xref: /titanic_44/usr/src/uts/common/fs/zfs/zfs_znode.c (revision 0430f8daa551890e0788d3fd28aef3be44cf8730)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /* Portions Copyright 2007 Jeremy Teo */
27 
28 #pragma ident	"%Z%%M%	%I%	%E% SMI"
29 
30 #ifdef _KERNEL
31 #include <sys/types.h>
32 #include <sys/param.h>
33 #include <sys/time.h>
34 #include <sys/systm.h>
35 #include <sys/sysmacros.h>
36 #include <sys/resource.h>
37 #include <sys/mntent.h>
38 #include <sys/mkdev.h>
39 #include <sys/u8_textprep.h>
40 #include <sys/dsl_dataset.h>
41 #include <sys/vfs.h>
42 #include <sys/vfs_opreg.h>
43 #include <sys/vnode.h>
44 #include <sys/file.h>
45 #include <sys/kmem.h>
46 #include <sys/errno.h>
47 #include <sys/unistd.h>
48 #include <sys/mode.h>
49 #include <sys/atomic.h>
50 #include <vm/pvn.h>
51 #include "fs/fs_subr.h"
52 #include <sys/zfs_dir.h>
53 #include <sys/zfs_acl.h>
54 #include <sys/zfs_ioctl.h>
55 #include <sys/zfs_rlock.h>
56 #include <sys/zfs_fuid.h>
57 #include <sys/fs/zfs.h>
58 #include <sys/kidmap.h>
59 #endif /* _KERNEL */
60 
61 #include <sys/dmu.h>
62 #include <sys/refcount.h>
63 #include <sys/stat.h>
64 #include <sys/zap.h>
65 #include <sys/zfs_znode.h>
66 
67 #include "zfs_prop.h"
68 
69 /*
70  * Define ZNODE_STATS to turn on statistic gathering. By default, it is only
71  * turned on when DEBUG is also defined.
72  */
73 #ifdef	DEBUG
74 #define	ZNODE_STATS
75 #endif	/* DEBUG */
76 
77 #ifdef	ZNODE_STATS
78 #define	ZNODE_STAT_ADD(stat)			((stat)++)
79 #else
80 #define	ZNODE_STAT_ADD(stat)			/* nothing */
81 #endif	/* ZNODE_STATS */
82 
83 #define	POINTER_IS_VALID(p)	(!((uintptr_t)(p) & 0x3))
84 #define	POINTER_INVALIDATE(pp)	(*(pp) = (void *)((uintptr_t)(*(pp)) | 0x1))
85 
86 /*
87  * Functions needed for userland (ie: libzpool) are not put under
88  * #ifdef_KERNEL; the rest of the functions have dependencies
89  * (such as VFS logic) that will not compile easily in userland.
90  */
91 #ifdef _KERNEL
92 static kmem_cache_t *znode_cache = NULL;
93 
94 /*ARGSUSED*/
95 static void
96 znode_evict_error(dmu_buf_t *dbuf, void *user_ptr)
97 {
98 	/*
99 	 * We should never drop all dbuf refs without first clearing
100 	 * the eviction callback.
101 	 */
102 	panic("evicting znode %p\n", user_ptr);
103 }
104 
105 /*ARGSUSED*/
106 static int
107 zfs_znode_cache_constructor(void *buf, void *arg, int kmflags)
108 {
109 	znode_t *zp = buf;
110 
111 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
112 
113 	zp->z_vnode = vn_alloc(kmflags);
114 	if (zp->z_vnode == NULL) {
115 		return (-1);
116 	}
117 	ZTOV(zp)->v_data = zp;
118 
119 	list_link_init(&zp->z_link_node);
120 
121 	mutex_init(&zp->z_lock, NULL, MUTEX_DEFAULT, NULL);
122 	rw_init(&zp->z_map_lock, NULL, RW_DEFAULT, NULL);
123 	rw_init(&zp->z_parent_lock, NULL, RW_DEFAULT, NULL);
124 	rw_init(&zp->z_name_lock, NULL, RW_DEFAULT, NULL);
125 	mutex_init(&zp->z_acl_lock, NULL, MUTEX_DEFAULT, NULL);
126 
127 	mutex_init(&zp->z_range_lock, NULL, MUTEX_DEFAULT, NULL);
128 	avl_create(&zp->z_range_avl, zfs_range_compare,
129 	    sizeof (rl_t), offsetof(rl_t, r_node));
130 
131 	zp->z_dbuf = NULL;
132 	zp->z_dirlocks = NULL;
133 	return (0);
134 }
135 
136 /*ARGSUSED*/
137 static void
138 zfs_znode_cache_destructor(void *buf, void *arg)
139 {
140 	znode_t *zp = buf;
141 
142 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
143 	ASSERT(ZTOV(zp)->v_data == zp);
144 	vn_free(ZTOV(zp));
145 	ASSERT(!list_link_active(&zp->z_link_node));
146 	mutex_destroy(&zp->z_lock);
147 	rw_destroy(&zp->z_map_lock);
148 	rw_destroy(&zp->z_parent_lock);
149 	rw_destroy(&zp->z_name_lock);
150 	mutex_destroy(&zp->z_acl_lock);
151 	avl_destroy(&zp->z_range_avl);
152 	mutex_destroy(&zp->z_range_lock);
153 
154 	ASSERT(zp->z_dbuf == NULL);
155 	ASSERT(zp->z_dirlocks == NULL);
156 }
157 
158 #ifdef	ZNODE_STATS
159 static struct {
160 	uint64_t zms_zfsvfs_invalid;
161 	uint64_t zms_zfsvfs_unmounted;
162 	uint64_t zms_zfsvfs_recheck_invalid;
163 	uint64_t zms_vnode_locked;
164 	uint64_t zms_znode_in_use;
165 	uint64_t zms_yes;
166 	uint64_t zms_later;
167 	uint64_t zms_dont_know;
168 } znode_move_stats;
169 #endif	/* ZNODE_STATS */
170 
171 static void
172 zfs_znode_move_impl(znode_t *ozp, znode_t *nzp)
173 {
174 	vnode_t *vp;
175 
176 	/* Copy fields. */
177 	nzp->z_zfsvfs = ozp->z_zfsvfs;
178 
179 	/* Swap vnodes. */
180 	vp = nzp->z_vnode;
181 	nzp->z_vnode = ozp->z_vnode;
182 	ozp->z_vnode = vp; /* let destructor free the overwritten vnode */
183 	ZTOV(ozp)->v_data = ozp;
184 	ZTOV(nzp)->v_data = nzp;
185 
186 	nzp->z_id = ozp->z_id;
187 	ASSERT(ozp->z_dirlocks == NULL); /* znode not in use */
188 	ASSERT(avl_numnodes(&ozp->z_range_avl) == 0);
189 	nzp->z_unlinked = ozp->z_unlinked;
190 	nzp->z_atime_dirty = ozp->z_atime_dirty;
191 	nzp->z_zn_prefetch = ozp->z_zn_prefetch;
192 	nzp->z_blksz = ozp->z_blksz;
193 	nzp->z_seq = ozp->z_seq;
194 	nzp->z_mapcnt = ozp->z_mapcnt;
195 	nzp->z_last_itx = ozp->z_last_itx;
196 	nzp->z_gen = ozp->z_gen;
197 	nzp->z_sync_cnt = ozp->z_sync_cnt;
198 	nzp->z_phys = ozp->z_phys;
199 	nzp->z_dbuf = ozp->z_dbuf;
200 
201 	/* Update back pointers. */
202 	(void) dmu_buf_update_user(nzp->z_dbuf, ozp, nzp, &nzp->z_phys,
203 	    znode_evict_error);
204 
205 	/*
206 	 * Invalidate the original znode by clearing fields that provide a
207 	 * pointer back to the znode. Set the low bit of the vfs pointer to
208 	 * ensure that zfs_znode_move() recognizes the znode as invalid in any
209 	 * subsequent callback.
