1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/taskq.h> 43 #include <sys/uio.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/vm.h> 47 #include <vm/seg_vn.h> 48 #include <vm/pvn.h> 49 #include <vm/as.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/spa.h> 61 #include <sys/txg.h> 62 #include <sys/dbuf.h> 63 #include <sys/zap.h> 64 #include <sys/dirent.h> 65 #include <sys/policy.h> 66 #include <sys/sunddi.h> 67 #include <sys/filio.h> 68 #include "fs/fs_subr.h" 69 #include <sys/zfs_ctldir.h> 70 #include <sys/zfs_fuid.h> 71 #include <sys/dnlc.h> 72 #include <sys/zfs_rlock.h> 73 #include <sys/extdirent.h> 74 #include <sys/kidmap.h> 75 #include <sys/cred_impl.h> 76 #include <sys/attr.h> 77 78 /* 79 * Programming rules. 80 * 81 * Each vnode op performs some logical unit of work. To do this, the ZPL must 82 * properly lock its in-core state, create a DMU transaction, do the work, 83 * record this work in the intent log (ZIL), commit the DMU transaction, 84 * and wait for the intent log to commit if it is a synchronous operation. 85 * Moreover, the vnode ops must work in both normal and log replay context. 86 * The ordering of events is important to avoid deadlocks and references 87 * to freed memory. The example below illustrates the following Big Rules: 88 * 89 * (1) A check must be made in each zfs thread for a mounted file system. 90 * This is done avoiding races using ZFS_ENTER(zfsvfs). 91 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 92 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 93 * can return EIO from the calling function. 94 * 95 * (2) VN_RELE() should always be the last thing except for zil_commit() 96 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 97 * First, if it's the last reference, the vnode/znode 98 * can be freed, so the zp may point to freed memory. Second, the last 99 * reference will call zfs_zinactive(), which may induce a lot of work -- 100 * pushing cached pages (which acquires range locks) and syncing out 101 * cached atime changes. Third, zfs_zinactive() may require a new tx, 102 * which could deadlock the system if you were already holding one. 103 * 104 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 105 * as they can span dmu_tx_assign() calls. 106 * 107 * (4) Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign(). 108 * In normal operation, this will be TXG_NOWAIT. During ZIL replay, 109 * it will be a specific txg. Either way, dmu_tx_assign() never blocks. 110 * This is critical because we don't want to block while holding locks. 111 * Note, in particular, that if a lock is sometimes acquired before 112 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 113 * use a non-blocking assign can deadlock the system. The scenario: 114 * 115 * Thread A has grabbed a lock before calling dmu_tx_assign(). 116 * Thread B is in an already-assigned tx, and blocks for this lock. 117 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 118 * forever, because the previous txg can't quiesce until B's tx commits. 119 * 120 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 121 * then drop all locks, call dmu_tx_wait(), and try again. 122 * 123 * (5) If the operation succeeded, generate the intent log entry for it 124 * before dropping locks. This ensures that the ordering of events 125 * in the intent log matches the order in which they actually occurred. 126 * 127 * (6) At the end of each vnode op, the DMU tx must always commit, 128 * regardless of whether there were any errors. 129 * 130 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 131 * to ensure that synchronous semantics are provided when necessary. 132 * 133 * In general, this is how things should be ordered in each vnode op: 134 * 135 * ZFS_ENTER(zfsvfs); // exit if unmounted 136 * top: 137 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 138 * rw_enter(...); // grab any other locks you need 139 * tx = dmu_tx_create(...); // get DMU tx 140 * dmu_tx_hold_*(); // hold each object you might modify 141 * error = dmu_tx_assign(tx, zfsvfs->z_assign); // try to assign 142 * if (error) { 143 * rw_exit(...); // drop locks 144 * zfs_dirent_unlock(dl); // unlock directory entry 145 * VN_RELE(...); // release held vnodes 146 * if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 147 * dmu_tx_wait(tx); 148 * dmu_tx_abort(tx); 149 * goto top; 150 * } 151 * dmu_tx_abort(tx); // abort DMU tx 152 * ZFS_EXIT(zfsvfs); // finished in zfs 153 * return (error); // really out of space 154 * } 155 * error = do_real_work(); // do whatever this VOP does 156 * if (error == 0) 157 * zfs_log_*(...); // on success, make ZIL entry 158 * dmu_tx_commit(tx); // commit DMU tx -- error or not 159 * rw_exit(...); // drop locks 160 * zfs_dirent_unlock(dl); // unlock directory entry 161 * VN_RELE(...); // release held vnodes 162 * zil_commit(zilog, seq, foid); // synchronous when necessary 163 * ZFS_EXIT(zfsvfs); // finished in zfs 164 * return (error); // done, report error 165 */ 166 167 /* ARGSUSED */ 168 static int 169 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 170 { 171 znode_t *zp = VTOZ(*vpp); 172 173 if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) && 174 ((flag & FAPPEND) == 0)) { 175 return (EPERM); 176 } 177 178 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 179 ZTOV(zp)->v_type == VREG && 180 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 181 zp->z_phys->zp_size > 0) 182 if (fs_vscan(*vpp, cr, 0) != 0) 183 return (EACCES); 184 185 /* Keep a count of the synchronous opens in the znode */ 186 if (flag & (FSYNC | FDSYNC)) 187 atomic_inc_32(&zp->z_sync_cnt); 188 189 return (0); 190 } 191 192 /* ARGSUSED */ 193 static int 194 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 195 caller_context_t *ct) 196 { 197 znode_t *zp = VTOZ(vp); 198 199 /* Decrement the synchronous opens in the znode */ 200 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 201 atomic_dec_32(&zp->z_sync_cnt); 202 203 /* 204 * Clean up any locks held by this process on the vp. 205 */ 206 cleanlocks(vp, ddi_get_pid(), 0); 207 cleanshares(vp, ddi_get_pid()); 208 209 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 210 ZTOV(zp)->v_type == VREG && 211 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 212 zp->z_phys->zp_size > 0) 213 VERIFY(fs_vscan(vp, cr, 1) == 0); 214 215 return (0); 216 } 217 218 /* 219 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 220 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 221 */ 222 static int 223 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 224 { 225 znode_t *zp = VTOZ(vp); 226 uint64_t noff = (uint64_t)*off; /* new offset */ 227 uint64_t file_sz; 228 int error; 229 boolean_t hole; 230 231 file_sz = zp->z_phys->zp_size; 232 if (noff >= file_sz) { 233 return (ENXIO); 234 } 235 236 if (cmd == _FIO_SEEK_HOLE) 237 hole = B_TRUE; 238 else 239 hole = B_FALSE; 240 241 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 242 243 /* end of file? */ 244 if ((error == ESRCH) || (noff > file_sz)) { 245 /* 246 * Handle the virtual hole at the end of file. 247 */ 248 if (hole) { 249 *off = file_sz; 250 return (0); 251 } 252 return (ENXIO); 253 } 254 255 if (noff < *off) 256 return (error); 257 *off = noff; 258 return (error); 259 } 260 261 /* ARGSUSED */ 262 static int 263 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 264 int *rvalp, caller_context_t *ct) 265 { 266 offset_t off; 267 int error; 268 zfsvfs_t *zfsvfs; 269 znode_t *zp; 270 271 switch (com) { 272 case _FIOFFS: 273 return (zfs_sync(vp->v_vfsp, 0, cred)); 274 275 /* 276 * The following two ioctls are used by bfu. Faking out, 277 * necessary to avoid bfu errors. 278 */ 279 case _FIOGDIO: 280 case _FIOSDIO: 281 return (0); 282 283 case _FIO_SEEK_DATA: 284 case _FIO_SEEK_HOLE: 285 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 286 return (EFAULT); 287 288 zp = VTOZ(vp); 289 zfsvfs = zp->z_zfsvfs; 290 ZFS_ENTER(zfsvfs); 291 ZFS_VERIFY_ZP(zp); 292 293 /* offset parameter is in/out */ 294 error = zfs_holey(vp, com, &off); 295 ZFS_EXIT(zfsvfs); 296 if (error) 297 return (error); 298 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 299 return (EFAULT); 300 return (0); 301 } 302 return (ENOTTY); 303 } 304 305 /* 306 * When a file is memory mapped, we must keep the IO data synchronized 307 * between the DMU cache and the memory mapped pages. What this means: 308 * 309 * On Write: If we find a memory mapped page, we write to *both* 310 * the page and the dmu buffer. 311 * 312 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 313 * the file is memory mapped. 314 */ 315 static int 316 mappedwrite(vnode_t *vp, int nbytes, uio_t *uio, dmu_tx_t *tx) 317 { 318 znode_t *zp = VTOZ(vp); 319 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 320 int64_t start, off; 321 int len = nbytes; 322 int error = 0; 323 324 start = uio->uio_loffset; 325 off = start & PAGEOFFSET; 326 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 327 page_t *pp; 328 uint64_t bytes = MIN(PAGESIZE - off, len); 329 uint64_t woff = uio->uio_loffset; 330 331 /* 332 * We don't want a new page to "appear" in the middle of 333 * the file update (because it may not get the write 334 * update data), so we grab a lock to block 335 * zfs_getpage(). 336 */ 337 rw_enter(&zp->z_map_lock, RW_WRITER); 338 if (pp = page_lookup(vp, start, SE_SHARED)) { 339 caddr_t va; 340 341 rw_exit(&zp->z_map_lock); 342 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 343 error = uiomove(va+off, bytes, UIO_WRITE, uio); 344 if (error == 0) { 345 dmu_write(zfsvfs->z_os, zp->z_id, 346 woff, bytes, va+off, tx); 347 } 348 ppmapout(va); 349 page_unlock(pp); 350 } else { 351 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 352 uio, bytes, tx); 353 rw_exit(&zp->z_map_lock); 354 } 355 len -= bytes; 356 off = 0; 357 if (error) 358 break; 359 } 360 return (error); 361 } 362 363 /* 364 * When a file is memory mapped, we must keep the IO data synchronized 365 * between the DMU cache and the memory mapped pages. What this means: 366 * 367 * On Read: We "read" preferentially from memory mapped pages, 368 * else we default from the dmu buffer. 369 * 370 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 371 * the file is memory mapped. 372 */ 373 static int 374 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 375 { 376 znode_t *zp = VTOZ(vp); 377 objset_t *os = zp->z_zfsvfs->z_os; 378 int64_t start, off; 379 int len = nbytes; 380 int error = 0; 381 382 start = uio->uio_loffset; 383 off = start & PAGEOFFSET; 384 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 385 page_t *pp; 386 uint64_t bytes = MIN(PAGESIZE - off, len); 387 388 if (pp = page_lookup(vp, start, SE_SHARED)) { 389 caddr_t va; 390 391 va = ppmapin(pp, PROT_READ, (caddr_t)-1L); 392 error = uiomove(va + off, bytes, UIO_READ, uio); 393 ppmapout(va); 394 page_unlock(pp); 395 } else { 396 error = dmu_read_uio(os, zp->z_id, uio, bytes); 397 } 398 len -= bytes; 399 off = 0; 400 if (error) 401 break; 402 } 403 return (error); 404 } 405 406 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 407 408 /* 409 * Read bytes from specified file into supplied buffer. 410 * 411 * IN: vp - vnode of file to be read from. 412 * uio - structure supplying read location, range info, 413 * and return buffer. 414 * ioflag - SYNC flags; used to provide FRSYNC semantics. 415 * cr - credentials of caller. 416 * ct - caller context 417 * 418 * OUT: uio - updated offset and range, buffer filled. 419 * 420 * RETURN: 0 if success 421 * error code if failure 422 * 423 * Side Effects: 424 * vp - atime updated if byte count > 0 425 */ 426 /* ARGSUSED */ 427 static int 428 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 429 { 430 znode_t *zp = VTOZ(vp); 431 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 432 objset_t *os; 433 ssize_t n, nbytes; 434 int error; 435 rl_t *rl; 436 437 ZFS_ENTER(zfsvfs); 438 ZFS_VERIFY_ZP(zp); 439 os = zfsvfs->z_os; 440 441 /* 442 * Validate file offset 443 */ 444 if (uio->uio_loffset < (offset_t)0) { 445 ZFS_EXIT(zfsvfs); 446 return (EINVAL); 447 } 448 449 /* 450 * Fasttrack empty reads 451 */ 452 if (uio->uio_resid == 0) { 453 ZFS_EXIT(zfsvfs); 454 return (0); 455 } 456 457 /* 458 * Check for mandatory locks 459 */ 460 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 461 if (error = chklock(vp, FREAD, 462 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 463 ZFS_EXIT(zfsvfs); 464 return (error); 465 } 466 } 467 468 /* 469 * If we're in FRSYNC mode, sync out this znode before reading it. 470 */ 471 if (ioflag & FRSYNC) 472 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 473 474 /* 475 * Lock the range against changes. 476 */ 477 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 478 479 /* 480 * If we are reading past end-of-file we can skip 481 * to the end; but we might still need to set atime. 482 */ 483 if (uio->uio_loffset >= zp->z_phys->zp_size) { 484 error = 0; 485 goto out; 486 } 487 488 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 489 n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 490 491 while (n > 0) { 492 nbytes = MIN(n, zfs_read_chunk_size - 493 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 494 495 if (vn_has_cached_data(vp)) 496 error = mappedread(vp, nbytes, uio); 497 else 498 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 499 if (error) 500 break; 501 502 n -= nbytes; 503 } 504 505 out: 506 zfs_range_unlock(rl); 507 508 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 509 ZFS_EXIT(zfsvfs); 510 return (error); 511 } 512 513 /* 514 * Fault in the pages of the first n bytes specified by the uio structure. 515 * 1 byte in each page is touched and the uio struct is unmodified. 516 * Any error will exit this routine as this is only a best 517 * attempt to get the pages resident. This is a copy of ufs_trans_touch(). 518 */ 519 static void 520 zfs_prefault_write(ssize_t n, struct uio *uio) 521 { 522 struct iovec *iov; 523 ulong_t cnt, incr; 524 caddr_t p; 525 uint8_t tmp; 526 527 iov = uio->uio_iov; 528 529 while (n) { 530 cnt = MIN(iov->iov_len, n); 531 if (cnt == 0) { 532 /* empty iov entry */ 533 iov++; 534 continue; 535 } 536 n -= cnt; 537 /* 538 * touch each page in this segment. 539 */ 540 p = iov->iov_base; 541 while (cnt) { 542 switch (uio->uio_segflg) { 543 case UIO_USERSPACE: 544 case UIO_USERISPACE: 545 if (fuword8(p, &tmp)) 546 return; 547 break; 548 case UIO_SYSSPACE: 549 if (kcopy(p, &tmp, 1)) 550 return; 551 break; 552 } 553 incr = MIN(cnt, PAGESIZE); 554 p += incr; 555 cnt -= incr; 556 } 557 /* 558 * touch the last byte in case it straddles a page. 559 */ 560 p--; 561 switch (uio->uio_segflg) { 562 case UIO_USERSPACE: 563 case UIO_USERISPACE: 564 if (fuword8(p, &tmp)) 565 return; 566 break; 567 case UIO_SYSSPACE: 568 if (kcopy(p, &tmp, 1)) 569 return; 570 break; 571 } 572 iov++; 573 } 574 } 575 576 /* 577 * Write the bytes to a file. 578 * 579 * IN: vp - vnode of file to be written to. 580 * uio - structure supplying write location, range info, 581 * and data buffer. 582 * ioflag - FAPPEND flag set if in append mode. 583 * cr - credentials of caller. 584 * ct - caller context (NFS/CIFS fem monitor only) 585 * 586 * OUT: uio - updated offset and range. 