xref: /titanic_44/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision cf7e209d5f01e9f5fe052b444899ba9cba0e9877)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
25  */
26 
27 /* Portions Copyright 2007 Jeremy Teo */
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/resource.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/taskq.h>
43 #include <sys/uio.h>
44 #include <sys/vmsystm.h>
45 #include <sys/atomic.h>
46 #include <sys/vm.h>
47 #include <vm/seg_vn.h>
48 #include <vm/pvn.h>
49 #include <vm/as.h>
50 #include <vm/kpm.h>
51 #include <vm/seg_kpm.h>
52 #include <sys/mman.h>
53 #include <sys/pathname.h>
54 #include <sys/cmn_err.h>
55 #include <sys/errno.h>
56 #include <sys/unistd.h>
57 #include <sys/zfs_dir.h>
58 #include <sys/zfs_acl.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/dmu.h>
62 #include <sys/dmu_objset.h>
63 #include <sys/spa.h>
64 #include <sys/txg.h>
65 #include <sys/dbuf.h>
66 #include <sys/zap.h>
67 #include <sys/sa.h>
68 #include <sys/dirent.h>
69 #include <sys/policy.h>
70 #include <sys/sunddi.h>
71 #include <sys/filio.h>
72 #include <sys/sid.h>
73 #include "fs/fs_subr.h"
74 #include <sys/zfs_ctldir.h>
75 #include <sys/zfs_fuid.h>
76 #include <sys/zfs_sa.h>
77 #include <sys/dnlc.h>
78 #include <sys/zfs_rlock.h>
79 #include <sys/extdirent.h>
80 #include <sys/kidmap.h>
81 #include <sys/cred.h>
82 #include <sys/attr.h>
83 
84 /*
85  * Programming rules.
86  *
87  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
88  * properly lock its in-core state, create a DMU transaction, do the work,
89  * record this work in the intent log (ZIL), commit the DMU transaction,
90  * and wait for the intent log to commit if it is a synchronous operation.
91  * Moreover, the vnode ops must work in both normal and log replay context.
92  * The ordering of events is important to avoid deadlocks and references
93  * to freed memory.  The example below illustrates the following Big Rules:
94  *
95  *  (1)	A check must be made in each zfs thread for a mounted file system.
96  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
97  *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
98  *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
99  *	can return EIO from the calling function.
100  *
101  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
102  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
103  *	First, if it's the last reference, the vnode/znode
104  *	can be freed, so the zp may point to freed memory.  Second, the last
105  *	reference will call zfs_zinactive(), which may induce a lot of work --
106  *	pushing cached pages (which acquires range locks) and syncing out
107  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
108  *	which could deadlock the system if you were already holding one.
109  *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
110  *
111  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
112  *	as they can span dmu_tx_assign() calls.
113  *
114  *  (4)	Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
115  *	This is critical because we don't want to block while holding locks.
116  *	Note, in particular, that if a lock is sometimes acquired before
117  *	the tx assigns, and sometimes after (e.g. z_lock), then failing to
118  *	use a non-blocking assign can deadlock the system.  The scenario:
119  *
120  *	Thread A has grabbed a lock before calling dmu_tx_assign().
121  *	Thread B is in an already-assigned tx, and blocks for this lock.
122  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
123  *	forever, because the previous txg can't quiesce until B's tx commits.
124  *
125  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
126  *	then drop all locks, call dmu_tx_wait(), and try again.
127  *
128  *  (5)	If the operation succeeded, generate the intent log entry for it
129  *	before dropping locks.  This ensures that the ordering of events
130  *	in the intent log matches the order in which they actually occurred.
131  *	During ZIL replay the zfs_log_* functions will update the sequence
132  *	number to indicate the zil transaction has replayed.
133  *
134  *  (6)	At the end of each vnode op, the DMU tx must always commit,
135  *	regardless of whether there were any errors.
136  *
137  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
138  *	to ensure that synchronous semantics are provided when necessary.
139  *
140  * In general, this is how things should be ordered in each vnode op:
141  *
142  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
143  * top:
144  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
145  *	rw_enter(...);			// grab any other locks you need
146  *	tx = dmu_tx_create(...);	// get DMU tx
147  *	dmu_tx_hold_*();		// hold each object you might modify
148  *	error = dmu_tx_assign(tx, TXG_NOWAIT);	// try to assign
149  *	if (error) {
150  *		rw_exit(...);		// drop locks
151  *		zfs_dirent_unlock(dl);	// unlock directory entry
152  *		VN_RELE(...);		// release held vnodes
153  *		if (error == ERESTART) {
154  *			dmu_tx_wait(tx);
155  *			dmu_tx_abort(tx);
156  *			goto top;
157  *		}
158  *		dmu_tx_abort(tx);	// abort DMU tx
159  *		ZFS_EXIT(zfsvfs);	// finished in zfs
160  *		return (error);		// really out of space
161  *	}
162  *	error = do_real_work();		// do whatever this VOP does
163  *	if (error == 0)
164  *		zfs_log_*(...);		// on success, make ZIL entry
165  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
166  *	rw_exit(...);			// drop locks
167  *	zfs_dirent_unlock(dl);		// unlock directory entry
168  *	VN_RELE(...);			// release held vnodes
169  *	zil_commit(zilog, foid);	// synchronous when necessary
170  *	ZFS_EXIT(zfsvfs);		// finished in zfs
171  *	return (error);			// done, report error
172  */
173 
174 /* ARGSUSED */
175 static int
176 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
177 {
178 	znode_t	*zp = VTOZ(*vpp);
179 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
180 
181 	ZFS_ENTER(zfsvfs);
182 	ZFS_VERIFY_ZP(zp);
183 
184 	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
185 	    ((flag & FAPPEND) == 0)) {
186 		ZFS_EXIT(zfsvfs);
187 		return (SET_ERROR(EPERM));
188 	}
189 
190 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
191 	    ZTOV(zp)->v_type == VREG &&
192 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
193 		if (fs_vscan(*vpp, cr, 0) != 0) {
194 			ZFS_EXIT(zfsvfs);
195 			return (SET_ERROR(EACCES));
196 		}
197 	}
198 
199 	/* Keep a count of the synchronous opens in the znode */
200 	if (flag & (FSYNC | FDSYNC))
201 		atomic_inc_32(&zp->z_sync_cnt);
202 
203 	ZFS_EXIT(zfsvfs);
204 	return (0);
205 }
206 
207 /* ARGSUSED */
208 static int
209 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
210     caller_context_t *ct)
211 {
212 	znode_t	*zp = VTOZ(vp);
213 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
214 
215 	/*
216 	 * Clean up any locks held by this process on the vp.
217 	 */
218 	cleanlocks(vp, ddi_get_pid(), 0);
219 	cleanshares(vp, ddi_get_pid());
220 
221 	ZFS_ENTER(zfsvfs);
222 	ZFS_VERIFY_ZP(zp);
223 
224 	/* Decrement the synchronous opens in the znode */
225 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
226 		atomic_dec_32(&zp->z_sync_cnt);
227 
228 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
229 	    ZTOV(zp)->v_type == VREG &&
230 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
231 		VERIFY(fs_vscan(vp, cr, 1) == 0);
232 
233 	ZFS_EXIT(zfsvfs);
234 	return (0);
235 }
236 
237 /*
238  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
239  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
240  */
241 static int
242 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
243 {
244 	znode_t	*zp = VTOZ(vp);
245 	uint64_t noff = (uint64_t)*off; /* new offset */
246 	uint64_t file_sz;
247 	int error;
248 	boolean_t hole;
249 
250 	file_sz = zp->z_size;
251 	if (noff >= file_sz)  {
252 		return (SET_ERROR(ENXIO));
253 	}
254 
255 	if (cmd == _FIO_SEEK_HOLE)
256 		hole = B_TRUE;
257 	else
258 		hole = B_FALSE;
259 
260 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
261 
262 	/* end of file? */
263 	if ((error == ESRCH) || (noff > file_sz)) {
264 		/*
265 		 * Handle the virtual hole at the end of file.
266 		 */
267 		if (hole) {
268 			*off = file_sz;
269 			return (0);
270 		}
271 		return (SET_ERROR(ENXIO));
272 	}
273 
274 	if (noff < *off)
275 		return (error);
276 	*off = noff;
277 	return (error);
278 }
279 
280 /* ARGSUSED */
281 static int
282 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
283     int *rvalp, caller_context_t *ct)
284 {
285 	offset_t off;
286 	int error;
287 	zfsvfs_t *zfsvfs;
288 	znode_t *zp;
289 
290 	switch (com) {
291 	case _FIOFFS:
292 		return (zfs_sync(vp->v_vfsp, 0, cred));
293 
294 		/*
295 		 * The following two ioctls are used by bfu.  Faking out,
296 		 * necessary to avoid bfu errors.
297 		 */
298 	case _FIOGDIO:
299 	case _FIOSDIO:
300 		return (0);
301 
302 	case _FIO_SEEK_DATA:
303 	case _FIO_SEEK_HOLE:
304 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
305 			return (SET_ERROR(EFAULT));
306 
307 		zp = VTOZ(vp);
308 		zfsvfs = zp->z_zfsvfs;
309 		ZFS_ENTER(zfsvfs);
310 		ZFS_VERIFY_ZP(zp);
311 
312 		/* offset parameter is in/out */
313 		error = zfs_holey(vp, com, &off);
314 		ZFS_EXIT(zfsvfs);
315 		if (error)
316 			return (error);
317 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
318 			return (SET_ERROR(EFAULT));
319 		return (0);
320 	}
321 	return (SET_ERROR(ENOTTY));
322 }
323 
324 /*
325  * Utility functions to map and unmap a single physical page.  These
326  * are used to manage the mappable copies of ZFS file data, and therefore
327  * do not update ref/mod bits.
328  */
329 caddr_t
330 zfs_map_page(page_t *pp, enum seg_rw rw)
331 {
332 	if (kpm_enable)
333 		return (hat_kpm_mapin(pp, 0));
334 	ASSERT(rw == S_READ || rw == S_WRITE);
335 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
336 	    (caddr_t)-1));
337 }
338 
339 void
340 zfs_unmap_page(page_t *pp, caddr_t addr)
341 {
342 	if (kpm_enable) {
343 		hat_kpm_mapout(pp, 0, addr);
344 	} else {
345 		ppmapout(addr);
346 	}
347 }
348 
349 /*
350  * When a file is memory mapped, we must keep the IO data synchronized
351  * between the DMU cache and the memory mapped pages.  What this means:
352  *
353  * On Write:	If we find a memory mapped page, we write to *both*
354  *		the page and the dmu buffer.
355  */
356 static void
357 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
358 {
359 	int64_t	off;
360 
361 	off = start & PAGEOFFSET;
362 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
363 		page_t *pp;
364 		uint64_t nbytes = MIN(PAGESIZE - off, len);
365 
366 		if (pp = page_lookup(vp, start, SE_SHARED)) {
367 			caddr_t va;
368 
369 			va = zfs_map_page(pp, S_WRITE);
370 			(void) dmu_read(os, oid, start+off, nbytes, va+off,
371 			    DMU_READ_PREFETCH);
372 			zfs_unmap_page(pp, va);
373 			page_unlock(pp);
374 		}
375 		len -= nbytes;
376 		off = 0;
377 	}
378 }
379 
380 /*
381  * When a file is memory mapped, we must keep the IO data synchronized
382  * between the DMU cache and the memory mapped pages.  What this means:
383  *
384  * On Read:	We "read" preferentially from memory mapped pages,
385  *		else we default from the dmu buffer.
386  *
387  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
388  *	 the file is memory mapped.
389  */
390 static int
391 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
392 {
393 	znode_t *zp = VTOZ(vp);
394 	objset_t *os = zp->z_zfsvfs->z_os;
395 	int64_t	start, off;
396 	int len = nbytes;
397 	int error = 0;
398 
399 	start = uio->uio_loffset;
400 	off = start & PAGEOFFSET;
401 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
402 		page_t *pp;
403 		uint64_t bytes = MIN(PAGESIZE - off, len);
404 
405 		if (pp = page_lookup(vp, start, SE_SHARED)) {
406 			caddr_t va;
407 
408 			va = zfs_map_page(pp, S_READ);
409 			error = uiomove(va + off, bytes, UIO_READ, uio);
410 			zfs_unmap_page(pp, va);
411 			page_unlock(pp);
412 		} else {
413 			error = dmu_read_uio(os, zp->z_id, uio, bytes);
414 		}
415 		len -= bytes;
416 		off = 0;
417 		if (error)
418 			break;
419 	}
420 	return (error);
421 }
422 
423 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
424 
425 /*
426  * Read bytes from specified file into supplied buffer.
427  *
428  *	IN:	vp	- vnode of file to be read from.
429  *		uio	- structure supplying read location, range info,
430  *			  and return buffer.
431  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
432  *		cr	- credentials of caller.
433  *		ct	- caller context
434  *
435  *	OUT:	uio	- updated offset and range, buffer filled.
436  *
437  *	RETURN:	0 on success, error code on failure.
438  *
439  * Side Effects:
440  *	vp - atime updated if byte count > 0
441  */
442 /* ARGSUSED */
443 static int
444 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
445 {
446 	znode_t		*zp = VTOZ(vp);
447 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
448 	objset_t	*os;
449 	ssize_t		n, nbytes;
450 	int		error = 0;
451 	rl_t		*rl;
452 	xuio_t		*xuio = NULL;
453 
454 	ZFS_ENTER(zfsvfs);
455 	ZFS_VERIFY_ZP(zp);
456 	os = zfsvfs->z_os;
457 
458 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
459 		ZFS_EXIT(zfsvfs);
460 		return (SET_ERROR(EACCES));
461 	}
462 
463 	/*
464 	 * Validate file offset
465 	 */
466 	if (uio->uio_loffset < (offset_t)0) {
467 		ZFS_EXIT(zfsvfs);
468 		return (SET_ERROR(EINVAL));
469 	}
470 
471 	/*
472 	 * Fasttrack empty reads
473 	 */
474 	if (uio->uio_resid == 0) {
475 		ZFS_EXIT(zfsvfs);
476 		return (0);
477 	}
478 
479 	/*
480 	 * Check for mandatory locks
481 	 */
482 	if (MANDMODE(zp->z_mode)) {
483 		if (error = chklock(vp, FREAD,
484 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
485 			ZFS_EXIT(zfsvfs);
486 			return (error);
487 		}
488 	}
489 
490 	/*
491 	 * If we're in FRSYNC mode, sync out this znode before reading it.
492 	 */
493 	if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
494 		zil_commit(zfsvfs->z_log, zp->z_id);
495 
496 	/*
497 	 * Lock the range against changes.
498 	 */
499 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
500 
501 	/*
502 	 * If we are reading past end-of-file we can skip
503 	 * to the end; but we might still need to set atime.
504 	 */
505 	if (uio->uio_loffset >= zp->z_size) {
506 		error = 0;
507 		goto out;
508 	}
509 
510 	ASSERT(uio->uio_loffset < zp->z_size);
511 	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
512 
513 	if ((uio->uio_extflg == UIO_XUIO) &&
514 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
515 		int nblk;
516 		int blksz = zp->z_blksz;
517 		uint64_t offset = uio->uio_loffset;
518 
519 		xuio = (xuio_t *)uio;
520 		if ((ISP2(blksz))) {
521 			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
522 			    blksz)) / blksz;
523 		} else {
524 			ASSERT(offset + n <= blksz);
525 			nblk = 1;
526 		}
527 		(void) dmu_xuio_init(xuio, nblk);
528 
529 		if (vn_has_cached_data(vp)) {
530 			/*
531 			 * For simplicity, we always allocate a full buffer
532 			 * even if we only expect to read a portion of a block.
533 			 */
534 			while (--nblk >= 0) {
535 				(void) dmu_xuio_add(xuio,
536 				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
537 				    blksz), 0, blksz);
538 			}
539 		}
540 	}
541 
542 	while (n > 0) {
543 		nbytes = MIN(n, zfs_read_chunk_size -
544 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
545 
546 		if (vn_has_cached_data(vp))
547 			error = mappedread(vp, nbytes, uio);
548 		else
549 			error = dmu_read_uio(os, zp->z_id, uio, nbytes);
550 		if (error) {
551 			/* convert checksum errors into IO errors */
552 			if (error == ECKSUM)
553 				error = SET_ERROR(EIO);
554 			break;
555 		}
556 
557 		n -= nbytes;
558 	}
559 out:
560 	zfs_range_unlock(rl);
561 
562 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
563 	ZFS_EXIT(zfsvfs);
564 	return (error);
565 }
566 
567 /*
568  * Write the bytes to a file.
569  *
570  *	IN:	vp	- vnode of file to be written to.
571  *		uio	- structure supplying write location, range info,
572  *			  and data buffer.
573  *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
574  *			  set if in append mode.
575  *		cr	- credentials of caller.
576  *		ct	- caller context (NFS/CIFS fem monitor only)
577  *
578  *	OUT:	uio	- updated offset and range.
579  *
580  *	RETURN:	0 on success, error code on failure.
581  *
582  * Timestamps:
583  *	vp - ctime|mtime updated if byte count > 0
584  */
585 
586 /* ARGSUSED */
587 static int
588 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
589 {
590 	znode_t		*zp = VTOZ(vp);
591 	rlim64_t	limit = uio->uio_llimit;
592 	ssize_t		start_resid = uio->uio_resid;
593 	ssize_t		tx_bytes;
594 	uint64_t	end_size;
595 	dmu_tx_t	*tx;
596 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
597 	zilog_t		*zilog;
598 	offset_t	woff;
599 	ssize_t		n, nbytes;
600 	rl_t		*rl;
601 	int		max_blksz = zfsvfs->z_max_blksz;
602 	int		error = 0;
603 	arc_buf_t	*abuf;
604 	iovec_t		*aiov = NULL;
605 	xuio_t		*xuio = NULL;
606 	int		i_iov = 0;
607 	int		iovcnt = uio->uio_iovcnt;
608 	iovec_t		*iovp = uio->uio_iov;
609 	int		write_eof;
610 	int		count = 0;
611 	sa_bulk_attr_t	bulk[4];
612 	uint64_t	mtime[2], ctime[2];
613 
614 	/*
615 	 * Fasttrack empty write
616 	 */
617 	n = start_resid;
618 	if (n == 0)
619 		return (0);
620 
621 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
622 		limit = MAXOFFSET_T;
623 
624 	ZFS_ENTER(zfsvfs);
625 	ZFS_VERIFY_ZP(zp);
626 
627 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
628 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
629 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
630 	    &zp->z_size, 8);
631 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
632 	    &zp->z_pflags, 8);
633 
634 	/*
635 	 * If immutable or not appending then return EPERM
636 	 */
637 	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
638 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
639 	    (uio->uio_loffset < zp->z_size))) {
640 		ZFS_EXIT(zfsvfs);
641 		return (SET_ERROR(EPERM));
642 	}
643 
644 	zilog = zfsvfs->z_log;
645 
646 	/*
647 	 * Validate file offset
648 	 */
649 	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
650 	if (woff < 0) {
651 		ZFS_EXIT(zfsvfs);
652 		return (SET_ERROR(EINVAL));
653 	}
654 
655 	/*
656 	 * Check for mandatory locks before calling zfs_range_lock()
657 	 * in order to prevent a deadlock with locks set via fcntl().
658 	 */
659 	if (MANDMODE((mode_t)zp->z_mode) &&
660 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
661 		ZFS_EXIT(zfsvfs);
662 		return (error);
663 	}
664 
665 	/*
666 	 * Pre-fault the pages to ensure slow (eg NFS) pages
667 	 * don't hold up txg.
668 	 * Skip this if uio contains loaned arc_buf.
669 	 */
670 	if ((uio->uio_extflg == UIO_XUIO) &&
671 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
672 		xuio = (xuio_t *)uio;
673 	else
674 		uio_prefaultpages(MIN(n, max_blksz), uio);
675 
676 	/*
677 	 * If in append mode, set the io offset pointer to eof.
678 	 */
679 	if (ioflag & FAPPEND) {
680 		/*
681 		 * Obtain an appending range lock to guarantee file append
682 		 * semantics.  We reset the write offset once we have the lock.
