
1444  * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1445  * in the io_gang_tree field of the original logical i/o by recursively
1446  * reading the gang leader and all gang headers below it.  This yields
1447  * an in-core tree containing the contents of every gang header and the
1448  * bps for every constituent of the gang block.
1449  *
1450  * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1451  * and invokes a callback on each bp.  To free a gang block, zio_gang_issue()
1452  * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1453  * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1454  * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1455  * headers, since we already have those in io_gang_tree.  zio_rewrite_gang()
1456  * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1457  * of the gang header plus zio_checksum_compute() of the data to update the
1458  * gang header's blk_cksum as described above.
1459  *
1460  * The two-phase assemble/issue model solves the problem of partial failure --
1461  * what if you'd freed part of a gang block but then couldn't read the
1462  * gang header for another part?  Assembling the entire gang tree first
1463  * ensures that all the necessary gang header I/O has succeeded before
1464  * starting the actual work of free, claim, or write.  Once the gang tree
1465  * is assembled, free and claim are in-memory operations that cannot fail.
1466  *
1467  * In the event that a gang write fails, zio_dva_unallocate() walks the
1468  * gang tree to immediately free (i.e. insert back into the space map)
1469  * everything we've allocated.  This ensures that we don't get ENOSPC
1470  * errors during repeated suspend/resume cycles due to a flaky device.
1471  *
1472  * Gang rewrites only happen during sync-to-convergence.  If we can't assemble
1473  * the gang tree, we won't modify the block, so we can safely defer the free
1474  * (knowing that the block is still intact).  If we *can* assemble the gang
1475  * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1476  * each constituent bp and we can allocate a new block on the next sync pass.
1477  *
1478  * In all cases, the gang tree allows complete recovery from partial failure.
1479  * ==========================================================================
1480  */
1481 
1482 static zio_t *
1483 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1484 {
1485 	if (gn != NULL)
1486 		return (pio);
1487 
1488 	return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1489 	    NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1490 	    &pio->io_bookmark));
1491 }
1492 
1493 zio_t *
1494 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1495 {
1496 	zio_t *zio;
1497 
1498 	if (gn != NULL) {
1499 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1500 		    gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1501 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1502 		/*
1503 		 * As we rewrite each gang header, the pipeline will compute
1504 		 * a new gang block header checksum for it; but no one will
1505 		 * compute a new data checksum, so we do that here.  The one
1506 		 * exception is the gang leader: the pipeline already computed
1507 		 * its data checksum because that stage precedes gang assembly.
1508 		 * (Presently, nothing actually uses interior data checksums;
1509 		 * this is just good hygiene.)
1510 		 */
1511 		if (gn != pio->io_gang_leader->io_gang_tree) {
1512 			zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1513 			    data, BP_GET_PSIZE(bp));
1514 		}
1515 		/*
1516 		 * If we are here to damage data for testing purposes,
1517 		 * leave the GBH alone so that we can detect the damage.
1518 		 */
1519 		if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1520 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1521 	} else {
1522 		zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1523 		    data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1524 		    ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1525 	}
1526 
1527 	return (zio);
1528 }
1529 
1530 /* ARGSUSED */
1531 zio_t *
1532 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1533 {
1534 	return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1535 	    ZIO_GANG_CHILD_FLAGS(pio)));
1536 }
1537 
1538 /* ARGSUSED */
1539 zio_t *
1540 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1541 {
1542 	return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1543 	    NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1544 }
1545 
1546 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1547 	NULL,
1548 	zio_read_gang,
1549 	zio_rewrite_gang,
1550 	zio_free_gang,
1551 	zio_claim_gang,
1552 	NULL
1553 };
1554 
1555 static void zio_gang_tree_assemble_done(zio_t *zio);
1556 
1557 static zio_gang_node_t *
1558 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1559 {
1560 	zio_gang_node_t *gn;
1561 
1562 	ASSERT(*gnpp == NULL);
1563 
1564 	gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1565 	gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1566 	*gnpp = gn;
1567 
1568 	return (gn);
1569 }
1570 
1571 static void
1572 zio_gang_node_free(zio_gang_node_t **gnpp)
1573 {
1574 	zio_gang_node_t *gn = *gnpp;
1575 
1576 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1577 		ASSERT(gn->gn_child[g] == NULL);
1578 
1579 	zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1580 	kmem_free(gn, sizeof (*gn));
1581 	*gnpp = NULL;
1582 }
1583 
1584 static void
1585 zio_gang_tree_free(zio_gang_node_t **gnpp)
1586 {
1587 	zio_gang_node_t *gn = *gnpp;
1588 
1589 	if (gn == NULL)
1590 		return;
1591 
1592 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
1593 		zio_gang_tree_free(&gn->gn_child[g]);
1594 
1595 	zio_gang_node_free(gnpp);
1596 }
1597 
1598 static void
1599 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1600 {
1601 	zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1602 
1603 	ASSERT(gio->io_gang_leader == gio);
1604 	ASSERT(BP_IS_GANG(bp));
1605 
1606 	zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1607 	    SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1608 	    gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1609 }
1610 
1611 static void
1612 zio_gang_tree_assemble_done(zio_t *zio)
1613 {
1614 	zio_t *gio = zio->io_gang_leader;
1615 	zio_gang_node_t *gn = zio->io_private;
1616 	blkptr_t *bp = zio->io_bp;
1617 
1618 	ASSERT(gio == zio_unique_parent(zio));
1619 	ASSERT(zio->io_child_count == 0);
1620 
1621 	if (zio->io_error)
1622 		return;
1623 
1624 	if (BP_SHOULD_BYTESWAP(bp))
1625 		byteswap_uint64_array(zio->io_data, zio->io_size);
1626 
1627 	ASSERT(zio->io_data == gn->gn_gbh);
1628 	ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1629 	ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1630 
1631 	for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1632 		blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1633 		if (!BP_IS_GANG(gbp))
1634 			continue;
1635 		zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1636 	}
1637 }
1638 
1639 static void
1640 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1641 {
1642 	zio_t *gio = pio->io_gang_leader;
1643 	zio_t *zio;
1644 
1645 	ASSERT(BP_IS_GANG(bp) == !!gn);
1646 	ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1647 	ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1648 
1649 	/*
1650 	 * If you're a gang header, your data is in gn->gn_gbh.
1651 	 * If you're a gang member, your data is in 'data' and gn == NULL.