587 * 588 * RETURN: 0 if success 589 * error code if failure 590 * 591 * Timestamps: 592 * vp - ctime|mtime updated if byte count > 0 593 */ 594 /* ARGSUSED */ 595 static int 596 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 597 { 598 znode_t *zp = VTOZ(vp); 599 rlim64_t limit = uio->uio_llimit; 600 ssize_t start_resid = uio->uio_resid; 601 ssize_t tx_bytes; 602 uint64_t end_size; 603 dmu_tx_t *tx; 604 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 605 zilog_t *zilog; 606 offset_t woff; 607 ssize_t n, nbytes; 608 rl_t *rl; 609 int max_blksz = zfsvfs->z_max_blksz; 610 uint64_t pflags = zp->z_phys->zp_flags; 611 int error; 612 613 /* 614 * If immutable or not appending then return EPERM 615 */ 616 if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 617 ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 618 (uio->uio_loffset < zp->z_phys->zp_size))) 619 return (EPERM); 620 621 /* 622 * Fasttrack empty write 623 */ 624 n = start_resid; 625 if (n == 0) 626 return (0); 627 628 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 629 limit = MAXOFFSET_T; 630 631 ZFS_ENTER(zfsvfs); 632 ZFS_VERIFY_ZP(zp); 633 zilog = zfsvfs->z_log; 634 635 /* 636 * Pre-fault the pages to ensure slow (eg NFS) pages 637 * don't hold up txg. 638 */ 639 zfs_prefault_write(n, uio); 640 641 /* 642 * If in append mode, set the io offset pointer to eof. 643 */ 644 if (ioflag & FAPPEND) { 645 /* 646 * Range lock for a file append: 647 * The value for the start of range will be determined by 648 * zfs_range_lock() (to guarantee append semantics). 649 * If this write will cause the block size to increase, 650 * zfs_range_lock() will lock the entire file, so we must 651 * later reduce the range after we grow the block size. 652 */ 653 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 654 if (rl->r_len == UINT64_MAX) { 655 /* overlocked, zp_size can't change */ 656 woff = uio->uio_loffset = zp->z_phys->zp_size; 657 } else { 658 woff = uio->uio_loffset = rl->r_off; 659 } 660 } else { 661 woff = uio->uio_loffset; 662 /* 663 * Validate file offset 664 */ 665 if (woff < 0) { 666 ZFS_EXIT(zfsvfs); 667 return (EINVAL); 668 } 669 670 /* 671 * If we need to grow the block size then zfs_range_lock() 672 * will lock a wider range than we request here. 673 * Later after growing the block size we reduce the range. 674 */ 675 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 676 } 677 678 if (woff >= limit) { 679 zfs_range_unlock(rl); 680 ZFS_EXIT(zfsvfs); 681 return (EFBIG); 682 } 683 684 if ((woff + n) > limit || woff > (limit - n)) 685 n = limit - woff; 686 687 /* 688 * Check for mandatory locks 689 */ 690 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 691 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 692 zfs_range_unlock(rl); 693 ZFS_EXIT(zfsvfs); 694 return (error); 695 } 696 end_size = MAX(zp->z_phys->zp_size, woff + n); 697 698 /* 699 * Write the file in reasonable size chunks. Each chunk is written 700 * in a separate transaction; this keeps the intent log records small 701 * and allows us to do more fine-grained space accounting. 702 */ 703 while (n > 0) { 704 /* 705 * Start a transaction. 706 */ 707 woff = uio->uio_loffset; 708 tx = dmu_tx_create(zfsvfs->z_os); 709 dmu_tx_hold_bonus(tx, zp->z_id); 710 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 711 error = dmu_tx_assign(tx, zfsvfs->z_assign); 712 if (error) { 713 if (error == ERESTART && 714 zfsvfs->z_assign == TXG_NOWAIT) { 715 dmu_tx_wait(tx); 716 dmu_tx_abort(tx); 717 continue; 718 } 719 dmu_tx_abort(tx); 720 break; 721 } 722 723 /* 724 * If zfs_range_lock() over-locked we grow the blocksize 725 * and then reduce the lock range. This will only happen 726 * on the first iteration since zfs_range_reduce() will 727 * shrink down r_len to the appropriate size. 728 */ 729 if (rl->r_len == UINT64_MAX) { 730 uint64_t new_blksz; 731 732 if (zp->z_blksz > max_blksz) { 733 ASSERT(!ISP2(zp->z_blksz)); 734 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 735 } else { 736 new_blksz = MIN(end_size, max_blksz); 737 } 738 zfs_grow_blocksize(zp, new_blksz, tx); 739 zfs_range_reduce(rl, woff, n); 740 } 741 742 /* 743 * XXX - should we really limit each write to z_max_blksz? 744 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 745 */ 746 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 747 rw_enter(&zp->z_map_lock, RW_READER); 748 749 tx_bytes = uio->uio_resid; 750 if (vn_has_cached_data(vp)) { 751 rw_exit(&zp->z_map_lock); 752 error = mappedwrite(vp, nbytes, uio, tx); 753 } else { 754 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 755 uio, nbytes, tx); 756 rw_exit(&zp->z_map_lock); 757 } 758 tx_bytes -= uio->uio_resid; 759 760 /* 761 * If we made no progress, we're done. If we made even 762 * partial progress, update the znode and ZIL accordingly. 763 */ 764 if (tx_bytes == 0) { 765 dmu_tx_commit(tx); 766 ASSERT(error != 0); 767 break; 768 } 769 770 /* 771 * Clear Set-UID/Set-GID bits on successful write if not 772 * privileged and at least one of the excute bits is set. 773 * 774 * It would be nice to to this after all writes have 775 * been done, but that would still expose the ISUID/ISGID 776 * to another app after the partial write is committed. 777 * 778 * Note: we don't call zfs_fuid_map_id() here because 779 * user 0 is not an ephemeral uid. 780 */ 781 mutex_enter(&zp->z_acl_lock); 782 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 783 (S_IXUSR >> 6))) != 0 && 784 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 785 secpolicy_vnode_setid_retain(cr, 786 (zp->z_phys->zp_mode & S_ISUID) != 0 && 787 zp->z_phys->zp_uid == 0) != 0) { 788 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 789 } 790 mutex_exit(&zp->z_acl_lock); 791 792 /* 793 * Update time stamp. NOTE: This marks the bonus buffer as 794 * dirty, so we don't have to do it again for zp_size. 795 */ 796 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 797 798 /* 799 * Update the file size (zp_size) if it has changed; 800 * account for possible concurrent updates. 801 */ 802 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) 803 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 804 uio->uio_loffset); 805 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 806 dmu_tx_commit(tx); 807 808 if (error != 0) 809 break; 810 ASSERT(tx_bytes == nbytes); 811 n -= nbytes; 812 } 813 814 zfs_range_unlock(rl); 815 816 /* 817 * If we're in replay mode, or we made no progress, return error. 818 * Otherwise, it's at least a partial write, so it's successful. 819 */ 820 if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) { 821 ZFS_EXIT(zfsvfs); 822 return (error); 823 } 824 825 if (ioflag & (FSYNC | FDSYNC)) 826 zil_commit(zilog, zp->z_last_itx, zp->z_id); 827 828 ZFS_EXIT(zfsvfs); 829 return (0); 830 } 831 832 void 833 zfs_get_done(dmu_buf_t *db, void *vzgd) 834 { 835 zgd_t *zgd = (zgd_t *)vzgd; 836 rl_t *rl = zgd->zgd_rl; 837 vnode_t *vp = ZTOV(rl->r_zp); 838 839 dmu_buf_rele(db, vzgd); 840 zfs_range_unlock(rl); 841 VN_RELE(vp); 842 zil_add_vdev(zgd->zgd_zilog, DVA_GET_VDEV(BP_IDENTITY(zgd->zgd_bp))); 843 kmem_free(zgd, sizeof (zgd_t)); 844 } 845 846 /* 847 * Get data to generate a TX_WRITE intent log record. 848 */ 849 int 850 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 851 { 852 zfsvfs_t *zfsvfs = arg; 853 objset_t *os = zfsvfs->z_os; 854 znode_t *zp; 855 uint64_t off = lr->lr_offset; 856 dmu_buf_t *db; 857 rl_t *rl; 858 zgd_t *zgd; 859 int dlen = lr->lr_length; /* length of user data */ 860 int error = 0; 861 862 ASSERT(zio); 863 ASSERT(dlen != 0); 864 865 /* 866 * Nothing to do if the file has been removed 867 */ 868 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 869 return (ENOENT); 870 if (zp->z_unlinked) { 871 VN_RELE(ZTOV(zp)); 872 return (ENOENT); 873 } 874 875 /* 876 * Write records come in two flavors: immediate and indirect. 877 * For small writes it's cheaper to store the data with the 878 * log record (immediate); for large writes it's cheaper to 879 * sync the data and get a pointer to it (indirect) so that 880 * we don't have to write the data twice. 881 */ 882 if (buf != NULL) { /* immediate write */ 883 rl = zfs_range_lock(zp, off, dlen, RL_READER); 884 /* test for truncation needs to be done while range locked */ 885 if (off >= zp->z_phys->zp_size) { 886 error = ENOENT; 887 goto out; 888 } 889 VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf)); 890 } else { /* indirect write */ 891 uint64_t boff; /* block starting offset */ 892 893 /* 894 * Have to lock the whole block to ensure when it's 895 * written out and it's checksum is being calculated 896 * that no one can change the data. We need to re-check 897 * blocksize after we get the lock in case it's changed! 898 */ 899 for (;;) { 900 if (ISP2(zp->z_blksz)) { 901 boff = P2ALIGN_TYPED(off, zp->z_blksz, 902 uint64_t); 903 } else { 904 boff = 0; 905 } 906 dlen = zp->z_blksz; 907 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 908 if (zp->z_blksz == dlen) 909 break; 910 zfs_range_unlock(rl); 911 } 912 /* test for truncation needs to be done while range locked */ 913 if (off >= zp->z_phys->zp_size) { 914 error = ENOENT; 915 goto out; 916 } 917 zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP); 918 zgd->zgd_rl = rl; 919 zgd->zgd_zilog = zfsvfs->z_log; 920 zgd->zgd_bp = &lr->lr_blkptr; 921 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db)); 922 ASSERT(boff == db->db_offset); 923 lr->lr_blkoff = off - boff; 924 error = dmu_sync(zio, db, &lr->lr_blkptr, 925 lr->lr_common.lrc_txg, zfs_get_done, zgd); 926 ASSERT((error && error != EINPROGRESS) || 927 lr->lr_length <= zp->z_blksz); 928 if (error == 0) { 929 zil_add_vdev(zfsvfs->z_log, 930 DVA_GET_VDEV(BP_IDENTITY(&lr->lr_blkptr))); 931 } 932 /* 933 * If we get EINPROGRESS, then we need to wait for a 934 * write IO initiated by dmu_sync() to complete before 935 * we can release this dbuf. We will finish everything 936 * up in the zfs_get_done() callback. 937 */ 938 if (error == EINPROGRESS) 939 return (0); 940 dmu_buf_rele(db, zgd); 941 kmem_free(zgd, sizeof (zgd_t)); 942 } 943 out: 944 zfs_range_unlock(rl); 945 VN_RELE(ZTOV(zp)); 946 return (error); 947 } 948 949 /*ARGSUSED*/ 950 static int 951 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 952 caller_context_t *ct) 953 { 954 znode_t *zp = VTOZ(vp); 955 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 956 int error; 957 958 ZFS_ENTER(zfsvfs); 959 ZFS_VERIFY_ZP(zp); 960 961 if (flag & V_ACE_MASK) 962 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 963 else 964 error = zfs_zaccess_rwx(zp, mode, flag, cr); 965 966 ZFS_EXIT(zfsvfs); 967 return (error); 968 } 969 970 /* 971 * Lookup an entry in a directory, or an extended attribute directory. 972 * If it exists, return a held vnode reference for it. 973 * 974 * IN: dvp - vnode of directory to search. 975 * nm - name of entry to lookup. 976 * pnp - full pathname to lookup [UNUSED]. 977 * flags - LOOKUP_XATTR set if looking for an attribute. 978 * rdir - root directory vnode [UNUSED]. 979 * cr - credentials of caller. 980 * ct - caller context 981 * direntflags - directory lookup flags 982 * realpnp - returned pathname. 983 * 984 * OUT: vpp - vnode of located entry, NULL if not found. 985 * 986 * RETURN: 0 if success 987 * error code if failure 988 * 989 * Timestamps: 990 * NA 991 */ 992 /* ARGSUSED */ 993 static int 994 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 995 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 996 int *direntflags, pathname_t *realpnp) 997 { 998 znode_t *zdp = VTOZ(dvp); 999 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1000 int error; 1001 1002 ZFS_ENTER(zfsvfs); 1003 ZFS_VERIFY_ZP(zdp); 1004 1005 *vpp = NULL; 1006 1007 if (flags & LOOKUP_XATTR) { 1008 /* 1009 * If the xattr property is off, refuse the lookup request. 1010 */ 1011 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1012 ZFS_EXIT(zfsvfs); 1013 return (EINVAL); 1014 } 1015 1016 /* 1017 * We don't allow recursive attributes.. 1018 * Maybe someday we will. 1019 */ 1020 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 1021 ZFS_EXIT(zfsvfs); 1022 return (EINVAL); 1023 } 1024 1025 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1026 ZFS_EXIT(zfsvfs); 1027 return (error); 1028 } 1029 1030 /* 1031 * Do we have permission to get into attribute directory? 1032 */ 1033 1034 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1035 B_FALSE, cr)) { 1036 VN_RELE(*vpp); 1037 *vpp = NULL; 1038 } 1039 1040 ZFS_EXIT(zfsvfs); 1041 return (error); 1042 } 1043 1044 if (dvp->v_type != VDIR) { 1045 ZFS_EXIT(zfsvfs); 1046 return (ENOTDIR); 1047 } 1048 1049 /* 1050 * Check accessibility of directory. 1051 */ 1052 1053 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1054 ZFS_EXIT(zfsvfs); 1055 return (error); 1056 } 1057 1058 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1059 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1060 ZFS_EXIT(zfsvfs); 1061 return (EILSEQ); 1062 } 1063 1064 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1065 if (error == 0) { 1066 /* 1067 * Convert device special files 1068 */ 1069 if (IS_DEVVP(*vpp)) { 1070 vnode_t *svp; 1071 1072 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1073 VN_RELE(*vpp); 1074 if (svp == NULL) 1075 error = ENOSYS; 1076 else 1077 *vpp = svp; 1078 } 1079 } 1080 1081 ZFS_EXIT(zfsvfs); 1082 return (error); 1083 } 1084 1085 /* 1086 * Attempt to create a new entry in a directory. If the entry 1087 * already exists, truncate the file if permissible, else return 1088 * an error. Return the vp of the created or trunc'd file. 1089 * 1090 * IN: dvp - vnode of directory to put new file entry in. 1091 * name - name of new file entry. 1092 * vap - attributes of new file. 1093 * excl - flag indicating exclusive or non-exclusive mode. 1094 * mode - mode to open file with. 1095 * cr - credentials of caller. 1096 * flag - large file flag [UNUSED]. 1097 * ct - caller context 1098 * vsecp - ACL to be set 1099 * 1100 * OUT: vpp - vnode of created or trunc'd entry. 1101 * 1102 * RETURN: 0 if success 1103 * error code if failure 1104 * 1105 * Timestamps: 1106 * dvp - ctime|mtime updated if new entry created 1107 * vp - ctime|mtime always, atime if new 1108 */ 1109 1110 /* ARGSUSED */ 1111 static int 1112 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1113 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1114 vsecattr_t *vsecp) 1115 { 1116 znode_t *zp, *dzp = VTOZ(dvp); 1117 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1118 zilog_t *zilog; 1119 objset_t *os; 1120 zfs_dirlock_t *dl; 1121 dmu_tx_t *tx; 1122 int error; 1123 zfs_acl_t *aclp = NULL; 1124 zfs_fuid_info_t *fuidp = NULL; 1125 1126 /* 1127 * If we have an ephemeral id, ACL, or XVATTR then 1128 * make sure file system is at proper version 1129 */ 1130 1131 if (zfsvfs->z_use_fuids == B_FALSE && 1132 (vsecp || (vap->va_mask & AT_XVATTR) || 1133 IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr)))) 1134 return (EINVAL); 1135 1136 ZFS_ENTER(zfsvfs); 1137 ZFS_VERIFY_ZP(dzp); 1138 os = zfsvfs->z_os; 1139 zilog = zfsvfs->z_log; 1140 1141 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1142 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1143 ZFS_EXIT(zfsvfs); 1144 return (EILSEQ); 1145 } 1146 1147 if (vap->va_mask & AT_XVATTR) { 1148 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1149 crgetuid(cr), cr, vap->va_type)) != 0) { 1150 ZFS_EXIT(zfsvfs); 1151 return (error); 1152 } 1153 } 1154 top: 1155 *vpp = NULL; 1156 1157 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1158 vap->va_mode &= ~VSVTX; 1159 1160 if (*name == '\0') { 1161 /* 1162 * Null component name refers to the directory itself. 