1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #ifdef _KERNEL 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/time.h> 32 #include <sys/systm.h> 33 #include <sys/sysmacros.h> 34 #include <sys/resource.h> 35 #include <sys/mntent.h> 36 #include <sys/mkdev.h> 37 #include <sys/u8_textprep.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/vfs.h> 40 #include <sys/vfs_opreg.h> 41 #include <sys/vnode.h> 42 #include <sys/file.h> 43 #include <sys/kmem.h> 44 #include <sys/errno.h> 45 #include <sys/unistd.h> 46 #include <sys/mode.h> 47 #include <sys/atomic.h> 48 #include <vm/pvn.h> 49 #include "fs/fs_subr.h" 50 #include <sys/zfs_dir.h> 51 #include <sys/zfs_acl.h> 52 #include <sys/zfs_ioctl.h> 53 #include <sys/zfs_rlock.h> 54 #include <sys/zfs_fuid.h> 55 #include <sys/dnode.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/kidmap.h> 58 #endif /* _KERNEL */ 59 60 #include <sys/dmu.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/refcount.h> 63 #include <sys/stat.h> 64 #include <sys/zap.h> 65 #include <sys/zfs_znode.h> 66 #include <sys/sa.h> 67 #include <sys/zfs_sa.h> 68 #include <sys/zfs_stat.h> 69 70 #include "zfs_prop.h" 71 #include "zfs_comutil.h" 72 73 /* 74 * Define ZNODE_STATS to turn on statistic gathering. By default, it is only 75 * turned on when DEBUG is also defined. 76 */ 77 #ifdef DEBUG 78 #define ZNODE_STATS 79 #endif /* DEBUG */ 80 81 #ifdef ZNODE_STATS 82 #define ZNODE_STAT_ADD(stat) ((stat)++) 83 #else 84 #define ZNODE_STAT_ADD(stat) /* nothing */ 85 #endif /* ZNODE_STATS */ 86 87 /* 88 * Functions needed for userland (ie: libzpool) are not put under 89 * #ifdef_KERNEL; the rest of the functions have dependencies 90 * (such as VFS logic) that will not compile easily in userland. 91 */ 92 #ifdef _KERNEL 93 /* 94 * Needed to close a small window in zfs_znode_move() that allows the zfsvfs to 95 * be freed before it can be safely accessed. 96 */ 97 krwlock_t zfsvfs_lock; 98 99 static kmem_cache_t *znode_cache = NULL; 100 101 /*ARGSUSED*/ 102 static void 103 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr) 104 { 105 /* 106 * We should never drop all dbuf refs without first clearing 107 * the eviction callback. 108 */ 109 panic("evicting znode %p\n", user_ptr); 110 } 111 112 /*ARGSUSED*/ 113 static int 114 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags) 115 { 116 znode_t *zp = buf; 117 118 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 119 120 zp->z_vnode = vn_alloc(kmflags); 121 if (zp->z_vnode == NULL) { 122 return (-1); 123 } 124 ZTOV(zp)->v_data = zp; 125 126 list_link_init(&zp->z_link_node); 127 128 mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL); 129 rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL); 130 rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL); 131 mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL); 132 133 mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL); 134 avl_create(&zp->z_range_avl, zfs_range_compare, 135 sizeof (rl_t), offsetof(rl_t, r_node)); 136 137 zp->z_dirlocks = NULL; 138 zp->z_acl_cached = NULL; 139 zp->z_moved = 0; 140 return (0); 141 } 142 143 /*ARGSUSED*/ 144 static void 145 zfs_znode_cache_destructor(void *buf, void *arg) 146 { 147 znode_t *zp = buf; 148 149 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 150 ASSERT(ZTOV(zp)->v_data == zp); 151 vn_free(ZTOV(zp)); 152 ASSERT(!list_link_active(&zp->z_link_node)); 153 mutex_destroy(&zp->z_lock); 154 rw_destroy(&zp->z_parent_lock); 155 rw_destroy(&zp->z_name_lock); 156 mutex_destroy(&zp->z_acl_lock); 157 avl_destroy(&zp->z_range_avl); 158 mutex_destroy(&zp->z_range_lock); 159 160 ASSERT(zp->z_dirlocks == NULL); 161 ASSERT(zp->z_acl_cached == NULL); 162 } 163 164 #ifdef ZNODE_STATS 165 static struct { 166 uint64_t zms_zfsvfs_invalid; 167 uint64_t zms_zfsvfs_recheck1; 168 uint64_t zms_zfsvfs_unmounted; 169 uint64_t zms_zfsvfs_recheck2; 170 uint64_t zms_obj_held; 171 uint64_t zms_vnode_locked; 172 uint64_t zms_not_only_dnlc; 173 } znode_move_stats; 174 #endif /* ZNODE_STATS */ 175 176 static void 177 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp) 178 { 179 vnode_t *vp; 180 181 /* Copy fields. */ 182 nzp->z_zfsvfs = ozp->z_zfsvfs; 183 184 /* Swap vnodes. */ 185 vp = nzp->z_vnode; 186 nzp->z_vnode = ozp->z_vnode; 187 ozp->z_vnode = vp; /* let destructor free the overwritten vnode */ 188 ZTOV(ozp)->v_data = ozp; 189 ZTOV(nzp)->v_data = nzp; 190 191 nzp->z_id = ozp->z_id; 192 ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */ 193 ASSERT(avl_numnodes(&ozp->z_range_avl) == 0); 194 nzp->z_unlinked = ozp->z_unlinked; 195 nzp->z_atime_dirty = ozp->z_atime_dirty; 196 nzp->z_zn_prefetch = ozp->z_zn_prefetch; 197 nzp->z_blksz = ozp->z_blksz; 198 nzp->z_seq = ozp->z_seq; 199 nzp->z_mapcnt = ozp->z_mapcnt; 200 nzp->z_gen = ozp->z_gen; 201 nzp->z_sync_cnt = ozp->z_sync_cnt; 202 nzp->z_is_sa = ozp->z_is_sa; 203 nzp->z_sa_hdl = ozp->z_sa_hdl; 204 bcopy(ozp->z_atime, nzp->z_atime, sizeof (uint64_t) * 2); 205 nzp->z_links = ozp->z_links; 206 nzp->z_size = ozp->z_size; 207 nzp->z_pflags = ozp->z_pflags; 208 nzp->z_uid = ozp->z_uid; 209 nzp->z_gid = ozp->z_gid; 210 nzp->z_mode = ozp->z_mode; 211 212 /* 213 * Since this is just an idle znode and kmem is already dealing with 214 * memory pressure, release any cached ACL. 215 */ 216 if (ozp->z_acl_cached) { 217 zfs_acl_free(ozp->z_acl_cached); 218 ozp->z_acl_cached = NULL; 219 } 220 221 sa_set_userp(nzp->z_sa_hdl, nzp); 222 223 /* 224 * Invalidate the original znode by clearing fields that provide a 225 * pointer back to the znode. Set the low bit of the vfs pointer to 226 * ensure that zfs_znode_move() recognizes the znode as invalid in any 227 * subsequent callback. 228 */ 229 ozp->z_sa_hdl = NULL; 230 POINTER_INVALIDATE(&ozp->z_zfsvfs); 231 232 /* 233 * Mark the znode. 234 */ 235 nzp->z_moved = 1; 236 ozp->z_moved = (uint8_t)-1; 237 } 238 239 /*ARGSUSED*/ 240 static kmem_cbrc_t 241 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg) 242 { 243 znode_t *ozp = buf, *nzp = newbuf; 244 zfsvfs_t *zfsvfs; 245 vnode_t *vp; 246 247 /* 248 * The znode is on the file system's list of known znodes if the vfs 249 * pointer is valid. We set the low bit of the vfs pointer when freeing 250 * the znode to invalidate it, and the memory patterns written by kmem 251 * (baddcafe and deadbeef) set at least one of the two low bits. A newly 252 * created znode sets the vfs pointer last of all to indicate that the 253 * znode is known and in a valid state to be moved by this function. 254 */ 255 zfsvfs = ozp->z_zfsvfs; 256 if (!POINTER_IS_VALID(zfsvfs)) { 257 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid); 258 return (KMEM_CBRC_DONT_KNOW); 259 } 260 261 /* 262 * Close a small window in which it's possible that the filesystem could 263 * be unmounted and freed, and zfsvfs, though valid in the previous 264 * statement, could point to unrelated memory by the time we try to 265 * prevent the filesystem from being unmounted. 266 */ 267 rw_enter(&zfsvfs_lock, RW_WRITER); 268 if (zfsvfs != ozp->z_zfsvfs) { 269 rw_exit(&zfsvfs_lock); 270 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck1); 271 return (KMEM_CBRC_DONT_KNOW); 272 } 273 274 /* 275 * If the znode is still valid, then so is the file system. We know that 276 * no valid file system can be freed while we hold zfsvfs_lock, so we 277 * can safely ensure that the filesystem is not and will not be 278 * unmounted. The next statement is equivalent to ZFS_ENTER(). 