1652 	 */
1653 	zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1654 
1655 	if (gn != NULL) {
1656 		ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1657 
1658 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1659 			blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1660 			if (BP_IS_HOLE(gbp))
1661 				continue;
1662 			zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1663 			data = (char *)data + BP_GET_PSIZE(gbp);
1664 		}
1665 	}
1666 
1667 	if (gn == gio->io_gang_tree)
1668 		ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1669 
1670 	if (zio != pio)
1671 		zio_nowait(zio);
1672 }
1673 
1674 static int
1675 zio_gang_assemble(zio_t *zio)
1676 {
1677 	blkptr_t *bp = zio->io_bp;
1678 
1679 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1680 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1681 
1682 	zio->io_gang_leader = zio;
1683 
1684 	zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1685 
1686 	return (ZIO_PIPELINE_CONTINUE);
1687 }
1688 
1689 static int
1690 zio_gang_issue(zio_t *zio)
1691 {
1692 	blkptr_t *bp = zio->io_bp;
1693 
1694 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1695 		return (ZIO_PIPELINE_STOP);
1696 
1697 	ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1698 	ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1699 
1700 	if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1701 		zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1702 	else
1703 		zio_gang_tree_free(&zio->io_gang_tree);
1704 
1705 	zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1706 
1707 	return (ZIO_PIPELINE_CONTINUE);
1708 }
1709 
1710 static void
1711 zio_write_gang_member_ready(zio_t *zio)
1712 {
1713 	zio_t *pio = zio_unique_parent(zio);
1714 	zio_t *gio = zio->io_gang_leader;
1715 	dva_t *cdva = zio->io_bp->blk_dva;
1716 	dva_t *pdva = pio->io_bp->blk_dva;
1717 	uint64_t asize;
1718 
1719 	if (BP_IS_HOLE(zio->io_bp))
1720 		return;
1721 
1722 	ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1723 
1724 	ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1725 	ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1726 	ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1727 	ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1728 	ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1729 
1730 	mutex_enter(&pio->io_lock);
1731 	for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1732 		ASSERT(DVA_GET_GANG(&pdva[d]));
1733 		asize = DVA_GET_ASIZE(&pdva[d]);
1734 		asize += DVA_GET_ASIZE(&cdva[d]);
1735 		DVA_SET_ASIZE(&pdva[d], asize);
1736 	}
1737 	mutex_exit(&pio->io_lock);
1738 }
1739 
1740 static int
1741 zio_write_gang_block(zio_t *pio)
1742 {
1743 	spa_t *spa = pio->io_spa;
1744 	blkptr_t *bp = pio->io_bp;
1745 	zio_t *gio = pio->io_gang_leader;
1746 	zio_t *zio;
1747 	zio_gang_node_t *gn, **gnpp;
1748 	zio_gbh_phys_t *gbh;
1749 	uint64_t txg = pio->io_txg;
1750 	uint64_t resid = pio->io_size;
1751 	uint64_t lsize;
1752 	int copies = gio->io_prop.zp_copies;
1753 	int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1754 	zio_prop_t zp;
1755 	int error;
1756 
1757 	error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1758 	    bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1759 	    METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1760 	if (error) {
1761 		pio->io_error = error;
1762 		return (ZIO_PIPELINE_CONTINUE);
1763 	}
1764 
1765 	if (pio == gio) {
1766 		gnpp = &gio->io_gang_tree;
1767 	} else {
1768 		gnpp = pio->io_private;
1769 		ASSERT(pio->io_ready == zio_write_gang_member_ready);
1770 	}
1771 
1772 	gn = zio_gang_node_alloc(gnpp);
1773 	gbh = gn->gn_gbh;
1774 	bzero(gbh, SPA_GANGBLOCKSIZE);
1775 
1776 	/*
1777 	 * Create the gang header.
1778 	 */
1779 	zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1780 	    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1781 
1782 	/*
1783 	 * Create and nowait the gang children.
1784 	 */
1785 	for (int g = 0; resid != 0; resid -= lsize, g++) {
1786 		lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1787 		    SPA_MINBLOCKSIZE);
1788 		ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1789 
1790 		zp.zp_checksum = gio->io_prop.zp_checksum;
1791 		zp.zp_compress = ZIO_COMPRESS_OFF;
1792 		zp.zp_type = DMU_OT_NONE;
1793 		zp.zp_level = 0;
1794 		zp.zp_copies = gio->io_prop.zp_copies;
1795 		zp.zp_dedup = B_FALSE;
1796 		zp.zp_dedup_verify = B_FALSE;
1797 		zp.zp_nopwrite = B_FALSE;
1798 
1799 		zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1800 		    (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1801 		    zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1802 		    pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1803 		    &pio->io_bookmark));
1804 	}
1805 
1806 	/*
1807 	 * Set pio's pipeline to just wait for zio to finish.
1808 	 */
1809 	pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1810 
1811 	zio_nowait(zio);
1812 
1813 	return (ZIO_PIPELINE_CONTINUE);
1814 }
1815 
1816 /*
1817  * The zio_nop_write stage in the pipeline determines if allocating
1818  * a new bp is necessary.  By leveraging a cryptographically secure checksum,
1819  * such as SHA256, we can compare the checksums of the new data and the old
1820  * to determine if allocating a new block is required.  The nopwrite
1821  * feature can handle writes in either syncing or open context (i.e. zil
1822  * writes) and as a result is mutually exclusive with dedup.
1823  */
1824 static int
1825 zio_nop_write(zio_t *zio)
1826 {
1827 	blkptr_t *bp = zio->io_bp;
1828 	blkptr_t *bp_orig = &zio->io_bp_orig;
1829 	zio_prop_t *zp = &zio->io_prop;
1830 
1831 	ASSERT(BP_GET_LEVEL(bp) == 0);
1832 	ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1833 	ASSERT(zp->zp_nopwrite);
1834 	ASSERT(!zp->zp_dedup);
1835 	ASSERT(zio->io_bp_override == NULL);
1836 	ASSERT(IO_IS_ALLOCATING(zio));
1837 
1838 	/*
1839 	 * Check to see if the original bp and the new bp have matching
1840 	 * characteristics (i.e. same checksum, compression algorithms, etc).
1841 	 * If they don't then just continue with the pipeline which will
1842 	 * allocate a new bp.
1843 	 */
1844 	if (BP_IS_HOLE(bp_orig) ||
1845 	    !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1846 	    BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1847 	    BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1848 	    BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1849 	    zp->zp_copies != BP_GET_NDVAS(bp_orig))
1850 		return (ZIO_PIPELINE_CONTINUE);
1851 
1852 	/*
1853 	 * If the checksums match then reset the pipeline so that we
1854 	 * avoid allocating a new bp and issuing any I/O.