1163 */ 1164 VN_HOLD(dvp); 1165 zp = dzp; 1166 dl = NULL; 1167 error = 0; 1168 } else { 1169 /* possible VN_HOLD(zp) */ 1170 int zflg = 0; 1171 1172 if (flag & FIGNORECASE) 1173 zflg |= ZCILOOK; 1174 1175 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1176 NULL, NULL); 1177 if (error) { 1178 if (strcmp(name, "..") == 0) 1179 error = EISDIR; 1180 ZFS_EXIT(zfsvfs); 1181 if (aclp) 1182 zfs_acl_free(aclp); 1183 return (error); 1184 } 1185 } 1186 if (vsecp && aclp == NULL) { 1187 error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp); 1188 if (error) { 1189 ZFS_EXIT(zfsvfs); 1190 if (dl) 1191 zfs_dirent_unlock(dl); 1192 return (error); 1193 } 1194 } 1195 1196 if (zp == NULL) { 1197 uint64_t txtype; 1198 1199 /* 1200 * Create a new file object and update the directory 1201 * to reference it. 1202 */ 1203 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1204 goto out; 1205 } 1206 1207 /* 1208 * We only support the creation of regular files in 1209 * extended attribute directories. 1210 */ 1211 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1212 (vap->va_type != VREG)) { 1213 error = EINVAL; 1214 goto out; 1215 } 1216 1217 tx = dmu_tx_create(os); 1218 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1219 if (zfsvfs->z_fuid_obj == 0) { 1220 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1221 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1222 SPA_MAXBLOCKSIZE); 1223 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 1224 } else { 1225 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 1226 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 1227 SPA_MAXBLOCKSIZE); 1228 } 1229 dmu_tx_hold_bonus(tx, dzp->z_id); 1230 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1231 if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) { 1232 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1233 0, SPA_MAXBLOCKSIZE); 1234 } 1235 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1236 if (error) { 1237 zfs_dirent_unlock(dl); 1238 if (error == ERESTART && 1239 zfsvfs->z_assign == TXG_NOWAIT) { 1240 dmu_tx_wait(tx); 1241 dmu_tx_abort(tx); 1242 goto top; 1243 } 1244 dmu_tx_abort(tx); 1245 ZFS_EXIT(zfsvfs); 1246 if (aclp) 1247 zfs_acl_free(aclp); 1248 return (error); 1249 } 1250 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp); 1251 (void) zfs_link_create(dl, zp, tx, ZNEW); 1252 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1253 if (flag & FIGNORECASE) 1254 txtype |= TX_CI; 1255 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1256 vsecp, fuidp, vap); 1257 if (fuidp) 1258 zfs_fuid_info_free(fuidp); 1259 dmu_tx_commit(tx); 1260 } else { 1261 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1262 1263 /* 1264 * A directory entry already exists for this name. 1265 */ 1266 /* 1267 * Can't truncate an existing file if in exclusive mode. 1268 */ 1269 if (excl == EXCL) { 1270 error = EEXIST; 1271 goto out; 1272 } 1273 /* 1274 * Can't open a directory for writing. 1275 */ 1276 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1277 error = EISDIR; 1278 goto out; 1279 } 1280 /* 1281 * Verify requested access to file. 1282 */ 1283 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1284 goto out; 1285 } 1286 1287 mutex_enter(&dzp->z_lock); 1288 dzp->z_seq++; 1289 mutex_exit(&dzp->z_lock); 1290 1291 /* 1292 * Truncate regular files if requested. 1293 */ 1294 if ((ZTOV(zp)->v_type == VREG) && 1295 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1296 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1297 if (error == ERESTART && 1298 zfsvfs->z_assign == TXG_NOWAIT) { 1299 /* NB: we already did dmu_tx_wait() */ 1300 zfs_dirent_unlock(dl); 1301 VN_RELE(ZTOV(zp)); 1302 goto top; 1303 } 1304 1305 if (error == 0) { 1306 vnevent_create(ZTOV(zp), ct); 1307 } 1308 } 1309 } 1310 out: 1311 1312 if (dl) 1313 zfs_dirent_unlock(dl); 1314 1315 if (error) { 1316 if (zp) 1317 VN_RELE(ZTOV(zp)); 1318 } else { 1319 *vpp = ZTOV(zp); 1320 /* 1321 * If vnode is for a device return a specfs vnode instead. 1322 */ 1323 if (IS_DEVVP(*vpp)) { 1324 struct vnode *svp; 1325 1326 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1327 VN_RELE(*vpp); 1328 if (svp == NULL) { 1329 error = ENOSYS; 1330 } 1331 *vpp = svp; 1332 } 1333 } 1334 if (aclp) 1335 zfs_acl_free(aclp); 1336 1337 ZFS_EXIT(zfsvfs); 1338 return (error); 1339 } 1340 1341 /* 1342 * Remove an entry from a directory. 1343 * 1344 * IN: dvp - vnode of directory to remove entry from. 1345 * name - name of entry to remove. 1346 * cr - credentials of caller. 1347 * ct - caller context 1348 * flags - case flags 1349 * 1350 * RETURN: 0 if success 1351 * error code if failure 1352 * 1353 * Timestamps: 1354 * dvp - ctime|mtime 1355 * vp - ctime (if nlink > 0) 1356 */ 1357 /*ARGSUSED*/ 1358 static int 1359 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1360 int flags) 1361 { 1362 znode_t *zp, *dzp = VTOZ(dvp); 1363 znode_t *xzp = NULL; 1364 vnode_t *vp; 1365 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1366 zilog_t *zilog; 1367 uint64_t acl_obj, xattr_obj; 1368 zfs_dirlock_t *dl; 1369 dmu_tx_t *tx; 1370 boolean_t may_delete_now, delete_now = FALSE; 1371 boolean_t unlinked; 1372 uint64_t txtype; 1373 pathname_t *realnmp = NULL; 1374 pathname_t realnm; 1375 int error; 1376 int zflg = ZEXISTS; 1377 1378 ZFS_ENTER(zfsvfs); 1379 ZFS_VERIFY_ZP(dzp); 1380 zilog = zfsvfs->z_log; 1381 1382 if (flags & FIGNORECASE) { 1383 zflg |= ZCILOOK; 1384 pn_alloc(&realnm); 1385 realnmp = &realnm; 1386 } 1387 1388 top: 1389 /* 1390 * Attempt to lock directory; fail if entry doesn't exist. 1391 */ 1392 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1393 NULL, realnmp)) { 1394 if (realnmp) 1395 pn_free(realnmp); 1396 ZFS_EXIT(zfsvfs); 1397 return (error); 1398 } 1399 1400 vp = ZTOV(zp); 1401 1402 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1403 goto out; 1404 } 1405 1406 /* 1407 * Need to use rmdir for removing directories. 1408 */ 1409 if (vp->v_type == VDIR) { 1410 error = EPERM; 1411 goto out; 1412 } 1413 1414 vnevent_remove(vp, dvp, name, ct); 1415 1416 if (realnmp) 1417 dnlc_remove(dvp, realnmp->pn_path); 1418 else 1419 dnlc_remove(dvp, name); 1420 1421 mutex_enter(&vp->v_lock); 1422 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1423 mutex_exit(&vp->v_lock); 1424 1425 /* 1426 * We may delete the znode now, or we may put it in the unlinked set; 1427 * it depends on whether we're the last link, and on whether there are 1428 * other holds on the vnode. So we dmu_tx_hold() the right things to 1429 * allow for either case. 1430 */ 1431 tx = dmu_tx_create(zfsvfs->z_os); 1432 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1433 dmu_tx_hold_bonus(tx, zp->z_id); 1434 if (may_delete_now) 1435 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 1436 1437 /* are there any extended attributes? */ 1438 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1439 /* XXX - do we need this if we are deleting? */ 1440 dmu_tx_hold_bonus(tx, xattr_obj); 1441 } 1442 1443 /* are there any additional acls */ 1444 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1445 may_delete_now) 1446 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1447 1448 /* charge as an update -- would be nice not to charge at all */ 1449 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1450 1451 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1452 if (error) { 1453 zfs_dirent_unlock(dl); 1454 VN_RELE(vp); 1455 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1456 dmu_tx_wait(tx); 1457 dmu_tx_abort(tx); 1458 goto top; 1459 } 1460 if (realnmp) 1461 pn_free(realnmp); 1462 dmu_tx_abort(tx); 1463 ZFS_EXIT(zfsvfs); 1464 return (error); 1465 } 1466 1467 /* 1468 * Remove the directory entry. 1469 */ 1470 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1471 1472 if (error) { 1473 dmu_tx_commit(tx); 1474 goto out; 1475 } 1476 1477 if (unlinked) { 1478 mutex_enter(&vp->v_lock); 1479 delete_now = may_delete_now && 1480 vp->v_count == 1 && !vn_has_cached_data(vp) && 1481 zp->z_phys->zp_xattr == xattr_obj && 1482 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1483 mutex_exit(&vp->v_lock); 1484 } 1485 1486 if (delete_now) { 1487 if (zp->z_phys->zp_xattr) { 1488 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1489 ASSERT3U(error, ==, 0); 1490 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1491 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1492 mutex_enter(&xzp->z_lock); 1493 xzp->z_unlinked = 1; 1494 xzp->z_phys->zp_links = 0; 1495 mutex_exit(&xzp->z_lock); 1496 zfs_unlinked_add(xzp, tx); 1497 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1498 } 1499 mutex_enter(&zp->z_lock); 1500 mutex_enter(&vp->v_lock); 1501 vp->v_count--; 1502 ASSERT3U(vp->v_count, ==, 0); 1503 mutex_exit(&vp->v_lock); 1504 mutex_exit(&zp->z_lock); 1505 zfs_znode_delete(zp, tx); 1506 } else if (unlinked) { 1507 zfs_unlinked_add(zp, tx); 1508 } 1509 1510 txtype = TX_REMOVE; 1511 if (flags & FIGNORECASE) 1512 txtype |= TX_CI; 1513 zfs_log_remove(zilog, tx, txtype, dzp, name); 1514 1515 dmu_tx_commit(tx); 1516 out: 1517 if (realnmp) 1518 pn_free(realnmp); 1519 1520 zfs_dirent_unlock(dl); 1521 1522 if (!delete_now) { 1523 VN_RELE(vp); 1524 } else if (xzp) { 1525 /* this rele delayed to prevent nesting transactions */ 1526 VN_RELE(ZTOV(xzp)); 1527 } 1528 1529 ZFS_EXIT(zfsvfs); 1530 return (error); 1531 } 1532 1533 /* 1534 * Create a new directory and insert it into dvp using the name 1535 * provided. Return a pointer to the inserted directory. 1536 * 1537 * IN: dvp - vnode of directory to add subdir to. 1538 * dirname - name of new directory. 1539 * vap - attributes of new directory. 1540 * cr - credentials of caller. 1541 * ct - caller context 1542 * vsecp - ACL to be set 1543 * 1544 * OUT: vpp - vnode of created directory. 1545 * 1546 * RETURN: 0 if success 1547 * error code if failure 1548 * 1549 * Timestamps: 1550 * dvp - ctime|mtime updated 1551 * vp - ctime|mtime|atime updated 1552 */ 1553 /*ARGSUSED*/ 1554 static int 1555 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1556 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1557 { 1558 znode_t *zp, *dzp = VTOZ(dvp); 1559 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1560 zilog_t *zilog; 1561 zfs_dirlock_t *dl; 1562 uint64_t txtype; 1563 dmu_tx_t *tx; 1564 int error; 1565 zfs_acl_t *aclp = NULL; 1566 zfs_fuid_info_t *fuidp = NULL; 1567 int zf = ZNEW; 1568 1569 ASSERT(vap->va_type == VDIR); 1570 1571 /* 1572 * If we have an ephemeral id, ACL, or XVATTR then 1573 * make sure file system is at proper version 1574 */ 1575 1576 if (zfsvfs->z_use_fuids == B_FALSE && 1577 (vsecp || (vap->va_mask & AT_XVATTR) || IS_EPHEMERAL(crgetuid(cr))|| 1578 IS_EPHEMERAL(crgetgid(cr)))) 1579 return (EINVAL); 1580 1581 ZFS_ENTER(zfsvfs); 1582 ZFS_VERIFY_ZP(dzp); 1583 zilog = zfsvfs->z_log; 1584 1585 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1586 ZFS_EXIT(zfsvfs); 1587 return (EINVAL); 1588 } 1589 1590 if (zfsvfs->z_utf8 && u8_validate(dirname, 1591 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1592 ZFS_EXIT(zfsvfs); 1593 return (EILSEQ); 1594 } 1595 if (flags & FIGNORECASE) 1596 zf |= ZCILOOK; 1597 1598 if (vap->va_mask & AT_XVATTR) 1599 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1600 crgetuid(cr), cr, vap->va_type)) != 0) { 1601 ZFS_EXIT(zfsvfs); 1602 return (error); 1603 } 1604 1605 /* 1606 * First make sure the new directory doesn't exist. 1607 */ 1608 top: 1609 *vpp = NULL; 1610 1611 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1612 NULL, NULL)) { 1613 ZFS_EXIT(zfsvfs); 1614 return (error); 1615 } 1616 1617 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1618 zfs_dirent_unlock(dl); 1619 ZFS_EXIT(zfsvfs); 1620 return (error); 1621 } 1622 1623 if (vsecp && aclp == NULL) { 1624 error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp); 1625 if (error) { 1626 zfs_dirent_unlock(dl); 1627 ZFS_EXIT(zfsvfs); 1628 return (error); 1629 } 1630 } 1631 /* 1632 * Add a new entry to the directory. 1633 */ 1634 tx = dmu_tx_create(zfsvfs->z_os); 1635 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1636 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1637 if (zfsvfs->z_fuid_obj == 0) { 1638 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1639 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1640 SPA_MAXBLOCKSIZE); 1641 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 1642 } else { 1643 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 1644 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 1645 SPA_MAXBLOCKSIZE); 1646 } 1647 if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) 1648 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1649 0, SPA_MAXBLOCKSIZE); 1650 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1651 if (error) { 1652 zfs_dirent_unlock(dl); 1653 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1654 dmu_tx_wait(tx); 1655 dmu_tx_abort(tx); 1656 goto top; 1657 } 1658 dmu_tx_abort(tx); 1659 ZFS_EXIT(zfsvfs); 1660 if (aclp) 1661 zfs_acl_free(aclp); 1662 return (error); 1663 } 1664 1665 /* 1666 * Create new node. 1667 */ 1668 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp); 1669 1670 if (aclp) 1671 zfs_acl_free(aclp); 1672 1673 /* 1674 * Now put new name in parent dir. 1675 */ 1676 (void) zfs_link_create(dl, zp, tx, ZNEW); 1677 1678 *vpp = ZTOV(zp); 1679 1680 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1681 if (flags & FIGNORECASE) 1682 txtype |= TX_CI; 1683 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, fuidp, vap); 1684 1685 if (fuidp) 1686 zfs_fuid_info_free(fuidp); 1687 dmu_tx_commit(tx); 1688 1689 zfs_dirent_unlock(dl); 1690 1691 ZFS_EXIT(zfsvfs); 1692 return (0); 1693 } 1694 1695 /* 1696 * Remove a directory subdir entry. If the current working 1697 * directory is the same as the subdir to be removed, the 1698 * remove will fail. 1699 * 1700 * IN: dvp - vnode of directory to remove from. 1701 * name - name of directory to be removed. 1702 * cwd - vnode of current working directory. 1703 * cr - credentials of caller. 1704 * ct - caller context 1705 * flags - case flags 1706 * 1707 * RETURN: 0 if success 1708 * error code if failure 1709 * 1710 * Timestamps: 1711 * dvp - ctime|mtime updated 1712 */ 1713 /*ARGSUSED*/ 1714 static int 1715 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1716 caller_context_t *ct, int flags) 1717 { 1718 znode_t *dzp = VTOZ(dvp); 1719 znode_t *zp; 1720 vnode_t *vp; 1721 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1722 zilog_t *zilog; 1723 zfs_dirlock_t *dl; 1724 dmu_tx_t *tx; 1725 int error; 1726 int zflg = ZEXISTS; 1727 1728 ZFS_ENTER(zfsvfs); 1729 ZFS_VERIFY_ZP(dzp); 1730 zilog = zfsvfs->z_log; 1731 1732 if (flags & FIGNORECASE) 1733 zflg |= ZCILOOK; 1734 top: 1735 zp = NULL; 1736 1737 /* 1738 * Attempt to lock directory; fail if entry doesn't exist. 