210 	 */
211 	ozp->z_dbuf = NULL;
212 	POINTER_INVALIDATE(&ozp->z_zfsvfs);
213 }
214 
215 /*
216  * Wrapper function for ZFS_ENTER that returns 0 if successful and otherwise
217  * returns a non-zero error code.
218  */
219 static int
220 zfs_enter(zfsvfs_t *zfsvfs)
221 {
222 	ZFS_ENTER(zfsvfs);
223 	return (0);
224 }
225 
226 /*ARGSUSED*/
227 static kmem_cbrc_t
228 zfs_znode_move(void *buf, void *newbuf, size_t size, void *arg)
229 {
230 	znode_t *ozp = buf, *nzp = newbuf;
231 	zfsvfs_t *zfsvfs;
232 	vnode_t *vp;
233 
234 	/*
235 	 * The znode is on the file system's list of known znodes if the vfs
236 	 * pointer is valid. We set the low bit of the vfs pointer when freeing
237 	 * the znode to invalidate it, and the memory patterns written by kmem
238 	 * (baddcafe and deadbeef) set at least one of the two low bits. A newly
239 	 * created znode sets the vfs pointer last of all to indicate that the
240 	 * znode is known and in a valid state to be moved by this function.
241 	 */
242 	zfsvfs = ozp->z_zfsvfs;
243 	if (!POINTER_IS_VALID(zfsvfs)) {
244 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_invalid);
245 		ZNODE_STAT_ADD(znode_move_stats.zms_dont_know);
246 		return (KMEM_CBRC_DONT_KNOW);
247 	}
248 
249 	/*
250 	 * Ensure that the filesystem is not unmounted during the move.
251 	 */
252 	if (zfs_enter(zfsvfs) != 0) {		/* ZFS_ENTER */
253 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_unmounted);
254 		ZNODE_STAT_ADD(znode_move_stats.zms_dont_know);
255 		return (KMEM_CBRC_DONT_KNOW);
256 	}
257 
258 	mutex_enter(&zfsvfs->z_znodes_lock);
259 	/*
260 	 * Recheck the vfs pointer in case the znode was removed just before
261 	 * acquiring the lock.
262 	 */
263 	if (zfsvfs != ozp->z_zfsvfs) {
264 		mutex_exit(&zfsvfs->z_znodes_lock);
265 		ZFS_EXIT(zfsvfs);
266 		ZNODE_STAT_ADD(znode_move_stats.zms_zfsvfs_recheck_invalid);
267 		ZNODE_STAT_ADD(znode_move_stats.zms_dont_know);
268 		return (KMEM_CBRC_DONT_KNOW);
269 	}
270 
271 	/*
272 	 * At this point we know that as long as we hold z_znodes_lock, the
273 	 * znode cannot be freed and fields within the znode can be safely
274 	 * accessed.
275 	 */
276 	vp = ZTOV(ozp);
277 	if (mutex_tryenter(&vp->v_lock) == 0) {
278 		mutex_exit(&zfsvfs->z_znodes_lock);
279 		ZFS_EXIT(zfsvfs);
280 		ZNODE_STAT_ADD(znode_move_stats.zms_vnode_locked);
281 		ZNODE_STAT_ADD(znode_move_stats.zms_later);
282 		return (KMEM_CBRC_LATER);
283 	}
284 	/* Only move znodes that are referenced _only_ by the DNLC. */
285 	if (vp->v_count != 1 || !vn_in_dnlc(vp)) {
286 		mutex_exit(&vp->v_lock);
287 		mutex_exit(&zfsvfs->z_znodes_lock);
288 		ZFS_EXIT(zfsvfs);
289 		ZNODE_STAT_ADD(znode_move_stats.zms_znode_in_use);
290 		ZNODE_STAT_ADD(znode_move_stats.zms_later);
291 		return (KMEM_CBRC_LATER);
292 	}
293 
294 	/*
295 	 * The znode is known and in a valid state to move. We're holding the
296 	 * locks needed to execute the critical section.
297 	 */
298 	zfs_znode_move_impl(ozp, nzp);
299 	mutex_exit(&vp->v_lock);
300 
301 	list_link_replace(&ozp->z_link_node, &nzp->z_link_node);
302 	mutex_exit(&zfsvfs->z_znodes_lock);
303 	ZFS_EXIT(zfsvfs);
304 
305 	ZNODE_STAT_ADD(znode_move_stats.zms_yes);
306 	return (KMEM_CBRC_YES);
307 }
308 
309 void
310 zfs_znode_init(void)
311 {
312 	/*
313 	 * Initialize zcache
314 	 */
315 	ASSERT(znode_cache == NULL);
316 	znode_cache = kmem_cache_create("zfs_znode_cache",
317 	    sizeof (znode_t), 0, zfs_znode_cache_constructor,
318 	    zfs_znode_cache_destructor, NULL, NULL, NULL, 0);
319 	kmem_cache_set_move(znode_cache, zfs_znode_move);
320 }
321 
322 void
323 zfs_znode_fini(void)
324 {
325 	/*
326 	 * Cleanup vfs & vnode ops
327 	 */
328 	zfs_remove_op_tables();
329 
330 	/*
331 	 * Cleanup zcache
332 	 */
333 	if (znode_cache)
334 		kmem_cache_destroy(znode_cache);
335 	znode_cache = NULL;
336 }
337 
338 struct vnodeops *zfs_dvnodeops;
339 struct vnodeops *zfs_fvnodeops;
340 struct vnodeops *zfs_symvnodeops;
341 struct vnodeops *zfs_xdvnodeops;
342 struct vnodeops *zfs_evnodeops;
343 
344 void
345 zfs_remove_op_tables()
346 {
347 	/*
348 	 * Remove vfs ops
349 	 */
350 	ASSERT(zfsfstype);
351 	(void) vfs_freevfsops_by_type(zfsfstype);
352 	zfsfstype = 0;
353 
354 	/*
355 	 * Remove vnode ops
356 	 */
357 	if (zfs_dvnodeops)
358 		vn_freevnodeops(zfs_dvnodeops);
359 	if (zfs_fvnodeops)
360 		vn_freevnodeops(zfs_fvnodeops);
361 	if (zfs_symvnodeops)
362 		vn_freevnodeops(zfs_symvnodeops);
363 	if (zfs_xdvnodeops)
364 		vn_freevnodeops(zfs_xdvnodeops);
365 	if (zfs_evnodeops)
366 		vn_freevnodeops(zfs_evnodeops);
367 
368 	zfs_dvnodeops = NULL;
369 	zfs_fvnodeops = NULL;
370 	zfs_symvnodeops = NULL;
371 	zfs_xdvnodeops = NULL;
372 	zfs_evnodeops = NULL;
373 }
374 
375 extern const fs_operation_def_t zfs_dvnodeops_template[];
376 extern const fs_operation_def_t zfs_fvnodeops_template[];
377 extern const fs_operation_def_t zfs_xdvnodeops_template[];
378 extern const fs_operation_def_t zfs_symvnodeops_template[];
379 extern const fs_operation_def_t zfs_evnodeops_template[];
380 
381 int
382 zfs_create_op_tables()
383 {
384 	int error;
385 
386 	/*
387 	 * zfs_dvnodeops can be set if mod_remove() calls mod_installfs()
388 	 * due to a failure to remove the the 2nd modlinkage (zfs_modldrv).
389 	 * In this case we just return as the ops vectors are already set up.
390 	 */
391 	if (zfs_dvnodeops)
392 		return (0);
393 
394 	error = vn_make_ops(MNTTYPE_ZFS, zfs_dvnodeops_template,
395 	    &zfs_dvnodeops);
396 	if (error)
397 		return (error);
398 
399 	error = vn_make_ops(MNTTYPE_ZFS, zfs_fvnodeops_template,
400 	    &zfs_fvnodeops);
401 	if (error)
402 		return (error);
403 
404 	error = vn_make_ops(MNTTYPE_ZFS, zfs_symvnodeops_template,
405 	    &zfs_symvnodeops);
406 	if (error)
407 		return (error);
408 
409 	error = vn_make_ops(MNTTYPE_ZFS, zfs_xdvnodeops_template,
410 	    &zfs_xdvnodeops);
411 	if (error)
412 		return (error);
413 
414 	error = vn_make_ops(MNTTYPE_ZFS, zfs_evnodeops_template,
415 	    &zfs_evnodeops);
416 
417 	return (error);
418 }
419 
420 /*
421  * zfs_init_fs - Initialize the zfsvfs struct and the file system
422  *	incore "master" object.  Verify version compatibility.