1855 	 */
1856 	if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
1857 		ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
1858 		ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
1859 		ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
1860 		ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
1861 		ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
1862 		    sizeof (uint64_t)) == 0);
1863 
1864 		*bp = *bp_orig;
1865 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1866 		zio->io_flags |= ZIO_FLAG_NOPWRITE;
1867 	}
1868 
1869 	return (ZIO_PIPELINE_CONTINUE);
1870 }
1871 
1872 /*
1873  * ==========================================================================
1874  * Dedup
1875  * ==========================================================================
1876  */
1877 static void
1878 zio_ddt_child_read_done(zio_t *zio)
1879 {
1880 	blkptr_t *bp = zio->io_bp;
1881 	ddt_entry_t *dde = zio->io_private;
1882 	ddt_phys_t *ddp;
1883 	zio_t *pio = zio_unique_parent(zio);
1884 
1885 	mutex_enter(&pio->io_lock);
1886 	ddp = ddt_phys_select(dde, bp);
1887 	if (zio->io_error == 0)
1888 		ddt_phys_clear(ddp);	/* this ddp doesn't need repair */
1889 	if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1890 		dde->dde_repair_data = zio->io_data;
1891 	else
1892 		zio_buf_free(zio->io_data, zio->io_size);
1893 	mutex_exit(&pio->io_lock);
1894 }
1895 
1896 static int
1897 zio_ddt_read_start(zio_t *zio)
1898 {
1899 	blkptr_t *bp = zio->io_bp;
1900 
1901 	ASSERT(BP_GET_DEDUP(bp));
1902 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1903 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1904 
1905 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1906 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1907 		ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1908 		ddt_phys_t *ddp = dde->dde_phys;
1909 		ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1910 		blkptr_t blk;
1911 
1912 		ASSERT(zio->io_vsd == NULL);
1913 		zio->io_vsd = dde;
1914 
1915 		if (ddp_self == NULL)
1916 			return (ZIO_PIPELINE_CONTINUE);
1917 
1918 		for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1919 			if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1920 				continue;
1921 			ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1922 			    &blk);
1923 			zio_nowait(zio_read(zio, zio->io_spa, &blk,
1924 			    zio_buf_alloc(zio->io_size), zio->io_size,
1925 			    zio_ddt_child_read_done, dde, zio->io_priority,
1926 			    ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1927 			    &zio->io_bookmark));
1928 		}
1929 		return (ZIO_PIPELINE_CONTINUE);
1930 	}
1931 
1932 	zio_nowait(zio_read(zio, zio->io_spa, bp,
1933 	    zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1934 	    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
1935 
1936 	return (ZIO_PIPELINE_CONTINUE);
1937 }
1938 
1939 static int
1940 zio_ddt_read_done(zio_t *zio)
1941 {
1942 	blkptr_t *bp = zio->io_bp;
1943 
1944 	if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
1945 		return (ZIO_PIPELINE_STOP);
1946 
1947 	ASSERT(BP_GET_DEDUP(bp));
1948 	ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1949 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1950 
1951 	if (zio->io_child_error[ZIO_CHILD_DDT]) {
1952 		ddt_t *ddt = ddt_select(zio->io_spa, bp);
1953 		ddt_entry_t *dde = zio->io_vsd;
1954 		if (ddt == NULL) {
1955 			ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
1956 			return (ZIO_PIPELINE_CONTINUE);
1957 		}
1958 		if (dde == NULL) {
1959 			zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
1960 			zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1961 			return (ZIO_PIPELINE_STOP);
1962 		}
1963 		if (dde->dde_repair_data != NULL) {
1964 			bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
1965 			zio->io_child_error[ZIO_CHILD_DDT] = 0;
1966 		}
1967 		ddt_repair_done(ddt, dde);
1968 		zio->io_vsd = NULL;
1969 	}
1970 
1971 	ASSERT(zio->io_vsd == NULL);
1972 
1973 	return (ZIO_PIPELINE_CONTINUE);
1974 }
1975 
1976 static boolean_t
1977 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
1978 {
1979 	spa_t *spa = zio->io_spa;
1980 
1981 	/*
1982 	 * Note: we compare the original data, not the transformed data,
1983 	 * because when zio->io_bp is an override bp, we will not have
1984 	 * pushed the I/O transforms.  That's an important optimization
1985 	 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
1986 	 */
1987 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1988 		zio_t *lio = dde->dde_lead_zio[p];
1989 
1990 		if (lio != NULL) {
1991 			return (lio->io_orig_size != zio->io_orig_size ||
1992 			    bcmp(zio->io_orig_data, lio->io_orig_data,
1993 			    zio->io_orig_size) != 0);
1994 		}
1995 	}
1996 
1997 	for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1998 		ddt_phys_t *ddp = &dde->dde_phys[p];
1999 
2000 		if (ddp->ddp_phys_birth != 0) {
2001 			arc_buf_t *abuf = NULL;
2002 			uint32_t aflags = ARC_WAIT;
2003 			blkptr_t blk = *zio->io_bp;
2004 			int error;
2005 
2006 			ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2007 
2008 			ddt_exit(ddt);
2009 
2010 			error = arc_read(NULL, spa, &blk,
2011 			    arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2012 			    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2013 			    &aflags, &zio->io_bookmark);
2014 
2015 			if (error == 0) {
2016 				if (arc_buf_size(abuf) != zio->io_orig_size ||
2017 				    bcmp(abuf->b_data, zio->io_orig_data,
2018 				    zio->io_orig_size) != 0)
2019 					error = SET_ERROR(EEXIST);
2020 				VERIFY(arc_buf_remove_ref(abuf, &abuf));
2021 			}
2022 
2023 			ddt_enter(ddt);
2024 			return (error != 0);
2025 		}
2026 	}
2027 
2028 	return (B_FALSE);
2029 }
2030 
2031 static void
2032 zio_ddt_child_write_ready(zio_t *zio)
2033 {
2034 	int p = zio->io_prop.zp_copies;
2035 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2036 	ddt_entry_t *dde = zio->io_private;
2037 	ddt_phys_t *ddp = &dde->dde_phys[p];
2038 	zio_t *pio;
2039 
2040 	if (zio->io_error)
2041 		return;
2042 
2043 	ddt_enter(ddt);
2044 
2045 	ASSERT(dde->dde_lead_zio[p] == zio);
2046 
2047 	ddt_phys_fill(ddp, zio->io_bp);
2048 
2049 	while ((pio = zio_walk_parents(zio)) != NULL)
2050 		ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2051 
2052 	ddt_exit(ddt);
2053 }
2054 
2055 static void
2056 zio_ddt_child_write_done(zio_t *zio)
2057 {
2058 	int p = zio->io_prop.zp_copies;
2059 	ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2060 	ddt_entry_t *dde = zio->io_private;
2061 	ddt_phys_t *ddp = &dde->dde_phys[p];
2062 
2063 	ddt_enter(ddt);
2064 
2065 	ASSERT(ddp->ddp_refcnt == 0);
2066 	ASSERT(dde->dde_lead_zio[p] == zio);
2067 	dde->dde_lead_zio[p] = NULL;
2068 
2069 	if (zio->io_error == 0) {
2070 		while (zio_walk_parents(zio) != NULL)
2071 			ddt_phys_addref(ddp);
2072 	} else {
2073 		ddt_phys_clear(ddp);
2074 	}
2075 
2076 	ddt_exit(ddt);
2077 }
2078 
2079 static void
2080 zio_ddt_ditto_write_done(zio_t *zio)
2081 {
2082 	int p = DDT_PHYS_DITTO;
2083 	zio_prop_t *zp = &zio->io_prop;
2084 	blkptr_t *bp = zio->io_bp;
2085 	ddt_t *ddt = ddt_select(zio->io_spa, bp);
2086 	ddt_entry_t *dde = zio->io_private;
2087 	ddt_phys_t *ddp = &dde->dde_phys[p];
2088 	ddt_key_t *ddk = &dde->dde_key;
2089 
2090 	ddt_enter(ddt);
2091 
2092 	ASSERT(ddp->ddp_refcnt == 0);
2093 	ASSERT(dde->dde_lead_zio[p] == zio);
2094 	dde->dde_lead_zio[p] = NULL;
2095 
2096 	if (zio->io_error == 0) {
2097 		ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2098 		ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2099 		ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2100 		if (ddp->ddp_phys_birth != 0)
2101 			ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2102 		ddt_phys_fill(ddp, bp);
2103 	}
2104 
2105 	ddt_exit(ddt);
2106 }
2107 
2108 static int
2109 zio_ddt_write(zio_t *zio)
2110 {
2111 	spa_t *spa = zio->io_spa;
2112 	blkptr_t *bp = zio->io_bp;
2113 	uint64_t txg = zio->io_txg;
2114 	zio_prop_t *zp = &zio->io_prop;
2115 	int p = zp->zp_copies;
2116 	int ditto_copies;
2117 	zio_t *cio = NULL;
2118 	zio_t *dio = NULL;
2119 	ddt_t *ddt = ddt_select(spa, bp);
2120 	ddt_entry_t *dde;
2121 	ddt_phys_t *ddp;
2122 
2123 	ASSERT(BP_GET_DEDUP(bp));
2124 	ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2125 	ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2126 
2127 	ddt_enter(ddt);
2128 	dde = ddt_lookup(ddt, bp, B_TRUE);
2129 	ddp = &dde->dde_phys[p];
2130 
2131 	if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2132 		/*
2133 		 * If we're using a weak checksum, upgrade to a strong checksum
2134 		 * and try again.  If we're already using a strong checksum,
2135 		 * we can't resolve it, so just convert to an ordinary write.
