1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #ifdef _KERNEL 31 #include <sys/types.h> 32 #include <sys/param.h> 33 #include <sys/time.h> 34 #include <sys/systm.h> 35 #include <sys/sysmacros.h> 36 #include <sys/resource.h> 37 #include <sys/mntent.h> 38 #include <sys/mkdev.h> 39 #include <sys/u8_textprep.h> 40 #include <sys/vfs.h> 41 #include <sys/vfs_opreg.h> 42 #include <sys/vnode.h> 43 #include <sys/file.h> 44 #include <sys/kmem.h> 45 #include <sys/errno.h> 46 #include <sys/unistd.h> 47 #include <sys/mode.h> 48 #include <sys/atomic.h> 49 #include <vm/pvn.h> 50 #include "fs/fs_subr.h" 51 #include <sys/zfs_dir.h> 52 #include <sys/zfs_acl.h> 53 #include <sys/zfs_ioctl.h> 54 #include <sys/zfs_rlock.h> 55 #include <sys/zfs_fuid.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/kidmap.h> 58 #endif /* _KERNEL */ 59 60 #include <sys/dmu.h> 61 #include <sys/refcount.h> 62 #include <sys/stat.h> 63 #include <sys/zap.h> 64 #include <sys/zfs_znode.h> 65 66 #include "zfs_prop.h" 67 68 /* 69 * Functions needed for userland (ie: libzpool) are not put under 70 * #ifdef_KERNEL; the rest of the functions have dependencies 71 * (such as VFS logic) that will not compile easily in userland. 72 */ 73 #ifdef _KERNEL 74 struct kmem_cache *znode_cache = NULL; 75 76 /*ARGSUSED*/ 77 static void 78 znode_pageout_func(dmu_buf_t *dbuf, void *user_ptr) 79 { 80 znode_t *zp = user_ptr; 81 vnode_t *vp = ZTOV(zp); 82 83 mutex_enter(&zp->z_lock); 84 zp->z_dbuf = NULL; 85 if (vp->v_count == 0) { 86 mutex_exit(&zp->z_lock); 87 vn_invalid(vp); 88 zfs_znode_free(zp); 89 } else { 90 mutex_exit(&zp->z_lock); 91 } 92 } 93 94 /*ARGSUSED*/ 95 static int 96 zfs_znode_cache_constructor(void *buf, void *cdrarg, int kmflags) 97 { 98 znode_t *zp = buf; 99 100 zp->z_vnode = vn_alloc(KM_SLEEP); 101 zp->z_vnode->v_data = (caddr_t)zp; 102 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 103 rw_init(&zp->z_map_lock, NULL, RW_DEFAULT, NULL); 104 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 105 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 106 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 107 108 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 109 avl_create(&zp->z_range_avl, zfs_range_compare, 110 sizeof (rl_t), offsetof(rl_t, r_node)); 111 112 zp->z_dbuf = NULL; 113 zp->z_dirlocks = 0; 114 return (0); 115 } 116 117 /*ARGSUSED*/ 118 static void 119 zfs_znode_cache_destructor(void *buf, void *cdarg) 120 { 121 znode_t *zp = buf; 122 123 ASSERT(zp->z_dirlocks == 0); 124 mutex_destroy(&zp->z_lock); 125 rw_destroy(&zp->z_map_lock); 126 rw_destroy(&zp->z_parent_lock); 127 rw_destroy(&zp->z_name_lock); 128 mutex_destroy(&zp->z_acl_lock); 129 avl_destroy(&zp->z_range_avl); 130 mutex_destroy(&zp->z_range_lock); 131 132 ASSERT(zp->z_dbuf == NULL); 133 ASSERT(ZTOV(zp)->v_count == 0); 134 vn_free(ZTOV(zp)); 135 } 136 137 void 138 zfs_znode_init(void) 139 { 140 /* 141 * Initialize zcache 142 */ 143 ASSERT(znode_cache == NULL); 144 znode_cache = kmem_cache_create("zfs_znode_cache", 145 sizeof (znode_t), 0, zfs_znode_cache_constructor, 146 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 147 } 148 149 void 150 zfs_znode_fini(void) 151 { 152 /* 153 * Cleanup vfs & vnode ops 154 */ 155 zfs_remove_op_tables(); 156 157 /* 158 * Cleanup zcache 159 */ 160 if (znode_cache) 161 kmem_cache_destroy(znode_cache); 162 znode_cache = NULL; 163 } 164 165 struct vnodeops *zfs_dvnodeops; 166 struct vnodeops *zfs_fvnodeops; 167 struct vnodeops *zfs_symvnodeops; 168 struct vnodeops *zfs_xdvnodeops; 169 struct vnodeops *zfs_evnodeops; 170 171 void 172 zfs_remove_op_tables() 173 { 174 /* 175 * Remove vfs ops 176 */ 177 ASSERT(zfsfstype); 178 (void) vfs_freevfsops_by_type(zfsfstype); 179 zfsfstype = 0; 180 181 /* 182 * Remove vnode ops 183 */ 184 if (zfs_dvnodeops) 185 vn_freevnodeops(zfs_dvnodeops); 186 if (zfs_fvnodeops) 187 vn_freevnodeops(zfs_fvnodeops); 188 if (zfs_symvnodeops) 189 vn_freevnodeops(zfs_symvnodeops); 190 if (zfs_xdvnodeops) 191 vn_freevnodeops(zfs_xdvnodeops); 192 if (zfs_evnodeops) 193 vn_freevnodeops(zfs_evnodeops); 194 195 zfs_dvnodeops = NULL; 196 zfs_fvnodeops = NULL; 197 zfs_symvnodeops = NULL; 198 zfs_xdvnodeops = NULL; 199 zfs_evnodeops = NULL; 200 } 201 202 extern const fs_operation_def_t zfs_dvnodeops_template[]; 203 extern const fs_operation_def_t zfs_fvnodeops_template[]; 204 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 205 extern const fs_operation_def_t zfs_symvnodeops_template[]; 206 extern const fs_operation_def_t zfs_evnodeops_template[]; 207 208 int 209 zfs_create_op_tables() 210 { 211 int error; 212 213 /* 214 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 215 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 