279 */ 280 rrm_enter(&zfsvfs->z_teardown_lock, RW_READER, FTAG); 281 if (zfsvfs->z_unmounted) { 282 ZFS_EXIT(zfsvfs); 283 rw_exit(&zfsvfs_lock); 284 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted); 285 return (KMEM_CBRC_DONT_KNOW); 286 } 287 rw_exit(&zfsvfs_lock); 288 289 mutex_enter(&zfsvfs->z_znodes_lock); 290 /* 291 * Recheck the vfs pointer in case the znode was removed just before 292 * acquiring the lock. 293 */ 294 if (zfsvfs != ozp->z_zfsvfs) { 295 mutex_exit(&zfsvfs->z_znodes_lock); 296 ZFS_EXIT(zfsvfs); 297 ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck2); 298 return (KMEM_CBRC_DONT_KNOW); 299 } 300 301 /* 302 * At this point we know that as long as we hold z_znodes_lock, the 303 * znode cannot be freed and fields within the znode can be safely 304 * accessed. Now, prevent a race with zfs_zget(). 305 */ 306 if (ZFS_OBJ_HOLD_TRYENTER(zfsvfs, ozp->z_id) == 0) { 307 mutex_exit(&zfsvfs->z_znodes_lock); 308 ZFS_EXIT(zfsvfs); 309 ZNODE_STAT_ADD(znode_move_stats.zms_obj_held); 310 return (KMEM_CBRC_LATER); 311 } 312 313 vp = ZTOV(ozp); 314 if (mutex_tryenter(&vp->v_lock) == 0) { 315 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 316 mutex_exit(&zfsvfs->z_znodes_lock); 317 ZFS_EXIT(zfsvfs); 318 ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked); 319 return (KMEM_CBRC_LATER); 320 } 321 322 /* Only move znodes that are referenced _only_ by the DNLC. */ 323 if (vp->v_count != 1 || !vn_in_dnlc(vp)) { 324 mutex_exit(&vp->v_lock); 325 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 326 mutex_exit(&zfsvfs->z_znodes_lock); 327 ZFS_EXIT(zfsvfs); 328 ZNODE_STAT_ADD(znode_move_stats.zms_not_only_dnlc); 329 return (KMEM_CBRC_LATER); 330 } 331 332 /* 333 * The znode is known and in a valid state to move. We're holding the 334 * locks needed to execute the critical section. 335 */ 336 zfs_znode_move_impl(ozp, nzp); 337 mutex_exit(&vp->v_lock); 338 ZFS_OBJ_HOLD_EXIT(zfsvfs, ozp->z_id); 339 340 list_link_replace(&ozp->z_link_node, &nzp->z_link_node); 341 mutex_exit(&zfsvfs->z_znodes_lock); 342 ZFS_EXIT(zfsvfs); 343 344 return (KMEM_CBRC_YES); 345 } 346 347 void 348 zfs_znode_init(void) 349 { 350 /* 351 * Initialize zcache 352 */ 353 rw_init(&zfsvfs_lock, NULL, RW_DEFAULT, NULL); 354 ASSERT(znode_cache == NULL); 355 znode_cache = kmem_cache_create("zfs_znode_cache", 356 sizeof (znode_t), 0, zfs_znode_cache_constructor, 357 zfs_znode_cache_destructor, NULL, NULL, NULL, 0); 358 kmem_cache_set_move(znode_cache, zfs_znode_move); 359 } 360 361 void 362 zfs_znode_fini(void) 363 { 364 /* 365 * Cleanup vfs & vnode ops 366 */ 367 zfs_remove_op_tables(); 368 369 /* 370 * Cleanup zcache 371 */ 372 if (znode_cache) 373 kmem_cache_destroy(znode_cache); 374 znode_cache = NULL; 375 rw_destroy(&zfsvfs_lock); 376 } 377 378 struct vnodeops *zfs_dvnodeops; 379 struct vnodeops *zfs_fvnodeops; 380 struct vnodeops *zfs_symvnodeops; 381 struct vnodeops *zfs_xdvnodeops; 382 struct vnodeops *zfs_evnodeops; 383 struct vnodeops *zfs_sharevnodeops; 384 385 void 386 zfs_remove_op_tables() 387 { 388 /* 389 * Remove vfs ops 390 */ 391 ASSERT(zfsfstype); 392 (void) vfs_freevfsops_by_type(zfsfstype); 393 zfsfstype = 0; 394 395 /* 396 * Remove vnode ops 397 */ 398 if (zfs_dvnodeops) 399 vn_freevnodeops(zfs_dvnodeops); 400 if (zfs_fvnodeops) 401 vn_freevnodeops(zfs_fvnodeops); 402 if (zfs_symvnodeops) 403 vn_freevnodeops(zfs_symvnodeops); 404 if (zfs_xdvnodeops) 405 vn_freevnodeops(zfs_xdvnodeops); 406 if (zfs_evnodeops) 407 vn_freevnodeops(zfs_evnodeops); 408 if (zfs_sharevnodeops) 409 vn_freevnodeops(zfs_sharevnodeops); 410 411 zfs_dvnodeops = NULL; 412 zfs_fvnodeops = NULL; 413 zfs_symvnodeops = NULL; 414 zfs_xdvnodeops = NULL; 415 zfs_evnodeops = NULL; 416 zfs_sharevnodeops = NULL; 417 } 418 419 extern const fs_operation_def_t zfs_dvnodeops_template[]; 420 extern const fs_operation_def_t zfs_fvnodeops_template[]; 421 extern const fs_operation_def_t zfs_xdvnodeops_template[]; 422 extern const fs_operation_def_t zfs_symvnodeops_template[]; 423 extern const fs_operation_def_t zfs_evnodeops_template[]; 424 extern const fs_operation_def_t zfs_sharevnodeops_template[]; 425 426 int 427 zfs_create_op_tables() 428 { 429 int error; 430 431 /* 432 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs() 433 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv). 434 * In this case we just return as the ops vectors are already set up. 435 */ 436 if (zfs_dvnodeops) 437 return (0); 438 439 error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template, 440 &zfs_dvnodeops); 441 if (error) 442 return (error); 443 444 error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template, 445 &zfs_fvnodeops); 446 if (error) 447 return (error); 448 449 error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template, 450 &zfs_symvnodeops); 451 if (error) 452 return (error); 453 454 error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template, 455 &zfs_xdvnodeops); 456 if (error) 457 return (error); 458 459 error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template, 460 &zfs_evnodeops); 461 if (error) 462 return (error); 463 464 error = vn_make_ops(MNTTYPE_ZFS, zfs_sharevnodeops_template, 465 &zfs_sharevnodeops); 466 467 return (error); 468 } 469 470 int 471 zfs_create_share_dir(zfsvfs_t *zfsvfs, dmu_tx_t *tx) 472 { 473 zfs_acl_ids_t acl_ids; 474 vattr_t vattr; 475 znode_t *sharezp; 476 vnode_t *vp; 477 znode_t *zp; 478 int error; 479 480 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 481 vattr.va_type = VDIR; 482 vattr.va_mode = S_IFDIR|0555; 483 vattr.va_uid = crgetuid(kcred); 484 vattr.va_gid = crgetgid(kcred); 485 486 sharezp = kmem_cache_alloc(znode_cache, KM_SLEEP); 487 ASSERT(!POINTER_IS_VALID(sharezp->z_zfsvfs)); 488 sharezp->z_moved = 0; 489 sharezp->z_unlinked = 0; 490 sharezp->z_atime_dirty = 0; 491 sharezp->z_zfsvfs = zfsvfs; 492 sharezp->z_is_sa = zfsvfs->z_use_sa; 493 494 vp = ZTOV(sharezp); 495 vn_reinit(vp); 496 vp->v_type = VDIR; 497 498 VERIFY(0 == zfs_acl_ids_create(sharezp, IS_ROOT_NODE, &vattr, 499 kcred, NULL, &acl_ids)); 500 zfs_mknode(sharezp, &vattr, tx, kcred, IS_ROOT_NODE, &zp, &acl_ids); 501 ASSERT3P(zp, ==, sharezp); 502 ASSERT(!vn_in_dnlc(ZTOV(sharezp))); /* not valid to move */ 503 POINTER_INVALIDATE(&sharezp->z_zfsvfs); 504 error = zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 505 ZFS_SHARES_DIR, 8, 1, &sharezp->z_id, tx); 506 zfsvfs->z_shares_dir = sharezp->z_id; 507 508 zfs_acl_ids_free(&acl_ids); 509 ZTOV(sharezp)->v_count = 0; 510 sa_handle_destroy(sharezp->z_sa_hdl); 511 kmem_cache_free(znode_cache, sharezp); 512 513 return (error); 514 } 515 516 /* 517 * define a couple of values we need available 518 * for both 64 and 32 bit environments. 519 */ 520 #ifndef NBITSMINOR64 521 #define NBITSMINOR64 32 522 #endif 523 #ifndef MAXMAJ64 524 #define MAXMAJ64 0xffffffffUL 525 #endif 526 #ifndef MAXMIN64 527 #define MAXMIN64 0xffffffffUL 528 #endif 529 530 /* 531 * Create special expldev for ZFS private use. 532 * Can't use standard expldev since it doesn't do 533 * what we want. The standard expldev() takes a 534 * dev32_t in LP64 and expands it to a long dev_t. 535 * We need an interface that takes a dev32_t in ILP32 536 * and expands it to a long dev_t. 537 */ 538 static uint64_t 539 zfs_expldev(dev_t dev) 540 { 541 #ifndef _LP64 542 major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32; 543 return (((uint64_t)major << NBITSMINOR64) | 544 ((minor_t)dev & MAXMIN32)); 545 #else 546 return (dev); 547 #endif 548 } 549 550 /* 551 * Special cmpldev for ZFS private use. 552 * Can't use standard cmpldev since it takes 553 * a long dev_t and compresses it to dev32_t in 554 * LP64. We need to do a compaction of a long dev_t 555 * to a dev32_t in ILP32. 