2136 		 * (And automatically e-mail a paper to Nature?)
2137 		 */
2138 		if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2139 			zp->zp_checksum = spa_dedup_checksum(spa);
2140 			zio_pop_transforms(zio);
2141 			zio->io_stage = ZIO_STAGE_OPEN;
2142 			BP_ZERO(bp);
2143 		} else {
2144 			zp->zp_dedup = B_FALSE;
2145 		}
2146 		zio->io_pipeline = ZIO_WRITE_PIPELINE;
2147 		ddt_exit(ddt);
2148 		return (ZIO_PIPELINE_CONTINUE);
2149 	}
2150 
2151 	ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2152 	ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2153 
2154 	if (ditto_copies > ddt_ditto_copies_present(dde) &&
2155 	    dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2156 		zio_prop_t czp = *zp;
2157 
2158 		czp.zp_copies = ditto_copies;
2159 
2160 		/*
2161 		 * If we arrived here with an override bp, we won't have run
2162 		 * the transform stack, so we won't have the data we need to
2163 		 * generate a child i/o.  So, toss the override bp and restart.
2164 		 * This is safe, because using the override bp is just an
2165 		 * optimization; and it's rare, so the cost doesn't matter.
2166 		 */
2167 		if (zio->io_bp_override) {
2168 			zio_pop_transforms(zio);
2169 			zio->io_stage = ZIO_STAGE_OPEN;
2170 			zio->io_pipeline = ZIO_WRITE_PIPELINE;
2171 			zio->io_bp_override = NULL;
2172 			BP_ZERO(bp);
2173 			ddt_exit(ddt);
2174 			return (ZIO_PIPELINE_CONTINUE);
2175 		}
2176 
2177 		dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2178 		    zio->io_orig_size, &czp, NULL,
2179 		    zio_ddt_ditto_write_done, dde, zio->io_priority,
2180 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2181 
2182 		zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2183 		dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2184 	}
2185 
2186 	if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2187 		if (ddp->ddp_phys_birth != 0)
2188 			ddt_bp_fill(ddp, bp, txg);
2189 		if (dde->dde_lead_zio[p] != NULL)
2190 			zio_add_child(zio, dde->dde_lead_zio[p]);
2191 		else
2192 			ddt_phys_addref(ddp);
2193 	} else if (zio->io_bp_override) {
2194 		ASSERT(bp->blk_birth == txg);
2195 		ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2196 		ddt_phys_fill(ddp, bp);
2197 		ddt_phys_addref(ddp);
2198 	} else {
2199 		cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2200 		    zio->io_orig_size, zp, zio_ddt_child_write_ready,
2201 		    zio_ddt_child_write_done, dde, zio->io_priority,
2202 		    ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2203 
2204 		zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2205 		dde->dde_lead_zio[p] = cio;
2206 	}
2207 
2208 	ddt_exit(ddt);
2209 
2210 	if (cio)
2211 		zio_nowait(cio);
2212 	if (dio)
2213 		zio_nowait(dio);
2214 
2215 	return (ZIO_PIPELINE_CONTINUE);
2216 }
2217 
2218 ddt_entry_t *freedde; /* for debugging */
2219 
2220 static int
2221 zio_ddt_free(zio_t *zio)
2222 {
2223 	spa_t *spa = zio->io_spa;
2224 	blkptr_t *bp = zio->io_bp;
2225 	ddt_t *ddt = ddt_select(spa, bp);
2226 	ddt_entry_t *dde;
2227 	ddt_phys_t *ddp;
2228 
2229 	ASSERT(BP_GET_DEDUP(bp));
2230 	ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2231 
2232 	ddt_enter(ddt);
2233 	freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2234 	ddp = ddt_phys_select(dde, bp);
2235 	ddt_phys_decref(ddp);
2236 	ddt_exit(ddt);
2237 
2238 	return (ZIO_PIPELINE_CONTINUE);
2239 }
2240 
2241 /*
2242  * ==========================================================================
2243  * Allocate and free blocks
2244  * ==========================================================================
2245  */
2246 static int
2247 zio_dva_allocate(zio_t *zio)
2248 {
2249 	spa_t *spa = zio->io_spa;
2250 	metaslab_class_t *mc = spa_normal_class(spa);
2251 	blkptr_t *bp = zio->io_bp;
2252 	int error;
2253 	int flags = 0;
2254 
2255 	if (zio->io_gang_leader == NULL) {
2256 		ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2257 		zio->io_gang_leader = zio;
2258 	}
2259 
2260 	ASSERT(BP_IS_HOLE(bp));
2261 	ASSERT0(BP_GET_NDVAS(bp));
2262 	ASSERT3U(zio->io_prop.zp_copies, >, 0);
2263 	ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2264 	ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2265 
2266 	/*
2267 	 * The dump device does not support gang blocks so allocation on
2268 	 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2269 	 * the "fast" gang feature.
2270 	 */
2271 	flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2272 	flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2273 	    METASLAB_GANG_CHILD : 0;
2274 	error = metaslab_alloc(spa, mc, zio->io_size, bp,
2275 	    zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2276 
2277 	if (error) {
2278 		spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2279 		    "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2280 		    error);
2281 		if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2282 			return (zio_write_gang_block(zio));
2283 		zio->io_error = error;
2284 	}
2285 
2286 	return (ZIO_PIPELINE_CONTINUE);
2287 }
2288 
2289 static int
2290 zio_dva_free(zio_t *zio)
2291 {
2292 	metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2293 
2294 	return (ZIO_PIPELINE_CONTINUE);
2295 }
2296 
2297 static int
2298 zio_dva_claim(zio_t *zio)
2299 {
2300 	int error;
2301 
2302 	error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2303 	if (error)
2304 		zio->io_error = error;
2305 
2306 	return (ZIO_PIPELINE_CONTINUE);
2307 }
2308 
2309 /*
2310  * Undo an allocation.  This is used by zio_done() when an I/O fails
2311  * and we want to give back the block we just allocated.
2312  * This handles both normal blocks and gang blocks.