423  */
424 int
425 zfs_init_fs(zfsvfs_t *zfsvfs, znode_t **zpp, cred_t *cr)
426 {
427 	extern int zfsfstype;
428 
429 	objset_t	*os = zfsvfs->z_os;
430 	int		i, error;
431 	dmu_object_info_t doi;
432 	uint64_t fsid_guid;
433 	uint64_t zval;
434 
435 	*zpp = NULL;
436 
437 	/*
438 	 * XXX - hack to auto-create the pool root filesystem at
439 	 * the first attempted mount.
440 	 */
441 	if (dmu_object_info(os, MASTER_NODE_OBJ, &doi) == ENOENT) {
442 		dmu_tx_t *tx = dmu_tx_create(os);
443 		uint64_t zpl_version;
444 		nvlist_t *zprops;
445 
446 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* master */
447 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, TRUE, NULL); /* del queue */
448 		dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); /* root node */
449 		error = dmu_tx_assign(tx, TXG_WAIT);
450 		ASSERT3U(error, ==, 0);
451 		if (spa_version(dmu_objset_spa(os)) >= SPA_VERSION_FUID)
452 			zpl_version = ZPL_VERSION;
453 		else
454 			zpl_version = ZPL_VERSION_FUID - 1;
455 
456 		VERIFY(nvlist_alloc(&zprops, NV_UNIQUE_NAME, KM_SLEEP) == 0);
457 		VERIFY(nvlist_add_uint64(zprops,
458 		    zfs_prop_to_name(ZFS_PROP_VERSION), zpl_version) == 0);
459 		zfs_create_fs(os, cr, zprops, tx);
460 		nvlist_free(zprops);
461 		dmu_tx_commit(tx);
462 	}
463 
464 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
465 	if (error) {
466 		return (error);
467 	} else if (zfsvfs->z_version > ZPL_VERSION) {
468 		(void) printf("Mismatched versions:  File system "
469 		    "is version %llu on-disk format, which is "
470 		    "incompatible with this software version %lld!",
471 		    (u_longlong_t)zfsvfs->z_version, ZPL_VERSION);
472 		return (ENOTSUP);
473 	}
474 
475 	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
476 		return (error);
477 	zfsvfs->z_norm = (int)zval;
478 	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
479 		return (error);
480 	zfsvfs->z_utf8 = (zval != 0);
481 	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
482 		return (error);
483 	zfsvfs->z_case = (uint_t)zval;
484 	/*
485 	 * Fold case on file systems that are always or sometimes case
486 	 * insensitive.
487 	 */
488 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
489 	    zfsvfs->z_case == ZFS_CASE_MIXED)
490 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
491 
492 	/*
493 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
494 	 * separates our fsid from any other filesystem types, and a
495 	 * 56-bit objset unique ID.  The objset unique ID is unique to
496 	 * all objsets open on this system, provided by unique_create().
497 	 * The 8-bit fs type must be put in the low bits of fsid[1]
498 	 * because that's where other Solaris filesystems put it.
499 	 */
500 	fsid_guid = dmu_objset_fsid_guid(os);
501 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
502 	zfsvfs->z_vfs->vfs_fsid.val[0] = fsid_guid;
503 	zfsvfs->z_vfs->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
504 	    zfsfstype & 0xFF;
505 
506 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
507 	    &zfsvfs->z_root);
508 	if (error)
509 		return (error);
510 	ASSERT(zfsvfs->z_root != 0);
511 
512 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
513 	    &zfsvfs->z_unlinkedobj);
514 	if (error)
515 		return (error);
516 
517 	/*
518 	 * Initialize zget mutex's
519 	 */
520 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
521 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
522 
523 	error = zfs_zget(zfsvfs, zfsvfs->z_root, zpp);
524 	if (error) {
525 		/*
526 		 * On error, we destroy the mutexes here since it's not
527 		 * possible for the caller to determine if the mutexes were
528 		 * initialized properly.
529 		 */
530 		for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
531 			mutex_destroy(&zfsvfs->z_hold_mtx[i]);
532 		return (error);
533 	}
534 	ASSERT3U((*zpp)->z_id, ==, zfsvfs->z_root);
535 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
536 	    &zfsvfs->z_fuid_obj);
537 	if (error == ENOENT)
538 		error = 0;
539 
540 	return (0);
541 }
542 
543 /*
544  * define a couple of values we need available
545  * for both 64 and 32 bit environments.
546  */
547 #ifndef NBITSMINOR64
548 #define	NBITSMINOR64	32
549 #endif
550 #ifndef MAXMAJ64
551 #define	MAXMAJ64	0xffffffffUL
552 #endif
553 #ifndef	MAXMIN64
554 #define	MAXMIN64	0xffffffffUL
555 #endif
556 
557 /*
558  * Create special expldev for ZFS private use.
559  * Can't use standard expldev since it doesn't do
560  * what we want.  The standard expldev() takes a
561  * dev32_t in LP64 and expands it to a long dev_t.
562  * We need an interface that takes a dev32_t in ILP32
563  * and expands it to a long dev_t.
564  */
565 static uint64_t
566 zfs_expldev(dev_t dev)
567 {
568 #ifndef _LP64
569 	major_t major = (major_t)dev >> NBITSMINOR32 & MAXMAJ32;
570 	return (((uint64_t)major << NBITSMINOR64) |
571 	    ((minor_t)dev & MAXMIN32));
572 #else
573 	return (dev);
574 #endif
575 }
576 
577 /*
578  * Special cmpldev for ZFS private use.
579  * Can't use standard cmpldev since it takes
580  * a long dev_t and compresses it to dev32_t in
581  * LP64.  We need to do a compaction of a long dev_t
582  * to a dev32_t in ILP32.
583  */
584 dev_t
585 zfs_cmpldev(uint64_t dev)
586 {
587 #ifndef _LP64
588 	minor_t minor = (minor_t)dev & MAXMIN64;
589 	major_t major = (major_t)(dev >> NBITSMINOR64) & MAXMAJ64;
590 
591 	if (major > MAXMAJ32 || minor > MAXMIN32)
592 		return (NODEV32);
593 
594 	return (((dev32_t)major << NBITSMINOR32) | minor);
595 #else
596 	return (dev);
597 #endif
598 }
599 
600 static void
601 zfs_znode_dmu_init(zfsvfs_t *zfsvfs, znode_t *zp, dmu_buf_t *db)
602 {
603 	znode_t		*nzp;
604 
605 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs) || (zfsvfs == zp->z_zfsvfs));
606 	ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zfsvfs, zp->z_id)));
607 
608 	mutex_enter(&zp->z_lock);
609 
610 	ASSERT(zp->z_dbuf == NULL);
611 	zp->z_dbuf = db;
612 	nzp = dmu_buf_set_user_ie(db, zp, &zp->z_phys, znode_evict_error);
613 
614 	/*
615 	 * there should be no
616 	 * concurrent zgets on this object.
617 	 */
618 	if (nzp != NULL)
619 		panic("existing znode %p for dbuf %p", nzp, db);
620 
621 	/*
622 	 * Slap on VROOT if we are the root znode
623 	 */
624 	if (zp->z_id == zfsvfs->z_root)
625 		ZTOV(zp)->v_flag |= VROOT;
626 
627 	mutex_exit(&zp->z_lock);
628 	vn_exists(ZTOV(zp));
629 }
630 
631 void
632 zfs_znode_dmu_fini(znode_t *zp)
633 {
634 	dmu_buf_t *db = zp->z_dbuf;
635 	ASSERT(MUTEX_HELD(ZFS_OBJ_MUTEX(zp->z_zfsvfs, zp->z_id)) ||
636 	    zp->z_unlinked ||
637 	    RW_WRITE_HELD(&zp->z_zfsvfs->z_teardown_inactive_lock));
638 	ASSERT(zp->z_dbuf != NULL);
639 	zp->z_dbuf = NULL;
640 	VERIFY(zp == dmu_buf_update_user(db, zp, NULL, NULL, NULL));
641 	dmu_buf_rele(db, NULL);
642 }
643 
644 /*
645  * Construct a new znode/vnode and intialize.