556 */ 557 dev_t 558 zfs_cmpldev(uint64_t dev) 559 { 560 #ifndef _LP64 561 minor_t minor = (minor_t)dev & MAXMIN64; 562 major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64; 563 564 if (major > MAXMAJ32 || minor > MAXMIN32) 565 return (NODEV32); 566 567 return (((dev32_t)major << NBITSMINOR32) | minor); 568 #else 569 return (dev); 570 #endif 571 } 572 573 static void 574 zfs_znode_sa_init(zfsvfs_t *zfsvfs, znode_t *zp, 575 dmu_buf_t *db, dmu_object_type_t obj_type, sa_handle_t *sa_hdl) 576 { 577 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs)); 578 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id))); 579 580 mutex_enter(&zp->z_lock); 581 582 ASSERT(zp->z_sa_hdl == NULL); 583 ASSERT(zp->z_acl_cached == NULL); 584 if (sa_hdl == NULL) { 585 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, zp, 586 SA_HDL_SHARED, &zp->z_sa_hdl)); 587 } else { 588 zp->z_sa_hdl = sa_hdl; 589 sa_set_userp(sa_hdl, zp); 590 } 591 592 zp->z_is_sa = (obj_type == DMU_OT_SA) ? B_TRUE : B_FALSE; 593 594 /* 595 * Slap on VROOT if we are the root znode 596 */ 597 if (zp->z_id == zfsvfs->z_root) 598 ZTOV(zp)->v_flag |= VROOT; 599 600 mutex_exit(&zp->z_lock); 601 vn_exists(ZTOV(zp)); 602 } 603 604 void 605 zfs_znode_dmu_fini(znode_t *zp) 606 { 607 ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) || 608 zp->z_unlinked || 609 RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock)); 610 611 sa_handle_destroy(zp->z_sa_hdl); 612 zp->z_sa_hdl = NULL; 613 } 614 615 /* 616 * Construct a new znode/vnode and intialize. 617 * 618 * This does not do a call to dmu_set_user() that is 619 * up to the caller to do, in case you don't want to 620 * return the znode 621 */ 622 static znode_t * 623 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz, 624 dmu_object_type_t obj_type, sa_handle_t *hdl) 625 { 626 znode_t *zp; 627 vnode_t *vp; 628 uint64_t mode; 629 uint64_t parent; 630 sa_bulk_attr_t bulk[9]; 631 int count = 0; 632 633 zp = kmem_cache_alloc(znode_cache, KM_SLEEP); 634 635 ASSERT(zp->z_dirlocks == NULL); 636 ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs)); 637 zp->z_moved = 0; 638 639 /* 640 * Defer setting z_zfsvfs until the znode is ready to be a candidate for 641 * the zfs_znode_move() callback. 642 */ 643 zp->z_sa_hdl = NULL; 644 zp->z_unlinked = 0; 645 zp->z_atime_dirty = 0; 646 zp->z_mapcnt = 0; 647 zp->z_id = db->db_object; 648 zp->z_blksz = blksz; 649 zp->z_seq = 0x7A4653; 650 zp->z_sync_cnt = 0; 651 652 vp = ZTOV(zp); 653 vn_reinit(vp); 654 655 zfs_znode_sa_init(zfsvfs, zp, db, obj_type, hdl); 656 657 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8); 658 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, &zp->z_gen, 8); 659 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 660 &zp->z_size, 8); 661 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 662 &zp->z_links, 8); 663 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 664 &zp->z_pflags, 8); 665 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PARENT(zfsvfs), NULL, &parent, 8); 666 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 667 &zp->z_atime, 16); 668 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 669 &zp->z_uid, 8); 670 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 671 &zp->z_gid, 8); 672 673 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count) != 0 || zp->z_gen == 0) { 674 if (hdl == NULL) 675 sa_handle_destroy(zp->z_sa_hdl); 676 kmem_cache_free(znode_cache, zp); 677 return (NULL); 678 } 679 680 zp->z_mode = mode; 681 vp->v_vfsp = zfsvfs->z_parent->z_vfs; 682 683 vp->v_type = IFTOVT((mode_t)mode); 684 685 switch (vp->v_type) { 686 case VDIR: 687 if (zp->z_pflags & ZFS_XATTR) { 688 vn_setops(vp, zfs_xdvnodeops); 689 vp->v_flag |= V_XATTRDIR; 690 } else { 691 vn_setops(vp, zfs_dvnodeops); 692 } 693 zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */ 694 break; 695 case VBLK: 696 case VCHR: 697 { 698 uint64_t rdev; 699 VERIFY(sa_lookup(zp->z_sa_hdl, SA_ZPL_RDEV(zfsvfs), 700 &rdev, sizeof (rdev)) == 0); 701 702 vp->v_rdev = zfs_cmpldev(rdev); 703 } 704 /*FALLTHROUGH*/ 705 case VFIFO: 706 case VSOCK: 707 case VDOOR: 708 vn_setops(vp, zfs_fvnodeops); 709 break; 710 case VREG: 711 vp->v_flag |= VMODSORT; 712 if (parent == zfsvfs->z_shares_dir) { 713 ASSERT(zp->z_uid == 0 && zp->z_gid == 0); 714 vn_setops(vp, zfs_sharevnodeops); 715 } else { 716 vn_setops(vp, zfs_fvnodeops); 717 } 718 break; 719 case VLNK: 720 vn_setops(vp, zfs_symvnodeops); 721 break; 722 default: 723 vn_setops(vp, zfs_evnodeops); 724 break; 725 } 726 727 mutex_enter(&zfsvfs->z_znodes_lock); 728 list_insert_tail(&zfsvfs->z_all_znodes, zp); 729 membar_producer(); 730 /* 731 * Everything else must be valid before assigning z_zfsvfs makes the 732 * znode eligible for zfs_znode_move(). 733 */ 734 zp->z_zfsvfs = zfsvfs; 735 mutex_exit(&zfsvfs->z_znodes_lock); 736 737 VFS_HOLD(zfsvfs->z_vfs); 738 return (zp); 739 } 740 741 static uint64_t empty_xattr; 742 static uint64_t pad[4]; 743 static zfs_acl_phys_t acl_phys; 744 /* 745 * Create a new DMU object to hold a zfs znode. 746 * 747 * IN: dzp - parent directory for new znode 748 * vap - file attributes for new znode 749 * tx - dmu transaction id for zap operations 750 * cr - credentials of caller 751 * flag - flags: 752 * IS_ROOT_NODE - new object will be root 753 * IS_XATTR - new object is an attribute 754 * bonuslen - length of bonus buffer 755 * setaclp - File/Dir initial ACL 756 * fuidp - Tracks fuid allocation. 757 * 758 * OUT: zpp - allocated znode 759 * 760 */ 761 void 762 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr, 763 uint_t flag, znode_t **zpp, zfs_acl_ids_t *acl_ids) 764 { 765 uint64_t crtime[2], atime[2], mtime[2], ctime[2]; 766 uint64_t mode, size, links, parent, pflags; 767 uint64_t dzp_pflags = 0; 768 uint64_t rdev = 0; 769 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 770 dmu_buf_t *db; 771 timestruc_t now; 772 uint64_t gen, obj; 773 int bonuslen; 774 sa_handle_t *sa_hdl; 775 dmu_object_type_t obj_type; 776 sa_bulk_attr_t sa_attrs[ZPL_END]; 777 int cnt = 0; 778 zfs_acl_locator_cb_t locate = { 0 }; 779 780 ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE)); 781 782 if (zfsvfs->z_replay) { 783 obj = vap->va_nodeid; 784 now = vap->va_ctime; /* see zfs_replay_create() */ 785 gen = vap->va_nblocks; /* ditto */ 786 } else { 787 obj = 0; 788 gethrestime(&now); 789 gen = dmu_tx_get_txg(tx); 790 } 791 792 obj_type = zfsvfs->z_use_sa ? DMU_OT_SA : DMU_OT_ZNODE; 793 bonuslen = (obj_type == DMU_OT_SA) ? 794 DN_MAX_BONUSLEN : ZFS_OLD_ZNODE_PHYS_SIZE; 795 796 /* 797 * Create a new DMU object. 798 */ 799 /* 800 * There's currently no mechanism for pre-reading the blocks that will 801 * be needed to allocate a new object, so we accept the small chance 802 * that there will be an i/o error and we will fail one of the 803 * assertions below. 