216 * In this case we just return as the ops vectors are already set up. 217 */ 218 if (zfs_dvnodeops) 219 return (0); 220 221 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 222 &zfs_dvnodeops); 223 if (error) 224 return (error); 225 226 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 227 &zfs_fvnodeops); 228 if (error) 229 return (error); 230 231 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 232 &zfs_symvnodeops); 233 if (error) 234 return (error); 235 236 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 237 &zfs_xdvnodeops); 238 if (error) 239 return (error); 240 241 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 242 &zfs_evnodeops); 243 244 return (error); 245 } 246 247 /* 248 * zfs_init_fs - Initialize the zfsvfs struct and the file system 249 * incore "master" object. Verify version compatibility. 250 */ 251 int 252 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp, cred_t *cr) 253 { 254 extern int zfsfstype; 255 256 objset_t *os = zfsvfs->z_os; 257 int i, error; 258 dmu_object_info_t doi; 259 uint64_t fsid_guid; 260 uint64_t zval; 261 262 *zpp = NULL; 263 264 /* 265 * XXX - hack to auto-create the pool root filesystem at 266 * the first attempted mount. 267 */ 268 if (dmu_object_info(os, MASTER_NODE_OBJ, &doi) == ENOENT) { 269 dmu_tx_t *tx = dmu_tx_create(os); 270 uint64_t zpl_version; 271 nvlist_t *zprops; 272 273 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* master */ 274 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* del queue */ 275 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); /* root node */ 276 error = dmu_tx_assign(tx, TXG_WAIT); 277 ASSERT3U(error, ==, 0); 278 if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID) 279 zpl_version = ZPL_VERSION; 280 else 281 zpl_version = ZPL_VERSION_FUID - 1; 282 283 VERIFY(nvlist_alloc(&zprops, NV_UNIQUE_NAME, KM_SLEEP) == 0); 284 VERIFY(nvlist_add_uint64(zprops, 285 zfs_prop_to_name(ZFS_PROP_VERSION), zpl_version) == 0); 286 zfs_create_fs(os, cr, zprops, tx); 287 nvlist_free(zprops); 288 dmu_tx_commit(tx); 289 } 290 291 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 292 if (error) { 293 return (error); 294 } else if (zfsvfs->z_version > ZPL_VERSION) { 295 (void) printf("Mismatched versions: File system " 296 "is version %lld on-disk format, which is " 297 "incompatible with this software version %lld!", 298 (u_longlong_t)zfsvfs->z_version, ZPL_VERSION); 299 return (ENOTSUP); 300 } 301 302 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 303 return (error); 304 zfsvfs->z_norm = (int)zval; 305 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 306 return (error); 307 zfsvfs->z_utf8 = (zval != 0); 308 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 309 return (error); 310 zfsvfs->z_case = (uint_t)zval; 311 /* 312 * Fold case on file systems that are always or sometimes case 313 * insensitive. 314 */ 315 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 316 zfsvfs->z_case == ZFS_CASE_MIXED) 317 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 318 319 /* 320 * The fsid is 64 bits, composed of an 8-bit fs type, which 321 * separates our fsid from any other filesystem types, and a 322 * 56-bit objset unique ID. The objset unique ID is unique to 323 * all objsets open on this system, provided by unique_create(). 324 * The 8-bit fs type must be put in the low bits of fsid[1] 325 * because that's where other Solaris filesystems put it. 326 */ 327 fsid_guid = dmu_objset_fsid_guid(os); 328 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 329 zfsvfs->z_vfs->vfs_fsid.val[0] = fsid_guid; 330 zfsvfs->z_vfs->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 331 zfsfstype & 0xFF; 332 333 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 334 &zfsvfs->z_root); 335 if (error) 336 return (error); 337 ASSERT(zfsvfs->z_root != 0); 338 339 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 340 &zfsvfs->z_unlinkedobj); 341 if (error) 342 return (error); 343 344 /* 345 * Initialize zget mutex's 346 */ 347 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 348 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 349 350 error = zfs_zget(zfsvfs, zfsvfs->z_root, zpp); 351 if (error) { 352 /* 353 * On error, we destroy the mutexes here since it's not 354 * possible for the caller to determine if the mutexes were 355 * initialized properly. 356 */ 357 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 358 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 359 return (error); 360 } 361 ASSERT3U((*zpp)->z_id, ==, zfsvfs->z_root); 362 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 363 &zfsvfs->z_fuid_obj); 364 if (error == ENOENT) 365 error = 0; 366 367 return (0); 368 } 369 370 /* 371 * define a couple of values we need available 372 * for both 64 and 32 bit environments. 