646  *
647  * This does not do a call to dmu_set_user() that is
648  * up to the caller to do, in case you don't want to
649  * return the znode
650  */
651 static znode_t *
652 zfs_znode_alloc(zfsvfs_t *zfsvfs, dmu_buf_t *db, int blksz)
653 {
654 	znode_t	*zp;
655 	vnode_t *vp;
656 
657 	zp = kmem_cache_alloc(znode_cache, KM_SLEEP);
658 
659 	ASSERT(zp->z_dirlocks == NULL);
660 	ASSERT(zp->z_dbuf == NULL);
661 	ASSERT(!POINTER_IS_VALID(zp->z_zfsvfs));
662 
663 	/*
664 	 * Defer setting z_zfsvfs until the znode is ready to be a candidate for
665 	 * the zfs_znode_move() callback.
666 	 */
667 	zp->z_phys = NULL;
668 	zp->z_unlinked = 0;
669 	zp->z_atime_dirty = 0;
670 	zp->z_mapcnt = 0;
671 	zp->z_last_itx = 0;
672 	zp->z_id = db->db_object;
673 	zp->z_blksz = blksz;
674 	zp->z_seq = 0x7A4653;
675 	zp->z_sync_cnt = 0;
676 
677 	vp = ZTOV(zp);
678 	vn_reinit(vp);
679 
680 	zfs_znode_dmu_init(zfsvfs, zp, db);
681 
682 	zp->z_gen = zp->z_phys->zp_gen;
683 
684 	vp->v_vfsp = zfsvfs->z_parent->z_vfs;
685 	vp->v_type = IFTOVT((mode_t)zp->z_phys->zp_mode);
686 
687 	switch (vp->v_type) {
688 	case VDIR:
689 		if (zp->z_phys->zp_flags & ZFS_XATTR) {
690 			vn_setops(vp, zfs_xdvnodeops);
691 			vp->v_flag |= V_XATTRDIR;
692 		} else {
693 			vn_setops(vp, zfs_dvnodeops);
694 		}
695 		zp->z_zn_prefetch = B_TRUE; /* z_prefetch default is enabled */
696 		break;
697 	case VBLK:
698 	case VCHR:
699 		vp->v_rdev = zfs_cmpldev(zp->z_phys->zp_rdev);
700 		/*FALLTHROUGH*/
701 	case VFIFO:
702 	case VSOCK:
703 	case VDOOR:
704 		vn_setops(vp, zfs_fvnodeops);
705 		break;
706 	case VREG:
707 		vp->v_flag |= VMODSORT;
708 		vn_setops(vp, zfs_fvnodeops);
709 		break;
710 	case VLNK:
711 		vn_setops(vp, zfs_symvnodeops);
712 		break;
713 	default:
714 		vn_setops(vp, zfs_evnodeops);
715 		break;
716 	}
717 
718 	mutex_enter(&zfsvfs->z_znodes_lock);
719 	list_insert_tail(&zfsvfs->z_all_znodes, zp);
720 	membar_producer();
721 	/*
722 	 * Everything else must be valid before assigning z_zfsvfs makes the
723 	 * znode eligible for zfs_znode_move().
724 	 */
725 	zp->z_zfsvfs = zfsvfs;
726 	mutex_exit(&zfsvfs->z_znodes_lock);
727 
728 	VFS_HOLD(zfsvfs->z_vfs);
729 	return (zp);
730 }
731 
732 /*
733  * Create a new DMU object to hold a zfs znode.
734  *
735  *	IN:	dzp	- parent directory for new znode
736  *		vap	- file attributes for new znode
737  *		tx	- dmu transaction id for zap operations
738  *		cr	- credentials of caller
739  *		flag	- flags:
740  *			  IS_ROOT_NODE	- new object will be root
741  *			  IS_XATTR	- new object is an attribute
742  *			  IS_REPLAY	- intent log replay
743  *		bonuslen - length of bonus buffer
744  *		setaclp  - File/Dir initial ACL
745  *		fuidp	 - Tracks fuid allocation.
746  *
747  *	OUT:	zpp	- allocated znode
748  *
749  */
750 void
751 zfs_mknode(znode_t *dzp, vattr_t *vap, dmu_tx_t *tx, cred_t *cr,
752     uint_t flag, znode_t **zpp, int bonuslen, zfs_acl_t *setaclp,
753     zfs_fuid_info_t **fuidp)
754 {
755 	dmu_buf_t	*db;
756 	znode_phys_t	*pzp;
757 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
758 	timestruc_t	now;
759 	uint64_t	gen, obj;
760 	int		err;
761 
762 	ASSERT(vap && (vap->va_mask & (AT_TYPE|AT_MODE)) == (AT_TYPE|AT_MODE));
763 
764 	if (zfsvfs->z_assign >= TXG_INITIAL) {		/* ZIL replay */
765 		obj = vap->va_nodeid;
766 		flag |= IS_REPLAY;
767 		now = vap->va_ctime;		/* see zfs_replay_create() */
768 		gen = vap->va_nblocks;		/* ditto */
769 	} else {
770 		obj = 0;
771 		gethrestime(&now);
772 		gen = dmu_tx_get_txg(tx);
773 	}
774 
775 	/*
776 	 * Create a new DMU object.
777 	 */
778 	/*
779 	 * There's currently no mechanism for pre-reading the blocks that will
780 	 * be to needed allocate a new object, so we accept the small chance
781 	 * that there will be an i/o error and we will fail one of the
782 	 * assertions below.
783 	 */
784 	if (vap->va_type == VDIR) {
785 		if (flag & IS_REPLAY) {
786 			err = zap_create_claim_norm(zfsvfs->z_os, obj,
787 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
788 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
789 			ASSERT3U(err, ==, 0);
790 		} else {
791 			obj = zap_create_norm(zfsvfs->z_os,
792 			    zfsvfs->z_norm, DMU_OT_DIRECTORY_CONTENTS,
793 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
794 		}
795 	} else {
796 		if (flag & IS_REPLAY) {
797 			err = dmu_object_claim(zfsvfs->z_os, obj,
798 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
799 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
800 			ASSERT3U(err, ==, 0);
801 		} else {
802 			obj = dmu_object_alloc(zfsvfs->z_os,
803 			    DMU_OT_PLAIN_FILE_CONTENTS, 0,
804 			    DMU_OT_ZNODE, sizeof (znode_phys_t) + bonuslen, tx);
805 		}
806 	}
807 	VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, obj, NULL, &db));
808 	dmu_buf_will_dirty(db, tx);
809 
810 	/*
811 	 * Initialize the znode physical data to zero.
812 	 */
813 	ASSERT(db->db_size >= sizeof (znode_phys_t));
814 	bzero(db->db_data, db->db_size);
815 	pzp = db->db_data;
816 
817 	/*
818 	 * If this is the root, fix up the half-initialized parent pointer
819 	 * to reference the just-allocated physical data area.
820 	 */
821 	if (flag & IS_ROOT_NODE) {
822 		dzp->z_dbuf = db;
823 		dzp->z_phys = pzp;
824 		dzp->z_id = obj;
825 	}
826 
827 	/*
828 	 * If parent is an xattr, so am I.