804 */ 805 if (vap->va_type == VDIR) { 806 if (zfsvfs->z_replay) { 807 VERIFY0(zap_create_claim_norm(zfsvfs->z_os, obj, 808 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 809 obj_type, bonuslen, tx)); 810 } else { 811 obj = zap_create_norm(zfsvfs->z_os, 812 zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS, 813 obj_type, bonuslen, tx); 814 } 815 } else { 816 if (zfsvfs->z_replay) { 817 VERIFY0(dmu_object_claim(zfsvfs->z_os, obj, 818 DMU_OT_PLAIN_FILE_CONTENTS, 0, 819 obj_type, bonuslen, tx)); 820 } else { 821 obj = dmu_object_alloc(zfsvfs->z_os, 822 DMU_OT_PLAIN_FILE_CONTENTS, 0, 823 obj_type, bonuslen, tx); 824 } 825 } 826 827 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 828 VERIFY(0 == sa_buf_hold(zfsvfs->z_os, obj, NULL, &db)); 829 830 /* 831 * If this is the root, fix up the half-initialized parent pointer 832 * to reference the just-allocated physical data area. 833 */ 834 if (flag & IS_ROOT_NODE) { 835 dzp->z_id = obj; 836 } else { 837 dzp_pflags = dzp->z_pflags; 838 } 839 840 /* 841 * If parent is an xattr, so am I. 842 */ 843 if (dzp_pflags & ZFS_XATTR) { 844 flag |= IS_XATTR; 845 } 846 847 if (zfsvfs->z_use_fuids) 848 pflags = ZFS_ARCHIVE | ZFS_AV_MODIFIED; 849 else 850 pflags = 0; 851 852 if (vap->va_type == VDIR) { 853 size = 2; /* contents ("." and "..") */ 854 links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1; 855 } else { 856 size = links = 0; 857 } 858 859 if (vap->va_type == VBLK || vap->va_type == VCHR) { 860 rdev = zfs_expldev(vap->va_rdev); 861 } 862 863 parent = dzp->z_id; 864 mode = acl_ids->z_mode; 865 if (flag & IS_XATTR) 866 pflags |= ZFS_XATTR; 867 868 /* 869 * No execs denied will be deterimed when zfs_mode_compute() is called. 870 */ 871 pflags |= acl_ids->z_aclp->z_hints & 872 (ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|ZFS_ACL_AUTO_INHERIT| 873 ZFS_ACL_DEFAULTED|ZFS_ACL_PROTECTED); 874 875 ZFS_TIME_ENCODE(&now, crtime); 876 ZFS_TIME_ENCODE(&now, ctime); 877 878 if (vap->va_mask & AT_ATIME) { 879 ZFS_TIME_ENCODE(&vap->va_atime, atime); 880 } else { 881 ZFS_TIME_ENCODE(&now, atime); 882 } 883 884 if (vap->va_mask & AT_MTIME) { 885 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 886 } else { 887 ZFS_TIME_ENCODE(&now, mtime); 888 } 889 890 /* Now add in all of the "SA" attributes */ 891 VERIFY(0 == sa_handle_get_from_db(zfsvfs->z_os, db, NULL, SA_HDL_SHARED, 892 &sa_hdl)); 893 894 /* 895 * Setup the array of attributes to be replaced/set on the new file 896 * 897 * order for DMU_OT_ZNODE is critical since it needs to be constructed 898 * in the old znode_phys_t format. Don't change this ordering 899 */ 900 901 if (obj_type == DMU_OT_ZNODE) { 902 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 903 NULL, &atime, 16); 904 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 905 NULL, &mtime, 16); 906 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 907 NULL, &ctime, 16); 908 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 909 NULL, &crtime, 16); 910 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 911 NULL, &gen, 8); 912 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 913 NULL, &mode, 8); 914 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 915 NULL, &size, 8); 916 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 917 NULL, &parent, 8); 918 } else { 919 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MODE(zfsvfs), 920 NULL, &mode, 8); 921 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_SIZE(zfsvfs), 922 NULL, &size, 8); 923 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GEN(zfsvfs), 924 NULL, &gen, 8); 925 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 926 &acl_ids->z_fuid, 8); 927 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 928 &acl_ids->z_fgid, 8); 929 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PARENT(zfsvfs), 930 NULL, &parent, 8); 931 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 932 NULL, &pflags, 8); 933 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ATIME(zfsvfs), 934 NULL, &atime, 16); 935 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_MTIME(zfsvfs), 936 NULL, &mtime, 16); 937 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CTIME(zfsvfs), 938 NULL, &ctime, 16); 939 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_CRTIME(zfsvfs), 940 NULL, &crtime, 16); 941 } 942 943 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_LINKS(zfsvfs), NULL, &links, 8); 944 945 if (obj_type == DMU_OT_ZNODE) { 946 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_XATTR(zfsvfs), NULL, 947 &empty_xattr, 8); 948 } 949 if (obj_type == DMU_OT_ZNODE || 950 (vap->va_type == VBLK || vap->va_type == VCHR)) { 951 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_RDEV(zfsvfs), 952 NULL, &rdev, 8); 953 954 } 955 if (obj_type == DMU_OT_ZNODE) { 956 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_FLAGS(zfsvfs), 957 NULL, &pflags, 8); 958 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_UID(zfsvfs), NULL, 959 &acl_ids->z_fuid, 8); 960 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_GID(zfsvfs), NULL, 961 &acl_ids->z_fgid, 8); 962 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_PAD(zfsvfs), NULL, pad, 963 sizeof (uint64_t) * 4); 964 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_ZNODE_ACL(zfsvfs), NULL, 965 &acl_phys, sizeof (zfs_acl_phys_t)); 966 } else if (acl_ids->z_aclp->z_version >= ZFS_ACL_VERSION_FUID) { 967 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_COUNT(zfsvfs), NULL, 968 &acl_ids->z_aclp->z_acl_count, 8); 969 locate.cb_aclp = acl_ids->z_aclp; 970 SA_ADD_BULK_ATTR(sa_attrs, cnt, SA_ZPL_DACL_ACES(zfsvfs), 971 zfs_acl_data_locator, &locate, 972 acl_ids->z_aclp->z_acl_bytes); 973 mode = zfs_mode_compute(mode, acl_ids->z_aclp, &pflags, 974 acl_ids->z_fuid, acl_ids->z_fgid); 975 } 976 977 VERIFY(sa_replace_all_by_template(sa_hdl, sa_attrs, cnt, tx) == 0); 978 979 if (!(flag & IS_ROOT_NODE)) { 980 *zpp = zfs_znode_alloc(zfsvfs, db, 0, obj_type, sa_hdl); 981 ASSERT(*zpp != NULL); 982 } else { 983 /* 984 * If we are creating the root node, the "parent" we 985 * passed in is the znode for the root. 986 */ 987 *zpp = dzp; 988 989 (*zpp)->z_sa_hdl = sa_hdl; 990 } 991 992 (*zpp)->z_pflags = pflags; 993 (*zpp)->z_mode = mode; 994 995 if (vap->va_mask & AT_XVATTR) 996 zfs_xvattr_set(*zpp, (xvattr_t *)vap, tx); 997 998 if (obj_type == DMU_OT_ZNODE || 999 acl_ids->z_aclp->z_version < ZFS_ACL_VERSION_FUID) { 1000 VERIFY0(zfs_aclset_common(*zpp, acl_ids->z_aclp, cr, tx)); 1001 } 1002 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1003 } 1004 1005 /* 1006 * Update in-core attributes. It is assumed the caller will be doing an 1007 * sa_bulk_update to push the changes out. 1008 */ 1009 void 1010 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap, dmu_tx_t *tx) 1011 { 1012 xoptattr_t *xoap; 1013 1014 xoap = xva_getxoptattr(xvap); 1015 ASSERT(xoap); 1016 1017 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 1018 uint64_t times[2]; 1019 ZFS_TIME_ENCODE(&xoap->xoa_createtime, times); 1020 (void) sa_update(zp->z_sa_hdl, SA_ZPL_CRTIME(zp->z_zfsvfs), 1021 ×, sizeof (times), tx); 1022 XVA_SET_RTN(xvap, XAT_CREATETIME); 1023 } 1024 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 1025 ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly, 1026 zp->z_pflags, tx); 1027 XVA_SET_RTN(xvap, XAT_READONLY); 1028 } 1029 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 1030 ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden, 1031 zp->z_pflags, tx); 1032 XVA_SET_RTN(xvap, XAT_HIDDEN); 1033 } 1034 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 1035 ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system, 1036 zp->z_pflags, tx); 1037 XVA_SET_RTN(xvap, XAT_SYSTEM); 1038 } 1039 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 1040 ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive, 1041 zp->z_pflags, tx); 1042 XVA_SET_RTN(xvap, XAT_ARCHIVE); 1043 } 1044 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 1045 ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable, 1046 zp->z_pflags, tx); 1047 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 1048 } 1049 