683 		 */
684 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
685 		woff = rl->r_off;
686 		if (rl->r_len == UINT64_MAX) {
687 			/*
688 			 * We overlocked the file because this write will cause
689 			 * the file block size to increase.
690 			 * Note that zp_size cannot change with this lock held.
691 			 */
692 			woff = zp->z_size;
693 		}
694 		uio->uio_loffset = woff;
695 	} else {
696 		/*
697 		 * Note that if the file block size will change as a result of
698 		 * this write, then this range lock will lock the entire file
699 		 * so that we can re-write the block safely.
700 		 */
701 		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
702 	}
703 
704 	if (woff >= limit) {
705 		zfs_range_unlock(rl);
706 		ZFS_EXIT(zfsvfs);
707 		return (SET_ERROR(EFBIG));
708 	}
709 
710 	if ((woff + n) > limit || woff > (limit - n))
711 		n = limit - woff;
712 
713 	/* Will this write extend the file length? */
714 	write_eof = (woff + n > zp->z_size);
715 
716 	end_size = MAX(zp->z_size, woff + n);
717 
718 	/*
719 	 * Write the file in reasonable size chunks.  Each chunk is written
720 	 * in a separate transaction; this keeps the intent log records small
721 	 * and allows us to do more fine-grained space accounting.
722 	 */
723 	while (n > 0) {
724 		abuf = NULL;
725 		woff = uio->uio_loffset;
726 again:
727 		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
728 		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
729 			if (abuf != NULL)
730 				dmu_return_arcbuf(abuf);
731 			error = SET_ERROR(EDQUOT);
732 			break;
733 		}
734 
735 		if (xuio && abuf == NULL) {
736 			ASSERT(i_iov < iovcnt);
737 			aiov = &iovp[i_iov];
738 			abuf = dmu_xuio_arcbuf(xuio, i_iov);
739 			dmu_xuio_clear(xuio, i_iov);
740 			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
741 			    iovec_t *, aiov, arc_buf_t *, abuf);
742 			ASSERT((aiov->iov_base == abuf->b_data) ||
743 			    ((char *)aiov->iov_base - (char *)abuf->b_data +
744 			    aiov->iov_len == arc_buf_size(abuf)));
745 			i_iov++;
746 		} else if (abuf == NULL && n >= max_blksz &&
747 		    woff >= zp->z_size &&
748 		    P2PHASE(woff, max_blksz) == 0 &&
749 		    zp->z_blksz == max_blksz) {
750 			/*
751 			 * This write covers a full block.  "Borrow" a buffer
752 			 * from the dmu so that we can fill it before we enter
753 			 * a transaction.  This avoids the possibility of
754 			 * holding up the transaction if the data copy hangs
755 			 * up on a pagefault (e.g., from an NFS server mapping).
756 			 */
757 			size_t cbytes;
758 
759 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
760 			    max_blksz);
761 			ASSERT(abuf != NULL);
762 			ASSERT(arc_buf_size(abuf) == max_blksz);
763 			if (error = uiocopy(abuf->b_data, max_blksz,
764 			    UIO_WRITE, uio, &cbytes)) {
765 				dmu_return_arcbuf(abuf);
766 				break;
767 			}
768 			ASSERT(cbytes == max_blksz);
769 		}
770 
771 		/*
772 		 * Start a transaction.
773 		 */
774 		tx = dmu_tx_create(zfsvfs->z_os);
775 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
776 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
777 		zfs_sa_upgrade_txholds(tx, zp);
778 		error = dmu_tx_assign(tx, TXG_NOWAIT);
779 		if (error) {
780 			if (error == ERESTART) {
781 				dmu_tx_wait(tx);
782 				dmu_tx_abort(tx);
783 				goto again;
784 			}
785 			dmu_tx_abort(tx);
786 			if (abuf != NULL)
787 				dmu_return_arcbuf(abuf);
788 			break;
789 		}
790 
791 		/*
792 		 * If zfs_range_lock() over-locked we grow the blocksize
793 		 * and then reduce the lock range.  This will only happen
794 		 * on the first iteration since zfs_range_reduce() will
795 		 * shrink down r_len to the appropriate size.
796 		 */
797 		if (rl->r_len == UINT64_MAX) {
798 			uint64_t new_blksz;
799 
800 			if (zp->z_blksz > max_blksz) {
801 				ASSERT(!ISP2(zp->z_blksz));
802 				new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
803 			} else {
804 				new_blksz = MIN(end_size, max_blksz);
805 			}
806 			zfs_grow_blocksize(zp, new_blksz, tx);
807 			zfs_range_reduce(rl, woff, n);
808 		}
809 
810 		/*
811 		 * XXX - should we really limit each write to z_max_blksz?
812 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
813 		 */
814 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
815 
816 		if (abuf == NULL) {
817 			tx_bytes = uio->uio_resid;
818 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
819 			    uio, nbytes, tx);
820 			tx_bytes -= uio->uio_resid;
821 		} else {
822 			tx_bytes = nbytes;
823 			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
824 			/*
825 			 * If this is not a full block write, but we are
826 			 * extending the file past EOF and this data starts
827 			 * block-aligned, use assign_arcbuf().  Otherwise,
828 			 * write via dmu_write().
829 			 */
830 			if (tx_bytes < max_blksz && (!write_eof ||
831 			    aiov->iov_base != abuf->b_data)) {
832 				ASSERT(xuio);
833 				dmu_write(zfsvfs->z_os, zp->z_id, woff,
834 				    aiov->iov_len, aiov->iov_base, tx);
835 				dmu_return_arcbuf(abuf);
836 				xuio_stat_wbuf_copied();
837 			} else {
838 				ASSERT(xuio || tx_bytes == max_blksz);
839 				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
840 				    woff, abuf, tx);
841 			}
842 			ASSERT(tx_bytes <= uio->uio_resid);
843 			uioskip(uio, tx_bytes);
844 		}
845 		if (tx_bytes && vn_has_cached_data(vp)) {
846 			update_pages(vp, woff,
847 			    tx_bytes, zfsvfs->z_os, zp->z_id);
848 		}
849 
850 		/*
851 		 * If we made no progress, we're done.  If we made even
852 		 * partial progress, update the znode and ZIL accordingly.
853 		 */
854 		if (tx_bytes == 0) {
855 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
856 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
857 			dmu_tx_commit(tx);
858 			ASSERT(error != 0);
859 			break;
860 		}
861 
862 		/*
863 		 * Clear Set-UID/Set-GID bits on successful write if not
864 		 * privileged and at least one of the excute bits is set.
865 		 *
866 		 * It would be nice to to this after all writes have
867 		 * been done, but that would still expose the ISUID/ISGID
868 		 * to another app after the partial write is committed.
869 		 *
870 		 * Note: we don't call zfs_fuid_map_id() here because
871 		 * user 0 is not an ephemeral uid.
872 		 */
873 		mutex_enter(&zp->z_acl_lock);
874 		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
875 		    (S_IXUSR >> 6))) != 0 &&
876 		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
877 		    secpolicy_vnode_setid_retain(cr,
878 		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
879 			uint64_t newmode;
880 			zp->z_mode &= ~(S_ISUID | S_ISGID);
881 			newmode = zp->z_mode;
882 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
883 			    (void *)&newmode, sizeof (uint64_t), tx);
884 		}
885 		mutex_exit(&zp->z_acl_lock);
886 
887 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
888 		    B_TRUE);
889 
890 		/*
891 		 * Update the file size (zp_size) if it has changed;
892 		 * account for possible concurrent updates.
893 		 */
894 		while ((end_size = zp->z_size) < uio->uio_loffset) {
895 			(void) atomic_cas_64(&zp->z_size, end_size,
896 			    uio->uio_loffset);
897 			ASSERT(error == 0);
898 		}
899 		/*
900 		 * If we are replaying and eof is non zero then force
901 		 * the file size to the specified eof. Note, there's no
902 		 * concurrency during replay.
903 		 */
904 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
905 			zp->z_size = zfsvfs->z_replay_eof;
906 
907 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
908 
909 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
910 		dmu_tx_commit(tx);
911 
912 		if (error != 0)
913 			break;
914 		ASSERT(tx_bytes == nbytes);
915 		n -= nbytes;
916 
917 		if (!xuio && n > 0)
918 			uio_prefaultpages(MIN(n, max_blksz), uio);
919 	}
920 
921 	zfs_range_unlock(rl);
922 
923 	/*
924 	 * If we're in replay mode, or we made no progress, return error.
925 	 * Otherwise, it's at least a partial write, so it's successful.
926 	 */
927 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
928 		ZFS_EXIT(zfsvfs);
929 		return (error);
930 	}
931 
932 	if (ioflag & (FSYNC | FDSYNC) ||
933 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
934 		zil_commit(zilog, zp->z_id);
935 
936 	ZFS_EXIT(zfsvfs);
937 	return (0);
938 }
939 
940 void
941 zfs_get_done(zgd_t *zgd, int error)
942 {
943 	znode_t *zp = zgd->zgd_private;
944 	objset_t *os = zp->z_zfsvfs->z_os;
945 
946 	if (zgd->zgd_db)
947 		dmu_buf_rele(zgd->zgd_db, zgd);
948 
949 	zfs_range_unlock(zgd->zgd_rl);
950 
951 	/*
952 	 * Release the vnode asynchronously as we currently have the
953 	 * txg stopped from syncing.
954 	 */
955 	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
956 
957 	if (error == 0 && zgd->zgd_bp)
958 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
959 
960 	kmem_free(zgd, sizeof (zgd_t));
961 }
962 
963 #ifdef DEBUG
964 static int zil_fault_io = 0;
965 #endif
966 
967 /*
968  * Get data to generate a TX_WRITE intent log record.
969  */
970 int
971 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
972 {
973 	zfsvfs_t *zfsvfs = arg;
974 	objset_t *os = zfsvfs->z_os;
975 	znode_t *zp;
976 	uint64_t object = lr->lr_foid;
977 	uint64_t offset = lr->lr_offset;
978 	uint64_t size = lr->lr_length;
979 	blkptr_t *bp = &lr->lr_blkptr;
980 	dmu_buf_t *db;
981 	zgd_t *zgd;
982 	int error = 0;
983 
984 	ASSERT(zio != NULL);
985 	ASSERT(size != 0);
986 
987 	/*
988 	 * Nothing to do if the file has been removed
989 	 */
990 	if (zfs_zget(zfsvfs, object, &zp) != 0)
991 		return (SET_ERROR(ENOENT));
992 	if (zp->z_unlinked) {
993 		/*
994 		 * Release the vnode asynchronously as we currently have the
995 		 * txg stopped from syncing.
996 		 */
997 		VN_RELE_ASYNC(ZTOV(zp),
998 		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
999 		return (SET_ERROR(ENOENT));
1000 	}
1001 
1002 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1003 	zgd->zgd_zilog = zfsvfs->z_log;
1004 	zgd->zgd_private = zp;
1005 
1006 	/*
1007 	 * Write records come in two flavors: immediate and indirect.
1008 	 * For small writes it's cheaper to store the data with the
1009 	 * log record (immediate); for large writes it's cheaper to
1010 	 * sync the data and get a pointer to it (indirect) so that
1011 	 * we don't have to write the data twice.
1012 	 */
1013 	if (buf != NULL) { /* immediate write */
1014 		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1015 		/* test for truncation needs to be done while range locked */
1016 		if (offset >= zp->z_size) {
1017 			error = SET_ERROR(ENOENT);
1018 		} else {
1019 			error = dmu_read(os, object, offset, size, buf,
1020 			    DMU_READ_NO_PREFETCH);
1021 		}
1022 		ASSERT(error == 0 || error == ENOENT);
1023 	} else { /* indirect write */
1024 		/*
1025 		 * Have to lock the whole block to ensure when it's
1026 		 * written out and it's checksum is being calculated
1027 		 * that no one can change the data. We need to re-check
1028 		 * blocksize after we get the lock in case it's changed!
1029 		 */
1030 		for (;;) {
1031 			uint64_t blkoff;
1032 			size = zp->z_blksz;
1033 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1034 			offset -= blkoff;
1035 			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1036 			    RL_READER);
1037 			if (zp->z_blksz == size)
1038 				break;
1039 			offset += blkoff;
1040 			zfs_range_unlock(zgd->zgd_rl);
1041 		}
1042 		/* test for truncation needs to be done while range locked */
1043 		if (lr->lr_offset >= zp->z_size)
1044 			error = SET_ERROR(ENOENT);
1045 #ifdef DEBUG
1046 		if (zil_fault_io) {
1047 			error = SET_ERROR(EIO);
1048 			zil_fault_io = 0;
1049 		}
1050 #endif
1051 		if (error == 0)
1052 			error = dmu_buf_hold(os, object, offset, zgd, &db,
1053 			    DMU_READ_NO_PREFETCH);
1054 
1055 		if (error == 0) {
1056 			blkptr_t *obp = dmu_buf_get_blkptr(db);
1057 			if (obp) {
1058 				ASSERT(BP_IS_HOLE(bp));
1059 				*bp = *obp;
1060 			}
1061 
1062 			zgd->zgd_db = db;
1063 			zgd->zgd_bp = bp;
1064 
1065 			ASSERT(db->db_offset == offset);
1066 			ASSERT(db->db_size == size);
1067 
1068 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1069 			    zfs_get_done, zgd);
1070 			ASSERT(error || lr->lr_length <= zp->z_blksz);
1071 
1072 			/*
1073 			 * On success, we need to wait for the write I/O
1074 			 * initiated by dmu_sync() to complete before we can
1075 			 * release this dbuf.  We will finish everything up
1076 			 * in the zfs_get_done() callback.
1077 			 */
1078 			if (error == 0)
1079 				return (0);
1080 
1081 			if (error == EALREADY) {
1082 				lr->lr_common.lrc_txtype = TX_WRITE2;
1083 				error = 0;
1084 			}
1085 		}
1086 	}
1087 
1088 	zfs_get_done(zgd, error);
1089 
1090 	return (error);
1091 }
1092 
1093 /*ARGSUSED*/
1094 static int
1095 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1096     caller_context_t *ct)
1097 {
1098 	znode_t *zp = VTOZ(vp);
1099 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1100 	int error;
1101 
1102 	ZFS_ENTER(zfsvfs);
1103 	ZFS_VERIFY_ZP(zp);
1104 
1105 	if (flag & V_ACE_MASK)
1106 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1107 	else
1108 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1109 
1110 	ZFS_EXIT(zfsvfs);
1111 	return (error);
1112 }
1113 
1114 /*
1115  * If vnode is for a device return a specfs vnode instead.
1116  */
1117 static int
1118 specvp_check(vnode_t **vpp, cred_t *cr)
1119 {
1120 	int error = 0;
1121 
1122 	if (IS_DEVVP(*vpp)) {
1123 		struct vnode *svp;
1124 
1125 		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1126 		VN_RELE(*vpp);
1127 		if (svp == NULL)
1128 			error = SET_ERROR(ENOSYS);
1129 		*vpp = svp;
1130 	}
1131 	return (error);
1132 }
1133 
1134 
1135 /*
1136  * Lookup an entry in a directory, or an extended attribute directory.
1137  * If it exists, return a held vnode reference for it.
1138  *
1139  *	IN:	dvp	- vnode of directory to search.
1140  *		nm	- name of entry to lookup.
1141  *		pnp	- full pathname to lookup [UNUSED].
1142  *		flags	- LOOKUP_XATTR set if looking for an attribute.
1143  *		rdir	- root directory vnode [UNUSED].
1144  *		cr	- credentials of caller.
1145  *		ct	- caller context
1146  *		direntflags - directory lookup flags
1147  *		realpnp - returned pathname.
1148  *
1149  *	OUT:	vpp	- vnode of located entry, NULL if not found.
1150  *
1151  *	RETURN:	0 on success, error code on failure.
1152  *
1153  * Timestamps:
1154  *	NA
1155  */
1156 /* ARGSUSED */
1157 static int
1158 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1159     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1160     int *direntflags, pathname_t *realpnp)
1161 {
1162 	znode_t *zdp = VTOZ(dvp);
1163 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1164 	int	error = 0;
1165 
1166 	/* fast path */
1167 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1168 
1169 		if (dvp->v_type != VDIR) {
1170 			return (SET_ERROR(ENOTDIR));
1171 		} else if (zdp->z_sa_hdl == NULL) {
1172 			return (SET_ERROR(EIO));
1173 		}
1174 
1175 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1176 			error = zfs_fastaccesschk_execute(zdp, cr);
1177 			if (!error) {
1178 				*vpp = dvp;
1179 				VN_HOLD(*vpp);
1180 				return (0);
1181 			}
1182 			return (error);
1183 		} else {
1184 			vnode_t *tvp = dnlc_lookup(dvp, nm);
1185 
1186 			if (tvp) {
1187 				error = zfs_fastaccesschk_execute(zdp, cr);
1188 				if (error) {
1189 					VN_RELE(tvp);
1190 					return (error);
1191 				}
1192 				if (tvp == DNLC_NO_VNODE) {
1193 					VN_RELE(tvp);
1194 					return (SET_ERROR(ENOENT));
1195 				} else {
1196 					*vpp = tvp;
1197 					return (specvp_check(vpp, cr));
1198 				}
1199 			}
1200 		}
1201 	}
1202 
1203 	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1204 
1205 	ZFS_ENTER(zfsvfs);
1206 	ZFS_VERIFY_ZP(zdp);
1207 
1208 	*vpp = NULL;
1209 
1210 	if (flags & LOOKUP_XATTR) {
1211 		/*
1212 		 * If the xattr property is off, refuse the lookup request.
1213 		 */
1214 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1215 			ZFS_EXIT(zfsvfs);
1216 			return (SET_ERROR(EINVAL));
1217 		}
1218 
1219 		/*
1220 		 * We don't allow recursive attributes..
1221 		 * Maybe someday we will.
1222 		 */
1223 		if (zdp->z_pflags & ZFS_XATTR) {
1224 			ZFS_EXIT(zfsvfs);
1225 			return (SET_ERROR(EINVAL));
1226 		}
1227 
1228 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1229 			ZFS_EXIT(zfsvfs);
1230 			return (error);
1231 		}
1232 
1233 		/*
1234 		 * Do we have permission to get into attribute directory?
1235 		 */
1236 
1237 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1238 		    B_FALSE, cr)) {
1239 			VN_RELE(*vpp);
1240 			*vpp = NULL;
1241 		}
1242 
1243 		ZFS_EXIT(zfsvfs);
1244 		return (error);
1245 	}
1246 
1247 	if (dvp->v_type != VDIR) {
1248 		ZFS_EXIT(zfsvfs);
1249 		return (SET_ERROR(ENOTDIR));
1250 	}
1251 
1252 	/*
1253 	 * Check accessibility of directory.
1254 	 */
1255 
1256 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1257 		ZFS_EXIT(zfsvfs);
1258 		return (error);
1259 	}
1260 
1261 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1262 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1263 		ZFS_EXIT(zfsvfs);
1264 		return (SET_ERROR(EILSEQ));
1265 	}
1266 
1267 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1268 	if (error == 0)
1269 		error = specvp_check(vpp, cr);
1270 
1271 	ZFS_EXIT(zfsvfs);
1272 	return (error);
1273 }
1274 
1275 /*
1276  * Attempt to create a new entry in a directory.  If the entry
1277  * already exists, truncate the file if permissible, else return
1278  * an error.  Return the vp of the created or trunc'd file.
1279  *
1280  *	IN:	dvp	- vnode of directory to put new file entry in.
1281  *		name	- name of new file entry.
1282  *		vap	- attributes of new file.
1283  *		excl	- flag indicating exclusive or non-exclusive mode.
1284  *		mode	- mode to open file with.
1285  *		cr	- credentials of caller.
1286  *		flag	- large file flag [UNUSED].
1287  *		ct	- caller context
1288  *		vsecp 	- ACL to be set
1289  *
1290  *	OUT:	vpp	- vnode of created or trunc'd entry.
1291  *
1292  *	RETURN:	0 on success, error code on failure.