2313  */
2314 static void
2315 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2316 {
2317 	ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2318 	ASSERT(zio->io_bp_override == NULL);
2319 
2320 	if (!BP_IS_HOLE(bp))
2321 		metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2322 
2323 	if (gn != NULL) {
2324 		for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2325 			zio_dva_unallocate(zio, gn->gn_child[g],
2326 			    &gn->gn_gbh->zg_blkptr[g]);
2327 		}
2328 	}
2329 }
2330 
2331 /*
2332  * Try to allocate an intent log block.  Return 0 on success, errno on failure.
2333  */
2334 int
2335 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2336     uint64_t size, boolean_t use_slog)
2337 {
2338 	int error = 1;
2339 
2340 	ASSERT(txg > spa_syncing_txg(spa));
2341 
2342 	/*
2343 	 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2344 	 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2345 	 * when allocating them.
2346 	 */
2347 	if (use_slog) {
2348 		error = metaslab_alloc(spa, spa_log_class(spa), size,
2349 		    new_bp, 1, txg, old_bp,
2350 		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2351 	}
2352 
2353 	if (error) {
2354 		error = metaslab_alloc(spa, spa_normal_class(spa), size,
2355 		    new_bp, 1, txg, old_bp,
2356 		    METASLAB_HINTBP_AVOID | METASLAB_GANG_AVOID);
2357 	}
2358 
2359 	if (error == 0) {
2360 		BP_SET_LSIZE(new_bp, size);
2361 		BP_SET_PSIZE(new_bp, size);
2362 		BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2363 		BP_SET_CHECKSUM(new_bp,
2364 		    spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2365 		    ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2366 		BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2367 		BP_SET_LEVEL(new_bp, 0);
2368 		BP_SET_DEDUP(new_bp, 0);
2369 		BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2370 	}
2371 
2372 	return (error);
2373 }
2374 
2375 /*
2376  * Free an intent log block.
2377  */
2378 void
2379 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2380 {
2381 	ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2382 	ASSERT(!BP_IS_GANG(bp));
2383 
2384 	zio_free(spa, txg, bp);
2385 }
2386 
2387 /*
2388  * ==========================================================================
2389  * Read and write to physical devices
2390  * ==========================================================================
2391  */
2392 static int
2393 zio_vdev_io_start(zio_t *zio)
2394 {
2395 	vdev_t *vd = zio->io_vd;
2396 	uint64_t align;
2397 	spa_t *spa = zio->io_spa;
2398 
2399 	ASSERT(zio->io_error == 0);
2400 	ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2401 
2402 	if (vd == NULL) {
2403 		if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2404 			spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2405 
2406 		/*
2407 		 * The mirror_ops handle multiple DVAs in a single BP.
2408 		 */
2409 		return (vdev_mirror_ops.vdev_op_io_start(zio));
2410 	}
2411 
2412 	/*
2413 	 * We keep track of time-sensitive I/Os so that the scan thread
2414 	 * can quickly react to certain workloads.  In particular, we care
2415 	 * about non-scrubbing, top-level reads and writes with the following
2416 	 * characteristics:
2417 	 * 	- synchronous writes of user data to non-slog devices
2418 	 *	- any reads of user data
2419 	 * When these conditions are met, adjust the timestamp of spa_last_io
2420 	 * which allows the scan thread to adjust its workload accordingly.
2421 	 */
2422 	if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2423 	    vd == vd->vdev_top && !vd->vdev_islog &&
2424 	    zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2425 	    zio->io_txg != spa_syncing_txg(spa)) {
2426 		uint64_t old = spa->spa_last_io;
2427 		uint64_t new = ddi_get_lbolt64();
2428 		if (old != new)
2429 			(void) atomic_cas_64(&spa->spa_last_io, old, new);
2430 	}
2431 
2432 	align = 1ULL << vd->vdev_top->vdev_ashift;
2433 
2434 	if (P2PHASE(zio->io_size, align) != 0) {
2435 		uint64_t asize = P2ROUNDUP(zio->io_size, align);
2436 		char *abuf = zio_buf_alloc(asize);
2437 		ASSERT(vd == vd->vdev_top);
2438 		if (zio->io_type == ZIO_TYPE_WRITE) {
2439 			bcopy(zio->io_data, abuf, zio->io_size);
2440 			bzero(abuf + zio->io_size, asize - zio->io_size);
2441 		}
2442 		zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2443 	}
2444 
2445 	ASSERT(P2PHASE(zio->io_offset, align) == 0);
2446 	ASSERT(P2PHASE(zio->io_size, align) == 0);
2447 	VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2448 
2449 	/*
2450 	 * If this is a repair I/O, and there's no self-healing involved --
2451 	 * that is, we're just resilvering what we expect to resilver --
2452 	 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2453 	 * This prevents spurious resilvering with nested replication.
2454 	 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2455 	 * A is out of date, we'll read from C+D, then use the data to
2456 	 * resilver A+B -- but we don't actually want to resilver B, just A.
2457 	 * The top-level mirror has no way to know this, so instead we just
2458 	 * discard unnecessary repairs as we work our way down the vdev tree.
2459 	 * The same logic applies to any form of nested replication:
2460 	 * ditto + mirror, RAID-Z + replacing, etc.  This covers them all.
2461 	 */
2462 	if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2463 	    !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2464 	    zio->io_txg != 0 &&	/* not a delegated i/o */
2465 	    !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2466 		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2467 		zio_vdev_io_bypass(zio);
2468 		return (ZIO_PIPELINE_CONTINUE);
2469 	}
2470 
2471 	if (vd->vdev_ops->vdev_op_leaf &&
2472 	    (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2473 
2474 		if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2475 			return (ZIO_PIPELINE_CONTINUE);
2476 
2477 		if ((zio = vdev_queue_io(zio)) == NULL)
2478 			return (ZIO_PIPELINE_STOP);
2479 
2480 		if (!vdev_accessible(vd, zio)) {
2481 			zio->io_error = SET_ERROR(ENXIO);
2482 			zio_interrupt(zio);
2483 			return (ZIO_PIPELINE_STOP);
2484 		}
2485 	}
2486 
2487 	return (vd->vdev_ops->vdev_op_io_start(zio));
2488 }
2489 
2490 static int
2491 zio_vdev_io_done(zio_t *zio)
2492 {
2493 	vdev_t *vd = zio->io_vd;
2494 	vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2495 	boolean_t unexpected_error = B_FALSE;
2496 
2497 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2498 		return (ZIO_PIPELINE_STOP);
2499 
2500 	ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2501 
2502 	if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2503 
2504 		vdev_queue_io_done(zio);
2505 
2506 		if (zio->io_type == ZIO_TYPE_WRITE)
2507 			vdev_cache_write(zio);
2508 
2509 		if (zio_injection_enabled && zio->io_error == 0)
2510 			zio->io_error = zio_handle_device_injection(vd,
2511 			    zio, EIO);
2512 
2513 		if (zio_injection_enabled && zio->io_error == 0)
2514 			zio->io_error = zio_handle_label_injection(zio, EIO);
2515 
2516 		if (zio->io_error) {
2517 			if (!vdev_accessible(vd, zio)) {
2518 				zio->io_error = SET_ERROR(ENXIO);
2519 			} else {
2520 				unexpected_error = B_TRUE;
2521 			}
2522 		}
2523 	}
2524 
2525 	ops->vdev_op_io_done(zio);
2526 
2527 	if (unexpected_error)
2528 		VERIFY(vdev_probe(vd, zio) == NULL);
2529 
2530 	return (ZIO_PIPELINE_CONTINUE);
2531 }
2532 
2533 /*
2534  * For non-raidz ZIOs, we can just copy aside the bad data read from the
2535  * disk, and use that to finish the checksum ereport later.