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 1050 ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink, 1051 zp->z_pflags, tx); 1052 XVA_SET_RTN(xvap, XAT_NOUNLINK); 1053 } 1054 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 1055 ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly, 1056 zp->z_pflags, tx); 1057 XVA_SET_RTN(xvap, XAT_APPENDONLY); 1058 } 1059 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 1060 ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump, 1061 zp->z_pflags, tx); 1062 XVA_SET_RTN(xvap, XAT_NODUMP); 1063 } 1064 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 1065 ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque, 1066 zp->z_pflags, tx); 1067 XVA_SET_RTN(xvap, XAT_OPAQUE); 1068 } 1069 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 1070 ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED, 1071 xoap->xoa_av_quarantined, zp->z_pflags, tx); 1072 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 1073 } 1074 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 1075 ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified, 1076 zp->z_pflags, tx); 1077 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 1078 } 1079 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 1080 zfs_sa_set_scanstamp(zp, xvap, tx); 1081 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 1082 } 1083 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 1084 ZFS_ATTR_SET(zp, ZFS_REPARSE, xoap->xoa_reparse, 1085 zp->z_pflags, tx); 1086 XVA_SET_RTN(xvap, XAT_REPARSE); 1087 } 1088 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 1089 ZFS_ATTR_SET(zp, ZFS_OFFLINE, xoap->xoa_offline, 1090 zp->z_pflags, tx); 1091 XVA_SET_RTN(xvap, XAT_OFFLINE); 1092 } 1093 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 1094 ZFS_ATTR_SET(zp, ZFS_SPARSE, xoap->xoa_sparse, 1095 zp->z_pflags, tx); 1096 XVA_SET_RTN(xvap, XAT_SPARSE); 1097 } 1098 } 1099 1100 int 1101 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp) 1102 { 1103 dmu_object_info_t doi; 1104 dmu_buf_t *db; 1105 znode_t *zp; 1106 int err; 1107 sa_handle_t *hdl; 1108 1109 *zpp = NULL; 1110 1111 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1112 1113 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1114 if (err) { 1115 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1116 return (err); 1117 } 1118 1119 dmu_object_info_from_db(db, &doi); 1120 if (doi.doi_bonus_type != DMU_OT_SA && 1121 (doi.doi_bonus_type != DMU_OT_ZNODE || 1122 (doi.doi_bonus_type == DMU_OT_ZNODE && 1123 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1124 sa_buf_rele(db, NULL); 1125 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1126 return (SET_ERROR(EINVAL)); 1127 } 1128 1129 hdl = dmu_buf_get_user(db); 1130 if (hdl != NULL) { 1131 zp = sa_get_userdata(hdl); 1132 1133 1134 /* 1135 * Since "SA" does immediate eviction we 1136 * should never find a sa handle that doesn't 1137 * know about the znode. 1138 */ 1139 1140 ASSERT3P(zp, !=, NULL); 1141 1142 mutex_enter(&zp->z_lock); 1143 ASSERT3U(zp->z_id, ==, obj_num); 1144 if (zp->z_unlinked) { 1145 err = SET_ERROR(ENOENT); 1146 } else { 1147 VN_HOLD(ZTOV(zp)); 1148 *zpp = zp; 1149 err = 0; 1150 } 1151 sa_buf_rele(db, NULL); 1152 mutex_exit(&zp->z_lock); 1153 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1154 return (err); 1155 } 1156 1157 /* 1158 * Not found create new znode/vnode 1159 * but only if file exists. 1160 * 1161 * There is a small window where zfs_vget() could 1162 * find this object while a file create is still in 1163 * progress. This is checked for in zfs_znode_alloc() 1164 * 1165 * if zfs_znode_alloc() fails it will drop the hold on the 1166 * bonus buffer. 1167 */ 1168 zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size, 1169 doi.doi_bonus_type, NULL); 1170 if (zp == NULL) { 1171 err = SET_ERROR(ENOENT); 1172 } else { 1173 *zpp = zp; 1174 } 1175 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1176 return (err); 1177 } 1178 1179 int 1180 zfs_rezget(znode_t *zp) 1181 { 1182 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1183 dmu_object_info_t doi; 1184 dmu_buf_t *db; 1185 uint64_t obj_num = zp->z_id; 1186 uint64_t mode; 1187 sa_bulk_attr_t bulk[8]; 1188 int err; 1189 int count = 0; 1190 uint64_t gen; 1191 1192 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num); 1193 1194 mutex_enter(&zp->z_acl_lock); 1195 if (zp->z_acl_cached) { 1196 zfs_acl_free(zp->z_acl_cached); 1197 zp->z_acl_cached = NULL; 1198 } 1199 1200 mutex_exit(&zp->z_acl_lock); 1201 ASSERT(zp->z_sa_hdl == NULL); 1202 err = sa_buf_hold(zfsvfs->z_os, obj_num, NULL, &db); 1203 if (err) { 1204 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1205 return (err); 1206 } 1207 1208 dmu_object_info_from_db(db, &doi); 1209 if (doi.doi_bonus_type != DMU_OT_SA && 1210 (doi.doi_bonus_type != DMU_OT_ZNODE || 1211 (doi.doi_bonus_type == DMU_OT_ZNODE && 1212 doi.doi_bonus_size < sizeof (znode_phys_t)))) { 1213 sa_buf_rele(db, NULL); 1214 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1215 return (SET_ERROR(EINVAL)); 1216 } 1217 1218 zfs_znode_sa_init(zfsvfs, zp, db, doi.doi_bonus_type, NULL); 1219 1220 /* reload cached values */ 1221 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GEN(zfsvfs), NULL, 1222 &gen, sizeof (gen)); 1223 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 1224 &zp->z_size, sizeof (zp->z_size)); 1225 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_LINKS(zfsvfs), NULL, 1226 &zp->z_links, sizeof (zp->z_links)); 1227 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 1228 &zp->z_pflags, sizeof (zp->z_pflags)); 1229 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 1230 &zp->z_atime, sizeof (zp->z_atime)); 1231 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 1232 &zp->z_uid, sizeof (zp->z_uid)); 1233 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL, 1234 &zp->z_gid, sizeof (zp->z_gid)); 1235 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 1236 &mode, sizeof (mode)); 1237 1238 if (sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) { 1239 zfs_znode_dmu_fini(zp); 1240 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1241 return (SET_ERROR(EIO)); 1242 } 1243 1244 zp->z_mode = mode; 1245 1246 if (gen != zp->z_gen) { 1247 zfs_znode_dmu_fini(zp); 1248 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1249 return (SET_ERROR(EIO)); 1250 } 1251 1252 zp->z_unlinked = (zp->z_links == 0); 1253 zp->z_blksz = doi.doi_data_block_size; 1254 1255 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num); 1256 1257 return (0); 1258 } 1259 1260 void 1261 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx) 1262 { 1263 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1264 objset_t *os = zfsvfs->z_os; 1265 uint64_t obj = zp->z_id; 1266 uint64_t acl_obj = zfs_external_acl(zp); 1267 1268 ZFS_OBJ_HOLD_ENTER(zfsvfs, obj); 1269 if (acl_obj) { 1270 VERIFY(!zp->z_is_sa); 1271 VERIFY(0 == dmu_object_free(os, acl_obj, tx)); 1272 } 1273 VERIFY(0 == dmu_object_free(os, obj, tx)); 1274 zfs_znode_dmu_fini(zp); 1275 ZFS_OBJ_HOLD_EXIT(zfsvfs, obj); 1276 zfs_znode_free(zp); 1277 } 1278 1279 void 1280 zfs_zinactive(znode_t *zp) 1281 { 1282 vnode_t *vp = ZTOV(zp); 1283 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1284 uint64_t z_id = zp->z_id; 1285 1286 ASSERT(zp->z_sa_hdl); 1287 1288 /* 1289 * Don't allow a zfs_zget() while were trying to release this znode 1290 */ 1291 ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id); 1292 1293 mutex_enter(&zp->z_lock); 1294 mutex_enter(&vp->v_lock); 1295 vp->v_count--; 1296 if (vp->v_count > 0 || vn_has_cached_data(vp)) { 1297 /* 1298 * If the hold count is greater than zero, somebody has 1299 * obtained a new reference on this znode while we were 1300 * processing it here, so we are done. If we still have 1301 * mapped pages then we are also done, since we don't 1302 * want to inactivate the znode until the pages get pushed. 