1293  *
1294  * Timestamps:
1295  *	dvp - ctime|mtime updated if new entry created
1296  *	 vp - ctime|mtime always, atime if new
1297  */
1298 
1299 /* ARGSUSED */
1300 static int
1301 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1302     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1303     vsecattr_t *vsecp)
1304 {
1305 	znode_t		*zp, *dzp = VTOZ(dvp);
1306 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1307 	zilog_t		*zilog;
1308 	objset_t	*os;
1309 	zfs_dirlock_t	*dl;
1310 	dmu_tx_t	*tx;
1311 	int		error;
1312 	ksid_t		*ksid;
1313 	uid_t		uid;
1314 	gid_t		gid = crgetgid(cr);
1315 	zfs_acl_ids_t   acl_ids;
1316 	boolean_t	fuid_dirtied;
1317 	boolean_t	have_acl = B_FALSE;
1318 
1319 	/*
1320 	 * If we have an ephemeral id, ACL, or XVATTR then
1321 	 * make sure file system is at proper version
1322 	 */
1323 
1324 	ksid = crgetsid(cr, KSID_OWNER);
1325 	if (ksid)
1326 		uid = ksid_getid(ksid);
1327 	else
1328 		uid = crgetuid(cr);
1329 
1330 	if (zfsvfs->z_use_fuids == B_FALSE &&
1331 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1332 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1333 		return (SET_ERROR(EINVAL));
1334 
1335 	ZFS_ENTER(zfsvfs);
1336 	ZFS_VERIFY_ZP(dzp);
1337 	os = zfsvfs->z_os;
1338 	zilog = zfsvfs->z_log;
1339 
1340 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1341 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1342 		ZFS_EXIT(zfsvfs);
1343 		return (SET_ERROR(EILSEQ));
1344 	}
1345 
1346 	if (vap->va_mask & AT_XVATTR) {
1347 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1348 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1349 			ZFS_EXIT(zfsvfs);
1350 			return (error);
1351 		}
1352 	}
1353 top:
1354 	*vpp = NULL;
1355 
1356 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1357 		vap->va_mode &= ~VSVTX;
1358 
1359 	if (*name == '\0') {
1360 		/*
1361 		 * Null component name refers to the directory itself.
1362 		 */
1363 		VN_HOLD(dvp);
1364 		zp = dzp;
1365 		dl = NULL;
1366 		error = 0;
1367 	} else {
1368 		/* possible VN_HOLD(zp) */
1369 		int zflg = 0;
1370 
1371 		if (flag & FIGNORECASE)
1372 			zflg |= ZCILOOK;
1373 
1374 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1375 		    NULL, NULL);
1376 		if (error) {
1377 			if (have_acl)
1378 				zfs_acl_ids_free(&acl_ids);
1379 			if (strcmp(name, "..") == 0)
1380 				error = SET_ERROR(EISDIR);
1381 			ZFS_EXIT(zfsvfs);
1382 			return (error);
1383 		}
1384 	}
1385 
1386 	if (zp == NULL) {
1387 		uint64_t txtype;
1388 
1389 		/*
1390 		 * Create a new file object and update the directory
1391 		 * to reference it.
1392 		 */
1393 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1394 			if (have_acl)
1395 				zfs_acl_ids_free(&acl_ids);
1396 			goto out;
1397 		}
1398 
1399 		/*
1400 		 * We only support the creation of regular files in
1401 		 * extended attribute directories.
1402 		 */
1403 
1404 		if ((dzp->z_pflags & ZFS_XATTR) &&
1405 		    (vap->va_type != VREG)) {
1406 			if (have_acl)
1407 				zfs_acl_ids_free(&acl_ids);
1408 			error = SET_ERROR(EINVAL);
1409 			goto out;
1410 		}
1411 
1412 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1413 		    cr, vsecp, &acl_ids)) != 0)
1414 			goto out;
1415 		have_acl = B_TRUE;
1416 
1417 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1418 			zfs_acl_ids_free(&acl_ids);
1419 			error = SET_ERROR(EDQUOT);
1420 			goto out;
1421 		}
1422 
1423 		tx = dmu_tx_create(os);
1424 
1425 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1426 		    ZFS_SA_BASE_ATTR_SIZE);
1427 
1428 		fuid_dirtied = zfsvfs->z_fuid_dirty;
1429 		if (fuid_dirtied)
1430 			zfs_fuid_txhold(zfsvfs, tx);
1431 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1432 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1433 		if (!zfsvfs->z_use_sa &&
1434 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1435 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1436 			    0, acl_ids.z_aclp->z_acl_bytes);
1437 		}
1438 		error = dmu_tx_assign(tx, TXG_NOWAIT);
1439 		if (error) {
1440 			zfs_dirent_unlock(dl);
1441 			if (error == ERESTART) {
1442 				dmu_tx_wait(tx);
1443 				dmu_tx_abort(tx);
1444 				goto top;
1445 			}
1446 			zfs_acl_ids_free(&acl_ids);
1447 			dmu_tx_abort(tx);
1448 			ZFS_EXIT(zfsvfs);
1449 			return (error);
1450 		}
1451 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1452 
1453 		if (fuid_dirtied)
1454 			zfs_fuid_sync(zfsvfs, tx);
1455 
1456 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1457 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1458 		if (flag & FIGNORECASE)
1459 			txtype |= TX_CI;
1460 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1461 		    vsecp, acl_ids.z_fuidp, vap);
1462 		zfs_acl_ids_free(&acl_ids);
1463 		dmu_tx_commit(tx);
1464 	} else {
1465 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1466 
1467 		if (have_acl)
1468 			zfs_acl_ids_free(&acl_ids);
1469 		have_acl = B_FALSE;
1470 
1471 		/*
1472 		 * A directory entry already exists for this name.
1473 		 */
1474 		/*
1475 		 * Can't truncate an existing file if in exclusive mode.
1476 		 */
1477 		if (excl == EXCL) {
1478 			error = SET_ERROR(EEXIST);
1479 			goto out;
1480 		}
1481 		/*
1482 		 * Can't open a directory for writing.
1483 		 */
1484 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1485 			error = SET_ERROR(EISDIR);
1486 			goto out;
1487 		}
1488 		/*
1489 		 * Verify requested access to file.
1490 		 */
1491 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1492 			goto out;
1493 		}
1494 
1495 		mutex_enter(&dzp->z_lock);
1496 		dzp->z_seq++;
1497 		mutex_exit(&dzp->z_lock);
1498 
1499 		/*
1500 		 * Truncate regular files if requested.
1501 		 */
1502 		if ((ZTOV(zp)->v_type == VREG) &&
1503 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1504 			/* we can't hold any locks when calling zfs_freesp() */
1505 			zfs_dirent_unlock(dl);
1506 			dl = NULL;
1507 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1508 			if (error == 0) {
1509 				vnevent_create(ZTOV(zp), ct);
1510 			}
1511 		}
1512 	}
1513 out:
1514 
1515 	if (dl)
1516 		zfs_dirent_unlock(dl);
1517 
1518 	if (error) {
1519 		if (zp)
1520 			VN_RELE(ZTOV(zp));
1521 	} else {
1522 		*vpp = ZTOV(zp);
1523 		error = specvp_check(vpp, cr);
1524 	}
1525 
1526 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1527 		zil_commit(zilog, 0);
1528 
1529 	ZFS_EXIT(zfsvfs);
1530 	return (error);
1531 }
1532 
1533 /*
1534  * Remove an entry from a directory.
1535  *
1536  *	IN:	dvp	- vnode of directory to remove entry from.
1537  *		name	- name of entry to remove.
1538  *		cr	- credentials of caller.
1539  *		ct	- caller context
1540  *		flags	- case flags
1541  *
1542  *	RETURN:	0 on success, error code on failure.
1543  *
1544  * Timestamps:
1545  *	dvp - ctime|mtime
1546  *	 vp - ctime (if nlink > 0)
1547  */
1548 
1549 uint64_t null_xattr = 0;
1550 
1551 /*ARGSUSED*/
1552 static int
1553 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1554     int flags)
1555 {
1556 	znode_t		*zp, *dzp = VTOZ(dvp);
1557 	znode_t		*xzp;
1558 	vnode_t		*vp;
1559 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1560 	zilog_t		*zilog;
1561 	uint64_t	acl_obj, xattr_obj;
1562 	uint64_t 	xattr_obj_unlinked = 0;
1563 	uint64_t	obj = 0;
1564 	zfs_dirlock_t	*dl;
1565 	dmu_tx_t	*tx;
1566 	boolean_t	may_delete_now, delete_now = FALSE;
1567 	boolean_t	unlinked, toobig = FALSE;
1568 	uint64_t	txtype;
1569 	pathname_t	*realnmp = NULL;
1570 	pathname_t	realnm;
1571 	int		error;
1572 	int		zflg = ZEXISTS;
1573 
1574 	ZFS_ENTER(zfsvfs);
1575 	ZFS_VERIFY_ZP(dzp);
1576 	zilog = zfsvfs->z_log;
1577 
1578 	if (flags & FIGNORECASE) {
1579 		zflg |= ZCILOOK;
1580 		pn_alloc(&realnm);
1581 		realnmp = &realnm;
1582 	}
1583 
1584 top:
1585 	xattr_obj = 0;
1586 	xzp = NULL;
1587 	/*
1588 	 * Attempt to lock directory; fail if entry doesn't exist.
1589 	 */
1590 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1591 	    NULL, realnmp)) {
1592 		if (realnmp)
1593 			pn_free(realnmp);
1594 		ZFS_EXIT(zfsvfs);
1595 		return (error);
1596 	}
1597 
1598 	vp = ZTOV(zp);
1599 
1600 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1601 		goto out;
1602 	}
1603 
1604 	/*
1605 	 * Need to use rmdir for removing directories.
1606 	 */
1607 	if (vp->v_type == VDIR) {
1608 		error = SET_ERROR(EPERM);
1609 		goto out;
1610 	}
1611 
1612 	vnevent_remove(vp, dvp, name, ct);
1613 
1614 	if (realnmp)
1615 		dnlc_remove(dvp, realnmp->pn_buf);
1616 	else
1617 		dnlc_remove(dvp, name);
1618 
1619 	mutex_enter(&vp->v_lock);
1620 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1621 	mutex_exit(&vp->v_lock);
1622 
1623 	/*
1624 	 * We may delete the znode now, or we may put it in the unlinked set;
1625 	 * it depends on whether we're the last link, and on whether there are
1626 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1627 	 * allow for either case.
1628 	 */
1629 	obj = zp->z_id;
1630 	tx = dmu_tx_create(zfsvfs->z_os);
1631 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1632 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1633 	zfs_sa_upgrade_txholds(tx, zp);
1634 	zfs_sa_upgrade_txholds(tx, dzp);
1635 	if (may_delete_now) {
1636 		toobig =
1637 		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1638 		/* if the file is too big, only hold_free a token amount */
1639 		dmu_tx_hold_free(tx, zp->z_id, 0,
1640 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1641 	}
1642 
1643 	/* are there any extended attributes? */
1644 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1645 	    &xattr_obj, sizeof (xattr_obj));
1646 	if (error == 0 && xattr_obj) {
1647 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1648 		ASSERT0(error);
1649 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1650 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1651 	}
1652 
1653 	mutex_enter(&zp->z_lock);
1654 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1655 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1656 	mutex_exit(&zp->z_lock);
1657 
1658 	/* charge as an update -- would be nice not to charge at all */
1659 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1660 
1661 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1662 	if (error) {
1663 		zfs_dirent_unlock(dl);
1664 		VN_RELE(vp);
1665 		if (xzp)
1666 			VN_RELE(ZTOV(xzp));
1667 		if (error == ERESTART) {
1668 			dmu_tx_wait(tx);
1669 			dmu_tx_abort(tx);
1670 			goto top;
1671 		}
1672 		if (realnmp)
1673 			pn_free(realnmp);
1674 		dmu_tx_abort(tx);
1675 		ZFS_EXIT(zfsvfs);
1676 		return (error);
1677 	}
1678 
1679 	/*
1680 	 * Remove the directory entry.
1681 	 */
1682 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1683 
1684 	if (error) {
1685 		dmu_tx_commit(tx);
1686 		goto out;
1687 	}
1688 
1689 	if (unlinked) {
1690 
1691 		/*
1692 		 * Hold z_lock so that we can make sure that the ACL obj
1693 		 * hasn't changed.  Could have been deleted due to
1694 		 * zfs_sa_upgrade().
1695 		 */
1696 		mutex_enter(&zp->z_lock);
1697 		mutex_enter(&vp->v_lock);
1698 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1699 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1700 		delete_now = may_delete_now && !toobig &&
1701 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1702 		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1703 		    acl_obj;
1704 		mutex_exit(&vp->v_lock);
1705 	}
1706 
1707 	if (delete_now) {
1708 		if (xattr_obj_unlinked) {
1709 			ASSERT3U(xzp->z_links, ==, 2);
1710 			mutex_enter(&xzp->z_lock);
1711 			xzp->z_unlinked = 1;
1712 			xzp->z_links = 0;
1713 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1714 			    &xzp->z_links, sizeof (xzp->z_links), tx);
1715 			ASSERT3U(error,  ==,  0);
1716 			mutex_exit(&xzp->z_lock);
1717 			zfs_unlinked_add(xzp, tx);
1718 
1719 			if (zp->z_is_sa)
1720 				error = sa_remove(zp->z_sa_hdl,
1721 				    SA_ZPL_XATTR(zfsvfs), tx);
1722 			else
1723 				error = sa_update(zp->z_sa_hdl,
1724 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1725 				    sizeof (uint64_t), tx);
1726 			ASSERT0(error);
1727 		}
1728 		mutex_enter(&vp->v_lock);
1729 		vp->v_count--;
1730 		ASSERT0(vp->v_count);
1731 		mutex_exit(&vp->v_lock);
1732 		mutex_exit(&zp->z_lock);
1733 		zfs_znode_delete(zp, tx);
1734 	} else if (unlinked) {
1735 		mutex_exit(&zp->z_lock);
1736 		zfs_unlinked_add(zp, tx);
1737 	}
1738 
1739 	txtype = TX_REMOVE;
1740 	if (flags & FIGNORECASE)
1741 		txtype |= TX_CI;
1742 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1743 
1744 	dmu_tx_commit(tx);
1745 out:
1746 	if (realnmp)
1747 		pn_free(realnmp);
1748 
1749 	zfs_dirent_unlock(dl);
1750 
1751 	if (!delete_now)
1752 		VN_RELE(vp);
1753 	if (xzp)
1754 		VN_RELE(ZTOV(xzp));
1755 
1756 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1757 		zil_commit(zilog, 0);
1758 
1759 	ZFS_EXIT(zfsvfs);
1760 	return (error);
1761 }
1762 
1763 /*
1764  * Create a new directory and insert it into dvp using the name
1765  * provided.  Return a pointer to the inserted directory.
1766  *
1767  *	IN:	dvp	- vnode of directory to add subdir to.
1768  *		dirname	- name of new directory.
1769  *		vap	- attributes of new directory.
1770  *		cr	- credentials of caller.
1771  *		ct	- caller context
1772  *		flags	- case flags
1773  *		vsecp	- ACL to be set
1774  *
1775  *	OUT:	vpp	- vnode of created directory.
1776  *
1777  *	RETURN:	0 on success, error code on failure.
1778  *
1779  * Timestamps:
1780  *	dvp - ctime|mtime updated
1781  *	 vp - ctime|mtime|atime updated
1782  */
1783 /*ARGSUSED*/
1784 static int
1785 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1786     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1787 {
1788 	znode_t		*zp, *dzp = VTOZ(dvp);
1789 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1790 	zilog_t		*zilog;
1791 	zfs_dirlock_t	*dl;
1792 	uint64_t	txtype;
1793 	dmu_tx_t	*tx;
1794 	int		error;
1795 	int		zf = ZNEW;
1796 	ksid_t		*ksid;
1797 	uid_t		uid;
1798 	gid_t		gid = crgetgid(cr);
1799 	zfs_acl_ids_t   acl_ids;
1800 	boolean_t	fuid_dirtied;
1801 
1802 	ASSERT(vap->va_type == VDIR);
1803 
1804 	/*
1805 	 * If we have an ephemeral id, ACL, or XVATTR then
1806 	 * make sure file system is at proper version
1807 	 */
1808 
1809 	ksid = crgetsid(cr, KSID_OWNER);
1810 	if (ksid)
1811 		uid = ksid_getid(ksid);
1812 	else
1813 		uid = crgetuid(cr);
1814 	if (zfsvfs->z_use_fuids == B_FALSE &&
1815 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1816 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1817 		return (SET_ERROR(EINVAL));
1818 
1819 	ZFS_ENTER(zfsvfs);
1820 	ZFS_VERIFY_ZP(dzp);
1821 	zilog = zfsvfs->z_log;
1822 
1823 	if (dzp->z_pflags & ZFS_XATTR) {
1824 		ZFS_EXIT(zfsvfs);
1825 		return (SET_ERROR(EINVAL));
1826 	}
1827 
1828 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1829 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1830 		ZFS_EXIT(zfsvfs);
1831 		return (SET_ERROR(EILSEQ));
1832 	}
1833 	if (flags & FIGNORECASE)
1834 		zf |= ZCILOOK;
1835 
1836 	if (vap->va_mask & AT_XVATTR) {
1837 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1838 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1839 			ZFS_EXIT(zfsvfs);
1840 			return (error);
1841 		}
1842 	}
1843 
1844 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1845 	    vsecp, &acl_ids)) != 0) {
1846 		ZFS_EXIT(zfsvfs);
1847 		return (error);
1848 	}
1849 	/*
1850 	 * First make sure the new directory doesn't exist.
1851 	 *
1852 	 * Existence is checked first to make sure we don't return
1853 	 * EACCES instead of EEXIST which can cause some applications
1854 	 * to fail.
1855 	 */
1856 top:
1857 	*vpp = NULL;
1858 
1859 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1860 	    NULL, NULL)) {
1861 		zfs_acl_ids_free(&acl_ids);
1862 		ZFS_EXIT(zfsvfs);
1863 		return (error);
1864 	}
1865 
1866 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1867 		zfs_acl_ids_free(&acl_ids);
1868 		zfs_dirent_unlock(dl);
1869 		ZFS_EXIT(zfsvfs);
1870 		return (error);
1871 	}
1872 
1873 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1874 		zfs_acl_ids_free(&acl_ids);
1875 		zfs_dirent_unlock(dl);
1876 		ZFS_EXIT(zfsvfs);
1877 		return (SET_ERROR(EDQUOT));
1878 	}
1879 
1880 	/*
1881 	 * Add a new entry to the directory.
1882 	 */
1883 	tx = dmu_tx_create(zfsvfs->z_os);
1884 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1885 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1886 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1887 	if (fuid_dirtied)
1888 		zfs_fuid_txhold(zfsvfs, tx);
1889 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1890 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1891 		    acl_ids.z_aclp->z_acl_bytes);
1892 	}
1893 
1894 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1895 	    ZFS_SA_BASE_ATTR_SIZE);
1896 
1897 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1898 	if (error) {
1899 		zfs_dirent_unlock(dl);
1900 		if (error == ERESTART) {
1901 			dmu_tx_wait(tx);
1902 			dmu_tx_abort(tx);
1903 			goto top;
1904 		}
1905 		zfs_acl_ids_free(&acl_ids);
1906 		dmu_tx_abort(tx);
1907 		ZFS_EXIT(zfsvfs);
1908 		return (error);
1909 	}
1910 
1911 	/*
1912 	 * Create new node.
1913 	 */
1914 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1915 
1916 	if (fuid_dirtied)
1917 		zfs_fuid_sync(zfsvfs, tx);
1918 
1919 	/*
1920 	 * Now put new name in parent dir.
1921 	 */
1922 	(void) zfs_link_create(dl, zp, tx, ZNEW);
1923 
1924 	*vpp = ZTOV(zp);
1925 
1926 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1927 	if (flags & FIGNORECASE)
1928 		txtype |= TX_CI;
1929 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1930 	    acl_ids.z_fuidp, vap);
1931 
1932 	zfs_acl_ids_free(&acl_ids);
1933 
1934 	dmu_tx_commit(tx);
1935 
1936 	zfs_dirent_unlock(dl);
1937 
1938 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1939 		zil_commit(zilog, 0);
1940 
1941 	ZFS_EXIT(zfsvfs);
1942 	return (0);
1943 }
1944 
1945 /*
1946  * Remove a directory subdir entry.  If the current working
1947  * directory is the same as the subdir to be removed, the
1948  * remove will fail.