373 */ 374 #ifndef NBITSMINOR64 375 #define NBITSMINOR64 32 376 #endif 377 #ifndef MAXMAJ64 378 #define MAXMAJ64 0xffffffffUL 379 #endif 380 #ifndef MAXMIN64 381 #define MAXMIN64 0xffffffffUL 382 #endif 383 384 /* 385 * Create special expldev for ZFS private use. 386 * Can't use standard expldev since it doesn't do 387 * what we want. The standard expldev() takes a 388 * dev32_t in LP64 and expands it to a long dev_t. 389 * We need an interface that takes a dev32_t in ILP32 390 * and expands it to a long dev_t. 391 */ 392 static uint64_t 393 zfs_expldev(dev_t dev) 394 { 395 #ifndef _LP64 396 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 397 return (((uint64_t)major << NBITSMINOR64) | 398 ((minor_t)dev & MAXMIN32)); 399 #else 400 return (dev); 401 #endif 402 } 403 404 /* 405 * Special cmpldev for ZFS private use. 406 * Can't use standard cmpldev since it takes 407 * a long dev_t and compresses it to dev32_t in 408 * LP64. We need to do a compaction of a long dev_t 409 * to a dev32_t in ILP32. 410 */ 411 dev_t 412 zfs_cmpldev(uint64_t dev) 413 { 414 #ifndef _LP64 415 minor_t minor = (minor_t)dev & MAXMIN64; 416 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 417 418 if (major > MAXMAJ32 || minor > MAXMIN32) 419 return (NODEV32); 420 421 return (((dev32_t)major << NBITSMINOR32) | minor); 422 #else 423 return (dev); 424 #endif 425 } 426 427 static void 428 zfs_znode_dmu_init(znode_t *zp, dmu_buf_t *db) 429 { 430 znode_t *nzp; 431 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 432 433 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp))); 434 435 mutex_enter(&zp->z_lock); 436 437 ASSERT(zp->z_dbuf == NULL); 438 zp->z_dbuf = db; 439 nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_pageout_func); 440 441 /* 442 * there should be no 443 * concurrent zgets on this object. 444 */ 445 if (nzp != NULL) 446 panic("existing znode %p for dbuf %p", nzp, db); 447 448 /* 449 * Slap on VROOT if we are the root znode 450 */ 451 if (zp->z_id == zfsvfs->z_root) 452 ZTOV(zp)->v_flag |= VROOT; 453 454 mutex_exit(&zp->z_lock); 455 vn_exists(ZTOV(zp)); 456 } 457 458 static void 459 zfs_znode_dmu_fini(znode_t *zp) 460 { 461 dmu_buf_t *db = zp->z_dbuf; 462 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp))); 463 ASSERT(zp->z_dbuf != NULL); 464 zp->z_dbuf = NULL; 465 dmu_buf_rele(db, NULL); 466 } 467 468 /* 469 * Construct a new znode/vnode and intialize. 470 * 471 * This does not do a call to dmu_set_user() that is 472 * up to the caller to do, in case you don't want to 473 * return the znode 474 */ 475 static znode_t * 476 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz) 477 { 478 znode_t *zp; 479 vnode_t *vp; 480 481 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 482 483 ASSERT(zp->z_dirlocks == NULL); 484 ASSERT(zp->z_dbuf == NULL); 485 486 zp->z_phys = NULL; 487 zp->z_zfsvfs = zfsvfs; 488 zp->z_unlinked = 0; 489 zp->z_atime_dirty = 0; 490 zp->z_mapcnt = 0; 491 zp->z_last_itx = 0; 492 zp->z_id = db->db_object; 493 zp->z_blksz = blksz; 494 zp->z_seq = 0x7A4653; 495 zp->z_sync_cnt = 0; 496 497 vp = ZTOV(zp); 498 vn_reinit(vp); 499 500 zfs_znode_dmu_init(zp, db); 501 502 zp->z_gen = zp->z_phys->zp_gen; 503 504 mutex_enter(&zfsvfs->z_znodes_lock); 505 list_insert_tail(&zfsvfs->z_all_znodes, zp); 506 mutex_exit(&zfsvfs->z_znodes_lock); 507 508 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 509 vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode); 510 511 switch (vp->v_type) { 512 case VDIR: 513 if (zp->z_phys->zp_flags & ZFS_XATTR) { 514 vn_setops(vp, zfs_xdvnodeops); 515 vp->v_flag |= V_XATTRDIR; 516 } else { 517 vn_setops(vp, zfs_dvnodeops); 518 } 519 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 520 break; 521 case VBLK: 522 case VCHR: 523 vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev); 524 /*FALLTHROUGH*/ 525 case VFIFO: 526 case VSOCK: 527 case VDOOR: 528 vn_setops(vp, zfs_fvnodeops); 529 break; 530 case VREG: 531 vp->v_flag |= VMODSORT; 532 vn_setops(vp, zfs_fvnodeops); 533 break; 534 case VLNK: 535 vn_setops(vp, zfs_symvnodeops); 536 break; 537 default: 538 vn_setops(vp, zfs_evnodeops); 539 break; 540 } 541 542 /* it can be NULL from zfs_create_fs */ 543 if (zfsvfs->z_vfs) 544 VFS_HOLD(zfsvfs->z_vfs); 545 return (zp); 546 } 547 548 /* 549 * Create a new DMU object to hold a zfs znode. 550 * 551 * IN: dzp - parent directory for new znode 552 * vap - file attributes for new znode 553 * tx - dmu transaction id for zap operations 554 * cr - credentials of caller 555 * flag - flags: 556 * IS_ROOT_NODE - new object will be root 557 * IS_XATTR - new object is an attribute 558 * IS_REPLAY - intent log replay 559 * bonuslen - length of bonus buffer 560 * setaclp - File/Dir initial ACL 561 * fuidp - Tracks fuid allocation. 