1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vnode.h> 36 #include <sys/file.h> 37 #include <sys/stat.h> 38 #include <sys/kmem.h> 39 #include <sys/taskq.h> 40 #include <sys/uio.h> 41 #include <sys/vmsystm.h> 42 #include <sys/atomic.h> 43 #include <sys/vm.h> 44 #include <vm/seg_vn.h> 45 #include <vm/pvn.h> 46 #include <vm/as.h> 47 #include <sys/mman.h> 48 #include <sys/pathname.h> 49 #include <sys/cmn_err.h> 50 #include <sys/errno.h> 51 #include <sys/unistd.h> 52 #include <sys/zfs_vfsops.h> 53 #include <sys/zfs_dir.h> 54 #include <sys/zfs_acl.h> 55 #include <sys/zfs_ioctl.h> 56 #include <sys/fs/zfs.h> 57 #include <sys/dmu.h> 58 #include <sys/spa.h> 59 #include <sys/txg.h> 60 #include <sys/dbuf.h> 61 #include <sys/zap.h> 62 #include <sys/dirent.h> 63 #include <sys/policy.h> 64 #include <sys/sunddi.h> 65 #include <sys/filio.h> 66 #include "fs/fs_subr.h" 67 #include <sys/zfs_ctldir.h> 68 #include <sys/dnlc.h> 69 #include <sys/zfs_rlock.h> 70 71 /* 72 * Programming rules. 73 * 74 * Each vnode op performs some logical unit of work. To do this, the ZPL must 75 * properly lock its in-core state, create a DMU transaction, do the work, 76 * record this work in the intent log (ZIL), commit the DMU transaction, 77 * and wait the the intent log to commit if it's is a synchronous operation. 78 * Morover, the vnode ops must work in both normal and log replay context. 79 * The ordering of events is important to avoid deadlocks and references 80 * to freed memory. The example below illustrates the following Big Rules: 81 * 82 * (1) A check must be made in each zfs thread for a mounted file system. 83 * This is done avoiding races using ZFS_ENTER(zfsvfs). 84 * A ZFS_EXIT(zfsvfs) is needed before all returns. 85 * 86 * (2) VN_RELE() should always be the last thing except for zil_commit() 87 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 88 * First, if it's the last reference, the vnode/znode 89 * can be freed, so the zp may point to freed memory. Second, the last 90 * reference will call zfs_zinactive(), which may induce a lot of work -- 91 * pushing cached pages (which acquires range locks) and syncing out 92 * cached atime changes. Third, zfs_zinactive() may require a new tx, 93 * which could deadlock the system if you were already holding one. 94 * 95 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 96 * as they can span dmu_tx_assign() calls. 97 * 98 * (4) Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign(). 99 * In normal operation, this will be TXG_NOWAIT. During ZIL replay, 100 * it will be a specific txg. Either way, dmu_tx_assign() never blocks. 101 * This is critical because we don't want to block while holding locks. 102 * Note, in particular, that if a lock is sometimes acquired before 103 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 104 * use a non-blocking assign can deadlock the system. The scenario: 105 * 106 * Thread A has grabbed a lock before calling dmu_tx_assign(). 107 * Thread B is in an already-assigned tx, and blocks for this lock. 108 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 109 * forever, because the previous txg can't quiesce until B's tx commits. 110 * 111 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 112 * then drop all locks, call dmu_tx_wait(), and try again. 113 * 114 * (5) If the operation succeeded, generate the intent log entry for it 115 * before dropping locks. This ensures that the ordering of events 116 * in the intent log matches the order in which they actually occurred. 117 * 118 * (6) At the end of each vnode op, the DMU tx must always commit, 119 * regardless of whether there were any errors. 120 * 121 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 122 * to ensure that synchronous semantics are provided when necessary. 123 * 124 * In general, this is how things should be ordered in each vnode op: 125 * 126 * ZFS_ENTER(zfsvfs); // exit if unmounted 127 * top: 128 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 129 * rw_enter(...); // grab any other locks you need 130 * tx = dmu_tx_create(...); // get DMU tx 131 * dmu_tx_hold_*(); // hold each object you might modify 132 * error = dmu_tx_assign(tx, zfsvfs->z_assign); // try to assign 133 * if (error) { 134 * rw_exit(...); // drop locks 135 * zfs_dirent_unlock(dl); // unlock directory entry 136 * VN_RELE(...); // release held vnodes 137 * if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 138 * dmu_tx_wait(tx); 139 * dmu_tx_abort(tx); 140 * goto top; 141 * } 142 * dmu_tx_abort(tx); // abort DMU tx 143 * ZFS_EXIT(zfsvfs); // finished in zfs 144 * return (error); // really