1949  *
1950  *	IN:	dvp	- vnode of directory to remove from.
1951  *		name	- name of directory to be removed.
1952  *		cwd	- vnode of current working directory.
1953  *		cr	- credentials of caller.
1954  *		ct	- caller context
1955  *		flags	- case flags
1956  *
1957  *	RETURN:	0 on success, error code on failure.
1958  *
1959  * Timestamps:
1960  *	dvp - ctime|mtime updated
1961  */
1962 /*ARGSUSED*/
1963 static int
1964 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1965     caller_context_t *ct, int flags)
1966 {
1967 	znode_t		*dzp = VTOZ(dvp);
1968 	znode_t		*zp;
1969 	vnode_t		*vp;
1970 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1971 	zilog_t		*zilog;
1972 	zfs_dirlock_t	*dl;
1973 	dmu_tx_t	*tx;
1974 	int		error;
1975 	int		zflg = ZEXISTS;
1976 
1977 	ZFS_ENTER(zfsvfs);
1978 	ZFS_VERIFY_ZP(dzp);
1979 	zilog = zfsvfs->z_log;
1980 
1981 	if (flags & FIGNORECASE)
1982 		zflg |= ZCILOOK;
1983 top:
1984 	zp = NULL;
1985 
1986 	/*
1987 	 * Attempt to lock directory; fail if entry doesn't exist.
1988 	 */
1989 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1990 	    NULL, NULL)) {
1991 		ZFS_EXIT(zfsvfs);
1992 		return (error);
1993 	}
1994 
1995 	vp = ZTOV(zp);
1996 
1997 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1998 		goto out;
1999 	}
2000 
2001 	if (vp->v_type != VDIR) {
2002 		error = SET_ERROR(ENOTDIR);
2003 		goto out;
2004 	}
2005 
2006 	if (vp == cwd) {
2007 		error = SET_ERROR(EINVAL);
2008 		goto out;
2009 	}
2010 
2011 	vnevent_rmdir(vp, dvp, name, ct);
2012 
2013 	/*
2014 	 * Grab a lock on the directory to make sure that noone is
2015 	 * trying to add (or lookup) entries while we are removing it.
2016 	 */
2017 	rw_enter(&zp->z_name_lock, RW_WRITER);
2018 
2019 	/*
2020 	 * Grab a lock on the parent pointer to make sure we play well
2021 	 * with the treewalk and directory rename code.
2022 	 */
2023 	rw_enter(&zp->z_parent_lock, RW_WRITER);
2024 
2025 	tx = dmu_tx_create(zfsvfs->z_os);
2026 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2027 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2028 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2029 	zfs_sa_upgrade_txholds(tx, zp);
2030 	zfs_sa_upgrade_txholds(tx, dzp);
2031 	error = dmu_tx_assign(tx, TXG_NOWAIT);
2032 	if (error) {
2033 		rw_exit(&zp->z_parent_lock);
2034 		rw_exit(&zp->z_name_lock);
2035 		zfs_dirent_unlock(dl);
2036 		VN_RELE(vp);
2037 		if (error == ERESTART) {
2038 			dmu_tx_wait(tx);
2039 			dmu_tx_abort(tx);
2040 			goto top;
2041 		}
2042 		dmu_tx_abort(tx);
2043 		ZFS_EXIT(zfsvfs);
2044 		return (error);
2045 	}
2046 
2047 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2048 
2049 	if (error == 0) {
2050 		uint64_t txtype = TX_RMDIR;
2051 		if (flags & FIGNORECASE)
2052 			txtype |= TX_CI;
2053 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2054 	}
2055 
2056 	dmu_tx_commit(tx);
2057 
2058 	rw_exit(&zp->z_parent_lock);
2059 	rw_exit(&zp->z_name_lock);
2060 out:
2061 	zfs_dirent_unlock(dl);
2062 
2063 	VN_RELE(vp);
2064 
2065 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2066 		zil_commit(zilog, 0);
2067 
2068 	ZFS_EXIT(zfsvfs);
2069 	return (error);
2070 }
2071 
2072 /*
2073  * Read as many directory entries as will fit into the provided
2074  * buffer from the given directory cursor position (specified in
2075  * the uio structure).
2076  *
2077  *	IN:	vp	- vnode of directory to read.
2078  *		uio	- structure supplying read location, range info,
2079  *			  and return buffer.
2080  *		cr	- credentials of caller.
2081  *		ct	- caller context
2082  *		flags	- case flags
2083  *
2084  *	OUT:	uio	- updated offset and range, buffer filled.
2085  *		eofp	- set to true if end-of-file detected.
2086  *
2087  *	RETURN:	0 on success, error code on failure.
2088  *
2089  * Timestamps:
2090  *	vp - atime updated
2091  *
2092  * Note that the low 4 bits of the cookie returned by zap is always zero.
2093  * This allows us to use the low range for "special" directory entries:
2094  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2095  * we use the offset 2 for the '.zfs' directory.
2096  */
2097 /* ARGSUSED */
2098 static int
2099 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2100     caller_context_t *ct, int flags)
2101 {
2102 	znode_t		*zp = VTOZ(vp);
2103 	iovec_t		*iovp;
2104 	edirent_t	*eodp;
2105 	dirent64_t	*odp;
2106 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2107 	objset_t	*os;
2108 	caddr_t		outbuf;
2109 	size_t		bufsize;
2110 	zap_cursor_t	zc;
2111 	zap_attribute_t	zap;
2112 	uint_t		bytes_wanted;
2113 	uint64_t	offset; /* must be unsigned; checks for < 1 */
2114 	uint64_t	parent;
2115 	int		local_eof;
2116 	int		outcount;
2117 	int		error;
2118 	uint8_t		prefetch;
2119 	boolean_t	check_sysattrs;
2120 
2121 	ZFS_ENTER(zfsvfs);
2122 	ZFS_VERIFY_ZP(zp);
2123 
2124 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2125 	    &parent, sizeof (parent))) != 0) {
2126 		ZFS_EXIT(zfsvfs);
2127 		return (error);
2128 	}
2129 
2130 	/*
2131 	 * If we are not given an eof variable,
2132 	 * use a local one.
2133 	 */
2134 	if (eofp == NULL)
2135 		eofp = &local_eof;
2136 
2137 	/*
2138 	 * Check for valid iov_len.
2139 	 */
2140 	if (uio->uio_iov->iov_len <= 0) {
2141 		ZFS_EXIT(zfsvfs);
2142 		return (SET_ERROR(EINVAL));
2143 	}
2144 
2145 	/*
2146 	 * Quit if directory has been removed (posix)
2147 	 */
2148 	if ((*eofp = zp->z_unlinked) != 0) {
2149 		ZFS_EXIT(zfsvfs);
2150 		return (0);
2151 	}
2152 
2153 	error = 0;
2154 	os = zfsvfs->z_os;
2155 	offset = uio->uio_loffset;
2156 	prefetch = zp->z_zn_prefetch;
2157 
2158 	/*
2159 	 * Initialize the iterator cursor.
2160 	 */
2161 	if (offset <= 3) {
2162 		/*
2163 		 * Start iteration from the beginning of the directory.
2164 		 */
2165 		zap_cursor_init(&zc, os, zp->z_id);
2166 	} else {
2167 		/*
2168 		 * The offset is a serialized cursor.
2169 		 */
2170 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2171 	}
2172 
2173 	/*
2174 	 * Get space to change directory entries into fs independent format.
2175 	 */
2176 	iovp = uio->uio_iov;
2177 	bytes_wanted = iovp->iov_len;
2178 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2179 		bufsize = bytes_wanted;
2180 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2181 		odp = (struct dirent64 *)outbuf;
2182 	} else {
2183 		bufsize = bytes_wanted;
2184 		outbuf = NULL;
2185 		odp = (struct dirent64 *)iovp->iov_base;
2186 	}
2187 	eodp = (struct edirent *)odp;
2188 
2189 	/*
2190 	 * If this VFS supports the system attribute view interface; and
2191 	 * we're looking at an extended attribute directory; and we care
2192 	 * about normalization conflicts on this vfs; then we must check
2193 	 * for normalization conflicts with the sysattr name space.
2194 	 */
2195 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2196 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2197 	    (flags & V_RDDIR_ENTFLAGS);
2198 
2199 	/*
2200 	 * Transform to file-system independent format
2201 	 */
2202 	outcount = 0;
2203 	while (outcount < bytes_wanted) {
2204 		ino64_t objnum;
2205 		ushort_t reclen;
2206 		off64_t *next = NULL;
2207 
2208 		/*
2209 		 * Special case `.', `..', and `.zfs'.
2210 		 */
2211 		if (offset == 0) {
2212 			(void) strcpy(zap.za_name, ".");
2213 			zap.za_normalization_conflict = 0;
2214 			objnum = zp->z_id;
2215 		} else if (offset == 1) {
2216 			(void) strcpy(zap.za_name, "..");
2217 			zap.za_normalization_conflict = 0;
2218 			objnum = parent;
2219 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2220 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2221 			zap.za_normalization_conflict = 0;
2222 			objnum = ZFSCTL_INO_ROOT;
2223 		} else {
2224 			/*
2225 			 * Grab next entry.
2226 			 */
2227 			if (error = zap_cursor_retrieve(&zc, &zap)) {
2228 				if ((*eofp = (error == ENOENT)) != 0)
2229 					break;
2230 				else
2231 					goto update;
2232 			}
2233 
2234 			if (zap.za_integer_length != 8 ||
2235 			    zap.za_num_integers != 1) {
2236 				cmn_err(CE_WARN, "zap_readdir: bad directory "
2237 				    "entry, obj = %lld, offset = %lld\n",
2238 				    (u_longlong_t)zp->z_id,
2239 				    (u_longlong_t)offset);
2240 				error = SET_ERROR(ENXIO);
2241 				goto update;
2242 			}
2243 
2244 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2245 			/*
2246 			 * MacOS X can extract the object type here such as:
2247 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2248 			 */
2249 
2250 			if (check_sysattrs && !zap.za_normalization_conflict) {
2251 				zap.za_normalization_conflict =
2252 				    xattr_sysattr_casechk(zap.za_name);
2253 			}
2254 		}
2255 
2256 		if (flags & V_RDDIR_ACCFILTER) {
2257 			/*
2258 			 * If we have no access at all, don't include
2259 			 * this entry in the returned information
2260 			 */
2261 			znode_t	*ezp;
2262 			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2263 				goto skip_entry;
2264 			if (!zfs_has_access(ezp, cr)) {
2265 				VN_RELE(ZTOV(ezp));
2266 				goto skip_entry;
2267 			}
2268 			VN_RELE(ZTOV(ezp));
2269 		}
2270 
2271 		if (flags & V_RDDIR_ENTFLAGS)
2272 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2273 		else
2274 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2275 
2276 		/*
2277 		 * Will this entry fit in the buffer?
2278 		 */
2279 		if (outcount + reclen > bufsize) {
2280 			/*
2281 			 * Did we manage to fit anything in the buffer?
2282 			 */
2283 			if (!outcount) {
2284 				error = SET_ERROR(EINVAL);
2285 				goto update;
2286 			}
2287 			break;
2288 		}
2289 		if (flags & V_RDDIR_ENTFLAGS) {
2290 			/*
2291 			 * Add extended flag entry:
2292 			 */
2293 			eodp->ed_ino = objnum;
2294 			eodp->ed_reclen = reclen;
2295 			/* NOTE: ed_off is the offset for the *next* entry */
2296 			next = &(eodp->ed_off);
2297 			eodp->ed_eflags = zap.za_normalization_conflict ?
2298 			    ED_CASE_CONFLICT : 0;
2299 			(void) strncpy(eodp->ed_name, zap.za_name,
2300 			    EDIRENT_NAMELEN(reclen));
2301 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2302 		} else {
2303 			/*
2304 			 * Add normal entry:
2305 			 */
2306 			odp->d_ino = objnum;
2307 			odp->d_reclen = reclen;
2308 			/* NOTE: d_off is the offset for the *next* entry */
2309 			next = &(odp->d_off);
2310 			(void) strncpy(odp->d_name, zap.za_name,
2311 			    DIRENT64_NAMELEN(reclen));
2312 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2313 		}
2314 		outcount += reclen;
2315 
2316 		ASSERT(outcount <= bufsize);
2317 
2318 		/* Prefetch znode */
2319 		if (prefetch)
2320 			dmu_prefetch(os, objnum, 0, 0);
2321 
2322 	skip_entry:
2323 		/*
2324 		 * Move to the next entry, fill in the previous offset.
2325 		 */
2326 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2327 			zap_cursor_advance(&zc);
2328 			offset = zap_cursor_serialize(&zc);
2329 		} else {
2330 			offset += 1;
2331 		}
2332 		if (next)
2333 			*next = offset;
2334 	}
2335 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2336 
2337 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2338 		iovp->iov_base += outcount;
2339 		iovp->iov_len -= outcount;
2340 		uio->uio_resid -= outcount;
2341 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2342 		/*
2343 		 * Reset the pointer.
2344 		 */
2345 		offset = uio->uio_loffset;
2346 	}
2347 
2348 update:
2349 	zap_cursor_fini(&zc);
2350 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2351 		kmem_free(outbuf, bufsize);
2352 
2353 	if (error == ENOENT)
2354 		error = 0;
2355 
2356 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2357 
2358 	uio->uio_loffset = offset;
2359 	ZFS_EXIT(zfsvfs);
2360 	return (error);
2361 }
2362 
2363 ulong_t zfs_fsync_sync_cnt = 4;
2364 
2365 static int
2366 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2367 {
2368 	znode_t	*zp = VTOZ(vp);
2369 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2370 
2371 	/*
2372 	 * Regardless of whether this is required for standards conformance,
2373 	 * this is the logical behavior when fsync() is called on a file with
2374 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2375 	 * going to be pushed out as part of the zil_commit().
2376 	 */
2377 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2378 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2379 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2380 
2381 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2382 
2383 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2384 		ZFS_ENTER(zfsvfs);
2385 		ZFS_VERIFY_ZP(zp);
2386 		zil_commit(zfsvfs->z_log, zp->z_id);
2387 		ZFS_EXIT(zfsvfs);
2388 	}
2389 	return (0);
2390 }
2391 
2392 
2393 /*
2394  * Get the requested file attributes and place them in the provided
2395  * vattr structure.
2396  *
2397  *	IN:	vp	- vnode of file.
2398  *		vap	- va_mask identifies requested attributes.
2399  *			  If AT_XVATTR set, then optional attrs are requested
2400  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2401  *		cr	- credentials of caller.
2402  *		ct	- caller context
2403  *
2404  *	OUT:	vap	- attribute values.
2405  *
2406  *	RETURN:	0 (always succeeds).
2407  */
2408 /* ARGSUSED */
2409 static int
2410 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2411     caller_context_t *ct)
2412 {
2413 	znode_t *zp = VTOZ(vp);
2414 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2415 	int	error = 0;
2416 	uint64_t links;
2417 	uint64_t mtime[2], ctime[2];
2418 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2419 	xoptattr_t *xoap = NULL;
2420 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2421 	sa_bulk_attr_t bulk[2];
2422 	int count = 0;
2423 
2424 	ZFS_ENTER(zfsvfs);
2425 	ZFS_VERIFY_ZP(zp);
2426 
2427 	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2428 
2429 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2430 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2431 
2432 	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2433 		ZFS_EXIT(zfsvfs);
2434 		return (error);
2435 	}
2436 
2437 	/*
2438 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2439 	 * Also, if we are the owner don't bother, since owner should
2440 	 * always be allowed to read basic attributes of file.
2441 	 */
2442 	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2443 	    (vap->va_uid != crgetuid(cr))) {
2444 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2445 		    skipaclchk, cr)) {
2446 			ZFS_EXIT(zfsvfs);
2447 			return (error);
2448 		}
2449 	}
2450 
2451 	/*
2452 	 * Return all attributes.  It's cheaper to provide the answer
2453 	 * than to determine whether we were asked the question.
2454 	 */
2455 
2456 	mutex_enter(&zp->z_lock);
2457 	vap->va_type = vp->v_type;
2458 	vap->va_mode = zp->z_mode & MODEMASK;
2459 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2460 	vap->va_nodeid = zp->z_id;
2461 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2462 		links = zp->z_links + 1;
2463 	else
2464 		links = zp->z_links;
2465 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2466 	vap->va_size = zp->z_size;
2467 	vap->va_rdev = vp->v_rdev;
2468 	vap->va_seq = zp->z_seq;
2469 
2470 	/*
2471 	 * Add in any requested optional attributes and the create time.
2472 	 * Also set the corresponding bits in the returned attribute bitmap.
2473 	 */
2474 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2475 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2476 			xoap->xoa_archive =
2477 			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2478 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2479 		}
2480 
2481 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2482 			xoap->xoa_readonly =
2483 			    ((zp->z_pflags & ZFS_READONLY) != 0);
2484 			XVA_SET_RTN(xvap, XAT_READONLY);
2485 		}
2486 
2487 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2488 			xoap->xoa_system =
2489 			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2490 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2491 		}
2492 
2493 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2494 			xoap->xoa_hidden =
2495 			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2496 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2497 		}
2498 
2499 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2500 			xoap->xoa_nounlink =
2501 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2502 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2503 		}
2504 
2505 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2506 			xoap->xoa_immutable =
2507 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2508 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2509 		}
2510 
2511 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2512 			xoap->xoa_appendonly =
2513 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2514 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2515 		}
2516 
2517 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2518 			xoap->xoa_nodump =
2519 			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2520 			XVA_SET_RTN(xvap, XAT_NODUMP);
2521 		}
2522 
2523 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2524 			xoap->xoa_opaque =
2525 			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2526 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2527 		}
2528 
2529 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2530 			xoap->xoa_av_quarantined =
2531 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2532 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2533 		}
2534 
2535 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2536 			xoap->xoa_av_modified =
2537 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2538 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2539 		}
2540 
2541 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2542 		    vp->v_type == VREG) {
2543 			zfs_sa_get_scanstamp(zp, xvap);
2544 		}
2545 
2546 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2547 			uint64_t times[2];
2548 
2549 			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2550 			    times, sizeof (times));
2551 			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2552 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2553 		}
2554 
2555 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2556 			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2557 			XVA_SET_RTN(xvap, XAT_REPARSE);
2558 		}
2559 		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2560 			xoap->xoa_generation = zp->z_gen;
2561 			XVA_SET_RTN(xvap, XAT_GEN);
2562 		}
2563 
2564 		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2565 			xoap->xoa_offline =
2566 			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2567 			XVA_SET_RTN(xvap, XAT_OFFLINE);
2568 		}
2569 
2570 		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2571 			xoap->xoa_sparse =
2572 			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2573 			XVA_SET_RTN(xvap, XAT_SPARSE);
2574 		}
2575 	}
2576 
2577 	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2578 	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2579 	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2580 
2581 	mutex_exit(&zp->z_lock);
2582 
2583 	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2584 
2585 	if (zp->z_blksz == 0) {
2586 		/*
2587 		 * Block size hasn't been set; suggest maximal I/O transfers.
2588 		 */
2589 		vap->va_blksize = zfsvfs->z_max_blksz;
2590 	}
2591 
2592 	ZFS_EXIT(zfsvfs);
2593 	return (0);
2594 }
2595 
2596 /*
2597  * Set the file attributes to the values contained in the
2598  * vattr structure.
2599  *
2600  *	IN:	vp	- vnode of file to be modified.
2601  *		vap	- new attribute values.
2602  *			  If AT_XVATTR set, then optional attrs are being set
2603  *		flags	- ATTR_UTIME set if non-default time values provided.
2604  *			- ATTR_NOACLCHECK (CIFS context only).
2605  *		cr	- credentials of caller.
2606  *		ct	- caller context
2607  *
2608  *	RETURN:	0 on success, error code on failure.