2536  */
2537 static void
2538 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2539     const void *good_buf)
2540 {
2541 	/* no processing needed */
2542 	zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2543 }
2544 
2545 /*ARGSUSED*/
2546 void
2547 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2548 {
2549 	void *buf = zio_buf_alloc(zio->io_size);
2550 
2551 	bcopy(zio->io_data, buf, zio->io_size);
2552 
2553 	zcr->zcr_cbinfo = zio->io_size;
2554 	zcr->zcr_cbdata = buf;
2555 	zcr->zcr_finish = zio_vsd_default_cksum_finish;
2556 	zcr->zcr_free = zio_buf_free;
2557 }
2558 
2559 static int
2560 zio_vdev_io_assess(zio_t *zio)
2561 {
2562 	vdev_t *vd = zio->io_vd;
2563 
2564 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2565 		return (ZIO_PIPELINE_STOP);
2566 
2567 	if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2568 		spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2569 
2570 	if (zio->io_vsd != NULL) {
2571 		zio->io_vsd_ops->vsd_free(zio);
2572 		zio->io_vsd = NULL;
2573 	}
2574 
2575 	if (zio_injection_enabled && zio->io_error == 0)
2576 		zio->io_error = zio_handle_fault_injection(zio, EIO);
2577 
2578 	/*
2579 	 * If the I/O failed, determine whether we should attempt to retry it.
2580 	 *
2581 	 * On retry, we cut in line in the issue queue, since we don't want
2582 	 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2583 	 */
2584 	if (zio->io_error && vd == NULL &&
2585 	    !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2586 		ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE));	/* not a leaf */
2587 		ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS));	/* not a leaf */
2588 		zio->io_error = 0;
2589 		zio->io_flags |= ZIO_FLAG_IO_RETRY |
2590 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2591 		zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2592 		zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2593 		    zio_requeue_io_start_cut_in_line);
2594 		return (ZIO_PIPELINE_STOP);
2595 	}
2596 
2597 	/*
2598 	 * If we got an error on a leaf device, convert it to ENXIO
2599 	 * if the device is not accessible at all.
2600 	 */
2601 	if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2602 	    !vdev_accessible(vd, zio))
2603 		zio->io_error = SET_ERROR(ENXIO);
2604 
2605 	/*
2606 	 * If we can't write to an interior vdev (mirror or RAID-Z),
2607 	 * set vdev_cant_write so that we stop trying to allocate from it.
2608 	 */
2609 	if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2610 	    vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2611 		vd->vdev_cant_write = B_TRUE;
2612 	}
2613 
2614 	if (zio->io_error)
2615 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2616 
2617 	return (ZIO_PIPELINE_CONTINUE);
2618 }
2619 
2620 void
2621 zio_vdev_io_reissue(zio_t *zio)
2622 {
2623 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2624 	ASSERT(zio->io_error == 0);
2625 
2626 	zio->io_stage >>= 1;
2627 }
2628 
2629 void
2630 zio_vdev_io_redone(zio_t *zio)
2631 {
2632 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2633 
2634 	zio->io_stage >>= 1;
2635 }
2636 
2637 void
2638 zio_vdev_io_bypass(zio_t *zio)
2639 {
2640 	ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2641 	ASSERT(zio->io_error == 0);
2642 
2643 	zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2644 	zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2645 }
2646 
2647 /*
2648  * ==========================================================================
2649  * Generate and verify checksums
2650  * ==========================================================================
2651  */
2652 static int
2653 zio_checksum_generate(zio_t *zio)
2654 {
2655 	blkptr_t *bp = zio->io_bp;
2656 	enum zio_checksum checksum;
2657 
2658 	if (bp == NULL) {
2659 		/*
2660 		 * This is zio_write_phys().
2661 		 * We're either generating a label checksum, or none at all.
2662 		 */
2663 		checksum = zio->io_prop.zp_checksum;
2664 
2665 		if (checksum == ZIO_CHECKSUM_OFF)
2666 			return (ZIO_PIPELINE_CONTINUE);
2667 
2668 		ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2669 	} else {
2670 		if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2671 			ASSERT(!IO_IS_ALLOCATING(zio));
2672 			checksum = ZIO_CHECKSUM_GANG_HEADER;
2673 		} else {
2674 			checksum = BP_GET_CHECKSUM(bp);
2675 		}
2676 	}
2677 
2678 	zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2679 
2680 	return (ZIO_PIPELINE_CONTINUE);
2681 }
2682 
2683 static int
2684 zio_checksum_verify(zio_t *zio)
2685 {
2686 	zio_bad_cksum_t info;
2687 	blkptr_t *bp = zio->io_bp;
2688 	int error;
2689 
2690 	ASSERT(zio->io_vd != NULL);
2691 
2692 	if (bp == NULL) {
2693 		/*
2694 		 * This is zio_read_phys().
2695 		 * We're either verifying a label checksum, or nothing at all.
2696 		 */
2697 		if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2698 			return (ZIO_PIPELINE_CONTINUE);
2699 
2700 		ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2701 	}
2702 
2703 	if ((error = zio_checksum_error(zio, &info)) != 0) {
2704 		zio->io_error = error;
2705 		if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2706 			zfs_ereport_start_checksum(zio->io_spa,
2707 			    zio->io_vd, zio, zio->io_offset,
2708 			    zio->io_size, NULL, &info);
2709 		}
2710 	}
2711 
2712 	return (ZIO_PIPELINE_CONTINUE);
2713 }
2714 
2715 /*
2716  * Called by RAID-Z to ensure we don't compute the checksum twice.
2717  */
2718 void
2719 zio_checksum_verified(zio_t *zio)
2720 {
2721 	zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2722 }
2723 
2724 /*
2725  * ==========================================================================
2726  * Error rank.  Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2727  * An error of 0 indictes success.  ENXIO indicates whole-device failure,
2728  * which may be transient (e.g. unplugged) or permament.  ECKSUM and EIO
2729  * indicate errors that are specific to one I/O, and most likely permanent.
2730  * Any other error is presumed to be worse because we weren't expecting it.
2731  * ==========================================================================
2732  */
2733 int
2734 zio_worst_error(int e1, int e2)
2735 {
2736 	static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2737 	int r1, r2;
2738 
2739 	for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2740 		if (e1 == zio_error_rank[r1])
2741 			break;
2742 
2743 	for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2744 		if (e2 == zio_error_rank[r2])
2745 			break;
2746 
2747 	return (r1 > r2 ? e1 : e2);
2748 }
2749 
2750 /*
2751  * ==========================================================================
2752  * I/O completion
2753  * ==========================================================================
2754  */
2755 static int
2756 zio_ready(zio_t *zio)
2757 {
2758 	blkptr_t *bp = zio->io_bp;
2759 	zio_t *pio, *pio_next;
2760 
2761 	if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2762 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2763 		return (ZIO_PIPELINE_STOP);
2764 
2765 	if (zio->io_ready) {
2766 		ASSERT(IO_IS_ALLOCATING(zio));
2767 		ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2768 		    (zio->io_flags & ZIO_FLAG_NOPWRITE));
2769 		ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2770 
2771 		zio->io_ready(zio);
2772 	}
2773 
2774 	if (bp != NULL && bp != &zio->io_bp_copy)
2775 		zio->io_bp_copy = *bp;
2776 
2777 	if (zio->io_error)
2778 		zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2779 
2780 	mutex_enter(&zio->io_lock);
2781 	zio->io_state[ZIO_WAIT_READY] = 1;
2782 	pio = zio_walk_parents(zio);
2783 	mutex_exit(&zio->io_lock);
2784 
2785 	/*
2786 	 * As we notify zio's parents, new parents could be added.