1303 * 1304 * XXX - if vn_has_cached_data(vp) is true, but count == 0, 1305 * this seems like it would leave the znode hanging with 1306 * no chance to go inactive... 1307 */ 1308 mutex_exit(&vp->v_lock); 1309 mutex_exit(&zp->z_lock); 1310 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1311 return; 1312 } 1313 mutex_exit(&vp->v_lock); 1314 1315 /* 1316 * If this was the last reference to a file with no links, 1317 * remove the file from the file system. 1318 */ 1319 if (zp->z_unlinked) { 1320 mutex_exit(&zp->z_lock); 1321 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1322 zfs_rmnode(zp); 1323 return; 1324 } 1325 1326 mutex_exit(&zp->z_lock); 1327 zfs_znode_dmu_fini(zp); 1328 ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id); 1329 zfs_znode_free(zp); 1330 } 1331 1332 void 1333 zfs_znode_free(znode_t *zp) 1334 { 1335 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1336 1337 vn_invalid(ZTOV(zp)); 1338 1339 ASSERT(ZTOV(zp)->v_count == 0); 1340 1341 mutex_enter(&zfsvfs->z_znodes_lock); 1342 POINTER_INVALIDATE(&zp->z_zfsvfs); 1343 list_remove(&zfsvfs->z_all_znodes, zp); 1344 mutex_exit(&zfsvfs->z_znodes_lock); 1345 1346 if (zp->z_acl_cached) { 1347 zfs_acl_free(zp->z_acl_cached); 1348 zp->z_acl_cached = NULL; 1349 } 1350 1351 kmem_cache_free(znode_cache, zp); 1352 1353 VFS_RELE(zfsvfs->z_vfs); 1354 } 1355 1356 void 1357 zfs_tstamp_update_setup(znode_t *zp, uint_t flag, uint64_t mtime[2], 1358 uint64_t ctime[2], boolean_t have_tx) 1359 { 1360 timestruc_t now; 1361 1362 gethrestime(&now); 1363 1364 if (have_tx) { /* will sa_bulk_update happen really soon? */ 1365 zp->z_atime_dirty = 0; 1366 zp->z_seq++; 1367 } else { 1368 zp->z_atime_dirty = 1; 1369 } 1370 1371 if (flag & AT_ATIME) { 1372 ZFS_TIME_ENCODE(&now, zp->z_atime); 1373 } 1374 1375 if (flag & AT_MTIME) { 1376 ZFS_TIME_ENCODE(&now, mtime); 1377 if (zp->z_zfsvfs->z_use_fuids) { 1378 zp->z_pflags |= (ZFS_ARCHIVE | 1379 ZFS_AV_MODIFIED); 1380 } 1381 } 1382 1383 if (flag & AT_CTIME) { 1384 ZFS_TIME_ENCODE(&now, ctime); 1385 if (zp->z_zfsvfs->z_use_fuids) 1386 zp->z_pflags |= ZFS_ARCHIVE; 1387 } 1388 } 1389 1390 /* 1391 * Grow the block size for a file. 1392 * 1393 * IN: zp - znode of file to free data in. 1394 * size - requested block size 1395 * tx - open transaction. 1396 * 1397 * NOTE: this function assumes that the znode is write locked. 1398 */ 1399 void 1400 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx) 1401 { 1402 int error; 1403 u_longlong_t dummy; 1404 1405 if (size <= zp->z_blksz) 1406 return; 1407 /* 1408 * If the file size is already greater than the current blocksize, 1409 * we will not grow. If there is more than one block in a file, 1410 * the blocksize cannot change. 1411 */ 1412 if (zp->z_blksz && zp->z_size > zp->z_blksz) 1413 return; 1414 1415 error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id, 1416 size, 0, tx); 1417 1418 if (error == ENOTSUP) 1419 return; 1420 ASSERT0(error); 1421 1422 /* What blocksize did we actually get? */ 1423 dmu_object_size_from_db(sa_get_db(zp->z_sa_hdl), &zp->z_blksz, &dummy); 1424 } 1425 1426 /* 1427 * This is a dummy interface used when pvn_vplist_dirty() should *not* 1428 * be calling back into the fs for a putpage(). E.g.: when truncating 1429 * a file, the pages being "thrown away* don't need to be written out. 1430 */ 1431 /* ARGSUSED */ 1432 static int 1433 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp, 1434 int flags, cred_t *cr) 1435 { 1436 ASSERT(0); 1437 return (0); 1438 } 1439 1440 /* 1441 * Increase the file length 1442 * 1443 * IN: zp - znode of file to free data in. 1444 * end - new end-of-file 1445 * 1446 * RETURN: 0 on success, error code on failure 1447 */ 1448 static int 1449 zfs_extend(znode_t *zp, uint64_t end) 1450 { 1451 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1452 dmu_tx_t *tx; 1453 rl_t *rl; 1454 uint64_t newblksz; 1455 int error; 1456 1457 /* 1458 * We will change zp_size, lock the whole file. 1459 */ 1460 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1461 1462 /* 1463 * Nothing to do if file already at desired length. 1464 */ 1465 if (end <= zp->z_size) { 1466 zfs_range_unlock(rl); 1467 return (0); 1468 } 1469 tx = dmu_tx_create(zfsvfs->z_os); 1470 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1471 zfs_sa_upgrade_txholds(tx, zp); 1472 if (end > zp->z_blksz && 1473 (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) { 1474 /* 1475 * We are growing the file past the current block size. 1476 */ 1477 if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) { 1478 /* 1479 * File's blocksize is already larger than the 1480 * "recordsize" property. Only let it grow to 1481 * the next power of 2. 1482 */ 1483 ASSERT(!ISP2(zp->z_blksz)); 1484 newblksz = MIN(end, 1 << highbit64(zp->z_blksz)); 1485 } else { 1486 newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz); 1487 } 1488 dmu_tx_hold_write(tx, zp->z_id, 0, newblksz); 1489 } else { 1490 newblksz = 0; 1491 } 1492 1493 error = dmu_tx_assign(tx, TXG_WAIT); 1494 if (error) { 1495 dmu_tx_abort(tx); 1496 zfs_range_unlock(rl); 1497 return (error); 1498 } 1499 1500 if (newblksz) 1501 zfs_grow_blocksize(zp, newblksz, tx); 1502 1503 zp->z_size = end; 1504 1505 VERIFY(0 == sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zp->z_zfsvfs), 1506 &zp->z_size, sizeof (zp->z_size), tx)); 1507 1508 zfs_range_unlock(rl); 1509 1510 dmu_tx_commit(tx); 1511 1512 return (0); 1513 } 1514 1515 /* 1516 * Free space in a file. 1517 * 1518 * IN: zp - znode of file to free data in. 1519 * off - start of section to free. 1520 * len - length of section to free. 1521 * 1522 * RETURN: 0 on success, error code on failure 1523 */ 1524 static int 1525 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len) 1526 { 1527 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1528 rl_t *rl; 1529 int error; 1530 1531 /* 1532 * Lock the range being freed. 1533 */ 1534 rl = zfs_range_lock(zp, off, len, RL_WRITER); 1535 1536 /* 1537 * Nothing to do if file already at desired length. 1538 */ 1539 if (off >= zp->z_size) { 1540 zfs_range_unlock(rl); 1541 return (0); 1542 } 1543 1544 if (off + len > zp->z_size) 1545 len = zp->z_size - off; 1546 1547 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len); 1548 1549 zfs_range_unlock(rl); 1550 1551 return (error); 1552 } 1553 1554 /* 1555 * Truncate a file 1556 * 1557 * IN: zp - znode of file to free data in. 1558 * end - new end-of-file. 1559 * 1560 * RETURN: 0 on success, error code on failure 1561 */ 1562 static int 1563 zfs_trunc(znode_t *zp, uint64_t end) 1564 { 1565 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1566 vnode_t *vp = ZTOV(zp); 1567 dmu_tx_t *tx; 1568 rl_t *rl; 1569 int error; 1570 sa_bulk_attr_t bulk[2]; 1571 int count = 0; 1572 1573 /* 1574 * We will change zp_size, lock the whole file. 1575 */ 1576 rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER); 1577 1578 /* 1579 * Nothing to do if file already at desired length. 