2609  *
2610  * Timestamps:
2611  *	vp - ctime updated, mtime updated if size changed.
2612  */
2613 /* ARGSUSED */
2614 static int
2615 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2616     caller_context_t *ct)
2617 {
2618 	znode_t		*zp = VTOZ(vp);
2619 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2620 	zilog_t		*zilog;
2621 	dmu_tx_t	*tx;
2622 	vattr_t		oldva;
2623 	xvattr_t	tmpxvattr;
2624 	uint_t		mask = vap->va_mask;
2625 	uint_t		saved_mask = 0;
2626 	int		trim_mask = 0;
2627 	uint64_t	new_mode;
2628 	uint64_t	new_uid, new_gid;
2629 	uint64_t	xattr_obj;
2630 	uint64_t	mtime[2], ctime[2];
2631 	znode_t		*attrzp;
2632 	int		need_policy = FALSE;
2633 	int		err, err2;
2634 	zfs_fuid_info_t *fuidp = NULL;
2635 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2636 	xoptattr_t	*xoap;
2637 	zfs_acl_t	*aclp;
2638 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2639 	boolean_t	fuid_dirtied = B_FALSE;
2640 	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
2641 	int		count = 0, xattr_count = 0;
2642 
2643 	if (mask == 0)
2644 		return (0);
2645 
2646 	if (mask & AT_NOSET)
2647 		return (SET_ERROR(EINVAL));
2648 
2649 	ZFS_ENTER(zfsvfs);
2650 	ZFS_VERIFY_ZP(zp);
2651 
2652 	zilog = zfsvfs->z_log;
2653 
2654 	/*
2655 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2656 	 * that file system is at proper version level
2657 	 */
2658 
2659 	if (zfsvfs->z_use_fuids == B_FALSE &&
2660 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2661 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2662 	    (mask & AT_XVATTR))) {
2663 		ZFS_EXIT(zfsvfs);
2664 		return (SET_ERROR(EINVAL));
2665 	}
2666 
2667 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2668 		ZFS_EXIT(zfsvfs);
2669 		return (SET_ERROR(EISDIR));
2670 	}
2671 
2672 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2673 		ZFS_EXIT(zfsvfs);
2674 		return (SET_ERROR(EINVAL));
2675 	}
2676 
2677 	/*
2678 	 * If this is an xvattr_t, then get a pointer to the structure of
2679 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2680 	 */
2681 	xoap = xva_getxoptattr(xvap);
2682 
2683 	xva_init(&tmpxvattr);
2684 
2685 	/*
2686 	 * Immutable files can only alter immutable bit and atime
2687 	 */
2688 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2689 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2690 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2691 		ZFS_EXIT(zfsvfs);
2692 		return (SET_ERROR(EPERM));
2693 	}
2694 
2695 	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2696 		ZFS_EXIT(zfsvfs);
2697 		return (SET_ERROR(EPERM));
2698 	}
2699 
2700 	/*
2701 	 * Verify timestamps doesn't overflow 32 bits.
2702 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2703 	 * handle times greater than 2039.  This check should be removed
2704 	 * once large timestamps are fully supported.
2705 	 */
2706 	if (mask & (AT_ATIME | AT_MTIME)) {
2707 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2708 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2709 			ZFS_EXIT(zfsvfs);
2710 			return (SET_ERROR(EOVERFLOW));
2711 		}
2712 	}
2713 
2714 top:
2715 	attrzp = NULL;
2716 	aclp = NULL;
2717 
2718 	/* Can this be moved to before the top label? */
2719 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2720 		ZFS_EXIT(zfsvfs);
2721 		return (SET_ERROR(EROFS));
2722 	}
2723 
2724 	/*
2725 	 * First validate permissions
2726 	 */
2727 
2728 	if (mask & AT_SIZE) {
2729 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2730 		if (err) {
2731 			ZFS_EXIT(zfsvfs);
2732 			return (err);
2733 		}
2734 		/*
2735 		 * XXX - Note, we are not providing any open
2736 		 * mode flags here (like FNDELAY), so we may
2737 		 * block if there are locks present... this
2738 		 * should be addressed in openat().
2739 		 */
2740 		/* XXX - would it be OK to generate a log record here? */
2741 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2742 		if (err) {
2743 			ZFS_EXIT(zfsvfs);
2744 			return (err);
2745 		}
2746 	}
2747 
2748 	if (mask & (AT_ATIME|AT_MTIME) ||
2749 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2750 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2751 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2752 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2753 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2754 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2755 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2756 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2757 		    skipaclchk, cr);
2758 	}
2759 
2760 	if (mask & (AT_UID|AT_GID)) {
2761 		int	idmask = (mask & (AT_UID|AT_GID));
2762 		int	take_owner;
2763 		int	take_group;
2764 
2765 		/*
2766 		 * NOTE: even if a new mode is being set,
2767 		 * we may clear S_ISUID/S_ISGID bits.
2768 		 */
2769 
2770 		if (!(mask & AT_MODE))
2771 			vap->va_mode = zp->z_mode;
2772 
2773 		/*
2774 		 * Take ownership or chgrp to group we are a member of
2775 		 */
2776 
2777 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2778 		take_group = (mask & AT_GID) &&
2779 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2780 
2781 		/*
2782 		 * If both AT_UID and AT_GID are set then take_owner and
2783 		 * take_group must both be set in order to allow taking
2784 		 * ownership.
2785 		 *
2786 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2787 		 *
2788 		 */
2789 
2790 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2791 		    ((idmask == AT_UID) && take_owner) ||
2792 		    ((idmask == AT_GID) && take_group)) {
2793 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2794 			    skipaclchk, cr) == 0) {
2795 				/*
2796 				 * Remove setuid/setgid for non-privileged users
2797 				 */
2798 				secpolicy_setid_clear(vap, cr);
2799 				trim_mask = (mask & (AT_UID|AT_GID));
2800 			} else {
2801 				need_policy =  TRUE;
2802 			}
2803 		} else {
2804 			need_policy =  TRUE;
2805 		}
2806 	}
2807 
2808 	mutex_enter(&zp->z_lock);
2809 	oldva.va_mode = zp->z_mode;
2810 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2811 	if (mask & AT_XVATTR) {
2812 		/*
2813 		 * Update xvattr mask to include only those attributes
2814 		 * that are actually changing.
2815 		 *
2816 		 * the bits will be restored prior to actually setting
2817 		 * the attributes so the caller thinks they were set.
2818 		 */
2819 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2820 			if (xoap->xoa_appendonly !=
2821 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2822 				need_policy = TRUE;
2823 			} else {
2824 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2825 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2826 			}
2827 		}
2828 
2829 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2830 			if (xoap->xoa_nounlink !=
2831 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2832 				need_policy = TRUE;
2833 			} else {
2834 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2835 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2836 			}
2837 		}
2838 
2839 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2840 			if (xoap->xoa_immutable !=
2841 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2842 				need_policy = TRUE;
2843 			} else {
2844 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2845 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2846 			}
2847 		}
2848 
2849 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2850 			if (xoap->xoa_nodump !=
2851 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2852 				need_policy = TRUE;
2853 			} else {
2854 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2855 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2856 			}
2857 		}
2858 
2859 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2860 			if (xoap->xoa_av_modified !=
2861 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2862 				need_policy = TRUE;
2863 			} else {
2864 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2865 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2866 			}
2867 		}
2868 
2869 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2870 			if ((vp->v_type != VREG &&
2871 			    xoap->xoa_av_quarantined) ||
2872 			    xoap->xoa_av_quarantined !=
2873 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2874 				need_policy = TRUE;
2875 			} else {
2876 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2877 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2878 			}
2879 		}
2880 
2881 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2882 			mutex_exit(&zp->z_lock);
2883 			ZFS_EXIT(zfsvfs);
2884 			return (SET_ERROR(EPERM));
2885 		}
2886 
2887 		if (need_policy == FALSE &&
2888 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2889 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2890 			need_policy = TRUE;
2891 		}
2892 	}
2893 
2894 	mutex_exit(&zp->z_lock);
2895 
2896 	if (mask & AT_MODE) {
2897 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2898 			err = secpolicy_setid_setsticky_clear(vp, vap,
2899 			    &oldva, cr);
2900 			if (err) {
2901 				ZFS_EXIT(zfsvfs);
2902 				return (err);
2903 			}
2904 			trim_mask |= AT_MODE;
2905 		} else {
2906 			need_policy = TRUE;
2907 		}
2908 	}
2909 
2910 	if (need_policy) {
2911 		/*
2912 		 * If trim_mask is set then take ownership
2913 		 * has been granted or write_acl is present and user
2914 		 * has the ability to modify mode.  In that case remove
2915 		 * UID|GID and or MODE from mask so that
2916 		 * secpolicy_vnode_setattr() doesn't revoke it.
2917 		 */
2918 
2919 		if (trim_mask) {
2920 			saved_mask = vap->va_mask;
2921 			vap->va_mask &= ~trim_mask;
2922 		}
2923 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2924 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2925 		if (err) {
2926 			ZFS_EXIT(zfsvfs);
2927 			return (err);
2928 		}
2929 
2930 		if (trim_mask)
2931 			vap->va_mask |= saved_mask;
2932 	}
2933 
2934 	/*
2935 	 * secpolicy_vnode_setattr, or take ownership may have
2936 	 * changed va_mask
2937 	 */
2938 	mask = vap->va_mask;
2939 
2940 	if ((mask & (AT_UID | AT_GID))) {
2941 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2942 		    &xattr_obj, sizeof (xattr_obj));
2943 
2944 		if (err == 0 && xattr_obj) {
2945 			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2946 			if (err)
2947 				goto out2;
2948 		}
2949 		if (mask & AT_UID) {
2950 			new_uid = zfs_fuid_create(zfsvfs,
2951 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2952 			if (new_uid != zp->z_uid &&
2953 			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
2954 				if (attrzp)
2955 					VN_RELE(ZTOV(attrzp));
2956 				err = SET_ERROR(EDQUOT);
2957 				goto out2;
2958 			}
2959 		}
2960 
2961 		if (mask & AT_GID) {
2962 			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2963 			    cr, ZFS_GROUP, &fuidp);
2964 			if (new_gid != zp->z_gid &&
2965 			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
2966 				if (attrzp)
2967 					VN_RELE(ZTOV(attrzp));
2968 				err = SET_ERROR(EDQUOT);
2969 				goto out2;
2970 			}
2971 		}
2972 	}
2973 	tx = dmu_tx_create(zfsvfs->z_os);
2974 
2975 	if (mask & AT_MODE) {
2976 		uint64_t pmode = zp->z_mode;
2977 		uint64_t acl_obj;
2978 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2979 
2980 		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
2981 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2982 			err = SET_ERROR(EPERM);
2983 			goto out;
2984 		}
2985 
2986 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
2987 			goto out;
2988 
2989 		mutex_enter(&zp->z_lock);
2990 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2991 			/*
2992 			 * Are we upgrading ACL from old V0 format
2993 			 * to V1 format?
2994 			 */
2995 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2996 			    zfs_znode_acl_version(zp) ==
2997 			    ZFS_ACL_VERSION_INITIAL) {
2998 				dmu_tx_hold_free(tx, acl_obj, 0,
2999 				    DMU_OBJECT_END);
3000 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3001 				    0, aclp->z_acl_bytes);
3002 			} else {
3003 				dmu_tx_hold_write(tx, acl_obj, 0,
3004 				    aclp->z_acl_bytes);
3005 			}
3006 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3007 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3008 			    0, aclp->z_acl_bytes);
3009 		}
3010 		mutex_exit(&zp->z_lock);
3011 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3012 	} else {
3013 		if ((mask & AT_XVATTR) &&
3014 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3015 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3016 		else
3017 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3018 	}
3019 
3020 	if (attrzp) {
3021 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3022 	}
3023 
3024 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3025 	if (fuid_dirtied)
3026 		zfs_fuid_txhold(zfsvfs, tx);
3027 
3028 	zfs_sa_upgrade_txholds(tx, zp);
3029 
3030 	err = dmu_tx_assign(tx, TXG_NOWAIT);
3031 	if (err) {
3032 		if (err == ERESTART)
3033 			dmu_tx_wait(tx);
3034 		goto out;
3035 	}
3036 
3037 	count = 0;
3038 	/*
3039 	 * Set each attribute requested.
3040 	 * We group settings according to the locks they need to acquire.
3041 	 *
3042 	 * Note: you cannot set ctime directly, although it will be
3043 	 * updated as a side-effect of calling this function.
3044 	 */
3045 
3046 
3047 	if (mask & (AT_UID|AT_GID|AT_MODE))
3048 		mutex_enter(&zp->z_acl_lock);
3049 	mutex_enter(&zp->z_lock);
3050 
3051 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3052 	    &zp->z_pflags, sizeof (zp->z_pflags));
3053 
3054 	if (attrzp) {
3055 		if (mask & (AT_UID|AT_GID|AT_MODE))
3056 			mutex_enter(&attrzp->z_acl_lock);
3057 		mutex_enter(&attrzp->z_lock);
3058 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3059 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3060 		    sizeof (attrzp->z_pflags));
3061 	}
3062 
3063 	if (mask & (AT_UID|AT_GID)) {
3064 
3065 		if (mask & AT_UID) {
3066 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3067 			    &new_uid, sizeof (new_uid));
3068 			zp->z_uid = new_uid;
3069 			if (attrzp) {
3070 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3071 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3072 				    sizeof (new_uid));
3073 				attrzp->z_uid = new_uid;
3074 			}
3075 		}
3076 
3077 		if (mask & AT_GID) {
3078 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3079 			    NULL, &new_gid, sizeof (new_gid));
3080 			zp->z_gid = new_gid;
3081 			if (attrzp) {
3082 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3083 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3084 				    sizeof (new_gid));
3085 				attrzp->z_gid = new_gid;
3086 			}
3087 		}
3088 		if (!(mask & AT_MODE)) {
3089 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3090 			    NULL, &new_mode, sizeof (new_mode));
3091 			new_mode = zp->z_mode;
3092 		}
3093 		err = zfs_acl_chown_setattr(zp);
3094 		ASSERT(err == 0);
3095 		if (attrzp) {
3096 			err = zfs_acl_chown_setattr(attrzp);
3097 			ASSERT(err == 0);
3098 		}
3099 	}
3100 
3101 	if (mask & AT_MODE) {
3102 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3103 		    &new_mode, sizeof (new_mode));
3104 		zp->z_mode = new_mode;
3105 		ASSERT3U((uintptr_t)aclp, !=, NULL);
3106 		err = zfs_aclset_common(zp, aclp, cr, tx);
3107 		ASSERT0(err);
3108 		if (zp->z_acl_cached)
3109 			zfs_acl_free(zp->z_acl_cached);
3110 		zp->z_acl_cached = aclp;
3111 		aclp = NULL;
3112 	}
3113 
3114 
3115 	if (mask & AT_ATIME) {
3116 		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3117 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3118 		    &zp->z_atime, sizeof (zp->z_atime));
3119 	}
3120 
3121 	if (mask & AT_MTIME) {
3122 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3123 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3124 		    mtime, sizeof (mtime));
3125 	}
3126 
3127 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3128 	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3129 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3130 		    NULL, mtime, sizeof (mtime));
3131 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3132 		    &ctime, sizeof (ctime));
3133 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3134 		    B_TRUE);
3135 	} else if (mask != 0) {
3136 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3137 		    &ctime, sizeof (ctime));
3138 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3139 		    B_TRUE);
3140 		if (attrzp) {
3141 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3142 			    SA_ZPL_CTIME(zfsvfs), NULL,
3143 			    &ctime, sizeof (ctime));
3144 			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3145 			    mtime, ctime, B_TRUE);
3146 		}
3147 	}
3148 	/*
3149 	 * Do this after setting timestamps to prevent timestamp
3150 	 * update from toggling bit
3151 	 */
3152 
3153 	if (xoap && (mask & AT_XVATTR)) {
3154 
3155 		/*
3156 		 * restore trimmed off masks
3157 		 * so that return masks can be set for caller.
3158 		 */
3159 
3160 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3161 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3162 		}
3163 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3164 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3165 		}
3166 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3167 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3168 		}
3169 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3170 			XVA_SET_REQ(xvap, XAT_NODUMP);
3171 		}
3172 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3173 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3174 		}
3175 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3176 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3177 		}
3178 
3179 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3180 			ASSERT(vp->v_type == VREG);
3181 
3182 		zfs_xvattr_set(zp, xvap, tx);
3183 	}
3184 
3185 	if (fuid_dirtied)
3186 		zfs_fuid_sync(zfsvfs, tx);
3187 
3188 	if (mask != 0)
3189 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3190 
3191 	mutex_exit(&zp->z_lock);
3192 	if (mask & (AT_UID|AT_GID|AT_MODE))
3193 		mutex_exit(&zp->z_acl_lock);
3194 
3195 	if (attrzp) {
3196 		if (mask & (AT_UID|AT_GID|AT_MODE))
3197 			mutex_exit(&attrzp->z_acl_lock);
3198 		mutex_exit(&attrzp->z_lock);
3199 	}
3200 out:
3201 	if (err == 0 && attrzp) {
3202 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3203 		    xattr_count, tx);
3204 		ASSERT(err2 == 0);
3205 	}
3206 
3207 	if (attrzp)
3208 		VN_RELE(ZTOV(attrzp));
3209 
3210 	if (aclp)
3211 		zfs_acl_free(aclp);
3212 
3213 	if (fuidp) {
3214 		zfs_fuid_info_free(fuidp);
3215 		fuidp = NULL;
3216 	}
3217 
3218 	if (err) {
3219 		dmu_tx_abort(tx);
3220 		if (err == ERESTART)
3221 			goto top;
3222 	} else {
3223 		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3224 		dmu_tx_commit(tx);
3225 	}
3226 
3227 out2:
3228 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3229 		zil_commit(zilog, 0);
3230 
3231 	ZFS_EXIT(zfsvfs);
3232 	return (err);
3233 }
3234 
3235 typedef struct zfs_zlock {
3236 	krwlock_t	*zl_rwlock;	/* lock we acquired */
3237 	znode_t		*zl_znode;	/* znode we held */
3238 	struct zfs_zlock *zl_next;	/* next in list */
3239 } zfs_zlock_t;
3240 
3241 /*
3242  * Drop locks and release vnodes that were held by zfs_rename_lock().
3243  */
3244 static void
3245 zfs_rename_unlock(zfs_zlock_t **zlpp)
3246 {
3247 	zfs_zlock_t *zl;
3248 
3249 	while ((zl = *zlpp) != NULL) {
3250 		if (zl->zl_znode != NULL)
3251 			VN_RELE(ZTOV(zl->zl_znode));
3252 		rw_exit(zl->zl_rwlock);
3253 		*zlpp = zl->zl_next;
3254 		kmem_free(zl, sizeof (*zl));
3255 	}
3256 }
3257 
3258 /*
3259  * Search back through the directory tree, using the ".." entries.
3260  * Lock each directory in the chain to prevent concurrent renames.
3261  * Fail any attempt to move a directory into one of its own descendants.
3262  * XXX - z_parent_lock can overlap with map or grow locks
3263  */
3264 static int
3265 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3266 {
3267 	zfs_zlock_t	*zl;
3268 	znode_t		*zp = tdzp;
3269 	uint64_t	rootid = zp->z_zfsvfs->z_root;
3270 	uint64_t	oidp = zp->z_id;
3271 	krwlock_t	*rwlp = &szp->z_parent_lock;
3272 	krw_t		rw = RW_WRITER;
3273 
3274 	/*
3275 	 * First pass write-locks szp and compares to zp->z_id.
3276 	 * Later passes read-lock zp and compare to zp->z_parent.
3277 	 */
3278 	do {
3279 		if (!rw_tryenter(rwlp, rw)) {
3280 			/*
3281 			 * Another thread is renaming in this path.
3282 			 * Note that if we are a WRITER, we don't have any
3283 			 * parent_locks held yet.