562 * 563 * OUT: zpp - allocated znode 564 * 565 */ 566 void 567 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 568 uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_t *setaclp, 569 zfs_fuid_info_t **fuidp) 570 { 571 dmu_buf_t *db; 572 znode_phys_t *pzp; 573 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 574 timestruc_t now; 575 uint64_t gen, obj; 576 int err; 577 578 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 579 580 if (zfsvfs->z_assign >= TXG_INITIAL) { /* ZIL replay */ 581 obj = vap->va_nodeid; 582 flag |= IS_REPLAY; 583 now = vap->va_ctime; /* see zfs_replay_create() */ 584 gen = vap->va_nblocks; /* ditto */ 585 } else { 586 obj = 0; 587 gethrestime(&now); 588 gen = dmu_tx_get_txg(tx); 589 } 590 591 /* 592 * Create a new DMU object. 593 */ 594 /* 595 * There's currently no mechanism for pre-reading the blocks that will 596 * be to needed allocate a new object, so we accept the small chance 597 * that there will be an i/o error and we will fail one of the 598 * assertions below. 599 */ 600 if (vap->va_type == VDIR) { 601 if (flag & IS_REPLAY) { 602 err = zap_create_claim_norm(zfsvfs->z_os, obj, 603 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 604 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 605 ASSERT3U(err, ==, 0); 606 } else { 607 obj = zap_create_norm(zfsvfs->z_os, 608 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 609 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 610 } 611 } else { 612 if (flag & IS_REPLAY) { 613 err = dmu_object_claim(zfsvfs->z_os, obj, 614 DMU_OT_PLAIN_FILE_CONTENTS, 0, 615 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 616 ASSERT3U(err, ==, 0); 617 } else { 618 obj = dmu_object_alloc(zfsvfs->z_os, 619 DMU_OT_PLAIN_FILE_CONTENTS, 0, 620 DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx); 621 } 622 } 623 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db)); 624 dmu_buf_will_dirty(db, tx); 625 626 /* 627 * Initialize the znode physical data to zero. 628 */ 629 ASSERT(db->db_size >= sizeof (znode_phys_t)); 630 bzero(db->db_data, db->db_size); 631 pzp = db->db_data; 632 633 /* 634 * If this is the root, fix up the half-initialized parent pointer 635 * to reference the just-allocated physical data area. 636 */ 637 if (flag & IS_ROOT_NODE) { 638 dzp->z_phys = pzp; 639 dzp->z_id = obj; 640 } 641 642 /* 643 * If parent is an xattr, so am I. 644 */ 645 if (dzp->z_phys->zp_flags & ZFS_XATTR) 646 flag |= IS_XATTR; 647 648 if (vap->va_type == VBLK || vap->va_type == VCHR) { 649 pzp->zp_rdev = zfs_expldev(vap->va_rdev); 650 } 651 652 if (zfsvfs->z_use_fuids) 653 pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 654 655 if (vap->va_type == VDIR) { 656 pzp->zp_size = 2; /* contents ("." and "..") */ 657 pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 658 } 659 660 pzp->zp_parent = dzp->z_id; 661 if (flag & IS_XATTR) 662 pzp->zp_flags |= ZFS_XATTR; 663 664 pzp->zp_gen = gen; 665 666 ZFS_TIME_ENCODE(&now, pzp->zp_crtime); 667 ZFS_TIME_ENCODE(&now, pzp->zp_ctime); 668 669 if (vap->va_mask & AT_ATIME) { 670 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 671 } else { 672 ZFS_TIME_ENCODE(&now, pzp->zp_atime); 673 } 674 675 if (vap->va_mask & AT_MTIME) { 676 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 677 } else { 678 ZFS_TIME_ENCODE(&now, pzp->zp_mtime); 679 } 680 681 pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode); 682 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj) 683 *zpp = zfs_znode_alloc(zfsvfs, db, 0); 684 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 685 zfs_perm_init(*zpp, dzp, flag, vap, tx, cr, setaclp, fuidp); 686 } 687 688 void 689 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap) 690 { 691 xoptattr_t *xoap; 692 693 xoap = xva_getxoptattr(xvap); 694 ASSERT(xoap); 695 696 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 697 ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime); 698 XVA_SET_RTN(xvap, XAT_CREATETIME); 699 } 700 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 701 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly); 702 XVA_SET_RTN(xvap, XAT_READONLY); 703 } 704 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 705 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden); 706 XVA_SET_RTN(xvap, XAT_HIDDEN); 707 } 708 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 709 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system); 710 XVA_SET_RTN(xvap, XAT_SYSTEM); 711 } 712 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 713 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive); 714 