829 	 */
830 	if (dzp->z_phys->zp_flags & ZFS_XATTR)
831 		flag |= IS_XATTR;
832 
833 	if (vap->va_type == VBLK || vap->va_type == VCHR) {
834 		pzp->zp_rdev = zfs_expldev(vap->va_rdev);
835 	}
836 
837 	if (zfsvfs->z_use_fuids)
838 		pzp->zp_flags = ZFS_ARCHIVE | ZFS_AV_MODIFIED;
839 
840 	if (vap->va_type == VDIR) {
841 		pzp->zp_size = 2;		/* contents ("." and "..") */
842 		pzp->zp_links = (flag & (IS_ROOT_NODE | IS_XATTR)) ? 2 : 1;
843 	}
844 
845 	pzp->zp_parent = dzp->z_id;
846 	if (flag & IS_XATTR)
847 		pzp->zp_flags |= ZFS_XATTR;
848 
849 	pzp->zp_gen = gen;
850 
851 	ZFS_TIME_ENCODE(&now, pzp->zp_crtime);
852 	ZFS_TIME_ENCODE(&now, pzp->zp_ctime);
853 
854 	if (vap->va_mask & AT_ATIME) {
855 		ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime);
856 	} else {
857 		ZFS_TIME_ENCODE(&now, pzp->zp_atime);
858 	}
859 
860 	if (vap->va_mask & AT_MTIME) {
861 		ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime);
862 	} else {
863 		ZFS_TIME_ENCODE(&now, pzp->zp_mtime);
864 	}
865 
866 	pzp->zp_mode = MAKEIMODE(vap->va_type, vap->va_mode);
867 	if (!(flag & IS_ROOT_NODE)) {
868 		ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
869 		*zpp = zfs_znode_alloc(zfsvfs, db, 0);
870 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
871 	} else {
872 		/*
873 		 * If we are creating the root node, the "parent" we
874 		 * passed in is the znode for the root.
875 		 */
876 		*zpp = dzp;
877 	}
878 	zfs_perm_init(*zpp, dzp, flag, vap, tx, cr, setaclp, fuidp);
879 }
880 
881 void
882 zfs_xvattr_set(znode_t *zp, xvattr_t *xvap)
883 {
884 	xoptattr_t *xoap;
885 
886 	xoap = xva_getxoptattr(xvap);
887 	ASSERT(xoap);
888 
889 	if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
890 		ZFS_TIME_ENCODE(&xoap->xoa_createtime, zp->z_phys->zp_crtime);
891 		XVA_SET_RTN(xvap, XAT_CREATETIME);
892 	}
893 	if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
894 		ZFS_ATTR_SET(zp, ZFS_READONLY, xoap->xoa_readonly);
895 		XVA_SET_RTN(xvap, XAT_READONLY);
896 	}
897 	if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
898 		ZFS_ATTR_SET(zp, ZFS_HIDDEN, xoap->xoa_hidden);
899 		XVA_SET_RTN(xvap, XAT_HIDDEN);
900 	}
901 	if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
902 		ZFS_ATTR_SET(zp, ZFS_SYSTEM, xoap->xoa_system);
903 		XVA_SET_RTN(xvap, XAT_SYSTEM);
904 	}
905 	if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
906 		ZFS_ATTR_SET(zp, ZFS_ARCHIVE, xoap->xoa_archive);
907 		XVA_SET_RTN(xvap, XAT_ARCHIVE);
908 	}
909 	if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
910 		ZFS_ATTR_SET(zp, ZFS_IMMUTABLE, xoap->xoa_immutable);
911 		XVA_SET_RTN(xvap, XAT_IMMUTABLE);
912 	}
913 	if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
914 		ZFS_ATTR_SET(zp, ZFS_NOUNLINK, xoap->xoa_nounlink);
915 		XVA_SET_RTN(xvap, XAT_NOUNLINK);
916 	}
917 	if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
918 		ZFS_ATTR_SET(zp, ZFS_APPENDONLY, xoap->xoa_appendonly);
919 		XVA_SET_RTN(xvap, XAT_APPENDONLY);
920 	}
921 	if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
922 		ZFS_ATTR_SET(zp, ZFS_NODUMP, xoap->xoa_nodump);
923 		XVA_SET_RTN(xvap, XAT_NODUMP);
924 	}
925 	if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
926 		ZFS_ATTR_SET(zp, ZFS_OPAQUE, xoap->xoa_opaque);
927 		XVA_SET_RTN(xvap, XAT_OPAQUE);
928 	}
929 	if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
930 		ZFS_ATTR_SET(zp, ZFS_AV_QUARANTINED,
931 		    xoap->xoa_av_quarantined);
932 		XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
933 	}
934 	if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
935 		ZFS_ATTR_SET(zp, ZFS_AV_MODIFIED, xoap->xoa_av_modified);
936 		XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
937 	}
938 	if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) {
939 		(void) memcpy(zp->z_phys + 1, xoap->xoa_av_scanstamp,
940 		    sizeof (xoap->xoa_av_scanstamp));
941 		zp->z_phys->zp_flags |= ZFS_BONUS_SCANSTAMP;
942 		XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP);
943 	}
944 }
945 
946 int
947 zfs_zget(zfsvfs_t *zfsvfs, uint64_t obj_num, znode_t **zpp)
948 {
949 	dmu_object_info_t doi;
950 	dmu_buf_t	*db;
951 	znode_t		*zp;
952 	int err;
953 
954 	*zpp = NULL;
955 
956 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
957 
958 	err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
959 	if (err) {
960 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
961 		return (err);
962 	}
963 
964 	dmu_object_info_from_db(db, &doi);
965 	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
966 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
967 		dmu_buf_rele(db, NULL);
968 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
969 		return (EINVAL);
970 	}
971 
972 	zp = dmu_buf_get_user(db);
973 	if (zp != NULL) {
974 		mutex_enter(&zp->z_lock);
975 
976 		/*
977 		 * Since we do immediate eviction of the z_dbuf, we
978 		 * should never find a dbuf with a znode that doesn't
979 		 * know about the dbuf.
980 		 */
981 		ASSERT3P(zp->z_dbuf, ==, db);
982 		ASSERT3U(zp->z_id, ==, obj_num);
983 		if (zp->z_unlinked) {
984 			err = ENOENT;
985 		} else {
986 			VN_HOLD(ZTOV(zp));
987 			*zpp = zp;
988 			err = 0;
989 		}
990 		dmu_buf_rele(db, NULL);
991 		mutex_exit(&zp->z_lock);
992 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
993 		return (err);
994 	}
995 
996 	/*
997 	 * Not found create new znode/vnode
998 	 */
999 	zp = zfs_znode_alloc(zfsvfs, db, doi.doi_data_block_size);
1000 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1001 	*zpp = zp;
1002 	return (0);
1003 }
1004 
1005 int
1006 zfs_rezget(znode_t *zp)
1007 {
1008 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1009 	dmu_object_info_t doi;
1010 	dmu_buf_t *db;
1011 	uint64_t obj_num = zp->z_id;
1012 	int err;
1013 
1014 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj_num);
1015 
1016 	err = dmu_bonus_hold(zfsvfs->z_os, obj_num, NULL, &db);
1017 	if (err) {
1018 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1019 		return (err);
1020 	}
1021 
1022 	dmu_object_info_from_db(db, &doi);
1023 	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
1024 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
1025 		dmu_buf_rele(db, NULL);
1026 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1027 		return (EINVAL);
1028 	}
1029 
1030 	if (((znode_phys_t *)db->db_data)->zp_gen != zp->z_gen) {
1031 		dmu_buf_rele(db, NULL);
1032 		ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1033 		return (EIO);
1034 	}
1035 
1036 	zfs_znode_dmu_init(zfsvfs, zp, db);
1037 	zp->z_unlinked = (zp->z_phys->zp_links == 0);
1038 	zp->z_blksz = doi.doi_data_block_size;
1039 
1040 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj_num);
1041 
1042 	return (0);
1043 }
1044 
1045 void
1046 zfs_znode_delete(znode_t *zp, dmu_tx_t *tx)
1047 {
1048 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1049 	objset_t *os = zfsvfs->z_os;
1050 	uint64_t obj = zp->z_id;
1051 	uint64_t acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj;
1052 
1053 	ZFS_OBJ_HOLD_ENTER(zfsvfs, obj);
1054 	if (acl_obj)
1055 		VERIFY(0 == dmu_object_free(os, acl_obj, tx));
1056 	VERIFY(0 == dmu_object_free(os, obj, tx));
1057 	zfs_znode_dmu_fini(zp);
1058 	ZFS_OBJ_HOLD_EXIT(zfsvfs, obj);
1059 	zfs_znode_free(zp);
1060 }
1061 
1062 void
1063 zfs_zinactive(znode_t *zp)
1064 {
1065 	vnode_t	*vp = ZTOV(zp);
1066 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1067 	uint64_t z_id = zp->z_id;
1068 
1069 	ASSERT(zp->z_dbuf && zp->z_phys);
1070 
1071 	/*
1072 	 * Don't allow a zfs_zget() while were trying to release this znode
1073 	 */
1074 	ZFS_OBJ_HOLD_ENTER(zfsvfs, z_id);
1075 
1076 	mutex_enter(&zp->z_lock);
1077 	mutex_enter(&vp->v_lock);
1078 	vp->v_count--;
1079 	if (vp->v_count > 0 || vn_has_cached_data(vp)) {
1080 		/*
1081 		 * If the hold count is greater than zero, somebody has
1082 		 * obtained a new reference on this znode while we were
1083 		 * processing it here, so we are done.  If we still have
1084 		 * mapped pages then we are also done, since we don't
1085 		 * want to inactivate the znode until the pages get pushed.