3284 			 */
3285 			if (rw == RW_READER && zp->z_id > szp->z_id) {
3286 				/*
3287 				 * Drop our locks and restart
3288 				 */
3289 				zfs_rename_unlock(&zl);
3290 				*zlpp = NULL;
3291 				zp = tdzp;
3292 				oidp = zp->z_id;
3293 				rwlp = &szp->z_parent_lock;
3294 				rw = RW_WRITER;
3295 				continue;
3296 			} else {
3297 				/*
3298 				 * Wait for other thread to drop its locks
3299 				 */
3300 				rw_enter(rwlp, rw);
3301 			}
3302 		}
3303 
3304 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3305 		zl->zl_rwlock = rwlp;
3306 		zl->zl_znode = NULL;
3307 		zl->zl_next = *zlpp;
3308 		*zlpp = zl;
3309 
3310 		if (oidp == szp->z_id)		/* We're a descendant of szp */
3311 			return (SET_ERROR(EINVAL));
3312 
3313 		if (oidp == rootid)		/* We've hit the top */
3314 			return (0);
3315 
3316 		if (rw == RW_READER) {		/* i.e. not the first pass */
3317 			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3318 			if (error)
3319 				return (error);
3320 			zl->zl_znode = zp;
3321 		}
3322 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3323 		    &oidp, sizeof (oidp));
3324 		rwlp = &zp->z_parent_lock;
3325 		rw = RW_READER;
3326 
3327 	} while (zp->z_id != sdzp->z_id);
3328 
3329 	return (0);
3330 }
3331 
3332 /*
3333  * Move an entry from the provided source directory to the target
3334  * directory.  Change the entry name as indicated.
3335  *
3336  *	IN:	sdvp	- Source directory containing the "old entry".
3337  *		snm	- Old entry name.
3338  *		tdvp	- Target directory to contain the "new entry".
3339  *		tnm	- New entry name.
3340  *		cr	- credentials of caller.
3341  *		ct	- caller context
3342  *		flags	- case flags
3343  *
3344  *	RETURN:	0 on success, error code on failure.
3345  *
3346  * Timestamps:
3347  *	sdvp,tdvp - ctime|mtime updated
3348  */
3349 /*ARGSUSED*/
3350 static int
3351 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3352     caller_context_t *ct, int flags)
3353 {
3354 	znode_t		*tdzp, *szp, *tzp;
3355 	znode_t		*sdzp = VTOZ(sdvp);
3356 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3357 	zilog_t		*zilog;
3358 	vnode_t		*realvp;
3359 	zfs_dirlock_t	*sdl, *tdl;
3360 	dmu_tx_t	*tx;
3361 	zfs_zlock_t	*zl;
3362 	int		cmp, serr, terr;
3363 	int		error = 0;
3364 	int		zflg = 0;
3365 
3366 	ZFS_ENTER(zfsvfs);
3367 	ZFS_VERIFY_ZP(sdzp);
3368 	zilog = zfsvfs->z_log;
3369 
3370 	/*
3371 	 * Make sure we have the real vp for the target directory.
3372 	 */
3373 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3374 		tdvp = realvp;
3375 
3376 	tdzp = VTOZ(tdvp);
3377 	ZFS_VERIFY_ZP(tdzp);
3378 
3379 	/*
3380 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3381 	 * ctldir appear to have the same v_vfsp.
3382 	 */
3383 	if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3384 		ZFS_EXIT(zfsvfs);
3385 		return (SET_ERROR(EXDEV));
3386 	}
3387 
3388 	if (zfsvfs->z_utf8 && u8_validate(tnm,
3389 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3390 		ZFS_EXIT(zfsvfs);
3391 		return (SET_ERROR(EILSEQ));
3392 	}
3393 
3394 	if (flags & FIGNORECASE)
3395 		zflg |= ZCILOOK;
3396 
3397 top:
3398 	szp = NULL;
3399 	tzp = NULL;
3400 	zl = NULL;
3401 
3402 	/*
3403 	 * This is to prevent the creation of links into attribute space
3404 	 * by renaming a linked file into/outof an attribute directory.
3405 	 * See the comment in zfs_link() for why this is considered bad.
3406 	 */
3407 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3408 		ZFS_EXIT(zfsvfs);
3409 		return (SET_ERROR(EINVAL));
3410 	}
3411 
3412 	/*
3413 	 * Lock source and target directory entries.  To prevent deadlock,
3414 	 * a lock ordering must be defined.  We lock the directory with
3415 	 * the smallest object id first, or if it's a tie, the one with
3416 	 * the lexically first name.
3417 	 */
3418 	if (sdzp->z_id < tdzp->z_id) {
3419 		cmp = -1;
3420 	} else if (sdzp->z_id > tdzp->z_id) {
3421 		cmp = 1;
3422 	} else {
3423 		/*
3424 		 * First compare the two name arguments without
3425 		 * considering any case folding.
3426 		 */
3427 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3428 
3429 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3430 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3431 		if (cmp == 0) {
3432 			/*
3433 			 * POSIX: "If the old argument and the new argument
3434 			 * both refer to links to the same existing file,
3435 			 * the rename() function shall return successfully
3436 			 * and perform no other action."
3437 			 */
3438 			ZFS_EXIT(zfsvfs);
3439 			return (0);
3440 		}
3441 		/*
3442 		 * If the file system is case-folding, then we may
3443 		 * have some more checking to do.  A case-folding file
3444 		 * system is either supporting mixed case sensitivity
3445 		 * access or is completely case-insensitive.  Note
3446 		 * that the file system is always case preserving.
3447 		 *
3448 		 * In mixed sensitivity mode case sensitive behavior
3449 		 * is the default.  FIGNORECASE must be used to
3450 		 * explicitly request case insensitive behavior.
3451 		 *
3452 		 * If the source and target names provided differ only
3453 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3454 		 * we will treat this as a special case in the
3455 		 * case-insensitive mode: as long as the source name
3456 		 * is an exact match, we will allow this to proceed as
3457 		 * a name-change request.
3458 		 */
3459 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3460 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3461 		    flags & FIGNORECASE)) &&
3462 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3463 		    &error) == 0) {
3464 			/*
3465 			 * case preserving rename request, require exact
3466 			 * name matches
3467 			 */
3468 			zflg |= ZCIEXACT;
3469 			zflg &= ~ZCILOOK;
3470 		}
3471 	}
3472 
3473 	/*
3474 	 * If the source and destination directories are the same, we should
3475 	 * grab the z_name_lock of that directory only once.
3476 	 */
3477 	if (sdzp == tdzp) {
3478 		zflg |= ZHAVELOCK;
3479 		rw_enter(&sdzp->z_name_lock, RW_READER);
3480 	}
3481 
3482 	if (cmp < 0) {
3483 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3484 		    ZEXISTS | zflg, NULL, NULL);
3485 		terr = zfs_dirent_lock(&tdl,
3486 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3487 	} else {
3488 		terr = zfs_dirent_lock(&tdl,
3489 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3490 		serr = zfs_dirent_lock(&sdl,
3491 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3492 		    NULL, NULL);
3493 	}
3494 
3495 	if (serr) {
3496 		/*
3497 		 * Source entry invalid or not there.
3498 		 */
3499 		if (!terr) {
3500 			zfs_dirent_unlock(tdl);
3501 			if (tzp)
3502 				VN_RELE(ZTOV(tzp));
3503 		}
3504 
3505 		if (sdzp == tdzp)
3506 			rw_exit(&sdzp->z_name_lock);
3507 
3508 		if (strcmp(snm, "..") == 0)
3509 			serr = SET_ERROR(EINVAL);
3510 		ZFS_EXIT(zfsvfs);
3511 		return (serr);
3512 	}
3513 	if (terr) {
3514 		zfs_dirent_unlock(sdl);
3515 		VN_RELE(ZTOV(szp));
3516 
3517 		if (sdzp == tdzp)
3518 			rw_exit(&sdzp->z_name_lock);
3519 
3520 		if (strcmp(tnm, "..") == 0)
3521 			terr = SET_ERROR(EINVAL);
3522 		ZFS_EXIT(zfsvfs);
3523 		return (terr);
3524 	}
3525 
3526 	/*
3527 	 * Must have write access at the source to remove the old entry
3528 	 * and write access at the target to create the new entry.
3529 	 * Note that if target and source are the same, this can be
3530 	 * done in a single check.
3531 	 */
3532 
3533 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3534 		goto out;
3535 
3536 	if (ZTOV(szp)->v_type == VDIR) {
3537 		/*
3538 		 * Check to make sure rename is valid.
3539 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3540 		 */
3541 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3542 			goto out;
3543 	}
3544 
3545 	/*
3546 	 * Does target exist?
3547 	 */
3548 	if (tzp) {
3549 		/*
3550 		 * Source and target must be the same type.
3551 		 */
3552 		if (ZTOV(szp)->v_type == VDIR) {
3553 			if (ZTOV(tzp)->v_type != VDIR) {
3554 				error = SET_ERROR(ENOTDIR);
3555 				goto out;
3556 			}
3557 		} else {
3558 			if (ZTOV(tzp)->v_type == VDIR) {
3559 				error = SET_ERROR(EISDIR);
3560 				goto out;
3561 			}
3562 		}
3563 		/*
3564 		 * POSIX dictates that when the source and target
3565 		 * entries refer to the same file object, rename
3566 		 * must do nothing and exit without error.
3567 		 */
3568 		if (szp->z_id == tzp->z_id) {
3569 			error = 0;
3570 			goto out;
3571 		}
3572 	}
3573 
3574 	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3575 	if (tzp)
3576 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3577 
3578 	/*
3579 	 * notify the target directory if it is not the same
3580 	 * as source directory.
3581 	 */
3582 	if (tdvp != sdvp) {
3583 		vnevent_rename_dest_dir(tdvp, ct);
3584 	}
3585 
3586 	tx = dmu_tx_create(zfsvfs->z_os);
3587 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3588 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3589 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3590 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3591 	if (sdzp != tdzp) {
3592 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3593 		zfs_sa_upgrade_txholds(tx, tdzp);
3594 	}
3595 	if (tzp) {
3596 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3597 		zfs_sa_upgrade_txholds(tx, tzp);
3598 	}
3599 
3600 	zfs_sa_upgrade_txholds(tx, szp);
3601 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3602 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3603 	if (error) {
3604 		if (zl != NULL)
3605 			zfs_rename_unlock(&zl);
3606 		zfs_dirent_unlock(sdl);
3607 		zfs_dirent_unlock(tdl);
3608 
3609 		if (sdzp == tdzp)
3610 			rw_exit(&sdzp->z_name_lock);
3611 
3612 		VN_RELE(ZTOV(szp));
3613 		if (tzp)
3614 			VN_RELE(ZTOV(tzp));
3615 		if (error == ERESTART) {
3616 			dmu_tx_wait(tx);
3617 			dmu_tx_abort(tx);
3618 			goto top;
3619 		}
3620 		dmu_tx_abort(tx);
3621 		ZFS_EXIT(zfsvfs);
3622 		return (error);
3623 	}
3624 
3625 	if (tzp)	/* Attempt to remove the existing target */
3626 		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3627 
3628 	if (error == 0) {
3629 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3630 		if (error == 0) {
3631 			szp->z_pflags |= ZFS_AV_MODIFIED;
3632 
3633 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3634 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3635 			ASSERT0(error);
3636 
3637 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3638 			if (error == 0) {
3639 				zfs_log_rename(zilog, tx, TX_RENAME |
3640 				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3641 				    sdl->dl_name, tdzp, tdl->dl_name, szp);
3642 
3643 				/*
3644 				 * Update path information for the target vnode
3645 				 */
3646 				vn_renamepath(tdvp, ZTOV(szp), tnm,
3647 				    strlen(tnm));
3648 			} else {
3649 				/*
3650 				 * At this point, we have successfully created
3651 				 * the target name, but have failed to remove
3652 				 * the source name.  Since the create was done
3653 				 * with the ZRENAMING flag, there are
3654 				 * complications; for one, the link count is
3655 				 * wrong.  The easiest way to deal with this
3656 				 * is to remove the newly created target, and
3657 				 * return the original error.  This must
3658 				 * succeed; fortunately, it is very unlikely to
3659 				 * fail, since we just created it.
3660 				 */
3661 				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3662 				    ZRENAMING, NULL), ==, 0);
3663 			}
3664 		}
3665 	}
3666 
3667 	dmu_tx_commit(tx);
3668 out:
3669 	if (zl != NULL)
3670 		zfs_rename_unlock(&zl);
3671 
3672 	zfs_dirent_unlock(sdl);
3673 	zfs_dirent_unlock(tdl);
3674 
3675 	if (sdzp == tdzp)
3676 		rw_exit(&sdzp->z_name_lock);
3677 
3678 
3679 	VN_RELE(ZTOV(szp));
3680 	if (tzp)
3681 		VN_RELE(ZTOV(tzp));
3682 
3683 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3684 		zil_commit(zilog, 0);
3685 
3686 	ZFS_EXIT(zfsvfs);
3687 	return (error);
3688 }
3689 
3690 /*
3691  * Insert the indicated symbolic reference entry into the directory.
3692  *
3693  *	IN:	dvp	- Directory to contain new symbolic link.
3694  *		link	- Name for new symlink entry.
3695  *		vap	- Attributes of new entry.
3696  *		cr	- credentials of caller.
3697  *		ct	- caller context
3698  *		flags	- case flags
3699  *
3700  *	RETURN:	0 on success, error code on failure.
3701  *
3702  * Timestamps:
3703  *	dvp - ctime|mtime updated
3704  */
3705 /*ARGSUSED*/
3706 static int
3707 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3708     caller_context_t *ct, int flags)
3709 {
3710 	znode_t		*zp, *dzp = VTOZ(dvp);
3711 	zfs_dirlock_t	*dl;
3712 	dmu_tx_t	*tx;
3713 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3714 	zilog_t		*zilog;
3715 	uint64_t	len = strlen(link);
3716 	int		error;
3717 	int		zflg = ZNEW;
3718 	zfs_acl_ids_t	acl_ids;
3719 	boolean_t	fuid_dirtied;
3720 	uint64_t	txtype = TX_SYMLINK;
3721 
3722 	ASSERT(vap->va_type == VLNK);
3723 
3724 	ZFS_ENTER(zfsvfs);
3725 	ZFS_VERIFY_ZP(dzp);
3726 	zilog = zfsvfs->z_log;
3727 
3728 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3729 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3730 		ZFS_EXIT(zfsvfs);
3731 		return (SET_ERROR(EILSEQ));
3732 	}
3733 	if (flags & FIGNORECASE)
3734 		zflg |= ZCILOOK;
3735 
3736 	if (len > MAXPATHLEN) {
3737 		ZFS_EXIT(zfsvfs);
3738 		return (SET_ERROR(ENAMETOOLONG));
3739 	}
3740 
3741 	if ((error = zfs_acl_ids_create(dzp, 0,
3742 	    vap, cr, NULL, &acl_ids)) != 0) {
3743 		ZFS_EXIT(zfsvfs);
3744 		return (error);
3745 	}
3746 top:
3747 	/*
3748 	 * Attempt to lock directory; fail if entry already exists.
3749 	 */
3750 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3751 	if (error) {
3752 		zfs_acl_ids_free(&acl_ids);
3753 		ZFS_EXIT(zfsvfs);
3754 		return (error);
3755 	}
3756 
3757 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3758 		zfs_acl_ids_free(&acl_ids);
3759 		zfs_dirent_unlock(dl);
3760 		ZFS_EXIT(zfsvfs);
3761 		return (error);
3762 	}
3763 
3764 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3765 		zfs_acl_ids_free(&acl_ids);
3766 		zfs_dirent_unlock(dl);
3767 		ZFS_EXIT(zfsvfs);
3768 		return (SET_ERROR(EDQUOT));
3769 	}
3770 	tx = dmu_tx_create(zfsvfs->z_os);
3771 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3772 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3773 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3774 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3775 	    ZFS_SA_BASE_ATTR_SIZE + len);
3776 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3777 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3778 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3779 		    acl_ids.z_aclp->z_acl_bytes);
3780 	}
3781 	if (fuid_dirtied)
3782 		zfs_fuid_txhold(zfsvfs, tx);
3783 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3784 	if (error) {
3785 		zfs_dirent_unlock(dl);
3786 		if (error == ERESTART) {
3787 			dmu_tx_wait(tx);
3788 			dmu_tx_abort(tx);
3789 			goto top;
3790 		}
3791 		zfs_acl_ids_free(&acl_ids);
3792 		dmu_tx_abort(tx);
3793 		ZFS_EXIT(zfsvfs);
3794 		return (error);
3795 	}
3796 
3797 	/*
3798 	 * Create a new object for the symlink.
3799 	 * for version 4 ZPL datsets the symlink will be an SA attribute
3800 	 */
3801 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3802 
3803 	if (fuid_dirtied)
3804 		zfs_fuid_sync(zfsvfs, tx);
3805 
3806 	mutex_enter(&zp->z_lock);
3807 	if (zp->z_is_sa)
3808 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3809 		    link, len, tx);
3810 	else
3811 		zfs_sa_symlink(zp, link, len, tx);
3812 	mutex_exit(&zp->z_lock);
3813 
3814 	zp->z_size = len;
3815 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3816 	    &zp->z_size, sizeof (zp->z_size), tx);
3817 	/*
3818 	 * Insert the new object into the directory.
3819 	 */
3820 	(void) zfs_link_create(dl, zp, tx, ZNEW);
3821 
3822 	if (flags & FIGNORECASE)
3823 		txtype |= TX_CI;
3824 	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3825 
3826 	zfs_acl_ids_free(&acl_ids);
3827 
3828 	dmu_tx_commit(tx);
3829 
3830 	zfs_dirent_unlock(dl);
3831 
3832 	VN_RELE(ZTOV(zp));
3833 
3834 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3835 		zil_commit(zilog, 0);
3836 
3837 	ZFS_EXIT(zfsvfs);
3838 	return (error);
3839 }
3840 
3841 /*
3842  * Return, in the buffer contained in the provided uio structure,
3843  * the symbolic path referred to by vp.
3844  *
3845  *	IN:	vp	- vnode of symbolic link.
3846  *		uio	- structure to contain the link path.
3847  *		cr	- credentials of caller.
3848  *		ct	- caller context
3849  *
3850  *	OUT:	uio	- structure containing the link path.
3851  *
3852  *	RETURN:	0 on success, error code on failure.
3853  *
3854  * Timestamps:
3855  *	vp - atime updated
3856  */
3857 /* ARGSUSED */
3858 static int
3859 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3860 {
3861 	znode_t		*zp = VTOZ(vp);
3862 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3863 	int		error;
3864 
3865 	ZFS_ENTER(zfsvfs);
3866 	ZFS_VERIFY_ZP(zp);
3867 
3868 	mutex_enter(&zp->z_lock);
3869 	if (zp->z_is_sa)
3870 		error = sa_lookup_uio(zp->z_sa_hdl,
3871 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3872 	else
3873 		error = zfs_sa_readlink(zp, uio);
3874 	mutex_exit(&zp->z_lock);
3875 
3876 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3877 
3878 	ZFS_EXIT(zfsvfs);
3879 	return (error);
3880 }
3881 
3882 /*
3883  * Insert a new entry into directory tdvp referencing svp.
3884  *
3885  *	IN:	tdvp	- Directory to contain new entry.
3886  *		svp	- vnode of new entry.
3887  *		name	- name of new entry.
3888  *		cr	- credentials of caller.
3889  *		ct	- caller context
3890  *
3891  *	RETURN:	0 on success, error code on failure.
3892  *
3893  * Timestamps:
3894  *	tdvp - ctime|mtime updated
3895  *	 svp - ctime updated
3896  */
3897 /* ARGSUSED */
3898 static int
3899 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3900     caller_context_t *ct, int flags)
3901 {
3902 	znode_t		*dzp = VTOZ(tdvp);
3903 	znode_t		*tzp, *szp;
3904 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3905 	zilog_t		*zilog;
3906 	zfs_dirlock_t	*dl;
3907 	dmu_tx_t	*tx;
3908 	vnode_t		*realvp;
3909 	int		error;
3910 	int		zf = ZNEW;
3911 	uint64_t	parent;
3912 	uid_t		owner;
3913 
3914 	ASSERT(tdvp->v_type == VDIR);
3915 
3916 	ZFS_ENTER(zfsvfs);
3917 	ZFS_VERIFY_ZP(dzp);
3918 	zilog = zfsvfs->z_log;
3919 
3920 	if (VOP_REALVP(svp, &realvp, ct) == 0)
3921 		svp = realvp;
3922 
3923 	/*
3924 	 * POSIX dictates that we return EPERM here.