1739 */ 1740 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1741 NULL, NULL)) { 1742 ZFS_EXIT(zfsvfs); 1743 return (error); 1744 } 1745 1746 vp = ZTOV(zp); 1747 1748 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1749 goto out; 1750 } 1751 1752 if (vp->v_type != VDIR) { 1753 error = ENOTDIR; 1754 goto out; 1755 } 1756 1757 if (vp == cwd) { 1758 error = EINVAL; 1759 goto out; 1760 } 1761 1762 vnevent_rmdir(vp, dvp, name, ct); 1763 1764 /* 1765 * Grab a lock on the directory to make sure that noone is 1766 * trying to add (or lookup) entries while we are removing it. 1767 */ 1768 rw_enter(&zp->z_name_lock, RW_WRITER); 1769 1770 /* 1771 * Grab a lock on the parent pointer to make sure we play well 1772 * with the treewalk and directory rename code. 1773 */ 1774 rw_enter(&zp->z_parent_lock, RW_WRITER); 1775 1776 tx = dmu_tx_create(zfsvfs->z_os); 1777 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1778 dmu_tx_hold_bonus(tx, zp->z_id); 1779 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1780 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1781 if (error) { 1782 rw_exit(&zp->z_parent_lock); 1783 rw_exit(&zp->z_name_lock); 1784 zfs_dirent_unlock(dl); 1785 VN_RELE(vp); 1786 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1787 dmu_tx_wait(tx); 1788 dmu_tx_abort(tx); 1789 goto top; 1790 } 1791 dmu_tx_abort(tx); 1792 ZFS_EXIT(zfsvfs); 1793 return (error); 1794 } 1795 1796 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 1797 1798 if (error == 0) { 1799 uint64_t txtype = TX_RMDIR; 1800 if (flags & FIGNORECASE) 1801 txtype |= TX_CI; 1802 zfs_log_remove(zilog, tx, txtype, dzp, name); 1803 } 1804 1805 dmu_tx_commit(tx); 1806 1807 rw_exit(&zp->z_parent_lock); 1808 rw_exit(&zp->z_name_lock); 1809 out: 1810 zfs_dirent_unlock(dl); 1811 1812 VN_RELE(vp); 1813 1814 ZFS_EXIT(zfsvfs); 1815 return (error); 1816 } 1817 1818 /* 1819 * Read as many directory entries as will fit into the provided 1820 * buffer from the given directory cursor position (specified in 1821 * the uio structure. 1822 * 1823 * IN: vp - vnode of directory to read. 1824 * uio - structure supplying read location, range info, 1825 * and return buffer. 1826 * cr - credentials of caller. 1827 * ct - caller context 1828 * flags - case flags 1829 * 1830 * OUT: uio - updated offset and range, buffer filled. 1831 * eofp - set to true if end-of-file detected. 1832 * 1833 * RETURN: 0 if success 1834 * error code if failure 1835 * 1836 * Timestamps: 1837 * vp - atime updated 1838 * 1839 * Note that the low 4 bits of the cookie returned by zap is always zero. 1840 * This allows us to use the low range for "special" directory entries: 1841 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1842 * we use the offset 2 for the '.zfs' directory. 1843 */ 1844 /* ARGSUSED */ 1845 static int 1846 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 1847 caller_context_t *ct, int flags) 1848 { 1849 znode_t *zp = VTOZ(vp); 1850 iovec_t *iovp; 1851 edirent_t *eodp; 1852 dirent64_t *odp; 1853 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1854 objset_t *os; 1855 caddr_t outbuf; 1856 size_t bufsize; 1857 zap_cursor_t zc; 1858 zap_attribute_t zap; 1859 uint_t bytes_wanted; 1860 uint64_t offset; /* must be unsigned; checks for < 1 */ 1861 int local_eof; 1862 int outcount; 1863 int error; 1864 uint8_t prefetch; 1865 boolean_t check_sysattrs; 1866 1867 ZFS_ENTER(zfsvfs); 1868 ZFS_VERIFY_ZP(zp); 1869 1870 /* 1871 * If we are not given an eof variable, 1872 * use a local one. 1873 */ 1874 if (eofp == NULL) 1875 eofp = &local_eof; 1876 1877 /* 1878 * Check for valid iov_len. 1879 */ 1880 if (uio->uio_iov->iov_len <= 0) { 1881 ZFS_EXIT(zfsvfs); 1882 return (EINVAL); 1883 } 1884 1885 /* 1886 * Quit if directory has been removed (posix) 1887 */ 1888 if ((*eofp = zp->z_unlinked) != 0) { 1889 ZFS_EXIT(zfsvfs); 1890 return (0); 1891 } 1892 1893 error = 0; 1894 os = zfsvfs->z_os; 1895 offset = uio->uio_loffset; 1896 prefetch = zp->z_zn_prefetch; 1897 1898 /* 1899 * Initialize the iterator cursor. 1900 */ 1901 if (offset <= 3) { 1902 /* 1903 * Start iteration from the beginning of the directory. 1904 */ 1905 zap_cursor_init(&zc, os, zp->z_id); 1906 } else { 1907 /* 1908 * The offset is a serialized cursor. 1909 */ 1910 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1911 } 1912 1913 /* 1914 * Get space to change directory entries into fs independent format. 1915 */ 1916 iovp = uio->uio_iov; 1917 bytes_wanted = iovp->iov_len; 1918 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1919 bufsize = bytes_wanted; 1920 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1921 odp = (struct dirent64 *)outbuf; 1922 } else { 1923 bufsize = bytes_wanted; 1924 odp = (struct dirent64 *)iovp->iov_base; 1925 } 1926 eodp = (struct edirent *)odp; 1927 1928 /* 1929 * If this VFS supports system attributes; and we're looking at an 1930 * extended attribute directory; and we care about normalization 1931 * conflicts on this vfs; then we must check for normalization 1932 * conflicts with the sysattr name space. 1933 */ 1934 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) && 1935 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 1936 (flags & V_RDDIR_ENTFLAGS); 1937 1938 /* 1939 * Transform to file-system independent format 1940 */ 1941 outcount = 0; 1942 while (outcount < bytes_wanted) { 1943 ino64_t objnum; 1944 ushort_t reclen; 1945 off64_t *next; 1946 1947 /* 1948 * Special case `.', `..', and `.zfs'. 1949 */ 1950 if (offset == 0) { 1951 (void) strcpy(zap.za_name, "."); 1952 zap.za_normalization_conflict = 0; 1953 objnum = zp->z_id; 1954 } else if (offset == 1) { 1955 (void) strcpy(zap.za_name, ".."); 1956 zap.za_normalization_conflict = 0; 1957 objnum = zp->z_phys->zp_parent; 1958 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1959 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1960 zap.za_normalization_conflict = 0; 1961 objnum = ZFSCTL_INO_ROOT; 1962 } else { 1963 /* 1964 * Grab next entry. 1965 */ 1966 if (error = zap_cursor_retrieve(&zc, &zap)) { 1967 if ((*eofp = (error == ENOENT)) != 0) 1968 break; 1969 else 1970 goto update; 1971 } 1972 1973 if (zap.za_integer_length != 8 || 1974 zap.za_num_integers != 1) { 1975 cmn_err(CE_WARN, "zap_readdir: bad directory " 1976 "entry, obj = %lld, offset = %lld\n", 1977 (u_longlong_t)zp->z_id, 1978 (u_longlong_t)offset); 1979 error = ENXIO; 1980 goto update; 1981 } 1982 1983 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 1984 /* 1985 * MacOS X can extract the object type here such as: 1986 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 1987 */ 1988 1989 if (check_sysattrs && !zap.za_normalization_conflict) { 1990 zap.za_normalization_conflict = 1991 xattr_sysattr_casechk(zap.za_name); 1992 } 1993 } 1994 1995 if (flags & V_RDDIR_ENTFLAGS) 1996 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 1997 else 1998 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 1999 2000 /* 2001 * Will this entry fit in the buffer? 2002 */ 2003 if (outcount + reclen > bufsize) { 2004 /* 2005 * Did we manage to fit anything in the buffer? 2006 */ 2007 if (!outcount) { 2008 error = EINVAL; 2009 goto update; 2010 } 2011 break; 2012 } 2013 if (flags & V_RDDIR_ENTFLAGS) { 2014 /* 2015 * Add extended flag entry: 2016 */ 2017 eodp->ed_ino = objnum; 2018 eodp->ed_reclen = reclen; 2019 /* NOTE: ed_off is the offset for the *next* entry */ 2020 next = &(eodp->ed_off); 2021 eodp->ed_eflags = zap.za_normalization_conflict ? 2022 ED_CASE_CONFLICT : 0; 2023 (void) strncpy(eodp->ed_name, zap.za_name, 2024 EDIRENT_NAMELEN(reclen)); 2025 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2026 } else { 2027 /* 2028 * Add normal entry: 2029 */ 2030 odp->d_ino = objnum; 2031 odp->d_reclen = reclen; 2032 /* NOTE: d_off is the offset for the *next* entry */ 2033 next = &(odp->d_off); 2034 (void) strncpy(odp->d_name, zap.za_name, 2035 DIRENT64_NAMELEN(reclen)); 2036 odp = (dirent64_t *)((intptr_t)odp + reclen); 2037 } 2038 outcount += reclen; 2039 2040 ASSERT(outcount <= bufsize); 2041 2042 /* Prefetch znode */ 2043 if (prefetch) 2044 dmu_prefetch(os, objnum, 0, 0); 2045 2046 /* 2047 * Move to the next entry, fill in the previous offset. 2048 */ 2049 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2050 zap_cursor_advance(&zc); 2051 offset = zap_cursor_serialize(&zc); 2052 } else { 2053 offset += 1; 2054 } 2055 *next = offset; 2056 } 2057 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2058 2059 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2060 iovp->iov_base += outcount; 2061 iovp->iov_len -= outcount; 2062 uio->uio_resid -= outcount; 2063 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2064 /* 2065 * Reset the pointer. 2066 */ 2067 offset = uio->uio_loffset; 2068 } 2069 2070 update: 2071 zap_cursor_fini(&zc); 2072 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2073 kmem_free(outbuf, bufsize); 2074 2075 if (error == ENOENT) 2076 error = 0; 2077 2078 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2079 2080 uio->uio_loffset = offset; 2081 ZFS_EXIT(zfsvfs); 2082 return (error); 2083 } 2084 2085 ulong_t zfs_fsync_sync_cnt = 4; 2086 2087 static int 2088 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2089 { 2090 znode_t *zp = VTOZ(vp); 2091 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2092 2093 /* 2094 * Regardless of whether this is required for standards conformance, 2095 * this is the logical behavior when fsync() is called on a file with 2096 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2097 * going to be pushed out as part of the zil_commit(). 2098 */ 2099 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2100 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2101 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2102 2103 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2104 2105 ZFS_ENTER(zfsvfs); 2106 ZFS_VERIFY_ZP(zp); 2107 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2108 ZFS_EXIT(zfsvfs); 2109 return (0); 2110 } 2111 2112 2113 /* 2114 * Get the requested file attributes and place them in the provided 2115 * vattr structure. 2116 * 2117 * IN: vp - vnode of file. 2118 * vap - va_mask identifies requested attributes. 2119 * If AT_XVATTR set, then optional attrs are requested 2120 * flags - ATTR_NOACLCHECK (CIFS server context) 2121 * cr - credentials of caller. 2122 * ct - caller context 2123 * 2124 * OUT: vap - attribute values. 2125 * 2126 * RETURN: 0 (always succeeds) 2127 */ 2128 /* ARGSUSED */ 2129 static int 2130 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2131 caller_context_t *ct) 2132 { 2133 znode_t *zp = VTOZ(vp); 2134 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2135 znode_phys_t *pzp; 2136 int error = 0; 2137 uint64_t links; 2138 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2139 xoptattr_t *xoap = NULL; 2140 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2141 2142 ZFS_ENTER(zfsvfs); 2143 ZFS_VERIFY_ZP(zp); 2144 pzp = zp->z_phys; 2145 2146 mutex_enter(&zp->z_lock); 2147 2148 /* 2149 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2150 * Also, if we are the owner don't bother, since owner should 2151 * always be allowed to read basic attributes of file. 2152 */ 2153 if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) && 2154 (pzp->zp_uid != crgetuid(cr))) { 2155 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2156 skipaclchk, cr)) { 2157 mutex_exit(&zp->z_lock); 2158 ZFS_EXIT(zfsvfs); 2159 return (error); 2160 } 2161 } 2162 2163 /* 2164 * Return all attributes. It's cheaper to provide the answer 2165 * than to determine whether we were asked the question. 2166 */ 2167 2168 vap->va_type = vp->v_type; 2169 vap->va_mode = pzp->zp_mode & MODEMASK; 2170 zfs_fuid_map_ids(zp, &vap->va_uid, &vap->va_gid); 2171 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2172 vap->va_nodeid = zp->z_id; 2173 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2174 links = pzp->zp_links + 1; 2175 else 2176 links = pzp->zp_links; 2177 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2178 vap->va_size = pzp->zp_size; 2179 vap->va_rdev = vp->v_rdev; 2180 vap->va_seq = zp->z_seq; 2181 2182 /* 2183 * Add in any requested optional attributes and the create time. 2184 * Also set the corresponding bits in the returned attribute bitmap. 2185 */ 2186 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2187 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2188 xoap->xoa_archive = 2189 ((pzp->zp_flags & ZFS_ARCHIVE) != 0); 2190 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2191 } 2192 2193 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2194 xoap->xoa_readonly = 2195 ((pzp->zp_flags & ZFS_READONLY) != 0); 2196 XVA_SET_RTN(xvap, XAT_READONLY); 2197 } 2198 2199 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2200 xoap->xoa_system = 2201 ((pzp->zp_flags & ZFS_SYSTEM) != 0); 2202 XVA_SET_RTN(xvap, XAT_SYSTEM); 2203 } 2204 2205 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2206 xoap->xoa_hidden = 2207 ((pzp->zp_flags & ZFS_HIDDEN) != 0); 2208 XVA_SET_RTN(xvap, XAT_HIDDEN); 2209 } 2210 2211 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2212 xoap->xoa_nounlink = 2213 ((pzp->zp_flags & ZFS_NOUNLINK) != 0); 2214 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2215 } 2216 2217 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2218 xoap->xoa_immutable = 2219 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0); 2220 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2221 } 2222 2223 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2224 xoap->xoa_appendonly = 2225 ((pzp->zp_flags & ZFS_APPENDONLY) != 0); 2226 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2227 } 2228 2229 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2230 xoap->xoa_nodump = 2231 ((pzp->zp_flags & ZFS_NODUMP) != 0); 2232 XVA_SET_RTN(xvap, XAT_NODUMP); 2233 } 2234 2235 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2236 xoap->xoa_opaque = 2237 ((pzp->zp_flags & ZFS_OPAQUE) != 0); 2238 XVA_SET_RTN(xvap, XAT_OPAQUE); 2239 } 2240 2241 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2242 xoap->xoa_av_quarantined = 2243 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0); 2244 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2245 } 2246 2247 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2248 xoap->xoa_av_modified = 2249 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0); 2250 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2251 } 2252 2253 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2254 vp->v_type == VREG && 2255 (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) { 2256 size_t len; 2257 dmu_object_info_t doi; 2258 2259 /* 2260 * Only VREG files have anti-virus scanstamps, so we 2261 * won't conflict with symlinks in the bonus buffer. 2262 */ 2263 dmu_object_info_from_db(zp->z_dbuf, &doi); 2264 len = sizeof (xoap->xoa_av_scanstamp) + 2265 sizeof (znode_phys_t); 2266 if (len <= doi.doi_bonus_size) { 2267 /* 2268 * pzp points to the start of the 2269 * znode_phys_t. pzp + 1 points to the 2270 * first byte after the znode_phys_t. 2271 */ 2272 (void) memcpy(xoap->xoa_av_scanstamp, 2273 pzp + 1, 2274 sizeof (xoap->xoa_av_scanstamp)); 2275 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 2276 } 2277 } 2278 2279 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2280 ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime); 2281 XVA_SET_RTN(xvap, XAT_CREATETIME); 2282 } 2283 } 2284 2285 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 2286 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 2287 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 2288 2289 mutex_exit(&zp->z_lock); 2290 2291 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 2292 2293 if (zp->z_blksz == 0) { 2294 /* 2295 * Block size hasn't been set; suggest maximal I/O transfers. 2296 */ 2297 vap->va_blksize = zfsvfs->z_max_blksz; 2298 } 2299 2300 ZFS_EXIT(zfsvfs); 2301 return (0); 2302 } 2303 2304 /* 2305 * Set the file attributes to the values contained in the 2306 * vattr structure. 2307 * 2308 * IN: vp - vnode of file to be modified. 2309 * vap - new attribute values. 2310 * If AT_XVATTR set, then optional attrs are being set 2311 * flags - ATTR_UTIME set if non-default time values provided. 2312 * - ATTR_NOACLCHECK (CIFS context only). 2313 * cr - credentials of caller. 