XVA_SET_RTN(xvap, XAT_ARCHIVE); 715 } 716 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 717 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable); 718 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 719 } 720 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 721 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink); 722 XVA_SET_RTN(xvap, XAT_NOUNLINK); 723 } 724 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 725 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly); 726 XVA_SET_RTN(xvap, XAT_APPENDONLY); 727 } 728 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 729 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump); 730 XVA_SET_RTN(xvap, XAT_NODUMP); 731 } 732 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 733 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque); 734 XVA_SET_RTN(xvap, XAT_OPAQUE); 735 } 736 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 737 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 738 xoap->xoa_av_quarantined); 739 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 740 } 741 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 742 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified); 743 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 744 } 745 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 746 (void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp, 747 sizeof (xoap->xoa_av_scanstamp)); 748 zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP; 749 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 750 } 751 } 752 753 int 754 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 755 { 756 dmu_object_info_t doi; 757 dmu_buf_t *db; 758 znode_t *zp; 759 int err; 760 761 *zpp = NULL; 762 763 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 764 765 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 766 if (err) { 767 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 768 return (err); 769 } 770 771 dmu_object_info_from_db(db, &doi); 772 if (doi.doi_bonus_type != DMU_OT_ZNODE || 773 doi.doi_bonus_size < sizeof (znode_phys_t)) { 774 dmu_buf_rele(db, NULL); 775 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 776 return (EINVAL); 777 } 778 779 zp = dmu_buf_get_user(db); 780 if (zp != NULL) { 781 mutex_enter(&zp->z_lock); 782 783 /* 784 * Since we do immediate eviction of the z_dbuf, we 785 * should never find a dbuf with a znode that doesn't 786 * know about the dbuf. 787 */ 788 ASSERT3P(zp->z_dbuf, ==, db); 789 ASSERT3U(zp->z_id, ==, obj_num); 790 if (zp->z_unlinked) { 791 err = ENOENT; 792 } else { 793 VN_HOLD(ZTOV(zp)); 794 *zpp = zp; 795 err = 0; 796 } 797 dmu_buf_rele(db, NULL); 798 mutex_exit(&zp->z_lock); 799 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 800 return (err); 801 } 802 803 /* 804 * Not found create new znode/vnode 805 */ 806 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size); 807 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 808 *zpp = zp; 809 return (0); 810 } 811 812 int 813 zfs_rezget(znode_t *zp) 814 { 815 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 816 dmu_object_info_t doi; 817 dmu_buf_t *db; 818 uint64_t obj_num = zp->z_id; 819 int err; 820 821 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 822 823 err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db); 824 if (err) { 825 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 826 return (err); 827 } 828 829 dmu_object_info_from_db(db, &doi); 830 if (doi.doi_bonus_type != DMU_OT_ZNODE || 831 doi.doi_bonus_size < sizeof (znode_phys_t)) { 832 dmu_buf_rele(db, NULL); 833 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 834 return (EINVAL); 835 } 836 837 if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) { 838 dmu_buf_rele(db, NULL); 839 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 840 return (EIO); 841 } 842 843 zfs_znode_dmu_init(zp, db); 844 zp->z_unlinked = (zp->z_phys->zp_links == 0); 845 846 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 847 848 return (0); 849 } 850 851 void 852 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 853 { 854 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 855 uint64_t obj = zp->z_id; 856 857 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 858 if (zp->z_phys->zp_acl.z_acl_extern_obj) { 859 VERIFY(0 == dmu_object_free(zfsvfs->z_os, 860 zp->z_phys->zp_acl.z_acl_extern_obj, tx)); 861 } 862 VERIFY(0 == dmu_object_free(zfsvfs->z_os, obj, tx)); 863 zfs_znode_dmu_fini(zp); 864 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 865 } 866 867 void 868 zfs_zinactive(znode_t *zp) 869 { 870 vnode_t *vp = ZTOV(zp); 871 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 872 uint64_t z_id = zp->z_id; 873 874 ASSERT(zp->z_dbuf && zp->z_phys); 875 876 /* 877 * Don't allow a zfs_zget() while were trying to release this znode 878 */ 879 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 880 881 mutex_enter(&zp->z_lock); 882 mutex_enter(&vp->v_lock); 883 vp->v_count--; 884 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 885 /* 886 * If the hold count is greater than zero, somebody has 887 * obtained a new reference on this znode while we were 888 * processing it here, so we are done. If we still have 889 * mapped pages then we are also done, since we don't 890 * want to inactivate the znode until the pages get pushed. 