1580 */ 1581 if (end >= zp->z_size) { 1582 zfs_range_unlock(rl); 1583 return (0); 1584 } 1585 1586 error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end, -1); 1587 if (error) { 1588 zfs_range_unlock(rl); 1589 return (error); 1590 } 1591 tx = dmu_tx_create(zfsvfs->z_os); 1592 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1593 zfs_sa_upgrade_txholds(tx, zp); 1594 dmu_tx_mark_netfree(tx); 1595 error = dmu_tx_assign(tx, TXG_WAIT); 1596 if (error) { 1597 dmu_tx_abort(tx); 1598 zfs_range_unlock(rl); 1599 return (error); 1600 } 1601 1602 zp->z_size = end; 1603 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), 1604 NULL, &zp->z_size, sizeof (zp->z_size)); 1605 1606 if (end == 0) { 1607 zp->z_pflags &= ~ZFS_SPARSE; 1608 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1609 NULL, &zp->z_pflags, 8); 1610 } 1611 VERIFY(sa_bulk_update(zp->z_sa_hdl, bulk, count, tx) == 0); 1612 1613 dmu_tx_commit(tx); 1614 1615 /* 1616 * Clear any mapped pages in the truncated region. This has to 1617 * happen outside of the transaction to avoid the possibility of 1618 * a deadlock with someone trying to push a page that we are 1619 * about to invalidate. 1620 */ 1621 if (vn_has_cached_data(vp)) { 1622 page_t *pp; 1623 uint64_t start = end & PAGEMASK; 1624 int poff = end & PAGEOFFSET; 1625 1626 if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) { 1627 /* 1628 * We need to zero a partial page. 1629 */ 1630 pagezero(pp, poff, PAGESIZE - poff); 1631 start += PAGESIZE; 1632 page_unlock(pp); 1633 } 1634 error = pvn_vplist_dirty(vp, start, zfs_no_putpage, 1635 B_INVAL | B_TRUNC, NULL); 1636 ASSERT(error == 0); 1637 } 1638 1639 zfs_range_unlock(rl); 1640 1641 return (0); 1642 } 1643 1644 /* 1645 * Free space in a file 1646 * 1647 * IN: zp - znode of file to free data in. 1648 * off - start of range 1649 * len - end of range (0 => EOF) 1650 * flag - current file open mode flags. 1651 * log - TRUE if this action should be logged 1652 * 1653 * RETURN: 0 on success, error code on failure 1654 */ 1655 int 1656 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log) 1657 { 1658 vnode_t *vp = ZTOV(zp); 1659 dmu_tx_t *tx; 1660 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1661 zilog_t *zilog = zfsvfs->z_log; 1662 uint64_t mode; 1663 uint64_t mtime[2], ctime[2]; 1664 sa_bulk_attr_t bulk[3]; 1665 int count = 0; 1666 int error; 1667 1668 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), &mode, 1669 sizeof (mode))) != 0) 1670 return (error); 1671 1672 if (off > zp->z_size) { 1673 error = zfs_extend(zp, off+len); 1674 if (error == 0 && log) 1675 goto log; 1676 else 1677 return (error); 1678 } 1679 1680 /* 1681 * Check for any locks in the region to be freed. 1682 */ 1683 1684 if (MANDLOCK(vp, (mode_t)mode)) { 1685 uint64_t length = (len ? len : zp->z_size - off); 1686 if (error = chklock(vp, FWRITE, off, length, flag, NULL)) 1687 return (error); 1688 } 1689 1690 if (len == 0) { 1691 error = zfs_trunc(zp, off); 1692 } else { 1693 if ((error = zfs_free_range(zp, off, len)) == 0 && 1694 off + len > zp->z_size) 1695 error = zfs_extend(zp, off+len); 1696 } 1697 if (error || !log) 1698 return (error); 1699 log: 1700 tx = dmu_tx_create(zfsvfs->z_os); 1701 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1702 zfs_sa_upgrade_txholds(tx, zp); 1703 error = dmu_tx_assign(tx, TXG_WAIT); 1704 if (error) { 1705 dmu_tx_abort(tx); 1706 return (error); 1707 } 1708 1709 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, mtime, 16); 1710 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, ctime, 16); 1711 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), 1712 NULL, &zp->z_pflags, 8); 1713 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, B_TRUE); 1714 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 1715 ASSERT(error == 0); 1716 1717 zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len); 1718 1719 dmu_tx_commit(tx); 1720 return (0); 1721 } 1722 1723 void 1724 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx) 1725 { 1726 zfsvfs_t zfsvfs; 1727 uint64_t moid, obj, sa_obj, version; 1728 uint64_t sense = ZFS_CASE_SENSITIVE; 1729 uint64_t norm = 0; 1730 nvpair_t *elem; 1731 int error; 1732 int i; 1733 znode_t *rootzp = NULL; 1734 vnode_t *vp; 1735 vattr_t vattr; 1736 znode_t *zp; 1737 zfs_acl_ids_t acl_ids; 1738 1739 /* 1740 * First attempt to create master node. 1741 */ 1742 /* 1743 * In an empty objset, there are no blocks to read and thus 1744 * there can be no i/o errors (which we assert below). 1745 */ 1746 moid = MASTER_NODE_OBJ; 1747 error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE, 1748 DMU_OT_NONE, 0, tx); 1749 ASSERT(error == 0); 1750 1751 /* 1752 * Set starting attributes. 1753 */ 1754 version = zfs_zpl_version_map(spa_version(dmu_objset_spa(os))); 1755 elem = NULL; 1756 while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) { 1757 /* For the moment we expect all zpl props to be uint64_ts */ 1758 uint64_t val; 1759 char *name; 1760 1761 ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64); 1762 VERIFY(nvpair_value_uint64(elem, &val) == 0); 1763 name = nvpair_name(elem); 1764 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) { 1765 if (val < version) 1766 version = val; 1767 } else { 1768 error = zap_update(os, moid, name, 8, 1, &val, tx); 1769 } 1770 ASSERT(error == 0); 1771 if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0) 1772 norm = val; 1773 else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0) 1774 sense = val; 1775 } 1776 ASSERT(version != 0); 1777 error = zap_update(os, moid, ZPL_VERSION_STR, 8, 1, &version, tx); 1778 1779 /* 1780 * Create zap object used for SA attribute registration 1781 */ 1782 1783 if (version >= ZPL_VERSION_SA) { 1784 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 1785 DMU_OT_NONE, 0, tx); 1786 error = zap_add(os, moid, ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 1787 ASSERT(error == 0); 1788 } else { 1789 sa_obj = 0; 1790 } 1791 /* 1792 * Create a delete queue. 1793 */ 1794 obj = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx); 1795 1796 error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &obj, tx); 1797 ASSERT(error == 0); 1798 1799 /* 1800 * Create root znode. Create minimal znode/vnode/zfsvfs 1801 * to allow zfs_mknode to work. 1802 */ 1803 vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE; 1804 vattr.va_type = VDIR; 1805 vattr.va_mode = S_IFDIR|0755; 1806 vattr.va_uid = crgetuid(cr); 1807 vattr.va_gid = crgetgid(cr); 1808 1809 rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP); 1810 ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs)); 1811 rootzp->z_moved = 0; 1812 rootzp->z_unlinked = 0; 1813 rootzp->z_atime_dirty = 0; 1814 rootzp->z_is_sa = USE_SA(version, os); 1815 1816 vp = ZTOV(rootzp); 1817 vn_reinit(vp); 1818 vp->v_type = VDIR; 1819 1820 bzero(&zfsvfs, sizeof (zfsvfs_t)); 1821 1822 zfsvfs.z_os = os; 1823 zfsvfs.z_parent = &zfsvfs; 1824 zfsvfs.z_version = version; 1825 zfsvfs.z_use_fuids = USE_FUIDS(version, os); 1826 zfsvfs.z_use_sa = USE_SA(version, os); 1827 zfsvfs.z_norm = norm; 1828 1829 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END, 1830 &zfsvfs.z_attr_table); 1831 1832 ASSERT(error == 0); 1833 1834 /* 1835 * Fold case on file systems that are always or sometimes case 1836 * insensitive. 