2314 * ct - caller context 2315 * 2316 * RETURN: 0 if success 2317 * error code if failure 2318 * 2319 * Timestamps: 2320 * vp - ctime updated, mtime updated if size changed. 2321 */ 2322 /* ARGSUSED */ 2323 static int 2324 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2325 caller_context_t *ct) 2326 { 2327 znode_t *zp = VTOZ(vp); 2328 znode_phys_t *pzp; 2329 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2330 zilog_t *zilog; 2331 dmu_tx_t *tx; 2332 vattr_t oldva; 2333 uint_t mask = vap->va_mask; 2334 uint_t saved_mask; 2335 int trim_mask = 0; 2336 uint64_t new_mode; 2337 znode_t *attrzp; 2338 int need_policy = FALSE; 2339 int err; 2340 zfs_fuid_info_t *fuidp = NULL; 2341 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2342 xoptattr_t *xoap; 2343 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2344 2345 if (mask == 0) 2346 return (0); 2347 2348 if (mask & AT_NOSET) 2349 return (EINVAL); 2350 2351 ZFS_ENTER(zfsvfs); 2352 ZFS_VERIFY_ZP(zp); 2353 2354 pzp = zp->z_phys; 2355 zilog = zfsvfs->z_log; 2356 2357 /* 2358 * Make sure that if we have ephemeral uid/gid or xvattr specified 2359 * that file system is at proper version level 2360 */ 2361 2362 if (zfsvfs->z_use_fuids == B_FALSE && 2363 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2364 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2365 (mask & AT_XVATTR))) { 2366 ZFS_EXIT(zfsvfs); 2367 return (EINVAL); 2368 } 2369 2370 if (mask & AT_SIZE && vp->v_type == VDIR) { 2371 ZFS_EXIT(zfsvfs); 2372 return (EISDIR); 2373 } 2374 2375 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2376 ZFS_EXIT(zfsvfs); 2377 return (EINVAL); 2378 } 2379 2380 /* 2381 * If this is an xvattr_t, then get a pointer to the structure of 2382 * optional attributes. If this is NULL, then we have a vattr_t. 2383 */ 2384 xoap = xva_getxoptattr(xvap); 2385 2386 /* 2387 * Immutable files can only alter immutable bit and atime 2388 */ 2389 if ((pzp->zp_flags & ZFS_IMMUTABLE) && 2390 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2391 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2392 ZFS_EXIT(zfsvfs); 2393 return (EPERM); 2394 } 2395 2396 if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) { 2397 ZFS_EXIT(zfsvfs); 2398 return (EPERM); 2399 } 2400 2401 top: 2402 attrzp = NULL; 2403 2404 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2405 ZFS_EXIT(zfsvfs); 2406 return (EROFS); 2407 } 2408 2409 /* 2410 * First validate permissions 2411 */ 2412 2413 if (mask & AT_SIZE) { 2414 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2415 if (err) { 2416 ZFS_EXIT(zfsvfs); 2417 return (err); 2418 } 2419 /* 2420 * XXX - Note, we are not providing any open 2421 * mode flags here (like FNDELAY), so we may 2422 * block if there are locks present... this 2423 * should be addressed in openat(). 2424 */ 2425 do { 2426 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2427 /* NB: we already did dmu_tx_wait() if necessary */ 2428 } while (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 2429 if (err) { 2430 ZFS_EXIT(zfsvfs); 2431 return (err); 2432 } 2433 } 2434 2435 if (mask & (AT_ATIME|AT_MTIME) || 2436 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2437 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2438 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2439 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2440 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) 2441 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2442 skipaclchk, cr); 2443 2444 if (mask & (AT_UID|AT_GID)) { 2445 int idmask = (mask & (AT_UID|AT_GID)); 2446 int take_owner; 2447 int take_group; 2448 2449 /* 2450 * NOTE: even if a new mode is being set, 2451 * we may clear S_ISUID/S_ISGID bits. 2452 */ 2453 2454 if (!(mask & AT_MODE)) 2455 vap->va_mode = pzp->zp_mode; 2456 2457 /* 2458 * Take ownership or chgrp to group we are a member of 2459 */ 2460 2461 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2462 take_group = (mask & AT_GID) && 2463 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2464 2465 /* 2466 * If both AT_UID and AT_GID are set then take_owner and 2467 * take_group must both be set in order to allow taking 2468 * ownership. 2469 * 2470 * Otherwise, send the check through secpolicy_vnode_setattr() 2471 * 2472 */ 2473 2474 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2475 ((idmask == AT_UID) && take_owner) || 2476 ((idmask == AT_GID) && take_group)) { 2477 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2478 skipaclchk, cr) == 0) { 2479 /* 2480 * Remove setuid/setgid for non-privileged users 2481 */ 2482 secpolicy_setid_clear(vap, cr); 2483 trim_mask = (mask & (AT_UID|AT_GID)); 2484 } else { 2485 need_policy = TRUE; 2486 } 2487 } else { 2488 need_policy = TRUE; 2489 } 2490 } 2491 2492 mutex_enter(&zp->z_lock); 2493 oldva.va_mode = pzp->zp_mode; 2494 zfs_fuid_map_ids(zp, &oldva.va_uid, &oldva.va_gid); 2495 if (mask & AT_XVATTR) { 2496 if ((need_policy == FALSE) && 2497 (XVA_ISSET_REQ(xvap, XAT_APPENDONLY) && 2498 xoap->xoa_appendonly != 2499 ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) || 2500 (XVA_ISSET_REQ(xvap, XAT_NOUNLINK) && 2501 xoap->xoa_nounlink != 2502 ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) || 2503 (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE) && 2504 xoap->xoa_immutable != 2505 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) || 2506 (XVA_ISSET_REQ(xvap, XAT_NODUMP) && 2507 xoap->xoa_nodump != 2508 ((pzp->zp_flags & ZFS_NODUMP) != 0)) || 2509 (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED) && 2510 xoap->xoa_av_modified != 2511 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) || 2512 ((XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED) && 2513 ((vp->v_type != VREG && xoap->xoa_av_quarantined) || 2514 xoap->xoa_av_quarantined != 2515 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)))) || 2516 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) || 2517 (XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2518 need_policy = TRUE; 2519 } 2520 } 2521 2522 mutex_exit(&zp->z_lock); 2523 2524 if (mask & AT_MODE) { 2525 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2526 err = secpolicy_setid_setsticky_clear(vp, vap, 2527 &oldva, cr); 2528 if (err) { 2529 ZFS_EXIT(zfsvfs); 2530 return (err); 2531 } 2532 trim_mask |= AT_MODE; 2533 } else { 2534 need_policy = TRUE; 2535 } 2536 } 2537 2538 if (need_policy) { 2539 /* 2540 * If trim_mask is set then take ownership 2541 * has been granted or write_acl is present and user 2542 * has the ability to modify mode. In that case remove 2543 * UID|GID and or MODE from mask so that 2544 * secpolicy_vnode_setattr() doesn't revoke it. 2545 */ 2546 2547 if (trim_mask) { 2548 saved_mask = vap->va_mask; 2549 vap->va_mask &= ~trim_mask; 2550 } 2551 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2552 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2553 if (err) { 2554 ZFS_EXIT(zfsvfs); 2555 return (err); 2556 } 2557 2558 if (trim_mask) 2559 vap->va_mask |= saved_mask; 2560 } 2561 2562 /* 2563 * secpolicy_vnode_setattr, or take ownership may have 2564 * changed va_mask 2565 */ 2566 mask = vap->va_mask; 2567 2568 tx = dmu_tx_create(zfsvfs->z_os); 2569 dmu_tx_hold_bonus(tx, zp->z_id); 2570 if (zfsvfs->z_fuid_obj == 0) { 2571 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2572 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2573 SPA_MAXBLOCKSIZE); 2574 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 2575 } else { 2576 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 2577 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 2578 SPA_MAXBLOCKSIZE); 2579 } 2580 2581 if (mask & AT_MODE) { 2582 uint64_t pmode = pzp->zp_mode; 2583 2584 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2585 2586 if (pzp->zp_acl.z_acl_extern_obj) { 2587 /* Are we upgrading ACL from old V0 format to new V1 */ 2588 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2589 pzp->zp_acl.z_acl_version == 2590 ZFS_ACL_VERSION_INITIAL) { 2591 dmu_tx_hold_free(tx, 2592 pzp->zp_acl.z_acl_extern_obj, 0, 2593 DMU_OBJECT_END); 2594 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2595 0, sizeof (zfs_object_ace_t) * 2048 + 6); 2596 } else { 2597 dmu_tx_hold_write(tx, 2598 pzp->zp_acl.z_acl_extern_obj, 0, 2599 SPA_MAXBLOCKSIZE); 2600 } 2601 } else { 2602 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2603 0, sizeof (zfs_object_ace_t) * 2048 + 6); 2604 } 2605 } 2606 2607 if ((mask & (AT_UID | AT_GID)) && pzp->zp_xattr != 0) { 2608 err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp); 2609 if (err) { 2610 dmu_tx_abort(tx); 2611 ZFS_EXIT(zfsvfs); 2612 return (err); 2613 } 2614 dmu_tx_hold_bonus(tx, attrzp->z_id); 2615 } 2616 2617 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2618 if (err) { 2619 if (attrzp) 2620 VN_RELE(ZTOV(attrzp)); 2621 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2622 dmu_tx_wait(tx); 2623 dmu_tx_abort(tx); 2624 goto top; 2625 } 2626 dmu_tx_abort(tx); 2627 ZFS_EXIT(zfsvfs); 2628 return (err); 2629 } 2630 2631 dmu_buf_will_dirty(zp->z_dbuf, tx); 2632 2633 /* 2634 * Set each attribute requested. 2635 * We group settings according to the locks they need to acquire. 2636 * 2637 * Note: you cannot set ctime directly, although it will be 2638 * updated as a side-effect of calling this function. 2639 */ 2640 2641 mutex_enter(&zp->z_lock); 2642 2643 if (mask & AT_MODE) { 2644 err = zfs_acl_chmod_setattr(zp, new_mode, tx); 2645 ASSERT3U(err, ==, 0); 2646 } 2647 2648 if (attrzp) 2649 mutex_enter(&attrzp->z_lock); 2650 2651 if (mask & AT_UID) { 2652 pzp->zp_uid = zfs_fuid_create(zfsvfs, 2653 vap->va_uid, ZFS_OWNER, tx, &fuidp); 2654 if (attrzp) { 2655 attrzp->z_phys->zp_uid = zfs_fuid_create(zfsvfs, 2656 vap->va_uid, ZFS_OWNER, tx, &fuidp); 2657 } 2658 } 2659 2660 if (mask & AT_GID) { 2661 pzp->zp_gid = zfs_fuid_create(zfsvfs, vap->va_gid, 2662 ZFS_GROUP, tx, &fuidp); 2663 if (attrzp) 2664 attrzp->z_phys->zp_gid = zfs_fuid_create(zfsvfs, 2665 vap->va_gid, ZFS_GROUP, tx, &fuidp); 2666 } 2667 2668 if (attrzp) 2669 mutex_exit(&attrzp->z_lock); 2670 2671 if (mask & AT_ATIME) 2672 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2673 2674 if (mask & AT_MTIME) 2675 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2676 2677 if (mask & AT_SIZE) 2678 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2679 else if (mask != 0) 2680 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2681 /* 2682 * Do this after setting timestamps to prevent timestamp 2683 * update from toggling bit 2684 */ 2685 2686 if (xoap && (mask & AT_XVATTR)) { 2687 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 2688 size_t len; 2689 dmu_object_info_t doi; 2690 2691 ASSERT(vp->v_type == VREG); 2692 2693 /* Grow the bonus buffer if necessary. */ 2694 dmu_object_info_from_db(zp->z_dbuf, &doi); 2695 len = sizeof (xoap->xoa_av_scanstamp) + 2696 sizeof (znode_phys_t); 2697 if (len > doi.doi_bonus_size) 2698 VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0); 2699 } 2700 zfs_xvattr_set(zp, xvap); 2701 } 2702 2703 if (mask != 0) 2704 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 2705 2706 if (fuidp) 2707 zfs_fuid_info_free(fuidp); 2708 mutex_exit(&zp->z_lock); 2709 2710 if (attrzp) 2711 VN_RELE(ZTOV(attrzp)); 2712 2713 dmu_tx_commit(tx); 2714 2715 ZFS_EXIT(zfsvfs); 2716 return (err); 2717 } 2718 2719 typedef struct zfs_zlock { 2720 krwlock_t *zl_rwlock; /* lock we acquired */ 2721 znode_t *zl_znode; /* znode we held */ 2722 struct zfs_zlock *zl_next; /* next in list */ 2723 } zfs_zlock_t; 2724 2725 /* 2726 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2727 */ 2728 static void 2729 zfs_rename_unlock(zfs_zlock_t **zlpp) 2730 { 2731 zfs_zlock_t *zl; 2732 2733 while ((zl = *zlpp) != NULL) { 2734 if (zl->zl_znode != NULL) 2735 VN_RELE(ZTOV(zl->zl_znode)); 2736 rw_exit(zl->zl_rwlock); 2737 *zlpp = zl->zl_next; 2738 kmem_free(zl, sizeof (*zl)); 2739 } 2740 } 2741 2742 /* 2743 * Search back through the directory tree, using the ".." entries. 2744 * Lock each directory in the chain to prevent concurrent renames. 2745 * Fail any attempt to move a directory into one of its own descendants. 2746 * XXX - z_parent_lock can overlap with map or grow locks 2747 */ 2748 static int 2749 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2750 { 2751 zfs_zlock_t *zl; 2752 znode_t *zp = tdzp; 2753 uint64_t rootid = zp->z_zfsvfs->z_root; 2754 uint64_t *oidp = &zp->z_id; 2755 krwlock_t *rwlp = &szp->z_parent_lock; 2756 krw_t rw = RW_WRITER; 2757 2758 /* 2759 * First pass write-locks szp and compares to zp->z_id. 2760 * Later passes read-lock zp and compare to zp->z_parent. 2761 */ 2762 do { 2763 if (!rw_tryenter(rwlp, rw)) { 2764 /* 2765 * Another thread is renaming in this path. 2766 * Note that if we are a WRITER, we don't have any 2767 * parent_locks held yet. 2768 */ 2769 if (rw == RW_READER && zp->z_id > szp->z_id) { 2770 /* 2771 * Drop our locks and restart 2772 */ 2773 zfs_rename_unlock(&zl); 2774 *zlpp = NULL; 2775 zp = tdzp; 2776 oidp = &zp->z_id; 2777 rwlp = &szp->z_parent_lock; 2778 rw = RW_WRITER; 2779 continue; 2780 } else { 2781 /* 2782 * Wait for other thread to drop its locks 2783 */ 2784 rw_enter(rwlp, rw); 2785 } 2786 } 2787 2788 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2789 zl->zl_rwlock = rwlp; 2790 zl->zl_znode = NULL; 2791 zl->zl_next = *zlpp; 2792 *zlpp = zl; 2793 2794 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2795 return (EINVAL); 2796 2797 if (*oidp == rootid) /* We've hit the top */ 2798 return (0); 2799 2800 if (rw == RW_READER) { /* i.e. not the first pass */ 2801 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2802 if (error) 2803 return (error); 2804 zl->zl_znode = zp; 2805 } 2806 oidp = &zp->z_phys->zp_parent; 2807 rwlp = &zp->z_parent_lock; 2808 rw = RW_READER; 2809 2810 } while (zp->z_id != sdzp->z_id); 2811 2812 return (0); 2813 } 2814 2815 /* 2816 * Move an entry from the provided source directory to the target 2817 * directory. Change the entry name as indicated. 2818 * 2819 * IN: sdvp - Source directory containing the "old entry". 2820 * snm - Old entry name. 2821 * tdvp - Target directory to contain the "new entry". 2822 * tnm - New entry name. 2823 * cr - credentials of caller. 2824 * ct - caller context 2825 * flags - case flags 2826 * 2827 * RETURN: 0 if success 2828 * error code if failure 2829 * 2830 * Timestamps: 2831 * sdvp,tdvp - ctime|mtime updated 2832 */ 2833 /*ARGSUSED*/ 2834 static int 2835 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 2836 caller_context_t *ct, int flags) 2837 { 2838 znode_t *tdzp, *szp, *tzp; 2839 znode_t *sdzp = VTOZ(sdvp); 2840 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2841 zilog_t *zilog; 2842 vnode_t *realvp; 2843 zfs_dirlock_t *sdl, *tdl; 2844 dmu_tx_t *tx; 2845 zfs_zlock_t *zl; 2846 int cmp, serr, terr; 2847 int error = 0; 2848 int zflg = 0; 2849 2850 ZFS_ENTER(zfsvfs); 2851 ZFS_VERIFY_ZP(sdzp); 2852 zilog = zfsvfs->z_log; 2853 2854 /* 2855 * Make sure we have the real vp for the target directory. 2856 */ 2857 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 2858 tdvp = realvp; 2859 2860 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2861 ZFS_EXIT(zfsvfs); 2862 return (EXDEV); 2863 } 2864 2865 tdzp = VTOZ(tdvp); 2866 ZFS_VERIFY_ZP(tdzp); 2867 if (zfsvfs->z_utf8 && u8_validate(tnm, 2868 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 2869 ZFS_EXIT(zfsvfs); 2870 return (EILSEQ); 2871 } 2872 2873 if (flags & FIGNORECASE) 2874 zflg |= ZCILOOK; 2875 2876 top: 2877 szp = NULL; 2878 tzp = NULL; 2879 zl = NULL; 2880 2881 /* 2882 * This is to prevent the creation of links into attribute space 2883 * by renaming a linked file into/outof an attribute directory. 