891 * 892 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 893 * this seems like it would leave the znode hanging with 894 * no chance to go inactive... 895 */ 896 mutex_exit(&vp->v_lock); 897 mutex_exit(&zp->z_lock); 898 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 899 return; 900 } 901 mutex_exit(&vp->v_lock); 902 903 /* 904 * If this was the last reference to a file with no links, 905 * remove the file from the file system. 906 */ 907 if (zp->z_unlinked) { 908 mutex_exit(&zp->z_lock); 909 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 910 zfs_rmnode(zp); 911 VFS_RELE(zfsvfs->z_vfs); 912 return; 913 } 914 mutex_exit(&zp->z_lock); 915 zfs_znode_dmu_fini(zp); 916 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 917 /* it can be NULL from zfs_create_fs */ 918 if (zfsvfs->z_vfs) 919 VFS_RELE(zfsvfs->z_vfs); 920 } 921 922 void 923 zfs_znode_free(znode_t *zp) 924 { 925 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 926 927 mutex_enter(&zfsvfs->z_znodes_lock); 928 list_remove(&zfsvfs->z_all_znodes, zp); 929 mutex_exit(&zfsvfs->z_znodes_lock); 930 931 kmem_cache_free(znode_cache, zp); 932 } 933 934 void 935 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx) 936 { 937 timestruc_t now; 938 939 ASSERT(MUTEX_HELD(&zp->z_lock)); 940 941 gethrestime(&now); 942 943 if (tx) { 944 dmu_buf_will_dirty(zp->z_dbuf, tx); 945 zp->z_atime_dirty = 0; 946 zp->z_seq++; 947 } else { 948 zp->z_atime_dirty = 1; 949 } 950 951 if (flag & AT_ATIME) 952 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime); 953 954 if (flag & AT_MTIME) { 955 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime); 956 if (zp->z_zfsvfs->z_use_fuids) 957 zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED); 958 } 959 960 if (flag & AT_CTIME) { 961 ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime); 962 if (zp->z_zfsvfs->z_use_fuids) 963 zp->z_phys->zp_flags |= ZFS_ARCHIVE; 964 } 965 } 966 967 /* 968 * Update the requested znode timestamps with the current time. 969 * If we are in a transaction, then go ahead and mark the znode 970 * dirty in the transaction so the timestamps will go to disk. 971 * Otherwise, we will get pushed next time the znode is updated 972 * in a transaction, or when this znode eventually goes inactive. 973 * 974 * Why is this OK? 975 * 1 - Only the ACCESS time is ever updated outside of a transaction. 976 * 2 - Multiple consecutive updates will be collapsed into a single 977 * znode update by the transaction grouping semantics of the DMU. 978 */ 979 void 980 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx) 981 { 982 mutex_enter(&zp->z_lock); 983 zfs_time_stamper_locked(zp, flag, tx); 984 mutex_exit(&zp->z_lock); 985 } 986 987 /* 988 * Grow the block size for a file. 989 * 990 * IN: zp - znode of file to free data in. 991 * size - requested block size 992 * tx - open transaction. 993 * 994 * NOTE: this function assumes that the znode is write locked. 995 */ 996 void 997 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 998 { 999 int error; 1000 u_longlong_t dummy; 1001 1002 if (size <= zp->z_blksz) 1003 return; 1004 /* 1005 * If the file size is already greater than the current blocksize, 1006 * we will not grow. If there is more than one block in a file, 1007 * the blocksize cannot change. 1008 */ 1009 if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz) 1010 return; 1011 1012 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1013 size, 0, tx); 1014 if (error == ENOTSUP) 1015 return; 1016 ASSERT3U(error, ==, 0); 1017 1018 /* What blocksize did we actually get? */ 1019 dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy); 1020 } 1021 1022 /* 1023 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1024 * be calling back into the fs for a putpage(). E.g.: when truncating 1025 * a file, the pages being "thrown away* don't need to be written out. 1026 */ 1027 /* ARGSUSED */ 1028 static int 1029 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1030 int flags, cred_t *cr) 1031 { 1032 ASSERT(0); 1033 return (0); 1034 } 1035 1036 /* 1037 * Free space in a file. 1038 * 1039 * IN: zp - znode of file to free data in. 1040 * off - start of section to free. 1041 * len - length of section to free (0 => to EOF). 