2787 	 * New parents go to the head of zio's io_parent_list, however,
2788 	 * so we will (correctly) not notify them.  The remainder of zio's
2789 	 * io_parent_list, from 'pio_next' onward, cannot change because
2790 	 * all parents must wait for us to be done before they can be done.
2791 	 */
2792 	for (; pio != NULL; pio = pio_next) {
2793 		pio_next = zio_walk_parents(zio);
2794 		zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2795 	}
2796 
2797 	if (zio->io_flags & ZIO_FLAG_NODATA) {
2798 		if (BP_IS_GANG(bp)) {
2799 			zio->io_flags &= ~ZIO_FLAG_NODATA;
2800 		} else {
2801 			ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2802 			zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2803 		}
2804 	}
2805 
2806 	if (zio_injection_enabled &&
2807 	    zio->io_spa->spa_syncing_txg == zio->io_txg)
2808 		zio_handle_ignored_writes(zio);
2809 
2810 	return (ZIO_PIPELINE_CONTINUE);
2811 }
2812 
2813 static int
2814 zio_done(zio_t *zio)
2815 {
2816 	spa_t *spa = zio->io_spa;
2817 	zio_t *lio = zio->io_logical;
2818 	blkptr_t *bp = zio->io_bp;
2819 	vdev_t *vd = zio->io_vd;
2820 	uint64_t psize = zio->io_size;
2821 	zio_t *pio, *pio_next;
2822 
2823 	/*
2824 	 * If our children haven't all completed,
2825 	 * wait for them and then repeat this pipeline stage.
2826 	 */
2827 	if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2828 	    zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2829 	    zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2830 	    zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2831 		return (ZIO_PIPELINE_STOP);
2832 
2833 	for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2834 		for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2835 			ASSERT(zio->io_children[c][w] == 0);
2836 
2837 	if (bp != NULL) {
2838 		ASSERT(bp->blk_pad[0] == 0);
2839 		ASSERT(bp->blk_pad[1] == 0);
2840 		ASSERT(bcmp(bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2841 		    (bp == zio_unique_parent(zio)->io_bp));
2842 		if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(bp) &&
2843 		    zio->io_bp_override == NULL &&
2844 		    !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2845 			ASSERT(!BP_SHOULD_BYTESWAP(bp));
2846 			ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(bp));
2847 			ASSERT(BP_COUNT_GANG(bp) == 0 ||
2848 			    (BP_COUNT_GANG(bp) == BP_GET_NDVAS(bp)));
2849 		}
2850 		if (zio->io_flags & ZIO_FLAG_NOPWRITE)
2851 			VERIFY(BP_EQUAL(bp, &zio->io_bp_orig));
2852 	}
2853 
2854 	/*
2855 	 * If there were child vdev/gang/ddt errors, they apply to us now.
2856 	 */
2857 	zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2858 	zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2859 	zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2860 
2861 	/*
2862 	 * If the I/O on the transformed data was successful, generate any
2863 	 * checksum reports now while we still have the transformed data.
2864 	 */
2865 	if (zio->io_error == 0) {
2866 		while (zio->io_cksum_report != NULL) {
2867 			zio_cksum_report_t *zcr = zio->io_cksum_report;
2868 			uint64_t align = zcr->zcr_align;
2869 			uint64_t asize = P2ROUNDUP(psize, align);
2870 			char *abuf = zio->io_data;
2871 
2872 			if (asize != psize) {
2873 				abuf = zio_buf_alloc(asize);
2874 				bcopy(zio->io_data, abuf, psize);
2875 				bzero(abuf + psize, asize - psize);
2876 			}
2877 
2878 			zio->io_cksum_report = zcr->zcr_next;
2879 			zcr->zcr_next = NULL;
2880 			zcr->zcr_finish(zcr, abuf);
2881 			zfs_ereport_free_checksum(zcr);
2882 
2883 			if (asize != psize)
2884 				zio_buf_free(abuf, asize);
2885 		}
2886 	}
2887 
2888 	zio_pop_transforms(zio);	/* note: may set zio->io_error */
2889 
2890 	vdev_stat_update(zio, psize);
2891 
2892 	if (zio->io_error) {
2893 		/*
2894 		 * If this I/O is attached to a particular vdev,
2895 		 * generate an error message describing the I/O failure
2896 		 * at the block level.  We ignore these errors if the
2897 		 * device is currently unavailable.
2898 		 */
2899 		if (zio->io_error != ECKSUM && vd != NULL && !vdev_is_dead(vd))
2900 			zfs_ereport_post(FM_EREPORT_ZFS_IO, spa, vd, zio, 0, 0);
2901 
2902 		if ((zio->io_error == EIO || !(zio->io_flags &
2903 		    (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
2904 		    zio == lio) {
2905 			/*
2906 			 * For logical I/O requests, tell the SPA to log the
2907 			 * error and generate a logical data ereport.
2908 			 */
2909 			spa_log_error(spa, zio);
2910 			zfs_ereport_post(FM_EREPORT_ZFS_DATA, spa, NULL, zio,
2911 			    0, 0);
2912 		}
2913 	}
2914 
2915 	if (zio->io_error && zio == lio) {
2916 		/*
2917 		 * Determine whether zio should be reexecuted.  This will
2918 		 * propagate all the way to the root via zio_notify_parent().
2919 		 */
2920 		ASSERT(vd == NULL && bp != NULL);
2921 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2922 
2923 		if (IO_IS_ALLOCATING(zio) &&
2924 		    !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
2925 			if (zio->io_error != ENOSPC)
2926 				zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2927 			else
2928 				zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2929 		}
2930 
2931 		if ((zio->io_type == ZIO_TYPE_READ ||
2932 		    zio->io_type == ZIO_TYPE_FREE) &&
2933 		    !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
2934 		    zio->io_error == ENXIO &&
2935 		    spa_load_state(spa) == SPA_LOAD_NONE &&
2936 		    spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE)
2937 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2938 
2939 		if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2940 			zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2941 
2942 		/*
2943 		 * Here is a possibly good place to attempt to do
2944 		 * either combinatorial reconstruction or error correction
2945 		 * based on checksums.  It also might be a good place
2946 		 * to send out preliminary ereports before we suspend
2947 		 * processing.
2948 		 */
2949 	}
2950 
2951 	/*
2952 	 * If there were logical child errors, they apply to us now.
2953 	 * We defer this until now to avoid conflating logical child
2954 	 * errors with errors that happened to the zio itself when
2955 	 * updating vdev stats and reporting FMA events above.