2884 * See the comment in zfs_link() for why this is considered bad. 2885 */ 2886 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 2887 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 2888 ZFS_EXIT(zfsvfs); 2889 return (EINVAL); 2890 } 2891 2892 /* 2893 * Lock source and target directory entries. To prevent deadlock, 2894 * a lock ordering must be defined. We lock the directory with 2895 * the smallest object id first, or if it's a tie, the one with 2896 * the lexically first name. 2897 */ 2898 if (sdzp->z_id < tdzp->z_id) { 2899 cmp = -1; 2900 } else if (sdzp->z_id > tdzp->z_id) { 2901 cmp = 1; 2902 } else { 2903 /* 2904 * First compare the two name arguments without 2905 * considering any case folding. 2906 */ 2907 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 2908 2909 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 2910 ASSERT(error == 0 || !zfsvfs->z_utf8); 2911 if (cmp == 0) { 2912 /* 2913 * POSIX: "If the old argument and the new argument 2914 * both refer to links to the same existing file, 2915 * the rename() function shall return successfully 2916 * and perform no other action." 2917 */ 2918 ZFS_EXIT(zfsvfs); 2919 return (0); 2920 } 2921 /* 2922 * If the file system is case-folding, then we may 2923 * have some more checking to do. A case-folding file 2924 * system is either supporting mixed case sensitivity 2925 * access or is completely case-insensitive. Note 2926 * that the file system is always case preserving. 2927 * 2928 * In mixed sensitivity mode case sensitive behavior 2929 * is the default. FIGNORECASE must be used to 2930 * explicitly request case insensitive behavior. 2931 * 2932 * If the source and target names provided differ only 2933 * by case (e.g., a request to rename 'tim' to 'Tim'), 2934 * we will treat this as a special case in the 2935 * case-insensitive mode: as long as the source name 2936 * is an exact match, we will allow this to proceed as 2937 * a name-change request. 2938 */ 2939 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 2940 (zfsvfs->z_case == ZFS_CASE_MIXED && 2941 flags & FIGNORECASE)) && 2942 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 2943 &error) == 0) { 2944 /* 2945 * case preserving rename request, require exact 2946 * name matches 2947 */ 2948 zflg |= ZCIEXACT; 2949 zflg &= ~ZCILOOK; 2950 } 2951 } 2952 2953 if (cmp < 0) { 2954 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 2955 ZEXISTS | zflg, NULL, NULL); 2956 terr = zfs_dirent_lock(&tdl, 2957 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 2958 } else { 2959 terr = zfs_dirent_lock(&tdl, 2960 tdzp, tnm, &tzp, zflg, NULL, NULL); 2961 serr = zfs_dirent_lock(&sdl, 2962 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 2963 NULL, NULL); 2964 } 2965 2966 if (serr) { 2967 /* 2968 * Source entry invalid or not there. 2969 */ 2970 if (!terr) { 2971 zfs_dirent_unlock(tdl); 2972 if (tzp) 2973 VN_RELE(ZTOV(tzp)); 2974 } 2975 if (strcmp(snm, "..") == 0) 2976 serr = EINVAL; 2977 ZFS_EXIT(zfsvfs); 2978 return (serr); 2979 } 2980 if (terr) { 2981 zfs_dirent_unlock(sdl); 2982 VN_RELE(ZTOV(szp)); 2983 if (strcmp(tnm, "..") == 0) 2984 terr = EINVAL; 2985 ZFS_EXIT(zfsvfs); 2986 return (terr); 2987 } 2988 2989 /* 2990 * Must have write access at the source to remove the old entry 2991 * and write access at the target to create the new entry. 2992 * Note that if target and source are the same, this can be 2993 * done in a single check. 2994 */ 2995 2996 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 2997 goto out; 2998 2999 if (ZTOV(szp)->v_type == VDIR) { 3000 /* 3001 * Check to make sure rename is valid. 3002 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3003 */ 3004 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3005 goto out; 3006 } 3007 3008 /* 3009 * Does target exist? 3010 */ 3011 if (tzp) { 3012 /* 3013 * Source and target must be the same type. 3014 */ 3015 if (ZTOV(szp)->v_type == VDIR) { 3016 if (ZTOV(tzp)->v_type != VDIR) { 3017 error = ENOTDIR; 3018 goto out; 3019 } 3020 } else { 3021 if (ZTOV(tzp)->v_type == VDIR) { 3022 error = EISDIR; 3023 goto out; 3024 } 3025 } 3026 /* 3027 * POSIX dictates that when the source and target 3028 * entries refer to the same file object, rename 3029 * must do nothing and exit without error. 3030 */ 3031 if (szp->z_id == tzp->z_id) { 3032 error = 0; 3033 goto out; 3034 } 3035 } 3036 3037 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3038 if (tzp) 3039 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3040 3041 /* 3042 * notify the target directory if it is not the same 3043 * as source directory. 3044 */ 3045 if (tdvp != sdvp) { 3046 vnevent_rename_dest_dir(tdvp, ct); 3047 } 3048 3049 tx = dmu_tx_create(zfsvfs->z_os); 3050 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 3051 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 3052 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3053 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3054 if (sdzp != tdzp) 3055 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 3056 if (tzp) 3057 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 3058 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3059 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3060 if (error) { 3061 if (zl != NULL) 3062 zfs_rename_unlock(&zl); 3063 zfs_dirent_unlock(sdl); 3064 zfs_dirent_unlock(tdl); 3065 VN_RELE(ZTOV(szp)); 3066 if (tzp) 3067 VN_RELE(ZTOV(tzp)); 3068 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3069 dmu_tx_wait(tx); 3070 dmu_tx_abort(tx); 3071 goto top; 3072 } 3073 dmu_tx_abort(tx); 3074 ZFS_EXIT(zfsvfs); 3075 return (error); 3076 } 3077 3078 if (tzp) /* Attempt to remove the existing target */ 3079 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3080 3081 if (error == 0) { 3082 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3083 if (error == 0) { 3084 szp->z_phys->zp_flags |= ZFS_AV_MODIFIED; 3085 3086 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3087 ASSERT(error == 0); 3088 3089 zfs_log_rename(zilog, tx, 3090 TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), 3091 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 3092 } 3093 } 3094 3095 dmu_tx_commit(tx); 3096 out: 3097 if (zl != NULL) 3098 zfs_rename_unlock(&zl); 3099 3100 zfs_dirent_unlock(sdl); 3101 zfs_dirent_unlock(tdl); 3102 3103 VN_RELE(ZTOV(szp)); 3104 if (tzp) 3105 VN_RELE(ZTOV(tzp)); 3106 3107 ZFS_EXIT(zfsvfs); 3108 return (error); 3109 } 3110 3111 /* 3112 * Insert the indicated symbolic reference entry into the directory. 3113 * 3114 * IN: dvp - Directory to contain new symbolic link. 3115 * link - Name for new symlink entry. 3116 * vap - Attributes of new entry. 3117 * target - Target path of new symlink. 3118 * cr - credentials of caller. 3119 * ct - caller context 3120 * flags - case flags 3121 * 3122 * RETURN: 0 if success 3123 * error code if failure 3124 * 3125 * Timestamps: 3126 * dvp - ctime|mtime updated 3127 */ 3128 /*ARGSUSED*/ 3129 static int 3130 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3131 caller_context_t *ct, int flags) 3132 { 3133 znode_t *zp, *dzp = VTOZ(dvp); 3134 zfs_dirlock_t *dl; 3135 dmu_tx_t *tx; 3136 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3137 zilog_t *zilog; 3138 int len = strlen(link); 3139 int error; 3140 int zflg = ZNEW; 3141 zfs_fuid_info_t *fuidp = NULL; 3142 3143 ASSERT(vap->va_type == VLNK); 3144 3145 ZFS_ENTER(zfsvfs); 3146 ZFS_VERIFY_ZP(dzp); 3147 zilog = zfsvfs->z_log; 3148 3149 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3150 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3151 ZFS_EXIT(zfsvfs); 3152 return (EILSEQ); 3153 } 3154 if (flags & FIGNORECASE) 3155 zflg |= ZCILOOK; 3156 top: 3157 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3158 ZFS_EXIT(zfsvfs); 3159 return (error); 3160 } 3161 3162 if (len > MAXPATHLEN) { 3163 ZFS_EXIT(zfsvfs); 3164 return (ENAMETOOLONG); 3165 } 3166 3167 /* 3168 * Attempt to lock directory; fail if entry already exists. 3169 */ 3170 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3171 if (error) { 3172 ZFS_EXIT(zfsvfs); 3173 return (error); 3174 } 3175 3176 tx = dmu_tx_create(zfsvfs->z_os); 3177 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3178 dmu_tx_hold_bonus(tx, dzp->z_id); 3179 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3180 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 3181 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 3182 if (zfsvfs->z_fuid_obj == 0) { 3183 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 3184 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3185 SPA_MAXBLOCKSIZE); 3186 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 3187 } else { 3188 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 3189 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 3190 SPA_MAXBLOCKSIZE); 3191 } 3192 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3193 if (error) { 3194 zfs_dirent_unlock(dl); 3195 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3196 dmu_tx_wait(tx); 3197 dmu_tx_abort(tx); 3198 goto top; 3199 } 3200 dmu_tx_abort(tx); 3201 ZFS_EXIT(zfsvfs); 3202 return (error); 3203 } 3204 3205 dmu_buf_will_dirty(dzp->z_dbuf, tx); 3206 3207 /* 3208 * Create a new object for the symlink. 3209 * Put the link content into bonus buffer if it will fit; 3210 * otherwise, store it just like any other file data. 3211 */ 3212 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 3213 zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, NULL, &fuidp); 3214 if (len != 0) 3215 bcopy(link, zp->z_phys + 1, len); 3216 } else { 3217 dmu_buf_t *dbp; 3218 3219 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, NULL, &fuidp); 3220 /* 3221 * Nothing can access the znode yet so no locking needed 3222 * for growing the znode's blocksize. 3223 */ 3224 zfs_grow_blocksize(zp, len, tx); 3225 3226 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, 3227 zp->z_id, 0, FTAG, &dbp)); 3228 dmu_buf_will_dirty(dbp, tx); 3229 3230 ASSERT3U(len, <=, dbp->db_size); 3231 bcopy(link, dbp->db_data, len); 3232 dmu_buf_rele(dbp, FTAG); 3233 } 3234 zp->z_phys->zp_size = len; 3235 3236 /* 3237 * Insert the new object into the directory. 3238 */ 3239 (void) zfs_link_create(dl, zp, tx, ZNEW); 3240 out: 3241 if (error == 0) { 3242 uint64_t txtype = TX_SYMLINK; 3243 if (flags & FIGNORECASE) 3244 txtype |= TX_CI; 3245 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3246 } 3247 if (fuidp) 3248 zfs_fuid_info_free(fuidp); 3249 3250 dmu_tx_commit(tx); 3251 3252 zfs_dirent_unlock(dl); 3253 3254 VN_RELE(ZTOV(zp)); 3255 3256 ZFS_EXIT(zfsvfs); 3257 return (error); 3258 } 3259 3260 /* 3261 * Return, in the buffer contained in the provided uio structure, 3262 * the symbolic path referred to by vp. 3263 * 3264 * IN: vp - vnode of symbolic link. 3265 * uoip - structure to contain the link path. 3266 * cr - credentials of caller. 3267 * ct - caller context 3268 * 3269 * OUT: uio - structure to contain the link path. 3270 * 3271 * RETURN: 0 if success 3272 * error code if failure 3273 * 3274 * Timestamps: 3275 * vp - atime updated 3276 */ 3277 /* ARGSUSED */ 3278 static int 3279 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3280 { 3281 znode_t *zp = VTOZ(vp); 3282 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3283 size_t bufsz; 3284 int error; 3285 3286 ZFS_ENTER(zfsvfs); 3287 ZFS_VERIFY_ZP(zp); 3288 3289 bufsz = (size_t)zp->z_phys->zp_size; 3290 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 3291 error = uiomove(zp->z_phys + 1, 3292 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3293 } else { 3294 dmu_buf_t *dbp; 3295 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 3296 if (error) { 3297 ZFS_EXIT(zfsvfs); 3298 return (error); 3299 } 3300 error = uiomove(dbp->db_data, 3301 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3302 dmu_buf_rele(dbp, FTAG); 3303 } 3304 3305 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3306 ZFS_EXIT(zfsvfs); 3307 return (error); 3308 } 3309 3310 /* 3311 * Insert a new entry into directory tdvp referencing svp. 3312 * 3313 * IN: tdvp - Directory to contain new entry. 3314 * svp - vnode of new entry. 3315 * name - name of new entry. 3316 * cr - credentials of caller. 3317 * ct - caller context 3318 * 3319 * RETURN: 0 if success 3320 * error code if failure 3321 * 3322 * Timestamps: 3323 * tdvp - ctime|mtime updated 3324 * svp - ctime updated 3325 */ 3326 /* ARGSUSED */ 3327 static int 3328 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3329 caller_context_t *ct, int flags) 3330 { 3331 znode_t *dzp = VTOZ(tdvp); 3332 znode_t *tzp, *szp; 3333 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3334 zilog_t *zilog; 3335 zfs_dirlock_t *dl; 3336 dmu_tx_t *tx; 3337 vnode_t *realvp; 3338 int error; 3339 int zf = ZNEW; 3340 uid_t owner; 3341 3342 ASSERT(tdvp->v_type == VDIR); 3343 3344 ZFS_ENTER(zfsvfs); 3345 ZFS_VERIFY_ZP(dzp); 3346 zilog = zfsvfs->z_log; 3347 3348 if (VOP_REALVP(svp, &realvp, ct) == 0) 3349 svp = realvp; 3350 3351 if (svp->v_vfsp != tdvp->v_vfsp) { 3352 ZFS_EXIT(zfsvfs); 3353 return (EXDEV); 3354 } 3355 szp = VTOZ(svp); 3356 ZFS_VERIFY_ZP(szp); 3357 3358 if (zfsvfs->z_utf8 && u8_validate(name, 3359 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3360 ZFS_EXIT(zfsvfs); 3361 return (EILSEQ); 3362 } 3363 if (flags & FIGNORECASE) 3364 zf |= ZCILOOK; 3365 3366 top: 3367 /* 3368 * We do not support links between attributes and non-attributes 3369 * because of the potential security risk of creating links 3370 * into "normal" file space in order to circumvent restrictions 3371 * imposed in attribute space. 3372 */ 3373 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 3374 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 3375 ZFS_EXIT(zfsvfs); 3376 return (EINVAL); 3377 } 3378 3379 /* 3380 * POSIX dictates that we return EPERM here. 3381 * Better choices include ENOTSUP or EISDIR. 3382 */ 3383 if (svp->v_type == VDIR) { 3384 ZFS_EXIT(zfsvfs); 3385 return (EPERM); 3386 } 3387 3388 zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, ZFS_OWNER, &owner); 3389 if (owner != crgetuid(cr) && 3390 secpolicy_basic_link(cr) != 0) { 3391 ZFS_EXIT(zfsvfs); 3392 return (EPERM); 3393 } 3394 3395 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3396 ZFS_EXIT(zfsvfs); 3397 return (error); 3398 } 3399 3400 /* 3401 * Attempt to lock directory; fail if entry already exists. 3402 */ 3403 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3404 if (error) { 3405 ZFS_EXIT(zfsvfs); 3406 return (error); 3407 } 3408 3409 tx = dmu_tx_create(zfsvfs->z_os); 3410 dmu_tx_hold_bonus(tx, szp->z_id); 3411 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3412 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3413 if (error) { 3414 zfs_dirent_unlock(dl); 3415 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3416 dmu_tx_wait(tx); 3417 dmu_tx_abort(tx); 3418 goto top; 3419 } 3420 dmu_tx_abort(tx); 3421 ZFS_EXIT(zfsvfs); 3422 return (error); 3423 } 3424 3425 error = zfs_link_create(dl, szp, tx, 0); 3426 3427 if (error == 0) { 3428 uint64_t txtype = TX_LINK; 3429 if (flags & FIGNORECASE) 3430 txtype |= TX_CI; 3431 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3432 } 3433 3434 dmu_tx_commit(tx); 3435 3436 zfs_dirent_unlock(dl); 3437 3438 if (error == 0) { 3439 vnevent_link(svp, ct); 3440 } 3441 3442 ZFS_EXIT(zfsvfs); 3443 return (error); 3444 } 3445 3446 /* 3447 * zfs_null_putapage() is used when the file system has been force 3448 * unmounted. It just drops the pages. 