1086 		 *
1087 		 * XXX - if vn_has_cached_data(vp) is true, but count == 0,
1088 		 * this seems like it would leave the znode hanging with
1089 		 * no chance to go inactive...
1090 		 */
1091 		mutex_exit(&vp->v_lock);
1092 		mutex_exit(&zp->z_lock);
1093 		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1094 		return;
1095 	}
1096 	mutex_exit(&vp->v_lock);
1097 
1098 	/*
1099 	 * If this was the last reference to a file with no links,
1100 	 * remove the file from the file system.
1101 	 */
1102 	if (zp->z_unlinked) {
1103 		mutex_exit(&zp->z_lock);
1104 		ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1105 		zfs_rmnode(zp);
1106 		return;
1107 	}
1108 	mutex_exit(&zp->z_lock);
1109 	zfs_znode_dmu_fini(zp);
1110 	ZFS_OBJ_HOLD_EXIT(zfsvfs, z_id);
1111 	zfs_znode_free(zp);
1112 }
1113 
1114 void
1115 zfs_znode_free(znode_t *zp)
1116 {
1117 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1118 
1119 	vn_invalid(ZTOV(zp));
1120 
1121 	ASSERT(ZTOV(zp)->v_count == 0);
1122 
1123 	mutex_enter(&zfsvfs->z_znodes_lock);
1124 	POINTER_INVALIDATE(&zp->z_zfsvfs);
1125 	list_remove(&zfsvfs->z_all_znodes, zp);
1126 	mutex_exit(&zfsvfs->z_znodes_lock);
1127 
1128 	kmem_cache_free(znode_cache, zp);
1129 
1130 	VFS_RELE(zfsvfs->z_vfs);
1131 }
1132 
1133 void
1134 zfs_time_stamper_locked(znode_t *zp, uint_t flag, dmu_tx_t *tx)
1135 {
1136 	timestruc_t	now;
1137 
1138 	ASSERT(MUTEX_HELD(&zp->z_lock));
1139 
1140 	gethrestime(&now);
1141 
1142 	if (tx) {
1143 		dmu_buf_will_dirty(zp->z_dbuf, tx);
1144 		zp->z_atime_dirty = 0;
1145 		zp->z_seq++;
1146 	} else {
1147 		zp->z_atime_dirty = 1;
1148 	}
1149 
1150 	if (flag & AT_ATIME)
1151 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_atime);
1152 
1153 	if (flag & AT_MTIME) {
1154 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_mtime);
1155 		if (zp->z_zfsvfs->z_use_fuids)
1156 			zp->z_phys->zp_flags |= (ZFS_ARCHIVE | ZFS_AV_MODIFIED);
1157 	}
1158 
1159 	if (flag & AT_CTIME) {
1160 		ZFS_TIME_ENCODE(&now, zp->z_phys->zp_ctime);
1161 		if (zp->z_zfsvfs->z_use_fuids)
1162 			zp->z_phys->zp_flags |= ZFS_ARCHIVE;
1163 	}
1164 }
1165 
1166 /*
1167  * Update the requested znode timestamps with the current time.
1168  * If we are in a transaction, then go ahead and mark the znode
1169  * dirty in the transaction so the timestamps will go to disk.
1170  * Otherwise, we will get pushed next time the znode is updated
1171  * in a transaction, or when this znode eventually goes inactive.
1172  *
1173  * Why is this OK?
1174  *  1 - Only the ACCESS time is ever updated outside of a transaction.
1175  *  2 - Multiple consecutive updates will be collapsed into a single
1176  *	znode update by the transaction grouping semantics of the DMU.
1177  */
1178 void
1179 zfs_time_stamper(znode_t *zp, uint_t flag, dmu_tx_t *tx)
1180 {
1181 	mutex_enter(&zp->z_lock);
1182 	zfs_time_stamper_locked(zp, flag, tx);
1183 	mutex_exit(&zp->z_lock);
1184 }
1185 
1186 /*
1187  * Grow the block size for a file.
1188  *
1189  *	IN:	zp	- znode of file to free data in.
1190  *		size	- requested block size
1191  *		tx	- open transaction.
1192  *
1193  * NOTE: this function assumes that the znode is write locked.
1194  */
1195 void
1196 zfs_grow_blocksize(znode_t *zp, uint64_t size, dmu_tx_t *tx)
1197 {
1198 	int		error;
1199 	u_longlong_t	dummy;
1200 
1201 	if (size <= zp->z_blksz)
1202 		return;
1203 	/*
1204 	 * If the file size is already greater than the current blocksize,
1205 	 * we will not grow.  If there is more than one block in a file,
1206 	 * the blocksize cannot change.
1207 	 */
1208 	if (zp->z_blksz && zp->z_phys->zp_size > zp->z_blksz)
1209 		return;
1210 
1211 	error = dmu_object_set_blocksize(zp->z_zfsvfs->z_os, zp->z_id,
1212 	    size, 0, tx);
1213 	if (error == ENOTSUP)
1214 		return;
1215 	ASSERT3U(error, ==, 0);
1216 
1217 	/* What blocksize did we actually get? */
1218 	dmu_object_size_from_db(zp->z_dbuf, &zp->z_blksz, &dummy);
1219 }
1220 
1221 /*
1222  * This is a dummy interface used when pvn_vplist_dirty() should *not*
1223  * be calling back into the fs for a putpage().  E.g.: when truncating
1224  * a file, the pages being "thrown away* don't need to be written out.
1225  */
1226 /* ARGSUSED */
1227 static int
1228 zfs_no_putpage(vnode_t *vp, page_t *pp, u_offset_t *offp, size_t *lenp,
1229     int flags, cred_t *cr)
1230 {
1231 	ASSERT(0);
1232 	return (0);
1233 }
1234 
1235 /*
1236  * Increase the file length
1237  *
1238  *	IN:	zp	- znode of file to free data in.
1239  *		end	- new end-of-file
1240  *
1241  * 	RETURN:	0 if success
1242  *		error code if failure
1243  */
1244 static int
1245 zfs_extend(znode_t *zp, uint64_t end)
1246 {
1247 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1248 	dmu_tx_t *tx;
1249 	rl_t *rl;
1250 	uint64_t newblksz;
1251 	int error;
1252 
1253 	/*
1254 	 * We will change zp_size, lock the whole file.
1255 	 */
1256 	rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1257 
1258 	/*
1259 	 * Nothing to do if file already at desired length.
1260 	 */
1261 	if (end <= zp->z_phys->zp_size) {
1262 		zfs_range_unlock(rl);
1263 		return (0);
1264 	}
1265 top:
1266 	tx = dmu_tx_create(zfsvfs->z_os);
1267 	dmu_tx_hold_bonus(tx, zp->z_id);
1268 	if (end > zp->z_blksz &&
1269 	    (!ISP2(zp->z_blksz) || zp->z_blksz < zfsvfs->z_max_blksz)) {
1270 		/*
1271 		 * We are growing the file past the current block size.