2956 	 */
2957 	zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2958 
2959 	if ((zio->io_error || zio->io_reexecute) &&
2960 	    IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
2961 	    !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
2962 		zio_dva_unallocate(zio, zio->io_gang_tree, bp);
2963 
2964 	zio_gang_tree_free(&zio->io_gang_tree);
2965 
2966 	/*
2967 	 * Godfather I/Os should never suspend.
2968 	 */
2969 	if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
2970 	    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
2971 		zio->io_reexecute = 0;
2972 
2973 	if (zio->io_reexecute) {
2974 		/*
2975 		 * This is a logical I/O that wants to reexecute.
2976 		 *
2977 		 * Reexecute is top-down.  When an i/o fails, if it's not
2978 		 * the root, it simply notifies its parent and sticks around.
2979 		 * The parent, seeing that it still has children in zio_done(),
2980 		 * does the same.  This percolates all the way up to the root.
2981 		 * The root i/o will reexecute or suspend the entire tree.
2982 		 *
2983 		 * This approach ensures that zio_reexecute() honors
2984 		 * all the original i/o dependency relationships, e.g.
2985 		 * parents not executing until children are ready.
2986 		 */
2987 		ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2988 
2989 		zio->io_gang_leader = NULL;
2990 
2991 		mutex_enter(&zio->io_lock);
2992 		zio->io_state[ZIO_WAIT_DONE] = 1;
2993 		mutex_exit(&zio->io_lock);
2994 
2995 		/*
2996 		 * "The Godfather" I/O monitors its children but is
2997 		 * not a true parent to them. It will track them through
2998 		 * the pipeline but severs its ties whenever they get into
2999 		 * trouble (e.g. suspended). This allows "The Godfather"
3000 		 * I/O to return status without blocking.
3001 		 */
3002 		for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3003 			zio_link_t *zl = zio->io_walk_link;
3004 			pio_next = zio_walk_parents(zio);
3005 
3006 			if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3007 			    (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3008 				zio_remove_child(pio, zio, zl);
3009 				zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3010 			}
3011 		}
3012 
3013 		if ((pio = zio_unique_parent(zio)) != NULL) {
3014 			/*
3015 			 * We're not a root i/o, so there's nothing to do
3016 			 * but notify our parent.  Don't propagate errors
3017 			 * upward since we haven't permanently failed yet.
3018 			 */
3019 			ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3020 			zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3021 			zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3022 		} else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3023 			/*
3024 			 * We'd fail again if we reexecuted now, so suspend
3025 			 * until conditions improve (e.g. device comes online).
3026 			 */
3027 			zio_suspend(spa, zio);
3028 		} else {
3029 			/*
3030 			 * Reexecution is potentially a huge amount of work.
3031 			 * Hand it off to the otherwise-unused claim taskq.
3032 			 */
3033 			ASSERT(zio->io_tqent.tqent_next == NULL);
3034 			spa_taskq_dispatch_ent(spa, ZIO_TYPE_CLAIM,
3035 			    ZIO_TASKQ_ISSUE, (task_func_t *)zio_reexecute, zio,
3036 			    0, &zio->io_tqent);
3037 		}
3038 		return (ZIO_PIPELINE_STOP);
3039 	}
3040 
3041 	ASSERT(zio->io_child_count == 0);
3042 	ASSERT(zio->io_reexecute == 0);
3043 	ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3044 
3045 	/*
3046 	 * Report any checksum errors, since the I/O is complete.
3047 	 */
3048 	while (zio->io_cksum_report != NULL) {
3049 		zio_cksum_report_t *zcr = zio->io_cksum_report;
3050 		zio->io_cksum_report = zcr->zcr_next;
3051 		zcr->zcr_next = NULL;
3052 		zcr->zcr_finish(zcr, NULL);
3053 		zfs_ereport_free_checksum(zcr);
3054 	}
3055 
3056 	/*
3057 	 * It is the responsibility of the done callback to ensure that this
3058 	 * particular zio is no longer discoverable for adoption, and as
3059 	 * such, cannot acquire any new parents.
3060 	 */
3061 	if (zio->io_done)
3062 		zio->io_done(zio);
3063 
3064 	mutex_enter(&zio->io_lock);
3065 	zio->io_state[ZIO_WAIT_DONE] = 1;
3066 	mutex_exit(&zio->io_lock);
3067 
3068 	for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3069 		zio_link_t *zl = zio->io_walk_link;
3070 		pio_next = zio_walk_parents(zio);
3071 		zio_remove_child(pio, zio, zl);
3072 		zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3073 	}
3074 
3075 	if (zio->io_waiter != NULL) {
3076 		mutex_enter(&zio->io_lock);
3077 		zio->io_executor = NULL;
3078 		cv_broadcast(&zio->io_cv);
3079 		mutex_exit(&zio->io_lock);
3080 	} else {
3081 		zio_destroy(zio);
3082 	}
3083 
3084 	return (ZIO_PIPELINE_STOP);
3085 }
3086 
3087 /*
3088  * ==========================================================================
3089  * I/O pipeline definition
3090  * ==========================================================================
3091  */
3092 static zio_pipe_stage_t *zio_pipeline[] = {
3093 	NULL,
3094 	zio_read_bp_init,
3095 	zio_free_bp_init,
3096 	zio_issue_async,
3097 	zio_write_bp_init,
3098 	zio_checksum_generate,
3099 	zio_nop_write,
3100 	zio_ddt_read_start,
3101 	zio_ddt_read_done,
3102 	zio_ddt_write,
3103 	zio_ddt_free,
3104 	zio_gang_assemble,
3105 	zio_gang_issue,
3106 	zio_dva_allocate,
3107 	zio_dva_free,
3108 	zio_dva_claim,
3109 	zio_ready,
3110 	zio_vdev_io_start,
3111 	zio_vdev_io_done,
3112 	zio_vdev_io_assess,
3113 	zio_checksum_verify,
3114 	zio_done
3115 };
3116 
3117 /* dnp is the dnode for zb1->zb_object */
3118 boolean_t
3119 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3120     const zbookmark_t *zb2)
3121 {
3122 	uint64_t zb1nextL0, zb2thisobj;
3123 
3124 	ASSERT(zb1->zb_objset == zb2->zb_objset);
3125 	ASSERT(zb2->zb_level == 0);
3126 
3127 	/*
3128 	 * A bookmark in the deadlist is considered to be after
3129 	 * everything else.
3130 	 */
3131 	if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3132 		return (B_TRUE);
3133 
3134 	/* The objset_phys_t isn't before anything. */
3135 	if (dnp == NULL)
3136 		return (B_FALSE);
3137 
3138 	zb1nextL0 = (zb1->zb_blkid + 1) <<
3139 	    ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3140 
3141 	zb2thisobj = zb2->zb_object ? zb2->zb_object :
3142 	    zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3143 
3144 	if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3145 		uint64_t nextobj = zb1nextL0 *
3146 		    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3147 		return (nextobj <= zb2thisobj);
3148 	}
3149 
3150 	if (zb1->zb_object < zb2thisobj)
3151 		return (B_TRUE);
3152 	if (zb1->zb_object > zb2thisobj)
3153 		return (B_FALSE);
3154 	if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3155 		return (B_FALSE);
3156 	return (zb1nextL0 <= zb2->zb_blkid);
3157 }
3158