3449 */ 3450 /* ARGSUSED */ 3451 static int 3452 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3453 size_t *lenp, int flags, cred_t *cr) 3454 { 3455 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3456 return (0); 3457 } 3458 3459 /* 3460 * Push a page out to disk, klustering if possible. 3461 * 3462 * IN: vp - file to push page to. 3463 * pp - page to push. 3464 * flags - additional flags. 3465 * cr - credentials of caller. 3466 * 3467 * OUT: offp - start of range pushed. 3468 * lenp - len of range pushed. 3469 * 3470 * RETURN: 0 if success 3471 * error code if failure 3472 * 3473 * NOTE: callers must have locked the page to be pushed. On 3474 * exit, the page (and all other pages in the kluster) must be 3475 * unlocked. 3476 */ 3477 /* ARGSUSED */ 3478 static int 3479 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3480 size_t *lenp, int flags, cred_t *cr) 3481 { 3482 znode_t *zp = VTOZ(vp); 3483 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3484 zilog_t *zilog = zfsvfs->z_log; 3485 dmu_tx_t *tx; 3486 rl_t *rl; 3487 u_offset_t off, koff; 3488 size_t len, klen; 3489 uint64_t filesz; 3490 int err; 3491 3492 filesz = zp->z_phys->zp_size; 3493 off = pp->p_offset; 3494 len = PAGESIZE; 3495 /* 3496 * If our blocksize is bigger than the page size, try to kluster 3497 * muiltiple pages so that we write a full block (thus avoiding 3498 * a read-modify-write). 3499 */ 3500 if (off < filesz && zp->z_blksz > PAGESIZE) { 3501 if (!ISP2(zp->z_blksz)) { 3502 /* Only one block in the file. */ 3503 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3504 koff = 0; 3505 } else { 3506 klen = zp->z_blksz; 3507 koff = P2ALIGN(off, (u_offset_t)klen); 3508 } 3509 ASSERT(koff <= filesz); 3510 if (koff + klen > filesz) 3511 klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE); 3512 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 3513 } 3514 ASSERT3U(btop(len), ==, btopr(len)); 3515 top: 3516 rl = zfs_range_lock(zp, off, len, RL_WRITER); 3517 /* 3518 * Can't push pages past end-of-file. 3519 */ 3520 filesz = zp->z_phys->zp_size; 3521 if (off >= filesz) { 3522 /* ignore all pages */ 3523 err = 0; 3524 goto out; 3525 } else if (off + len > filesz) { 3526 int npages = btopr(filesz - off); 3527 page_t *trunc; 3528 3529 page_list_break(&pp, &trunc, npages); 3530 /* ignore pages past end of file */ 3531 if (trunc) 3532 pvn_write_done(trunc, flags); 3533 len = filesz - off; 3534 } 3535 3536 tx = dmu_tx_create(zfsvfs->z_os); 3537 dmu_tx_hold_write(tx, zp->z_id, off, len); 3538 dmu_tx_hold_bonus(tx, zp->z_id); 3539 err = dmu_tx_assign(tx, zfsvfs->z_assign); 3540 if (err != 0) { 3541 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3542 zfs_range_unlock(rl); 3543 dmu_tx_wait(tx); 3544 dmu_tx_abort(tx); 3545 err = 0; 3546 goto top; 3547 } 3548 dmu_tx_abort(tx); 3549 goto out; 3550 } 3551 3552 if (zp->z_blksz <= PAGESIZE) { 3553 caddr_t va = ppmapin(pp, PROT_READ, (caddr_t)-1); 3554 ASSERT3U(len, <=, PAGESIZE); 3555 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 3556 ppmapout(va); 3557 } else { 3558 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 3559 } 3560 3561 if (err == 0) { 3562 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3563 zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0); 3564 dmu_tx_commit(tx); 3565 } 3566 3567 out: 3568 zfs_range_unlock(rl); 3569 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 3570 if (offp) 3571 *offp = off; 3572 if (lenp) 3573 *lenp = len; 3574 3575 return (err); 3576 } 3577 3578 /* 3579 * Copy the portion of the file indicated from pages into the file. 3580 * The pages are stored in a page list attached to the files vnode. 3581 * 3582 * IN: vp - vnode of file to push page data to. 3583 * off - position in file to put data. 3584 * len - amount of data to write. 3585 * flags - flags to control the operation. 3586 * cr - credentials of caller. 3587 * ct - caller context. 3588 * 3589 * RETURN: 0 if success 3590 * error code if failure 3591 * 3592 * Timestamps: 3593 * vp - ctime|mtime updated 3594 */ 3595 /*ARGSUSED*/ 3596 static int 3597 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 3598 caller_context_t *ct) 3599 { 3600 znode_t *zp = VTOZ(vp); 3601 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3602 page_t *pp; 3603 size_t io_len; 3604 u_offset_t io_off; 3605 uint64_t filesz; 3606 int error = 0; 3607 3608 ZFS_ENTER(zfsvfs); 3609 ZFS_VERIFY_ZP(zp); 3610 3611 if (len == 0) { 3612 /* 3613 * Search the entire vp list for pages >= off. 3614 */ 3615 error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage, 3616 flags, cr); 3617 goto out; 3618 } 3619 3620 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3621 if (off > filesz) { 3622 /* past end of file */ 3623 ZFS_EXIT(zfsvfs); 3624 return (0); 3625 } 3626 3627 len = MIN(len, filesz - off); 3628 3629 for (io_off = off; io_off < off + len; io_off += io_len) { 3630 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 3631 pp = page_lookup(vp, io_off, 3632 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 3633 } else { 3634 pp = page_lookup_nowait(vp, io_off, 3635 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 3636 } 3637 3638 if (pp != NULL && pvn_getdirty(pp, flags)) { 3639 int err; 3640 3641 /* 3642 * Found a dirty page to push 3643 */ 3644 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 3645 if (err) 3646 error = err; 3647 } else { 3648 io_len = PAGESIZE; 3649 } 3650 } 3651 out: 3652 if ((flags & B_ASYNC) == 0) 3653 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 3654 ZFS_EXIT(zfsvfs); 3655 return (error); 3656 } 3657 3658 /*ARGSUSED*/ 3659 void 3660 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 3661 { 3662 znode_t *zp = VTOZ(vp); 3663 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3664 int error; 3665 3666 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 3667 if (zp->z_dbuf == NULL) { 3668 /* 3669 * The fs has been unmounted, or we did a 3670 * suspend/resume and this file no longer exists. 3671 */ 3672 if (vn_has_cached_data(vp)) { 3673 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 3674 B_INVAL, cr); 3675 } 3676 3677 mutex_enter(&zp->z_lock); 3678 vp->v_count = 0; /* count arrives as 1 */ 3679 mutex_exit(&zp->z_lock); 3680 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3681 zfs_znode_free(zp); 3682 return; 3683 } 3684 3685 /* 3686 * Attempt to push any data in the page cache. If this fails 3687 * we will get kicked out later in zfs_zinactive(). 3688 */ 3689 if (vn_has_cached_data(vp)) { 3690 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 3691 cr); 3692 } 3693 3694 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 3695 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 3696 3697 dmu_tx_hold_bonus(tx, zp->z_id); 3698 error = dmu_tx_assign(tx, TXG_WAIT); 3699 if (error) { 3700 dmu_tx_abort(tx); 3701 } else { 3702 dmu_buf_will_dirty(zp->z_dbuf, tx); 3703 mutex_enter(&zp->z_lock); 3704 zp->z_atime_dirty = 0; 3705 mutex_exit(&zp->z_lock); 3706 dmu_tx_commit(tx); 3707 } 3708 } 3709 3710 zfs_zinactive(zp); 3711 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3712 } 3713 3714 /* 3715 * Bounds-check the seek operation. 3716 * 3717 * IN: vp - vnode seeking within 3718 * ooff - old file offset 3719 * noffp - pointer to new file offset 3720 * ct - caller context 3721 * 3722 * RETURN: 0 if success 3723 * EINVAL if new offset invalid 3724 */ 3725 /* ARGSUSED */ 3726 static int 3727 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 3728 caller_context_t *ct) 3729 { 3730 if (vp->v_type == VDIR) 3731 return (0); 3732 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 3733 } 3734 3735 /* 3736 * Pre-filter the generic locking function to trap attempts to place 3737 * a mandatory lock on a memory mapped file. 3738 */ 3739 static int 3740 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 3741 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 3742 { 3743 znode_t *zp = VTOZ(vp); 3744 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3745 int error; 3746 3747 ZFS_ENTER(zfsvfs); 3748 ZFS_VERIFY_ZP(zp); 3749 3750 /* 3751 * We are following the UFS semantics with respect to mapcnt 3752 * here: If we see that the file is mapped already, then we will 3753 * return an error, but we don't worry about races between this 3754 * function and zfs_map(). 3755 */ 3756 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3757 ZFS_EXIT(zfsvfs); 3758 return (EAGAIN); 3759 } 3760 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct); 3761 ZFS_EXIT(zfsvfs); 3762 return (error); 3763 } 3764 3765 /* 3766 * If we can't find a page in the cache, we will create a new page 3767 * and fill it with file data. For efficiency, we may try to fill 3768 * multiple pages at once (klustering). 3769 */ 3770 static int 3771 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3772 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3773 { 3774 znode_t *zp = VTOZ(vp); 3775 page_t *pp, *cur_pp; 3776 objset_t *os = zp->z_zfsvfs->z_os; 3777 caddr_t va; 3778 u_offset_t io_off, total; 3779 uint64_t oid = zp->z_id; 3780 size_t io_len; 3781 uint64_t filesz; 3782 int err; 3783 3784 /* 3785 * If we are only asking for a single page don't bother klustering. 3786 */ 3787 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3788 if (off >= filesz) 3789 return (EFAULT); 3790 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 3791 io_off = off; 3792 io_len = PAGESIZE; 3793 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 3794 } else { 3795 /* 3796 * Try to fill a kluster of pages (a blocks worth). 3797 */ 3798 size_t klen; 3799 u_offset_t koff; 3800 3801 if (!ISP2(zp->z_blksz)) { 3802 /* Only one block in the file. */ 3803 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3804 koff = 0; 3805 } else { 3806 /* 3807 * It would be ideal to align our offset to the 3808 * blocksize but doing so has resulted in some 3809 * strange application crashes. For now, we 3810 * leave the offset as is and only adjust the 3811 * length if we are off the end of the file. 3812 */ 3813 koff = off; 3814 klen = plsz; 3815 } 3816 ASSERT(koff <= filesz); 3817 if (koff + klen > filesz) 3818 klen = P2ROUNDUP(filesz, (uint64_t)PAGESIZE) - koff; 3819 ASSERT3U(off, >=, koff); 3820 ASSERT3U(off, <, koff + klen); 3821 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3822 &io_len, koff, klen, 0); 3823 } 3824 if (pp == NULL) { 3825 /* 3826 * Some other thread entered the page before us. 3827 * Return to zfs_getpage to retry the lookup. 3828 */ 3829 *pl = NULL; 3830 return (0); 3831 } 3832 3833 /* 3834 * Fill the pages in the kluster. 3835 */ 3836 cur_pp = pp; 3837 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3838 ASSERT3U(io_off, ==, cur_pp->p_offset); 3839 va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 3840 err = dmu_read(os, oid, io_off, PAGESIZE, va); 3841 ppmapout(va); 3842 if (err) { 3843 /* On error, toss the entire kluster */ 3844 pvn_read_done(pp, B_ERROR); 3845 return (err); 3846 } 3847 cur_pp = cur_pp->p_next; 3848 } 3849 out: 3850 /* 3851 * Fill in the page list array from the kluster. If 3852 * there are too many pages in the kluster, return 3853 * as many pages as possible starting from the desired 3854 * offset `off'. 3855 * NOTE: the page list will always be null terminated. 3856 */ 3857 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3858 3859 return (0); 3860 } 3861 3862 /* 3863 * Return pointers to the pages for the file region [off, off + len] 3864 * in the pl array. If plsz is greater than len, this function may 3865 * also return page pointers from before or after the specified 3866 * region (i.e. some region [off', off' + plsz]). These additional 3867 * pages are only returned if they are already in the cache, or were 3868 * created as part of a klustered read. 3869 * 3870 * IN: vp - vnode of file to get data from. 3871 * off - position in file to get data from. 3872 * len - amount of data to retrieve. 3873 * plsz - length of provided page list. 3874 * seg - segment to obtain pages for. 3875 * addr - virtual address of fault. 3876 * rw - mode of created pages. 3877 * cr - credentials of caller. 3878 * ct - caller context. 3879 * 3880 * OUT: protp - protection mode of created pages. 3881 * pl - list of pages created. 3882 * 3883 * RETURN: 0 if success 3884 * error code if failure 3885 * 3886 * Timestamps: 3887 * vp - atime updated 3888 */ 3889 /* ARGSUSED */ 3890 static int 3891 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3892 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3893 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 3894 { 3895 znode_t *zp = VTOZ(vp); 3896 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3897 page_t *pp, **pl0 = pl; 3898 int need_unlock = 0, err = 0; 3899 offset_t orig_off; 3900 3901 ZFS_ENTER(zfsvfs); 3902 ZFS_VERIFY_ZP(zp); 3903 3904 if (protp) 3905 *protp = PROT_ALL; 3906 3907 /* no faultahead (for now) */ 3908 if (pl == NULL) { 3909 ZFS_EXIT(zfsvfs); 3910 return (0); 3911 } 3912 3913 /* can't fault past EOF */ 3914 if (off >= zp->z_phys->zp_size) { 3915 ZFS_EXIT(zfsvfs); 3916 return (EFAULT); 3917 } 3918 orig_off = off; 3919 3920 /* 3921 * If we already own the lock, then we must be page faulting 3922 * in the middle of a write to this file (i.e., we are writing 3923 * to this file using data from a mapped region of the file). 3924 */ 3925 if (rw_owner(&zp->z_map_lock) != curthread) { 3926 rw_enter(&zp->z_map_lock, RW_WRITER); 3927 need_unlock = TRUE; 3928 } 3929 3930 /* 3931 * Loop through the requested range [off, off + len] looking 3932 * for pages. If we don't find a page, we will need to create 3933 * a new page and fill it with data from the file. 3934 */ 3935 while (len > 0) { 3936 if (plsz < PAGESIZE) 3937 break; 3938 if (pp = page_lookup(vp, off, SE_SHARED)) { 3939 *pl++ = pp; 3940 off += PAGESIZE; 3941 addr += PAGESIZE; 3942 len -= PAGESIZE; 3943 plsz -= PAGESIZE; 3944 } else { 3945 err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw); 3946 if (err) 3947 goto out; 3948 /* 3949 * klustering may have changed our region 3950 * to be block aligned. 3951 */ 3952 if (((pp = *pl) != 0) && (off != pp->p_offset)) { 3953 int delta = off - pp->p_offset; 3954 len += delta; 3955 off -= delta; 3956 addr -= delta; 3957 } 3958 while (*pl) { 3959 pl++; 3960 off += PAGESIZE; 3961 addr += PAGESIZE; 3962 plsz -= PAGESIZE; 3963 if (len > PAGESIZE) 3964 len -= PAGESIZE; 3965 else 3966 len = 0; 3967 } 3968 } 3969 } 3970 3971 /* 3972 * Fill out the page array with any pages already in the cache. 3973 */ 3974 while (plsz > 0) { 3975 pp = page_lookup_nowait(vp, off, SE_SHARED); 3976 if (pp == NULL) 3977 break; 3978 *pl++ = pp; 3979 off += PAGESIZE; 3980 plsz -= PAGESIZE; 3981 } 3982 3983 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3984 out: 3985 /* 3986 * We can't grab the range lock for the page as reader which would 3987 * stop truncation as this leads to deadlock. So we need to recheck 3988 * the file size. 3989 */ 3990 if (orig_off >= zp->z_phys->zp_size) 3991 err = EFAULT; 3992 if (err) { 3993 /* 3994 * Release any pages we have previously locked. 