1272 		 */
1273 		if (zp->z_blksz > zp->z_zfsvfs->z_max_blksz) {
1274 			ASSERT(!ISP2(zp->z_blksz));
1275 			newblksz = MIN(end, SPA_MAXBLOCKSIZE);
1276 		} else {
1277 			newblksz = MIN(end, zp->z_zfsvfs->z_max_blksz);
1278 		}
1279 		dmu_tx_hold_write(tx, zp->z_id, 0, newblksz);
1280 	} else {
1281 		newblksz = 0;
1282 	}
1283 
1284 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1285 	if (error) {
1286 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1287 			dmu_tx_wait(tx);
1288 			dmu_tx_abort(tx);
1289 			goto top;
1290 		}
1291 		dmu_tx_abort(tx);
1292 		zfs_range_unlock(rl);
1293 		return (error);
1294 	}
1295 	dmu_buf_will_dirty(zp->z_dbuf, tx);
1296 
1297 	if (newblksz)
1298 		zfs_grow_blocksize(zp, newblksz, tx);
1299 
1300 	zp->z_phys->zp_size = end;
1301 
1302 	zfs_range_unlock(rl);
1303 
1304 	dmu_tx_commit(tx);
1305 
1306 	return (0);
1307 }
1308 
1309 /*
1310  * Free space in a file.
1311  *
1312  *	IN:	zp	- znode of file to free data in.
1313  *		off	- start of section to free.
1314  *		len	- length of section to free.
1315  *
1316  * 	RETURN:	0 if success
1317  *		error code if failure
1318  */
1319 static int
1320 zfs_free_range(znode_t *zp, uint64_t off, uint64_t len)
1321 {
1322 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1323 	rl_t *rl;
1324 	int error;
1325 
1326 	/*
1327 	 * Lock the range being freed.
1328 	 */
1329 	rl = zfs_range_lock(zp, off, len, RL_WRITER);
1330 
1331 	/*
1332 	 * Nothing to do if file already at desired length.
1333 	 */
1334 	if (off >= zp->z_phys->zp_size) {
1335 		zfs_range_unlock(rl);
1336 		return (0);
1337 	}
1338 
1339 	if (off + len > zp->z_phys->zp_size)
1340 		len = zp->z_phys->zp_size - off;
1341 
1342 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, off, len);
1343 
1344 	zfs_range_unlock(rl);
1345 
1346 	return (error);
1347 }
1348 
1349 /*
1350  * Truncate a file
1351  *
1352  *	IN:	zp	- znode of file to free data in.
1353  *		end	- new end-of-file.
1354  *
1355  * 	RETURN:	0 if success
1356  *		error code if failure
1357  */
1358 static int
1359 zfs_trunc(znode_t *zp, uint64_t end)
1360 {
1361 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1362 	vnode_t *vp = ZTOV(zp);
1363 	dmu_tx_t *tx;
1364 	rl_t *rl;
1365 	int error;
1366 
1367 	/*
1368 	 * We will change zp_size, lock the whole file.
1369 	 */
1370 	rl = zfs_range_lock(zp, 0, UINT64_MAX, RL_WRITER);
1371 
1372 	/*
1373 	 * Nothing to do if file already at desired length.
1374 	 */
1375 	if (end >= zp->z_phys->zp_size) {
1376 		zfs_range_unlock(rl);
1377 		return (0);
1378 	}
1379 
1380 	error = dmu_free_long_range(zfsvfs->z_os, zp->z_id, end,  -1);
1381 	if (error) {
1382 		zfs_range_unlock(rl);
1383 		return (error);
1384 	}
1385 top:
1386 	tx = dmu_tx_create(zfsvfs->z_os);
1387 	dmu_tx_hold_bonus(tx, zp->z_id);
1388 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1389 	if (error) {
1390 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1391 			dmu_tx_wait(tx);
1392 			dmu_tx_abort(tx);
1393 			goto top;
1394 		}
1395 		dmu_tx_abort(tx);
1396 		zfs_range_unlock(rl);
1397 		return (error);
1398 	}
1399 	dmu_buf_will_dirty(zp->z_dbuf, tx);
1400 
1401 	zp->z_phys->zp_size = end;
1402 
1403 	dmu_tx_commit(tx);
1404 
1405 	zfs_range_unlock(rl);
1406 
1407 	/*
1408 	 * Clear any mapped pages in the truncated region.  This has to
1409 	 * happen outside of the transaction to avoid the possibility of
1410 	 * a deadlock with someone trying to push a page that we are
1411 	 * about to invalidate.
1412 	 */
1413 	rw_enter(&zp->z_map_lock, RW_WRITER);
1414 	if (vn_has_cached_data(vp)) {
1415 		page_t *pp;
1416 		uint64_t start = end & PAGEMASK;
1417 		int poff = end & PAGEOFFSET;
1418 
1419 		if (poff != 0 && (pp = page_lookup(vp, start, SE_SHARED))) {
1420 			/*
1421 			 * We need to zero a partial page.
1422 			 */
1423 			pagezero(pp, poff, PAGESIZE - poff);
1424 			start += PAGESIZE;
1425 			page_unlock(pp);
1426 		}
1427 		error = pvn_vplist_dirty(vp, start, zfs_no_putpage,
1428 		    B_INVAL | B_TRUNC, NULL);
1429 		ASSERT(error == 0);
1430 	}
1431 	rw_exit(&zp->z_map_lock);
1432 
1433 	return (0);
1434 }
1435 
1436 /*
1437  * Free space in a file
1438  *
1439  *	IN:	zp	- znode of file to free data in.
1440  *		off	- start of range
1441  *		len	- end of range (0 => EOF)
1442  *		flag	- current file open mode flags.
1443  *		log	- TRUE if this action should be logged
1444  *
1445  * 	RETURN:	0 if success
1446  *		error code if failure
1447  */
1448 int
1449 zfs_freesp(znode_t *zp, uint64_t off, uint64_t len, int flag, boolean_t log)
1450 {
1451 	vnode_t *vp = ZTOV(zp);
1452 	dmu_tx_t *tx;
1453 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1454 	zilog_t *zilog = zfsvfs->z_log;
1455 	int error;
1456 
1457 	if (off > zp->z_phys->zp_size) {
1458 		error =  zfs_extend(zp, off+len);
1459 		if (error == 0 && log)
1460 			goto log;
1461 		else
1462 			return (error);
1463 	}
1464 
1465 	/*
1466 	 * Check for any locks in the region to be freed.
1467 	 */
1468 	if (MANDLOCK(vp, (mode_t)zp->z_phys->zp_mode)) {
1469 		uint64_t length = (len ? len : zp->z_phys->zp_size - off);
1470 		if (error = chklock(vp, FWRITE, off, length, flag, NULL))
1471 			return (error);
1472 	}
1473 
1474 	if (len == 0) {
1475 		error = zfs_trunc(zp, off);
1476 	} else {
1477 		if ((error = zfs_free_range(zp, off, len)) == 0 &&
1478 		    off + len > zp->z_phys->zp_size)
1479 			error = zfs_extend(zp, off+len);
1480 	}
1481 	if (error || !log)
1482 		return (error);
1483 log:
1484 	tx = dmu_tx_create(zfsvfs->z_os);
1485 	dmu_tx_hold_bonus(tx, zp->z_id);
1486 	error = dmu_tx_assign(tx, zfsvfs->z_assign);
1487 	if (error) {
1488 		if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
1489 			dmu_tx_wait(tx);
1490 			dmu_tx_abort(tx);
1491 			goto log;
1492 		}
1493 		dmu_tx_abort(tx);
1494 		return (error);
1495 	}
1496 
1497 	zfs_time_stamper(zp, CONTENT_MODIFIED, tx);
1498 	zfs_log_truncate(zilog, tx, TX_TRUNCATE, zp, off, len);
1499 
1500 	dmu_tx_commit(tx);
1501 	return (0);
1502 }
1503 
1504 void
1505 zfs_create_fs(objset_t *os, cred_t *cr, nvlist_t *zplprops, dmu_tx_t *tx)
1506 {
1507 	zfsvfs_t	zfsvfs;
1508 	uint64_t	moid, doid;
1509 	uint64_t	version = 0;
1510 	uint64_t	sense = ZFS_CASE_SENSITIVE;
1511 	uint64_t	norm = 0;
1512 	nvpair_t	*elem;
1513 	int		error;
1514 	znode_t		*rootzp = NULL;
1515 	vnode_t		*vp;
1516 	vattr_t		vattr;
1517 	znode_t		*zp;
1518 
1519 	/*
1520 	 * First attempt to create master node.