3925 	 * Better choices include ENOTSUP or EISDIR.
3926 	 */
3927 	if (svp->v_type == VDIR) {
3928 		ZFS_EXIT(zfsvfs);
3929 		return (SET_ERROR(EPERM));
3930 	}
3931 
3932 	szp = VTOZ(svp);
3933 	ZFS_VERIFY_ZP(szp);
3934 
3935 	/*
3936 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3937 	 * ctldir appear to have the same v_vfsp.
3938 	 */
3939 	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
3940 		ZFS_EXIT(zfsvfs);
3941 		return (SET_ERROR(EXDEV));
3942 	}
3943 
3944 	/* Prevent links to .zfs/shares files */
3945 
3946 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3947 	    &parent, sizeof (uint64_t))) != 0) {
3948 		ZFS_EXIT(zfsvfs);
3949 		return (error);
3950 	}
3951 	if (parent == zfsvfs->z_shares_dir) {
3952 		ZFS_EXIT(zfsvfs);
3953 		return (SET_ERROR(EPERM));
3954 	}
3955 
3956 	if (zfsvfs->z_utf8 && u8_validate(name,
3957 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3958 		ZFS_EXIT(zfsvfs);
3959 		return (SET_ERROR(EILSEQ));
3960 	}
3961 	if (flags & FIGNORECASE)
3962 		zf |= ZCILOOK;
3963 
3964 	/*
3965 	 * We do not support links between attributes and non-attributes
3966 	 * because of the potential security risk of creating links
3967 	 * into "normal" file space in order to circumvent restrictions
3968 	 * imposed in attribute space.
3969 	 */
3970 	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
3971 		ZFS_EXIT(zfsvfs);
3972 		return (SET_ERROR(EINVAL));
3973 	}
3974 
3975 
3976 	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
3977 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3978 		ZFS_EXIT(zfsvfs);
3979 		return (SET_ERROR(EPERM));
3980 	}
3981 
3982 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3983 		ZFS_EXIT(zfsvfs);
3984 		return (error);
3985 	}
3986 
3987 top:
3988 	/*
3989 	 * Attempt to lock directory; fail if entry already exists.
3990 	 */
3991 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3992 	if (error) {
3993 		ZFS_EXIT(zfsvfs);
3994 		return (error);
3995 	}
3996 
3997 	tx = dmu_tx_create(zfsvfs->z_os);
3998 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3999 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4000 	zfs_sa_upgrade_txholds(tx, szp);
4001 	zfs_sa_upgrade_txholds(tx, dzp);
4002 	error = dmu_tx_assign(tx, TXG_NOWAIT);
4003 	if (error) {
4004 		zfs_dirent_unlock(dl);
4005 		if (error == ERESTART) {
4006 			dmu_tx_wait(tx);
4007 			dmu_tx_abort(tx);
4008 			goto top;
4009 		}
4010 		dmu_tx_abort(tx);
4011 		ZFS_EXIT(zfsvfs);
4012 		return (error);
4013 	}
4014 
4015 	error = zfs_link_create(dl, szp, tx, 0);
4016 
4017 	if (error == 0) {
4018 		uint64_t txtype = TX_LINK;
4019 		if (flags & FIGNORECASE)
4020 			txtype |= TX_CI;
4021 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4022 	}
4023 
4024 	dmu_tx_commit(tx);
4025 
4026 	zfs_dirent_unlock(dl);
4027 
4028 	if (error == 0) {
4029 		vnevent_link(svp, ct);
4030 	}
4031 
4032 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4033 		zil_commit(zilog, 0);
4034 
4035 	ZFS_EXIT(zfsvfs);
4036 	return (error);
4037 }
4038 
4039 /*
4040  * zfs_null_putapage() is used when the file system has been force
4041  * unmounted. It just drops the pages.
4042  */
4043 /* ARGSUSED */
4044 static int
4045 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4046 		size_t *lenp, int flags, cred_t *cr)
4047 {
4048 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4049 	return (0);
4050 }
4051 
4052 /*
4053  * Push a page out to disk, klustering if possible.
4054  *
4055  *	IN:	vp	- file to push page to.
4056  *		pp	- page to push.
4057  *		flags	- additional flags.
4058  *		cr	- credentials of caller.
4059  *
4060  *	OUT:	offp	- start of range pushed.
4061  *		lenp	- len of range pushed.
4062  *
4063  *	RETURN:	0 on success, error code on failure.
4064  *
4065  * NOTE: callers must have locked the page to be pushed.  On
4066  * exit, the page (and all other pages in the kluster) must be
4067  * unlocked.
4068  */
4069 /* ARGSUSED */
4070 static int
4071 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4072 		size_t *lenp, int flags, cred_t *cr)
4073 {
4074 	znode_t		*zp = VTOZ(vp);
4075 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4076 	dmu_tx_t	*tx;
4077 	u_offset_t	off, koff;
4078 	size_t		len, klen;
4079 	int		err;
4080 
4081 	off = pp->p_offset;
4082 	len = PAGESIZE;
4083 	/*
4084 	 * If our blocksize is bigger than the page size, try to kluster
4085 	 * multiple pages so that we write a full block (thus avoiding
4086 	 * a read-modify-write).
4087 	 */
4088 	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4089 		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4090 		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4091 		ASSERT(koff <= zp->z_size);
4092 		if (koff + klen > zp->z_size)
4093 			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4094 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4095 	}
4096 	ASSERT3U(btop(len), ==, btopr(len));
4097 
4098 	/*
4099 	 * Can't push pages past end-of-file.
4100 	 */
4101 	if (off >= zp->z_size) {
4102 		/* ignore all pages */
4103 		err = 0;
4104 		goto out;
4105 	} else if (off + len > zp->z_size) {
4106 		int npages = btopr(zp->z_size - off);
4107 		page_t *trunc;
4108 
4109 		page_list_break(&pp, &trunc, npages);
4110 		/* ignore pages past end of file */
4111 		if (trunc)
4112 			pvn_write_done(trunc, flags);
4113 		len = zp->z_size - off;
4114 	}
4115 
4116 	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4117 	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4118 		err = SET_ERROR(EDQUOT);
4119 		goto out;
4120 	}
4121 top:
4122 	tx = dmu_tx_create(zfsvfs->z_os);
4123 	dmu_tx_hold_write(tx, zp->z_id, off, len);
4124 
4125 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4126 	zfs_sa_upgrade_txholds(tx, zp);
4127 	err = dmu_tx_assign(tx, TXG_NOWAIT);
4128 	if (err != 0) {
4129 		if (err == ERESTART) {
4130 			dmu_tx_wait(tx);
4131 			dmu_tx_abort(tx);
4132 			goto top;
4133 		}
4134 		dmu_tx_abort(tx);
4135 		goto out;
4136 	}
4137 
4138 	if (zp->z_blksz <= PAGESIZE) {
4139 		caddr_t va = zfs_map_page(pp, S_READ);
4140 		ASSERT3U(len, <=, PAGESIZE);
4141 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4142 		zfs_unmap_page(pp, va);
4143 	} else {
4144 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4145 	}
4146 
4147 	if (err == 0) {
4148 		uint64_t mtime[2], ctime[2];
4149 		sa_bulk_attr_t bulk[3];
4150 		int count = 0;
4151 
4152 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4153 		    &mtime, 16);
4154 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4155 		    &ctime, 16);
4156 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4157 		    &zp->z_pflags, 8);
4158 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4159 		    B_TRUE);
4160 		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4161 	}
4162 	dmu_tx_commit(tx);
4163 
4164 out:
4165 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4166 	if (offp)
4167 		*offp = off;
4168 	if (lenp)
4169 		*lenp = len;
4170 
4171 	return (err);
4172 }
4173 
4174 /*
4175  * Copy the portion of the file indicated from pages into the file.
4176  * The pages are stored in a page list attached to the files vnode.
4177  *
4178  *	IN:	vp	- vnode of file to push page data to.
4179  *		off	- position in file to put data.
4180  *		len	- amount of data to write.
4181  *		flags	- flags to control the operation.
4182  *		cr	- credentials of caller.
4183  *		ct	- caller context.
4184  *
4185  *	RETURN:	0 on success, error code on failure.
4186  *
4187  * Timestamps:
4188  *	vp - ctime|mtime updated
4189  */
4190 /*ARGSUSED*/
4191 static int
4192 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4193     caller_context_t *ct)
4194 {
4195 	znode_t		*zp = VTOZ(vp);
4196 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4197 	page_t		*pp;
4198 	size_t		io_len;
4199 	u_offset_t	io_off;
4200 	uint_t		blksz;
4201 	rl_t		*rl;
4202 	int		error = 0;
4203 
4204 	ZFS_ENTER(zfsvfs);
4205 	ZFS_VERIFY_ZP(zp);
4206 
4207 	/*
4208 	 * There's nothing to do if no data is cached.
4209 	 */
4210 	if (!vn_has_cached_data(vp)) {
4211 		ZFS_EXIT(zfsvfs);
4212 		return (0);
4213 	}
4214 
4215 	/*
4216 	 * Align this request to the file block size in case we kluster.
4217 	 * XXX - this can result in pretty aggresive locking, which can
4218 	 * impact simultanious read/write access.  One option might be
4219 	 * to break up long requests (len == 0) into block-by-block
4220 	 * operations to get narrower locking.
4221 	 */
4222 	blksz = zp->z_blksz;
4223 	if (ISP2(blksz))
4224 		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4225 	else
4226 		io_off = 0;
4227 	if (len > 0 && ISP2(blksz))
4228 		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4229 	else
4230 		io_len = 0;
4231 
4232 	if (io_len == 0) {
4233 		/*
4234 		 * Search the entire vp list for pages >= io_off.
4235 		 */
4236 		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4237 		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4238 		goto out;
4239 	}
4240 	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4241 
4242 	if (off > zp->z_size) {
4243 		/* past end of file */
4244 		zfs_range_unlock(rl);
4245 		ZFS_EXIT(zfsvfs);
4246 		return (0);
4247 	}
4248 
4249 	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4250 
4251 	for (off = io_off; io_off < off + len; io_off += io_len) {
4252 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4253 			pp = page_lookup(vp, io_off,
4254 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4255 		} else {
4256 			pp = page_lookup_nowait(vp, io_off,
4257 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4258 		}
4259 
4260 		if (pp != NULL && pvn_getdirty(pp, flags)) {
4261 			int err;
4262 
4263 			/*
4264 			 * Found a dirty page to push
4265 			 */
4266 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4267 			if (err)
4268 				error = err;
4269 		} else {
4270 			io_len = PAGESIZE;
4271 		}
4272 	}
4273 out:
4274 	zfs_range_unlock(rl);
4275 	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4276 		zil_commit(zfsvfs->z_log, zp->z_id);
4277 	ZFS_EXIT(zfsvfs);
4278 	return (error);
4279 }
4280 
4281 /*ARGSUSED*/
4282 void
4283 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4284 {
4285 	znode_t	*zp = VTOZ(vp);
4286 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4287 	int error;
4288 
4289 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4290 	if (zp->z_sa_hdl == NULL) {
4291 		/*
4292 		 * The fs has been unmounted, or we did a
4293 		 * suspend/resume and this file no longer exists.
4294 		 */
4295 		if (vn_has_cached_data(vp)) {
4296 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4297 			    B_INVAL, cr);
4298 		}
4299 
4300 		mutex_enter(&zp->z_lock);
4301 		mutex_enter(&vp->v_lock);
4302 		ASSERT(vp->v_count == 1);
4303 		vp->v_count = 0;
4304 		mutex_exit(&vp->v_lock);
4305 		mutex_exit(&zp->z_lock);
4306 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4307 		zfs_znode_free(zp);
4308 		return;
4309 	}
4310 
4311 	/*
4312 	 * Attempt to push any data in the page cache.  If this fails
4313 	 * we will get kicked out later in zfs_zinactive().
4314 	 */
4315 	if (vn_has_cached_data(vp)) {
4316 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4317 		    cr);
4318 	}
4319 
4320 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4321 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4322 
4323 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4324 		zfs_sa_upgrade_txholds(tx, zp);
4325 		error = dmu_tx_assign(tx, TXG_WAIT);
4326 		if (error) {
4327 			dmu_tx_abort(tx);
4328 		} else {
4329 			mutex_enter(&zp->z_lock);
4330 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4331 			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4332 			zp->z_atime_dirty = 0;
4333 			mutex_exit(&zp->z_lock);
4334 			dmu_tx_commit(tx);
4335 		}
4336 	}
4337 
4338 	zfs_zinactive(zp);
4339 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4340 }
4341 
4342 /*
4343  * Bounds-check the seek operation.
4344  *
4345  *	IN:	vp	- vnode seeking within
4346  *		ooff	- old file offset
4347  *		noffp	- pointer to new file offset
4348  *		ct	- caller context
4349  *
4350  *	RETURN:	0 on success, EINVAL if new offset invalid.
4351  */
4352 /* ARGSUSED */
4353 static int
4354 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4355     caller_context_t *ct)
4356 {
4357 	if (vp->v_type == VDIR)
4358 		return (0);
4359 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4360 }
4361 
4362 /*
4363  * Pre-filter the generic locking function to trap attempts to place
4364  * a mandatory lock on a memory mapped file.
4365  */
4366 static int
4367 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4368     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4369 {
4370 	znode_t *zp = VTOZ(vp);
4371 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4372 
4373 	ZFS_ENTER(zfsvfs);
4374 	ZFS_VERIFY_ZP(zp);
4375 
4376 	/*
4377 	 * We are following the UFS semantics with respect to mapcnt
4378 	 * here: If we see that the file is mapped already, then we will
4379 	 * return an error, but we don't worry about races between this
4380 	 * function and zfs_map().
4381 	 */
4382 	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4383 		ZFS_EXIT(zfsvfs);
4384 		return (SET_ERROR(EAGAIN));
4385 	}
4386 	ZFS_EXIT(zfsvfs);
4387 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4388 }
4389 
4390 /*
4391  * If we can't find a page in the cache, we will create a new page
4392  * and fill it with file data.  For efficiency, we may try to fill
4393  * multiple pages at once (klustering) to fill up the supplied page
4394  * list.  Note that the pages to be filled are held with an exclusive
4395  * lock to prevent access by other threads while they are being filled.
4396  */
4397 static int
4398 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4399     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4400 {
4401 	znode_t *zp = VTOZ(vp);
4402 	page_t *pp, *cur_pp;
4403 	objset_t *os = zp->z_zfsvfs->z_os;
4404 	u_offset_t io_off, total;
4405 	size_t io_len;
4406 	int err;
4407 
4408 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4409 		/*
4410 		 * We only have a single page, don't bother klustering
4411 		 */
4412 		io_off = off;
4413 		io_len = PAGESIZE;
4414 		pp = page_create_va(vp, io_off, io_len,
4415 		    PG_EXCL | PG_WAIT, seg, addr);
4416 	} else {
4417 		/*
4418 		 * Try to find enough pages to fill the page list
4419 		 */
4420 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4421 		    &io_len, off, plsz, 0);
4422 	}
4423 	if (pp == NULL) {
4424 		/*
4425 		 * The page already exists, nothing to do here.
4426 		 */
4427 		*pl = NULL;
4428 		return (0);
4429 	}
4430 
4431 	/*
4432 	 * Fill the pages in the kluster.
4433 	 */
4434 	cur_pp = pp;
4435 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4436 		caddr_t va;
4437 
4438 		ASSERT3U(io_off, ==, cur_pp->p_offset);
4439 		va = zfs_map_page(cur_pp, S_WRITE);
4440 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4441 		    DMU_READ_PREFETCH);
4442 		zfs_unmap_page(cur_pp, va);
4443 		if (err) {
4444 			/* On error, toss the entire kluster */
4445 			pvn_read_done(pp, B_ERROR);
4446 			/* convert checksum errors into IO errors */
4447 			if (err == ECKSUM)
4448 				err = SET_ERROR(EIO);
4449 			return (err);
4450 		}
4451 		cur_pp = cur_pp->p_next;
4452 	}
4453 
4454 	/*
4455 	 * Fill in the page list array from the kluster starting
4456 	 * from the desired offset `off'.
4457 	 * NOTE: the page list will always be null terminated.
4458 	 */
4459 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4460 	ASSERT(pl == NULL || (*pl)->p_offset == off);
4461 
4462 	return (0);
4463 }
4464 
4465 /*
4466  * Return pointers to the pages for the file region [off, off + len]
4467  * in the pl array.  If plsz is greater than len, this function may
4468  * also return page pointers from after the specified region
4469  * (i.e. the region [off, off + plsz]).  These additional pages are
4470  * only returned if they are already in the cache, or were created as
4471  * part of a klustered read.
4472  *
4473  *	IN:	vp	- vnode of file to get data from.
4474  *		off	- position in file to get data from.
4475  *		len	- amount of data to retrieve.
4476  *		plsz	- length of provided page list.
4477  *		seg	- segment to obtain pages for.
4478  *		addr	- virtual address of fault.
4479  *		rw	- mode of created pages.
4480  *		cr	- credentials of caller.
4481  *		ct	- caller context.
4482  *
4483  *	OUT:	protp	- protection mode of created pages.
4484  *		pl	- list of pages created.
4485  *
4486  *	RETURN:	0 on success, error code on failure.
4487  *
4488  * Timestamps:
4489  *	vp - atime updated
4490  */
4491 /* ARGSUSED */
4492 static int
4493 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4494     page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4495     enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4496 {
4497 	znode_t		*zp = VTOZ(vp);
4498 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4499 	page_t		**pl0 = pl;
4500 	int		err = 0;
4501 
4502 	/* we do our own caching, faultahead is unnecessary */
4503 	if (pl == NULL)
4504 		return (0);
4505 	else if (len > plsz)
4506 		len = plsz;
4507 	else
4508 		len = P2ROUNDUP(len, PAGESIZE);
4509 	ASSERT(plsz >= len);
4510 
4511 	ZFS_ENTER(zfsvfs);
4512 	ZFS_VERIFY_ZP(zp);
4513 
4514 	if (protp)
4515 		*protp = PROT_ALL;
4516 
4517 	/*
4518 	 * Loop through the requested range [off, off + len) looking
4519 	 * for pages.  If we don't find a page, we will need to create
4520 	 * a new page and fill it with data from the file.
4521 	 */
4522 	while (len > 0) {
4523 		if (*pl = page_lookup(vp, off, SE_SHARED))
4524 			*(pl+1) = NULL;
4525 		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4526 			goto out;
4527 		while (*pl) {
4528 			ASSERT3U((*pl)->p_offset, ==, off);
4529 			off += PAGESIZE;
4530 			addr += PAGESIZE;
4531 			if (len > 0) {
4532 				ASSERT3U(len, >=, PAGESIZE);
4533 				len -= PAGESIZE;
4534 			}
4535 			ASSERT3U(plsz, >=, PAGESIZE);
4536 			plsz -= PAGESIZE;
4537 			pl++;
4538 		}
4539 	}
4540 
4541 	/*
4542 	 * Fill out the page array with any pages already in the cache.
4543 	 */
4544 	while (plsz > 0 &&
4545 	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4546 			off += PAGESIZE;
4547 			plsz -= PAGESIZE;
4548 	}
4549 out:
4550 	if (err) {
4551 		/*
4552 		 * Release any pages we have previously locked.