1042 * flag - current file open mode flags. 1043 * 1044 * RETURN: 0 if success 1045 * error code if failure 1046 */ 1047 int 1048 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1049 { 1050 vnode_t *vp = ZTOV(zp); 1051 dmu_tx_t *tx; 1052 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1053 zilog_t *zilog = zfsvfs->z_log; 1054 rl_t *rl; 1055 uint64_t end = off + len; 1056 uint64_t size, new_blksz; 1057 uint64_t pflags = zp->z_phys->zp_flags; 1058 int error; 1059 1060 if ((pflags & (ZFS_IMMUTABLE|ZFS_READONLY)) || 1061 off < zp->z_phys->zp_size && (pflags & ZFS_APPENDONLY)) 1062 return (EPERM); 1063 1064 if (ZTOV(zp)->v_type == VFIFO) 1065 return (0); 1066 1067 /* 1068 * If we will change zp_size then lock the whole file, 1069 * otherwise just lock the range being freed. 1070 */ 1071 if (len == 0 || off + len > zp->z_phys->zp_size) { 1072 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1073 } else { 1074 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1075 /* recheck, in case zp_size changed */ 1076 if (off + len > zp->z_phys->zp_size) { 1077 /* lost race: file size changed, lock whole file */ 1078 zfs_range_unlock(rl); 1079 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1080 } 1081 } 1082 1083 /* 1084 * Nothing to do if file already at desired length. 1085 */ 1086 size = zp->z_phys->zp_size; 1087 if (len == 0 && size == off && off != 0) { 1088 zfs_range_unlock(rl); 1089 return (0); 1090 } 1091 1092 /* 1093 * Check for any locks in the region to be freed. 1094 */ 1095 if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) { 1096 uint64_t start = off; 1097 uint64_t extent = len; 1098 1099 if (off > size) { 1100 start = size; 1101 extent += off - size; 1102 } else if (len == 0) { 1103 extent = size - off; 1104 } 1105 if (error = chklock(vp, FWRITE, start, extent, flag, NULL)) { 1106 zfs_range_unlock(rl); 1107 return (error); 1108 } 1109 } 1110 1111 tx = dmu_tx_create(zfsvfs->z_os); 1112 dmu_tx_hold_bonus(tx, zp->z_id); 1113 new_blksz = 0; 1114 if (end > size && 1115 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1116 /* 1117 * We are growing the file past the current block size. 1118 */ 1119 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1120 ASSERT(!ISP2(zp->z_blksz)); 1121 new_blksz = MIN(end, SPA_MAXBLOCKSIZE); 1122 } else { 1123 new_blksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1124 } 1125 dmu_tx_hold_write(tx, zp->z_id, 0, MIN(end, new_blksz)); 1126 } else if (off < size) { 1127 /* 1128 * If len == 0, we are truncating the file. 1129 */ 1130 dmu_tx_hold_free(tx, zp->z_id, off, len ? len : DMU_OBJECT_END); 1131 } 1132 1133 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1134 if (error) { 1135 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) 1136 dmu_tx_wait(tx); 1137 dmu_tx_abort(tx); 1138 zfs_range_unlock(rl); 1139 return (error); 1140 } 1141 1142 if (new_blksz) 1143 zfs_grow_blocksize(zp, new_blksz, tx); 1144 1145 if (end > size || len == 0) 1146 zp->z_phys->zp_size = end; 1147 1148 if (off < size) { 1149 objset_t *os = zfsvfs->z_os; 1150 uint64_t rlen = len; 1151 1152 if (len == 0) 1153 rlen = -1; 1154 else if (end > size) 1155 rlen = size - off; 1156 VERIFY(0 == dmu_free_range(os, zp->z_id, off, rlen, tx)); 1157 } 1158 1159 if (log) { 1160 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 1161 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1162 } 1163 1164 zfs_range_unlock(rl); 1165 1166 dmu_tx_commit(tx); 1167 1168 /* 1169 * Clear any mapped pages in the truncated region. This has to 1170 * happen outside of the transaction to avoid the possibility of 1171 * a deadlock with someone trying to push a page that we are 1172 * about to invalidate. 1173 */ 1174 rw_enter(&zp->z_map_lock, RW_WRITER); 1175 if (off < size && vn_has_cached_data(vp)) { 1176 page_t *pp; 1177 uint64_t start = off & PAGEMASK; 1178 int poff = off & PAGEOFFSET; 1179 1180 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1181 /* 1182 * We need to zero a partial page. 1183 */ 1184 pagezero(pp, poff, PAGESIZE - poff); 1185 start += PAGESIZE; 1186 page_unlock(pp); 1187 } 1188 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1189 B_INVAL | B_TRUNC, NULL); 1190 ASSERT(error == 0); 1191 } 1192 rw_exit(&zp->z_map_lock); 1193 1194 return (0); 1195 } 1196 1197 void 1198 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1199 { 1200 zfsvfs_t zfsvfs; 1201 uint64_t moid, doid; 1202 uint64_t version = 0; 1203 uint64_t sense = ZFS_CASE_SENSITIVE; 1204 uint64_t norm = 0; 1205 nvpair_t *elem; 1206 int error; 1207 znode_t *rootzp = NULL; 1208 vnode_t *vp; 1209 vattr_t vattr; 1210 znode_t *zp; 1211 1212 /* 1213 * First attempt to create master node. 1214 */ 1215 /* 1216 * In an empty objset, there are no blocks to read and thus 1217 * there can be no i/o errors (which we assert below). 