1837 */ 1838 if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED) 1839 zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER; 1840 1841 mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 1842 list_create(&zfsvfs.z_all_znodes, sizeof (znode_t), 1843 offsetof(znode_t, z_link_node)); 1844 1845 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1846 mutex_init(&zfsvfs.z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 1847 1848 rootzp->z_zfsvfs = &zfsvfs; 1849 VERIFY(0 == zfs_acl_ids_create(rootzp, IS_ROOT_NODE, &vattr, 1850 cr, NULL, &acl_ids)); 1851 zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, &acl_ids); 1852 ASSERT3P(zp, ==, rootzp); 1853 ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */ 1854 error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx); 1855 ASSERT(error == 0); 1856 zfs_acl_ids_free(&acl_ids); 1857 POINTER_INVALIDATE(&rootzp->z_zfsvfs); 1858 1859 ZTOV(rootzp)->v_count = 0; 1860 sa_handle_destroy(rootzp->z_sa_hdl); 1861 kmem_cache_free(znode_cache, rootzp); 1862 1863 /* 1864 * Create shares directory 1865 */ 1866 1867 error = zfs_create_share_dir(&zfsvfs, tx); 1868 1869 ASSERT(error == 0); 1870 1871 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1872 mutex_destroy(&zfsvfs.z_hold_mtx[i]); 1873 } 1874 1875 #endif /* _KERNEL */ 1876 1877 static int 1878 zfs_sa_setup(objset_t *osp, sa_attr_type_t **sa_table) 1879 { 1880 uint64_t sa_obj = 0; 1881 int error; 1882 1883 error = zap_lookup(osp, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, &sa_obj); 1884 if (error != 0 && error != ENOENT) 1885 return (error); 1886 1887 error = sa_setup(osp, sa_obj, zfs_attr_table, ZPL_END, sa_table); 1888 return (error); 1889 } 1890 1891 static int 1892 zfs_grab_sa_handle(objset_t *osp, uint64_t obj, sa_handle_t **hdlp, 1893 dmu_buf_t **db, void *tag) 1894 { 1895 dmu_object_info_t doi; 1896 int error; 1897 1898 if ((error = sa_buf_hold(osp, obj, tag, db)) != 0) 1899 return (error); 1900 1901 dmu_object_info_from_db(*db, &doi); 1902 if ((doi.doi_bonus_type != DMU_OT_SA && 1903 doi.doi_bonus_type != DMU_OT_ZNODE) || 1904 doi.doi_bonus_type == DMU_OT_ZNODE && 1905 doi.doi_bonus_size < sizeof (znode_phys_t)) { 1906 sa_buf_rele(*db, tag); 1907 return (SET_ERROR(ENOTSUP)); 1908 } 1909 1910 error = sa_handle_get(osp, obj, NULL, SA_HDL_PRIVATE, hdlp); 1911 if (error != 0) { 1912 sa_buf_rele(*db, tag); 1913 return (error); 1914 } 1915 1916 return (0); 1917 } 1918 1919 void 1920 zfs_release_sa_handle(sa_handle_t *hdl, dmu_buf_t *db, void *tag) 1921 { 1922 sa_handle_destroy(hdl); 1923 sa_buf_rele(db, tag); 1924 } 1925 1926 /* 1927 * Given an object number, return its parent object number and whether 1928 * or not the object is an extended attribute directory. 1929 */ 1930 static int 1931 zfs_obj_to_pobj(objset_t *osp, sa_handle_t *hdl, sa_attr_type_t *sa_table, 1932 uint64_t *pobjp, int *is_xattrdir) 1933 { 1934 uint64_t parent; 1935 uint64_t pflags; 1936 uint64_t mode; 1937 uint64_t parent_mode; 1938 sa_bulk_attr_t bulk[3]; 1939 sa_handle_t *sa_hdl; 1940 dmu_buf_t *sa_db; 1941 int count = 0; 1942 int error; 1943 1944 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_PARENT], NULL, 1945 &parent, sizeof (parent)); 1946 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_FLAGS], NULL, 1947 &pflags, sizeof (pflags)); 1948 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1949 &mode, sizeof (mode)); 1950 1951 if ((error = sa_bulk_lookup(hdl, bulk, count)) != 0) 1952 return (error); 1953 1954 /* 1955 * When a link is removed its parent pointer is not changed and will 1956 * be invalid. There are two cases where a link is removed but the 1957 * file stays around, when it goes to the delete queue and when there 1958 * are additional links. 1959 */ 1960 error = zfs_grab_sa_handle(osp, parent, &sa_hdl, &sa_db, FTAG); 1961 if (error != 0) 1962 return (error); 1963 1964 error = sa_lookup(sa_hdl, ZPL_MODE, &parent_mode, sizeof (parent_mode)); 1965 zfs_release_sa_handle(sa_hdl, sa_db, FTAG); 1966 if (error != 0) 1967 return (error); 1968 1969 *is_xattrdir = ((pflags & ZFS_XATTR) != 0) && S_ISDIR(mode); 1970 1971 /* 1972 * Extended attributes can be applied to files, directories, etc. 1973 * Otherwise the parent must be a directory. 1974 */ 1975 if (!*is_xattrdir && !S_ISDIR(parent_mode)) 1976 return (SET_ERROR(EINVAL)); 1977 1978 *pobjp = parent; 1979 1980 return (0); 1981 } 1982 1983 /* 1984 * Given an object number, return some zpl level statistics 1985 */ 1986 static int 1987 zfs_obj_to_stats_impl(sa_handle_t *hdl, sa_attr_type_t *sa_table, 1988 zfs_stat_t *sb) 1989 { 1990 sa_bulk_attr_t bulk[4]; 1991 int count = 0; 1992 1993 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_MODE], NULL, 1994 &sb->zs_mode, sizeof (sb->zs_mode)); 1995 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_GEN], NULL, 1996 &sb->zs_gen, sizeof (sb->zs_gen)); 1997 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_LINKS], NULL, 1998 &sb->zs_links, sizeof (sb->zs_links)); 1999 SA_ADD_BULK_ATTR(bulk, count, sa_table[ZPL_CTIME], NULL, 2000 &sb->zs_ctime, sizeof (sb->zs_ctime)); 2001 2002 return (sa_bulk_lookup(hdl, bulk, count)); 2003 } 2004 2005 static int 2006 zfs_obj_to_path_impl(objset_t *osp, uint64_t obj, sa_handle_t *hdl, 2007 sa_attr_type_t *sa_table, char *buf, int len) 2008 { 2009 sa_handle_t *sa_hdl; 2010 sa_handle_t *prevhdl = NULL; 2011 dmu_buf_t *prevdb = NULL; 2012 dmu_buf_t *sa_db = NULL; 2013 char *path = buf + len - 1; 2014 int error; 2015 2016 *path = '\0'; 2017 sa_hdl = hdl; 2018 2019 for (;;) { 2020 uint64_t pobj; 2021 char component[MAXNAMELEN + 2]; 2022 size_t complen; 2023 int is_xattrdir; 2024 2025 if (prevdb) 2026 zfs_release_sa_handle(prevhdl, prevdb, FTAG); 2027 2028 if ((error = zfs_obj_to_pobj(osp, sa_hdl, sa_table, &pobj, 2029 &is_xattrdir)) != 0) 2030 break; 2031 2032 if (pobj == obj) { 2033 if (path[0] != '/') 2034 *--path = '/'; 2035 break; 2036 } 2037 2038 component[0] = '/'; 2039 if (is_xattrdir) { 2040 (void) sprintf(component + 1, "<xattrdir>"); 2041 } else { 2042 error = zap_value_search(osp, pobj, obj, 2043 ZFS_DIRENT_OBJ(-1ULL), component + 1); 2044 if (error != 0) 2045 break; 2046 } 2047 2048 complen = strlen(component); 2049 path -= complen; 2050 ASSERT(path >= buf); 2051 bcopy(component, path, complen); 2052 obj = pobj; 2053 2054 if (sa_hdl != hdl) { 2055 prevhdl = sa_hdl; 2056 prevdb = sa_db; 2057 } 2058 error = zfs_grab_sa_handle(osp, obj, &sa_hdl, &sa_db, FTAG); 2059 if (error != 0) { 2060 sa_hdl = prevhdl; 2061 sa_db = prevdb; 2062 break; 2063 } 2064 } 2065 2066 if (sa_hdl != NULL && sa_hdl != hdl) { 2067 ASSERT(sa_db != NULL); 2068 zfs_release_sa_handle(sa_hdl, sa_db, FTAG); 2069 } 2070 2071 if (error == 0) 2072 (void) memmove(buf, path, buf + len - path); 2073 2074 return (error); 2075 } 2076 2077 int 2078 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len) 2079 { 2080 sa_attr_type_t *sa_table; 2081 sa_handle_t *hdl; 2082 dmu_buf_t *db; 2083 int error; 2084 2085 error = zfs_sa_setup(osp, &sa_table); 2086 if (error != 0) 2087 return (error); 2088 2089 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); 2090 if (error != 0) 2091 return (error); 2092 2093 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2094 2095 zfs_release_sa_handle(hdl, db, FTAG); 2096 return (error); 2097 } 2098 2099 int 2100 zfs_obj_to_stats(objset_t *osp, uint64_t obj, zfs_stat_t *sb, 2101 char *buf, int len) 2102 { 2103 char *path = buf + len - 1; 2104 sa_attr_type_t *sa_table; 2105 sa_handle_t *hdl; 2106 dmu_buf_t *db; 2107 int error; 2108 2109 *path = '\0'; 2110 2111 error = zfs_sa_setup(osp, &sa_table); 2112 if (error != 0) 2113 return (error); 2114 2115 error = zfs_grab_sa_handle(osp, obj, &hdl, &db, FTAG); 2116 if (error != 0) 2117 return (error); 2118 2119 error = zfs_obj_to_stats_impl(hdl, sa_table, sb); 2120 if (error != 0) { 2121 zfs_release_sa_handle(hdl, db, FTAG); 2122 return (error); 2123 } 2124 2125 error = zfs_obj_to_path_impl(osp, obj, hdl, sa_table, buf, len); 2126 2127 zfs_release_sa_handle(hdl, db, FTAG); 2128 return (error); 2129 } 2130