4553 		 */
4554 		while (pl > pl0)
4555 			page_unlock(*--pl);
4556 	} else {
4557 		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4558 	}
4559 
4560 	*pl = NULL;
4561 
4562 	ZFS_EXIT(zfsvfs);
4563 	return (err);
4564 }
4565 
4566 /*
4567  * Request a memory map for a section of a file.  This code interacts
4568  * with common code and the VM system as follows:
4569  *
4570  * - common code calls mmap(), which ends up in smmap_common()
4571  * - this calls VOP_MAP(), which takes you into (say) zfs
4572  * - zfs_map() calls as_map(), passing segvn_create() as the callback
4573  * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4574  * - zfs_addmap() updates z_mapcnt
4575  */
4576 /*ARGSUSED*/
4577 static int
4578 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4579     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4580     caller_context_t *ct)
4581 {
4582 	znode_t *zp = VTOZ(vp);
4583 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4584 	segvn_crargs_t	vn_a;
4585 	int		error;
4586 
4587 	ZFS_ENTER(zfsvfs);
4588 	ZFS_VERIFY_ZP(zp);
4589 
4590 	if ((prot & PROT_WRITE) && (zp->z_pflags &
4591 	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4592 		ZFS_EXIT(zfsvfs);
4593 		return (SET_ERROR(EPERM));
4594 	}
4595 
4596 	if ((prot & (PROT_READ | PROT_EXEC)) &&
4597 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4598 		ZFS_EXIT(zfsvfs);
4599 		return (SET_ERROR(EACCES));
4600 	}
4601 
4602 	if (vp->v_flag & VNOMAP) {
4603 		ZFS_EXIT(zfsvfs);
4604 		return (SET_ERROR(ENOSYS));
4605 	}
4606 
4607 	if (off < 0 || len > MAXOFFSET_T - off) {
4608 		ZFS_EXIT(zfsvfs);
4609 		return (SET_ERROR(ENXIO));
4610 	}
4611 
4612 	if (vp->v_type != VREG) {
4613 		ZFS_EXIT(zfsvfs);
4614 		return (SET_ERROR(ENODEV));
4615 	}
4616 
4617 	/*
4618 	 * If file is locked, disallow mapping.
4619 	 */
4620 	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4621 		ZFS_EXIT(zfsvfs);
4622 		return (SET_ERROR(EAGAIN));
4623 	}
4624 
4625 	as_rangelock(as);
4626 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4627 	if (error != 0) {
4628 		as_rangeunlock(as);
4629 		ZFS_EXIT(zfsvfs);
4630 		return (error);
4631 	}
4632 
4633 	vn_a.vp = vp;
4634 	vn_a.offset = (u_offset_t)off;
4635 	vn_a.type = flags & MAP_TYPE;
4636 	vn_a.prot = prot;
4637 	vn_a.maxprot = maxprot;
4638 	vn_a.cred = cr;
4639 	vn_a.amp = NULL;
4640 	vn_a.flags = flags & ~MAP_TYPE;
4641 	vn_a.szc = 0;
4642 	vn_a.lgrp_mem_policy_flags = 0;
4643 
4644 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4645 
4646 	as_rangeunlock(as);
4647 	ZFS_EXIT(zfsvfs);
4648 	return (error);
4649 }
4650 
4651 /* ARGSUSED */
4652 static int
4653 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4654     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4655     caller_context_t *ct)
4656 {
4657 	uint64_t pages = btopr(len);
4658 
4659 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4660 	return (0);
4661 }
4662 
4663 /*
4664  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4665  * more accurate mtime for the associated file.  Since we don't have a way of
4666  * detecting when the data was actually modified, we have to resort to
4667  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4668  * last page is pushed.  The problem occurs when the msync() call is omitted,
4669  * which by far the most common case:
4670  *
4671  * 	open()
4672  * 	mmap()
4673  * 	<modify memory>
4674  * 	munmap()
4675  * 	close()
4676  * 	<time lapse>
4677  * 	putpage() via fsflush
4678  *
4679  * If we wait until fsflush to come along, we can have a modification time that
4680  * is some arbitrary point in the future.  In order to prevent this in the
4681  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4682  * torn down.
4683  */
4684 /* ARGSUSED */
4685 static int
4686 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4687     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4688     caller_context_t *ct)
4689 {
4690 	uint64_t pages = btopr(len);
4691 
4692 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4693 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4694 
4695 	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4696 	    vn_has_cached_data(vp))
4697 		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4698 
4699 	return (0);
4700 }
4701 
4702 /*
4703  * Free or allocate space in a file.  Currently, this function only
4704  * supports the `F_FREESP' command.  However, this command is somewhat
4705  * misnamed, as its functionality includes the ability to allocate as
4706  * well as free space.
4707  *
4708  *	IN:	vp	- vnode of file to free data in.
4709  *		cmd	- action to take (only F_FREESP supported).
4710  *		bfp	- section of file to free/alloc.
4711  *		flag	- current file open mode flags.
4712  *		offset	- current file offset.
4713  *		cr	- credentials of caller [UNUSED].
4714  *		ct	- caller context.
4715  *
4716  *	RETURN:	0 on success, error code on failure.
4717  *
4718  * Timestamps:
4719  *	vp - ctime|mtime updated
4720  */
4721 /* ARGSUSED */
4722 static int
4723 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4724     offset_t offset, cred_t *cr, caller_context_t *ct)
4725 {
4726 	znode_t		*zp = VTOZ(vp);
4727 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4728 	uint64_t	off, len;
4729 	int		error;
4730 
4731 	ZFS_ENTER(zfsvfs);
4732 	ZFS_VERIFY_ZP(zp);
4733 
4734 	if (cmd != F_FREESP) {
4735 		ZFS_EXIT(zfsvfs);
4736 		return (SET_ERROR(EINVAL));
4737 	}
4738 
4739 	if (error = convoff(vp, bfp, 0, offset)) {
4740 		ZFS_EXIT(zfsvfs);
4741 		return (error);
4742 	}
4743 
4744 	if (bfp->l_len < 0) {
4745 		ZFS_EXIT(zfsvfs);
4746 		return (SET_ERROR(EINVAL));
4747 	}
4748 
4749 	off = bfp->l_start;
4750 	len = bfp->l_len; /* 0 means from off to end of file */
4751 
4752 	error = zfs_freesp(zp, off, len, flag, TRUE);
4753 
4754 	ZFS_EXIT(zfsvfs);
4755 	return (error);
4756 }
4757 
4758 /*ARGSUSED*/
4759 static int
4760 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4761 {
4762 	znode_t		*zp = VTOZ(vp);
4763 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4764 	uint32_t	gen;
4765 	uint64_t	gen64;
4766 	uint64_t	object = zp->z_id;
4767 	zfid_short_t	*zfid;
4768 	int		size, i, error;
4769 
4770 	ZFS_ENTER(zfsvfs);
4771 	ZFS_VERIFY_ZP(zp);
4772 
4773 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4774 	    &gen64, sizeof (uint64_t))) != 0) {
4775 		ZFS_EXIT(zfsvfs);
4776 		return (error);
4777 	}
4778 
4779 	gen = (uint32_t)gen64;
4780 
4781 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4782 	if (fidp->fid_len < size) {
4783 		fidp->fid_len = size;
4784 		ZFS_EXIT(zfsvfs);
4785 		return (SET_ERROR(ENOSPC));
4786 	}
4787 
4788 	zfid = (zfid_short_t *)fidp;
4789 
4790 	zfid->zf_len = size;
4791 
4792 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4793 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4794 
4795 	/* Must have a non-zero generation number to distinguish from .zfs */
4796 	if (gen == 0)
4797 		gen = 1;
4798 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4799 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4800 
4801 	if (size == LONG_FID_LEN) {
4802 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4803 		zfid_long_t	*zlfid;
4804 
4805 		zlfid = (zfid_long_t *)fidp;
4806 
4807 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4808 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4809 
4810 		/* XXX - this should be the generation number for the objset */
4811 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4812 			zlfid->zf_setgen[i] = 0;
4813 	}
4814 
4815 	ZFS_EXIT(zfsvfs);
4816 	return (0);
4817 }
4818 
4819 static int
4820 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4821     caller_context_t *ct)
4822 {
4823 	znode_t		*zp, *xzp;
4824 	zfsvfs_t	*zfsvfs;
4825 	zfs_dirlock_t	*dl;
4826 	int		error;
4827 
4828 	switch (cmd) {
4829 	case _PC_LINK_MAX:
4830 		*valp = ULONG_MAX;
4831 		return (0);
4832 
4833 	case _PC_FILESIZEBITS:
4834 		*valp = 64;
4835 		return (0);
4836 
4837 	case _PC_XATTR_EXISTS:
4838 		zp = VTOZ(vp);
4839 		zfsvfs = zp->z_zfsvfs;
4840 		ZFS_ENTER(zfsvfs);
4841 		ZFS_VERIFY_ZP(zp);
4842 		*valp = 0;
4843 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4844 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4845 		if (error == 0) {
4846 			zfs_dirent_unlock(dl);
4847 			if (!zfs_dirempty(xzp))
4848 				*valp = 1;
4849 			VN_RELE(ZTOV(xzp));
4850 		} else if (error == ENOENT) {
4851 			/*
4852 			 * If there aren't extended attributes, it's the
4853 			 * same as having zero of them.
4854 			 */
4855 			error = 0;
4856 		}
4857 		ZFS_EXIT(zfsvfs);
4858 		return (error);
4859 
4860 	case _PC_SATTR_ENABLED:
4861 	case _PC_SATTR_EXISTS:
4862 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4863 		    (vp->v_type == VREG || vp->v_type == VDIR);
4864 		return (0);
4865 
4866 	case _PC_ACCESS_FILTERING:
4867 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4868 		    vp->v_type == VDIR;
4869 		return (0);
4870 
4871 	case _PC_ACL_ENABLED:
4872 		*valp = _ACL_ACE_ENABLED;
4873 		return (0);
4874 
4875 	case _PC_MIN_HOLE_SIZE:
4876 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
4877 		return (0);
4878 
4879 	case _PC_TIMESTAMP_RESOLUTION:
4880 		/* nanosecond timestamp resolution */
4881 		*valp = 1L;
4882 		return (0);
4883 
4884 	default:
4885 		return (fs_pathconf(vp, cmd, valp, cr, ct));
4886 	}
4887 }
4888 
4889 /*ARGSUSED*/
4890 static int
4891 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4892     caller_context_t *ct)
4893 {
4894 	znode_t *zp = VTOZ(vp);
4895 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4896 	int error;
4897 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4898 
4899 	ZFS_ENTER(zfsvfs);
4900 	ZFS_VERIFY_ZP(zp);
4901 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4902 	ZFS_EXIT(zfsvfs);
4903 
4904 	return (error);
4905 }
4906 
4907 /*ARGSUSED*/
4908 static int
4909 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4910     caller_context_t *ct)
4911 {
4912 	znode_t *zp = VTOZ(vp);
4913 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4914 	int error;
4915 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4916 	zilog_t	*zilog = zfsvfs->z_log;
4917 
4918 	ZFS_ENTER(zfsvfs);
4919 	ZFS_VERIFY_ZP(zp);
4920 
4921 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4922 
4923 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4924 		zil_commit(zilog, 0);
4925 
4926 	ZFS_EXIT(zfsvfs);
4927 	return (error);
4928 }
4929 
4930 /*
4931  * The smallest read we may consider to loan out an arcbuf.
4932  * This must be a power of 2.
4933  */
4934 int zcr_blksz_min = (1 << 10);	/* 1K */
4935 /*
4936  * If set to less than the file block size, allow loaning out of an
4937  * arcbuf for a partial block read.  This must be a power of 2.
4938  */
4939 int zcr_blksz_max = (1 << 17);	/* 128K */
4940 
4941 /*ARGSUSED*/
4942 static int
4943 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
4944     caller_context_t *ct)
4945 {
4946 	znode_t	*zp = VTOZ(vp);
4947 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4948 	int max_blksz = zfsvfs->z_max_blksz;
4949 	uio_t *uio = &xuio->xu_uio;
4950 	ssize_t size = uio->uio_resid;
4951 	offset_t offset = uio->uio_loffset;
4952 	int blksz;
4953 	int fullblk, i;
4954 	arc_buf_t *abuf;
4955 	ssize_t maxsize;
4956 	int preamble, postamble;
4957 
4958 	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4959 		return (SET_ERROR(EINVAL));
4960 
4961 	ZFS_ENTER(zfsvfs);
4962 	ZFS_VERIFY_ZP(zp);
4963 	switch (ioflag) {
4964 	case UIO_WRITE:
4965 		/*
4966 		 * Loan out an arc_buf for write if write size is bigger than
4967 		 * max_blksz, and the file's block size is also max_blksz.
4968 		 */
4969 		blksz = max_blksz;
4970 		if (size < blksz || zp->z_blksz != blksz) {
4971 			ZFS_EXIT(zfsvfs);
4972 			return (SET_ERROR(EINVAL));
4973 		}
4974 		/*
4975 		 * Caller requests buffers for write before knowing where the
4976 		 * write offset might be (e.g. NFS TCP write).
4977 		 */
4978 		if (offset == -1) {
4979 			preamble = 0;
4980 		} else {
4981 			preamble = P2PHASE(offset, blksz);
4982 			if (preamble) {
4983 				preamble = blksz - preamble;
4984 				size -= preamble;
4985 			}
4986 		}
4987 
4988 		postamble = P2PHASE(size, blksz);
4989 		size -= postamble;
4990 
4991 		fullblk = size / blksz;
4992 		(void) dmu_xuio_init(xuio,
4993 		    (preamble != 0) + fullblk + (postamble != 0));
4994 		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
4995 		    int, postamble, int,
4996 		    (preamble != 0) + fullblk + (postamble != 0));
4997 
4998 		/*
4999 		 * Have to fix iov base/len for partial buffers.  They
5000 		 * currently represent full arc_buf's.
5001 		 */
5002 		if (preamble) {
5003 			/* data begins in the middle of the arc_buf */
5004 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5005 			    blksz);
5006 			ASSERT(abuf);
5007 			(void) dmu_xuio_add(xuio, abuf,
5008 			    blksz - preamble, preamble);
5009 		}
5010 
5011 		for (i = 0; i < fullblk; i++) {
5012 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5013 			    blksz);
5014 			ASSERT(abuf);
5015 			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5016 		}
5017 
5018 		if (postamble) {
5019 			/* data ends in the middle of the arc_buf */
5020 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5021 			    blksz);
5022 			ASSERT(abuf);
5023 			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5024 		}
5025 		break;
5026 	case UIO_READ:
5027 		/*
5028 		 * Loan out an arc_buf for read if the read size is larger than
5029 		 * the current file block size.  Block alignment is not
5030 		 * considered.  Partial arc_buf will be loaned out for read.
5031 		 */
5032 		blksz = zp->z_blksz;
5033 		if (blksz < zcr_blksz_min)
5034 			blksz = zcr_blksz_min;
5035 		if (blksz > zcr_blksz_max)
5036 			blksz = zcr_blksz_max;
5037 		/* avoid potential complexity of dealing with it */
5038 		if (blksz > max_blksz) {
5039 			ZFS_EXIT(zfsvfs);
5040 			return (SET_ERROR(EINVAL));
5041 		}
5042 
5043 		maxsize = zp->z_size - uio->uio_loffset;
5044 		if (size > maxsize)
5045 			size = maxsize;
5046 
5047 		if (size < blksz || vn_has_cached_data(vp)) {
5048 			ZFS_EXIT(zfsvfs);
5049 			return (SET_ERROR(EINVAL));
5050 		}
5051 		break;
5052 	default:
5053 		ZFS_EXIT(zfsvfs);
5054 		return (SET_ERROR(EINVAL));
5055 	}
5056 
5057 	uio->uio_extflg = UIO_XUIO;
5058 	XUIO_XUZC_RW(xuio) = ioflag;
5059 	ZFS_EXIT(zfsvfs);
5060 	return (0);
5061 }
5062 
5063 /*ARGSUSED*/
5064 static int
5065 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5066 {
5067 	int i;
5068 	arc_buf_t *abuf;
5069 	int ioflag = XUIO_XUZC_RW(xuio);
5070 
5071 	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5072 
5073 	i = dmu_xuio_cnt(xuio);
5074 	while (i-- > 0) {
5075 		abuf = dmu_xuio_arcbuf(xuio, i);
5076 		/*
5077 		 * if abuf == NULL, it must be a write buffer
5078 		 * that has been returned in zfs_write().
5079 		 */
5080 		if (abuf)
5081 			dmu_return_arcbuf(abuf);
5082 		ASSERT(abuf || ioflag == UIO_WRITE);
5083 	}
5084 
5085 	dmu_xuio_fini(xuio);
5086 	return (0);
5087 }
5088 
5089 /*
5090  * Predeclare these here so that the compiler assumes that
5091  * this is an "old style" function declaration that does
5092  * not include arguments => we won't get type mismatch errors
5093  * in the initializations that follow.
5094  */
5095 static int zfs_inval();
5096 static int zfs_isdir();
5097 
5098 static int
5099 zfs_inval()
5100 {
5101 	return (SET_ERROR(EINVAL));
5102 }
5103 
5104 static int
5105 zfs_isdir()
5106 {
5107 	return (SET_ERROR(EISDIR));
5108 }
5109 /*
5110  * Directory vnode operations template
5111  */
5112 vnodeops_t *zfs_dvnodeops;
5113 const fs_operation_def_t zfs_dvnodeops_template[] = {
5114 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5115 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5116 	VOPNAME_READ,		{ .error = zfs_isdir },
5117 	VOPNAME_WRITE,		{ .error = zfs_isdir },
5118 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5119 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5120 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5121 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5122 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5123 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5124 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5125 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5126 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5127 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5128 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5129 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5130 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5131 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5132 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5133 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5134 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5135 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5136 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5137 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5138 	VOPNAME_VNEVENT, 	{ .vop_vnevent = fs_vnevent_support },
5139 	NULL,			NULL
5140 };
5141 
5142 /*
5143  * Regular file vnode operations template
5144  */
5145 vnodeops_t *zfs_fvnodeops;
5146 const fs_operation_def_t zfs_fvnodeops_template[] = {
5147 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5148 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5149 	VOPNAME_READ,		{ .vop_read = zfs_read },
5150 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5151 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5152 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5153 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5154 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5155 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5156 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5157 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5158 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5159 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5160 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5161 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5162 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5163 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5164 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5165 	VOPNAME_MAP,		{ .vop_map = zfs_map },
5166 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5167 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5168 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5169 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5170 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5171 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5172 	VOPNAME_REQZCBUF, 	{ .vop_reqzcbuf = zfs_reqzcbuf },
5173 	VOPNAME_RETZCBUF, 	{ .vop_retzcbuf = zfs_retzcbuf },
5174 	NULL,			NULL
5175 };
5176 
5177 /*
5178  * Symbolic link vnode operations template
5179  */
5180 vnodeops_t *zfs_symvnodeops;
5181 const fs_operation_def_t zfs_symvnodeops_template[] = {
5182 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5183 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5184 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5185 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5186 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5187 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5188 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5189 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5190 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5191 	NULL,			NULL
5192 };
5193 
5194 /*
5195  * special share hidden files vnode operations template
5196  */
5197 vnodeops_t *zfs_sharevnodeops;
5198 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5199 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5200 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5201 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5202 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5203 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5204 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5205 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5206 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5207 	NULL,			NULL
5208 };
5209 
5210 /*
5211  * Extended attribute directory vnode operations template
5212  *
5213  * This template is identical to the directory vnodes
5214  * operation template except for restricted operations:
5215  *	VOP_MKDIR()
5216  *	VOP_SYMLINK()
5217  *
5218  * Note that there are other restrictions embedded in:
5219  *	zfs_create()	- restrict type to VREG
5220  *	zfs_link()	- no links into/out of attribute space
5221  *	zfs_rename()	- no moves into/out of attribute space
5222  */
5223 vnodeops_t *zfs_xdvnodeops;
5224 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5225 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5226 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5227 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5228 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5229 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5230 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5231 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5232 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5233 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5234 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5235 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5236 	VOPNAME_MKDIR,		{ .error = zfs_inval },
5237 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5238 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5239 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5240 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5241 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5242 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5243 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5244 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5245 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5246 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5247 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5248 	NULL,			NULL
5249 };
5250 
5251 /*
5252  * Error vnode operations template
5253  */
5254 vnodeops_t *zfs_evnodeops;
5255 const fs_operation_def_t zfs_evnodeops_template[] = {
5256 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5257 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5258 	NULL,			NULL
5259 };
5260