1218 */ 1219 moid = MASTER_NODE_OBJ; 1220 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1221 DMU_OT_NONE, 0, tx); 1222 ASSERT(error == 0); 1223 1224 /* 1225 * Set starting attributes. 1226 */ 1227 elem = NULL; 1228 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1229 /* For the moment we expect all zpl props to be uint64_ts */ 1230 uint64_t val; 1231 char *name; 1232 1233 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1234 ASSERT(nvpair_value_uint64(elem, &val) == 0); 1235 name = nvpair_name(elem); 1236 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1237 version = val; 1238 error = zap_update(os, moid, ZPL_VERSION_STR, 1239 8, 1, &version, tx); 1240 } else { 1241 error = zap_update(os, moid, name, 8, 1, &val, tx); 1242 } 1243 ASSERT(error == 0); 1244 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1245 norm = val; 1246 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1247 sense = val; 1248 } 1249 ASSERT(version != 0); 1250 1251 /* 1252 * Create a delete queue. 1253 */ 1254 doid = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1255 1256 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &doid, tx); 1257 ASSERT(error == 0); 1258 1259 /* 1260 * Create root znode. Create minimal znode/vnode/zfsvfs 1261 * to allow zfs_mknode to work. 1262 */ 1263 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1264 vattr.va_type = VDIR; 1265 vattr.va_mode = S_IFDIR|0755; 1266 vattr.va_uid = crgetuid(cr); 1267 vattr.va_gid = crgetgid(cr); 1268 1269 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1270 rootzp->z_zfsvfs = &zfsvfs; 1271 rootzp->z_unlinked = 0; 1272 rootzp->z_atime_dirty = 0; 1273 1274 vp = ZTOV(rootzp); 1275 vn_reinit(vp); 1276 vp->v_type = VDIR; 1277 1278 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1279 1280 zfsvfs.z_os = os; 1281 zfsvfs.z_assign = TXG_NOWAIT; 1282 zfsvfs.z_parent = &zfsvfs; 1283 zfsvfs.z_version = version; 1284 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1285 zfsvfs.z_norm = norm; 1286 /* 1287 * Fold case on file systems that are always or sometimes case 1288 * insensitive. 1289 */ 1290 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1291 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1292 1293 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1294 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1295 offsetof(znode_t, z_link_node)); 1296 1297 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, 1298 &zp, 0, NULL, NULL); 1299 VN_RELE(ZTOV(zp)); 1300 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1301 ASSERT(error == 0); 1302 1303 ZTOV(rootzp)->v_count = 0; 1304 kmem_cache_free(znode_cache, rootzp); 1305 } 1306 1307 #endif /* _KERNEL */ 1308 /* 1309 * Given an object number, return its parent object number and whether 1310 * or not the object is an extended attribute directory. 1311 */ 1312 static int 1313 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir) 1314 { 1315 dmu_buf_t *db; 1316 dmu_object_info_t doi; 1317 znode_phys_t *zp; 1318 int error; 1319 1320 if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0) 1321 return (error); 1322 1323 dmu_object_info_from_db(db, &doi); 1324 if (doi.doi_bonus_type != DMU_OT_ZNODE || 1325 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1326 dmu_buf_rele(db, FTAG); 1327 return (EINVAL); 1328 } 1329 1330 zp = db->db_data; 1331 *pobjp = zp->zp_parent; 1332 *is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) && 1333 S_ISDIR(zp->zp_mode); 1334 dmu_buf_rele(db, FTAG); 1335 1336 return (0); 1337 } 1338 1339 int 1340 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 1341 { 1342 char *path = buf + len - 1; 1343 int error; 1344 1345 *path = '\0'; 1346 1347 for (;;) { 1348 uint64_t pobj; 1349 char component[MAXNAMELEN + 2]; 1350 size_t complen; 1351 int is_xattrdir; 1352 1353 if ((error = zfs_obj_to_pobj(osp, obj, &pobj, 1354 &is_xattrdir)) != 0) 1355 break; 1356 1357 if (pobj == obj) { 1358 if (path[0] != '/') 1359 *--path = '/'; 1360 break; 1361 } 1362 1363 component[0] = '/'; 1364 if (is_xattrdir) { 1365 (void) sprintf(component + 1, "<xattrdir>"); 1366 } else { 1367 error = zap_value_search(osp, pobj, obj, 1368 ZFS_DIRENT_OBJ(-1ULL), component + 1); 1369 if (error != 0) 1370 break; 1371 } 1372 1373 complen = strlen(component); 1374 path -= complen; 1375 ASSERT(path >= buf); 1376 bcopy(component, path, complen); 1377 obj = pobj; 1378 } 1379 1380 if (error == 0) 1381 (void) memmove(buf, path, buf + len - path); 1382 return (error); 1383 } 1384