1521 	 */
1522 	/*
1523 	 * In an empty objset, there are no blocks to read and thus
1524 	 * there can be no i/o errors (which we assert below).
1525 	 */
1526 	moid = MASTER_NODE_OBJ;
1527 	error = zap_create_claim(os, moid, DMU_OT_MASTER_NODE,
1528 	    DMU_OT_NONE, 0, tx);
1529 	ASSERT(error == 0);
1530 
1531 	/*
1532 	 * Set starting attributes.
1533 	 */
1534 	elem = NULL;
1535 	while ((elem = nvlist_next_nvpair(zplprops, elem)) != NULL) {
1536 		/* For the moment we expect all zpl props to be uint64_ts */
1537 		uint64_t val;
1538 		char *name;
1539 
1540 		ASSERT(nvpair_type(elem) == DATA_TYPE_UINT64);
1541 		VERIFY(nvpair_value_uint64(elem, &val) == 0);
1542 		name = nvpair_name(elem);
1543 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_VERSION)) == 0) {
1544 			version = val;
1545 			error = zap_update(os, moid, ZPL_VERSION_STR,
1546 			    8, 1, &version, tx);
1547 		} else {
1548 			error = zap_update(os, moid, name, 8, 1, &val, tx);
1549 		}
1550 		ASSERT(error == 0);
1551 		if (strcmp(name, zfs_prop_to_name(ZFS_PROP_NORMALIZE)) == 0)
1552 			norm = val;
1553 		else if (strcmp(name, zfs_prop_to_name(ZFS_PROP_CASE)) == 0)
1554 			sense = val;
1555 	}
1556 	ASSERT(version != 0);
1557 
1558 	/*
1559 	 * Create a delete queue.
1560 	 */
1561 	doid = zap_create(os, DMU_OT_UNLINKED_SET, DMU_OT_NONE, 0, tx);
1562 
1563 	error = zap_add(os, moid, ZFS_UNLINKED_SET, 8, 1, &doid, tx);
1564 	ASSERT(error == 0);
1565 
1566 	/*
1567 	 * Create root znode.  Create minimal znode/vnode/zfsvfs
1568 	 * to allow zfs_mknode to work.
1569 	 */
1570 	vattr.va_mask = AT_MODE|AT_UID|AT_GID|AT_TYPE;
1571 	vattr.va_type = VDIR;
1572 	vattr.va_mode = S_IFDIR|0755;
1573 	vattr.va_uid = crgetuid(cr);
1574 	vattr.va_gid = crgetgid(cr);
1575 
1576 	rootzp = kmem_cache_alloc(znode_cache, KM_SLEEP);
1577 	rootzp->z_unlinked = 0;
1578 	rootzp->z_atime_dirty = 0;
1579 
1580 	vp = ZTOV(rootzp);
1581 	vn_reinit(vp);
1582 	vp->v_type = VDIR;
1583 
1584 	bzero(&zfsvfs, sizeof (zfsvfs_t));
1585 
1586 	zfsvfs.z_os = os;
1587 	zfsvfs.z_assign = TXG_NOWAIT;
1588 	zfsvfs.z_parent = &zfsvfs;
1589 	zfsvfs.z_version = version;
1590 	zfsvfs.z_use_fuids = USE_FUIDS(version, os);
1591 	zfsvfs.z_norm = norm;
1592 	/*
1593 	 * Fold case on file systems that are always or sometimes case
1594 	 * insensitive.
1595 	 */
1596 	if (sense == ZFS_CASE_INSENSITIVE || sense == ZFS_CASE_MIXED)
1597 		zfsvfs.z_norm |= U8_TEXTPREP_TOUPPER;
1598 
1599 	mutex_init(&zfsvfs.z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
1600 	list_create(&zfsvfs.z_all_znodes, sizeof (znode_t),
1601 	    offsetof(znode_t, z_link_node));
1602 
1603 	ASSERT(!POINTER_IS_VALID(rootzp->z_zfsvfs));
1604 	rootzp->z_zfsvfs = &zfsvfs;
1605 	zfs_mknode(rootzp, &vattr, tx, cr, IS_ROOT_NODE, &zp, 0, NULL, NULL);
1606 	ASSERT3P(zp, ==, rootzp);
1607 	ASSERT(!vn_in_dnlc(ZTOV(rootzp))); /* not valid to move */
1608 	error = zap_add(os, moid, ZFS_ROOT_OBJ, 8, 1, &rootzp->z_id, tx);
1609 	ASSERT(error == 0);
1610 	POINTER_INVALIDATE(&rootzp->z_zfsvfs);
1611 
1612 	ZTOV(rootzp)->v_count = 0;
1613 	dmu_buf_rele(rootzp->z_dbuf, NULL);
1614 	rootzp->z_dbuf = NULL;
1615 	kmem_cache_free(znode_cache, rootzp);
1616 }
1617 
1618 #endif /* _KERNEL */
1619 /*
1620  * Given an object number, return its parent object number and whether
1621  * or not the object is an extended attribute directory.
1622  */
1623 static int
1624 zfs_obj_to_pobj(objset_t *osp, uint64_t obj, uint64_t *pobjp, int *is_xattrdir)
1625 {
1626 	dmu_buf_t *db;
1627 	dmu_object_info_t doi;
1628 	znode_phys_t *zp;
1629 	int error;
1630 
1631 	if ((error = dmu_bonus_hold(osp, obj, FTAG, &db)) != 0)
1632 		return (error);
1633 
1634 	dmu_object_info_from_db(db, &doi);
1635 	if (doi.doi_bonus_type != DMU_OT_ZNODE ||
1636 	    doi.doi_bonus_size < sizeof (znode_phys_t)) {
1637 		dmu_buf_rele(db, FTAG);
1638 		return (EINVAL);
1639 	}
1640 
1641 	zp = db->db_data;
1642 	*pobjp = zp->zp_parent;
1643 	*is_xattrdir = ((zp->zp_flags & ZFS_XATTR) != 0) &&
1644 	    S_ISDIR(zp->zp_mode);
1645 	dmu_buf_rele(db, FTAG);
1646 
1647 	return (0);
1648 }
1649 
1650 int
1651 zfs_obj_to_path(objset_t *osp, uint64_t obj, char *buf, int len)
1652 {
1653 	char *path = buf + len - 1;
1654 	int error;
1655 
1656 	*path = '\0';
1657 
1658 	for (;;) {
1659 		uint64_t pobj;
1660 		char component[MAXNAMELEN + 2];
1661 		size_t complen;
1662 		int is_xattrdir;
1663 
1664 		if ((error = zfs_obj_to_pobj(osp, obj, &pobj,
1665 		    &is_xattrdir)) != 0)
1666 			break;
1667 
1668 		if (pobj == obj) {
1669 			if (path[0] != '/')
1670 				*--path = '/';
1671 			break;
1672 		}
1673 
1674 		component[0] = '/';
1675 		if (is_xattrdir) {
1676 			(void) sprintf(component + 1, "<xattrdir>");
1677 		} else {
1678 			error = zap_value_search(osp, pobj, obj,
1679 			    ZFS_DIRENT_OBJ(-1ULL), component + 1);
1680 			if (error != 0)
1681 				break;
1682 		}
1683 
1684 		complen = strlen(component);
1685 		path -= complen;
1686 		ASSERT(path >= buf);
1687 		bcopy(component, path, complen);
1688 		obj = pobj;
1689 	}
1690 
1691 	if (error == 0)
1692 		(void) memmove(buf, path, buf + len - path);
1693 	return (error);
1694 }
1695