3995 */ 3996 while (pl > pl0) 3997 page_unlock(*--pl); 3998 } 3999 4000 *pl = NULL; 4001 4002 if (need_unlock) 4003 rw_exit(&zp->z_map_lock); 4004 4005 ZFS_EXIT(zfsvfs); 4006 return (err); 4007 } 4008 4009 /* 4010 * Request a memory map for a section of a file. This code interacts 4011 * with common code and the VM system as follows: 4012 * 4013 * common code calls mmap(), which ends up in smmap_common() 4014 * 4015 * this calls VOP_MAP(), which takes you into (say) zfs 4016 * 4017 * zfs_map() calls as_map(), passing segvn_create() as the callback 4018 * 4019 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4020 * 4021 * zfs_addmap() updates z_mapcnt 4022 */ 4023 /*ARGSUSED*/ 4024 static int 4025 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4026 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4027 caller_context_t *ct) 4028 { 4029 znode_t *zp = VTOZ(vp); 4030 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4031 segvn_crargs_t vn_a; 4032 int error; 4033 4034 if ((prot & PROT_WRITE) && 4035 (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY | 4036 ZFS_APPENDONLY))) 4037 return (EPERM); 4038 4039 ZFS_ENTER(zfsvfs); 4040 ZFS_VERIFY_ZP(zp); 4041 4042 if (vp->v_flag & VNOMAP) { 4043 ZFS_EXIT(zfsvfs); 4044 return (ENOSYS); 4045 } 4046 4047 if (off < 0 || len > MAXOFFSET_T - off) { 4048 ZFS_EXIT(zfsvfs); 4049 return (ENXIO); 4050 } 4051 4052 if (vp->v_type != VREG) { 4053 ZFS_EXIT(zfsvfs); 4054 return (ENODEV); 4055 } 4056 4057 /* 4058 * If file is locked, disallow mapping. 4059 */ 4060 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 4061 ZFS_EXIT(zfsvfs); 4062 return (EAGAIN); 4063 } 4064 4065 as_rangelock(as); 4066 if ((flags & MAP_FIXED) == 0) { 4067 map_addr(addrp, len, off, 1, flags); 4068 if (*addrp == NULL) { 4069 as_rangeunlock(as); 4070 ZFS_EXIT(zfsvfs); 4071 return (ENOMEM); 4072 } 4073 } else { 4074 /* 4075 * User specified address - blow away any previous mappings 4076 */ 4077 (void) as_unmap(as, *addrp, len); 4078 } 4079 4080 vn_a.vp = vp; 4081 vn_a.offset = (u_offset_t)off; 4082 vn_a.type = flags & MAP_TYPE; 4083 vn_a.prot = prot; 4084 vn_a.maxprot = maxprot; 4085 vn_a.cred = cr; 4086 vn_a.amp = NULL; 4087 vn_a.flags = flags & ~MAP_TYPE; 4088 vn_a.szc = 0; 4089 vn_a.lgrp_mem_policy_flags = 0; 4090 4091 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4092 4093 as_rangeunlock(as); 4094 ZFS_EXIT(zfsvfs); 4095 return (error); 4096 } 4097 4098 /* ARGSUSED */ 4099 static int 4100 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4101 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4102 caller_context_t *ct) 4103 { 4104 uint64_t pages = btopr(len); 4105 4106 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4107 return (0); 4108 } 4109 4110 /* 4111 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4112 * more accurate mtime for the associated file. Since we don't have a way of 4113 * detecting when the data was actually modified, we have to resort to 4114 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4115 * last page is pushed. The problem occurs when the msync() call is omitted, 4116 * which by far the most common case: 4117 * 4118 * open() 4119 * mmap() 4120 * <modify memory> 4121 * munmap() 4122 * close() 4123 * <time lapse> 4124 * putpage() via fsflush 4125 * 4126 * If we wait until fsflush to come along, we can have a modification time that 4127 * is some arbitrary point in the future. In order to prevent this in the 4128 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4129 * torn down. 4130 */ 4131 /* ARGSUSED */ 4132 static int 4133 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4134 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4135 caller_context_t *ct) 4136 { 4137 uint64_t pages = btopr(len); 4138 4139 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4140 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4141 4142 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4143 vn_has_cached_data(vp)) 4144 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4145 4146 return (0); 4147 } 4148 4149 /* 4150 * Free or allocate space in a file. Currently, this function only 4151 * supports the `F_FREESP' command. However, this command is somewhat 4152 * misnamed, as its functionality includes the ability to allocate as 4153 * well as free space. 4154 * 4155 * IN: vp - vnode of file to free data in. 4156 * cmd - action to take (only F_FREESP supported). 4157 * bfp - section of file to free/alloc. 4158 * flag - current file open mode flags. 4159 * offset - current file offset. 4160 * cr - credentials of caller [UNUSED]. 4161 * ct - caller context. 4162 * 4163 * RETURN: 0 if success 4164 * error code if failure 4165 * 4166 * Timestamps: 4167 * vp - ctime|mtime updated 4168 */ 4169 /* ARGSUSED */ 4170 static int 4171 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4172 offset_t offset, cred_t *cr, caller_context_t *ct) 4173 { 4174 znode_t *zp = VTOZ(vp); 4175 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4176 uint64_t off, len; 4177 int error; 4178 4179 ZFS_ENTER(zfsvfs); 4180 ZFS_VERIFY_ZP(zp); 4181 4182 top: 4183 if (cmd != F_FREESP) { 4184 ZFS_EXIT(zfsvfs); 4185 return (EINVAL); 4186 } 4187 4188 if (error = convoff(vp, bfp, 0, offset)) { 4189 ZFS_EXIT(zfsvfs); 4190 return (error); 4191 } 4192 4193 if (bfp->l_len < 0) { 4194 ZFS_EXIT(zfsvfs); 4195 return (EINVAL); 4196 } 4197 4198 off = bfp->l_start; 4199 len = bfp->l_len; /* 0 means from off to end of file */ 4200 4201 do { 4202 error = zfs_freesp(zp, off, len, flag, TRUE); 4203 /* NB: we already did dmu_tx_wait() if necessary */ 4204 } while (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 4205 4206 ZFS_EXIT(zfsvfs); 4207 return (error); 4208 } 4209 4210 /*ARGSUSED*/ 4211 static int 4212 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4213 { 4214 znode_t *zp = VTOZ(vp); 4215 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4216 uint32_t gen; 4217 uint64_t object = zp->z_id; 4218 zfid_short_t *zfid; 4219 int size, i; 4220 4221 ZFS_ENTER(zfsvfs); 4222 ZFS_VERIFY_ZP(zp); 4223 gen = (uint32_t)zp->z_gen; 4224 4225 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4226 if (fidp->fid_len < size) { 4227 fidp->fid_len = size; 4228 ZFS_EXIT(zfsvfs); 4229 return (ENOSPC); 4230 } 4231 4232 zfid = (zfid_short_t *)fidp; 4233 4234 zfid->zf_len = size; 4235 4236 for (i = 0; i < sizeof (zfid->zf_object); i++) 4237 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4238 4239 /* Must have a non-zero generation number to distinguish from .zfs */ 4240 if (gen == 0) 4241 gen = 1; 4242 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4243 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4244 4245 if (size == LONG_FID_LEN) { 4246 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4247 zfid_long_t *zlfid; 4248 4249 zlfid = (zfid_long_t *)fidp; 4250 4251 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4252 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4253 4254 /* XXX - this should be the generation number for the objset */ 4255 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4256 zlfid->zf_setgen[i] = 0; 4257 } 4258 4259 ZFS_EXIT(zfsvfs); 4260 return (0); 4261 } 4262 4263 static int 4264 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4265 caller_context_t *ct) 4266 { 4267 znode_t *zp, *xzp; 4268 zfsvfs_t *zfsvfs; 4269 zfs_dirlock_t *dl; 4270 int error; 4271 4272 switch (cmd) { 4273 case _PC_LINK_MAX: 4274 *valp = ULONG_MAX; 4275 return (0); 4276 4277 case _PC_FILESIZEBITS: 4278 *valp = 64; 4279 return (0); 4280 4281 case _PC_XATTR_EXISTS: 4282 zp = VTOZ(vp); 4283 zfsvfs = zp->z_zfsvfs; 4284 ZFS_ENTER(zfsvfs); 4285 ZFS_VERIFY_ZP(zp); 4286 *valp = 0; 4287 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4288 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4289 if (error == 0) { 4290 zfs_dirent_unlock(dl); 4291 if (!zfs_dirempty(xzp)) 4292 *valp = 1; 4293 VN_RELE(ZTOV(xzp)); 4294 } else if (error == ENOENT) { 4295 /* 4296 * If there aren't extended attributes, it's the 4297 * same as having zero of them. 4298 */ 4299 error = 0; 4300 } 4301 ZFS_EXIT(zfsvfs); 4302 return (error); 4303 4304 case _PC_SATTR_ENABLED: 4305 case _PC_SATTR_EXISTS: 4306 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) && 4307 (vp->v_type == VREG || vp->v_type == VDIR); 4308 return (0); 4309 4310 case _PC_ACL_ENABLED: 4311 *valp = _ACL_ACE_ENABLED; 4312 return (0); 4313 4314 case _PC_MIN_HOLE_SIZE: 4315 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4316 return (0); 4317 4318 default: 4319 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4320 } 4321 } 4322 4323 /*ARGSUSED*/ 4324 static int 4325 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4326 caller_context_t *ct) 4327 { 4328 znode_t *zp = VTOZ(vp); 4329 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4330 int error; 4331 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4332 4333 ZFS_ENTER(zfsvfs); 4334 ZFS_VERIFY_ZP(zp); 4335 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4336 ZFS_EXIT(zfsvfs); 4337 4338 return (error); 4339 } 4340 4341 /*ARGSUSED*/ 4342 static int 4343 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4344 caller_context_t *ct) 4345 { 4346 znode_t *zp = VTOZ(vp); 4347 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4348 int error; 4349 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4350 4351 ZFS_ENTER(zfsvfs); 4352 ZFS_VERIFY_ZP(zp); 4353 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4354 ZFS_EXIT(zfsvfs); 4355 return (error); 4356 } 4357 4358 /* 4359 * Predeclare these here so that the compiler assumes that 4360 * this is an "old style" function declaration that does 4361 * not include arguments => we won't get type mismatch errors 4362 * in the initializations that follow. 4363 */ 4364 static int zfs_inval(); 4365 static int zfs_isdir(); 4366 4367 static int 4368 zfs_inval() 4369 { 4370 return (EINVAL); 4371 } 4372 4373 static int 4374 zfs_isdir() 4375 { 4376 return (EISDIR); 4377 } 4378 /* 4379 * Directory vnode operations template 4380 */ 4381 vnodeops_t *zfs_dvnodeops; 4382 const fs_operation_def_t zfs_dvnodeops_template[] = { 4383 VOPNAME_OPEN, { .vop_open = zfs_open }, 4384 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4385 VOPNAME_READ, { .error = zfs_isdir }, 4386 VOPNAME_WRITE, { .error = zfs_isdir }, 4387 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4388 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4389 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4390 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4391 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4392 VOPNAME_CREATE, { .vop_create = zfs_create }, 4393 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4394 VOPNAME_LINK, { .vop_link = zfs_link }, 4395 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4396 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 4397 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4398 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4399 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 4400 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4401 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4402 VOPNAME_FID, { .vop_fid = zfs_fid }, 4403 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4404 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4405 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4406 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4407 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4408 NULL, NULL 4409 }; 4410 4411 /* 4412 * Regular file vnode operations template 4413 */ 4414 vnodeops_t *zfs_fvnodeops; 4415 const fs_operation_def_t zfs_fvnodeops_template[] = { 4416 VOPNAME_OPEN, { .vop_open = zfs_open }, 4417 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4418 VOPNAME_READ, { .vop_read = zfs_read }, 4419 VOPNAME_WRITE, { .vop_write = zfs_write }, 4420 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4421 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4422 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4423 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4424 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4425 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4426 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4427 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4428 VOPNAME_FID, { .vop_fid = zfs_fid }, 4429 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4430 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 4431 VOPNAME_SPACE, { .vop_space = zfs_space }, 4432 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 4433 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 4434 VOPNAME_MAP, { .vop_map = zfs_map }, 4435 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 4436 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 4437 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4438 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4439 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4440 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4441 NULL, NULL 4442 }; 4443 4444 /* 4445 * Symbolic link vnode operations template 4446 */ 4447 vnodeops_t *zfs_symvnodeops; 4448 const fs_operation_def_t zfs_symvnodeops_template[] = { 4449 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4450 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4451 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4452 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4453 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 4454 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4455 VOPNAME_FID, { .vop_fid = zfs_fid }, 4456 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4457 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4458 NULL, NULL 4459 }; 4460 4461 /* 4462 * Extended attribute directory vnode operations template 4463 * This template is identical to the directory vnodes 4464 * operation template except for restricted operations: 4465 * VOP_MKDIR() 4466 * VOP_SYMLINK() 4467 * Note that there are other restrictions embedded in: 4468 * zfs_create() - restrict type to VREG 4469 * zfs_link() - no links into/out of attribute space 4470 * zfs_rename() - no moves into/out of attribute space 4471 */ 4472 vnodeops_t *zfs_xdvnodeops; 4473 const fs_operation_def_t zfs_xdvnodeops_template[] = { 4474 VOPNAME_OPEN, { .vop_open = zfs_open }, 4475 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4476 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4477 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4478 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4479 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4480 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4481 VOPNAME_CREATE, { .vop_create = zfs_create }, 4482 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4483 VOPNAME_LINK, { .vop_link = zfs_link }, 4484 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4485 VOPNAME_MKDIR, { .error = zfs_inval }, 4486 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4487 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4488 VOPNAME_SYMLINK, { .error = zfs_inval }, 4489 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4490 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4491 VOPNAME_FID, { .vop_fid = zfs_fid }, 4492 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4493 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4494 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4495 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4496 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4497 NULL, NULL 4498 }; 4499 4500 /* 4501 * Error vnode operations template 4502 */ 4503 vnodeops_t *zfs_evnodeops; 4504 const fs_operation_def_t zfs_evnodeops_template[] = { 4505 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4506 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4507 NULL, NULL 4508 }; 4509