out of space 145 * } 146 * error = do_real_work(); // do whatever this VOP does 147 * if (error == 0) 148 * zfs_log_*(...); // on success, make ZIL entry 149 * dmu_tx_commit(tx); // commit DMU tx -- error or not 150 * rw_exit(...); // drop locks 151 * zfs_dirent_unlock(dl); // unlock directory entry 152 * VN_RELE(...); // release held vnodes 153 * zil_commit(zilog, seq, foid); // synchronous when necessary 154 * ZFS_EXIT(zfsvfs); // finished in zfs 155 * return (error); // done, report error 156 */ 157 /* ARGSUSED */ 158 static int 159 zfs_open(vnode_t **vpp, int flag, cred_t *cr) 160 { 161 znode_t *zp = VTOZ(*vpp); 162 163 /* Keep a count of the synchronous opens in the znode */ 164 if (flag & (FSYNC | FDSYNC)) 165 atomic_inc_32(&zp->z_sync_cnt); 166 return (0); 167 } 168 169 /* ARGSUSED */ 170 static int 171 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 172 { 173 znode_t *zp = VTOZ(vp); 174 175 /* Decrement the synchronous opens in the znode */ 176 if (flag & (FSYNC | FDSYNC)) 177 atomic_dec_32(&zp->z_sync_cnt); 178 179 /* 180 * Clean up any locks held by this process on the vp. 181 */ 182 cleanlocks(vp, ddi_get_pid(), 0); 183 cleanshares(vp, ddi_get_pid()); 184 185 return (0); 186 } 187 188 /* 189 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 190 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 191 */ 192 static int 193 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 194 { 195 znode_t *zp = VTOZ(vp); 196 uint64_t noff = (uint64_t)*off; /* new offset */ 197 uint64_t file_sz; 198 int error; 199 boolean_t hole; 200 201 file_sz = zp->z_phys->zp_size; 202 if (noff >= file_sz) { 203 return (ENXIO); 204 } 205 206 if (cmd == _FIO_SEEK_HOLE) 207 hole = B_TRUE; 208 else 209 hole = B_FALSE; 210 211 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 212 213 /* end of file? */ 214 if ((error == ESRCH) || (noff > file_sz)) { 215 /* 216 * Handle the virtual hole at the end of file. 217 */ 218 if (hole) { 219 *off = file_sz; 220 return (0); 221 } 222 return (ENXIO); 223 } 224 225 if (noff < *off) 226 return (error); 227 *off = noff; 228 return (error); 229 } 230 231 /* ARGSUSED */ 232 static int 233 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 234 int *rvalp) 235 { 236 offset_t off; 237 int error; 238 zfsvfs_t *zfsvfs; 239 240 switch (com) { 241 case _FIOFFS: 242 return (zfs_sync(vp->v_vfsp, 0, cred)); 243 244 /* 245 * The following two ioctls are used by bfu. Faking out, 246 * necessary to avoid bfu errors. 247 */ 248 case _FIOGDIO: 249 case _FIOSDIO: 250 return (0); 251 252 case _FIO_SEEK_DATA: 253 case _FIO_SEEK_HOLE: 254 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 255 return (EFAULT); 256 257 zfsvfs = VTOZ(vp)->z_zfsvfs; 258 ZFS_ENTER(zfsvfs); 259 260 /* offset parameter is in/out */ 261 error = zfs_holey(vp, com, &off); 262 ZFS_EXIT(zfsvfs); 263 if (error) 264 return (error); 265 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 266 return (EFAULT); 267 return (0); 268 } 269 return (ENOTTY); 270 } 271 272 /* 273 * When a file is memory mapped, we must keep the IO data synchronized 274 * between the DMU cache and the memory mapped pages. What this means: 275 * 276 * On Write: If we find a memory mapped page, we write to *both* 277 * the page and the dmu buffer. 278 * 279 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 280 * the file is memory mapped. 281 */ 282 static int 283 mappedwrite(vnode_t *vp, uint64_t woff, int nbytes, uio_t *uio, dmu_tx_t *tx) 284 { 285 znode_t *zp = VTOZ(vp); 286 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 287 int64_t start, off; 288 int len = nbytes; 289 int error = 0; 290 291 start = uio->uio_loffset; 292 off = start & PAGEOFFSET; 293 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 294 page_t *pp; 295 uint64_t bytes = MIN(PAGESIZE - off, len); 296 297 /* 298 * We don't want a new page to "appear" in the middle of 299 * the file update (because it may not get the write 300 * update data), so we grab a lock to block 301 * zfs_getpage(). 302 */ 303 rw_enter(&zp->z_map_lock, RW_WRITER); 304 if (pp = page_lookup(vp, start, SE_SHARED)) { 305 caddr_t va; 306 307 rw_exit(&zp->z_map_lock); 308 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 309 error = uiomove(va+off, bytes, UIO_WRITE, uio); 310 if (error == 0) { 311 dmu_write(zfsvfs->z_os, zp->z_id, 312 woff, bytes, va+off, tx); 313 } 314 ppmapout(va); 315 page_unlock(pp); 316 } else { 317 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 318 woff, bytes, uio, tx); 319 rw_exit(&zp->z_map_lock); 320 } 321 len -= bytes; 322 woff += bytes; 323 off = 0; 324 if (error) 325 break; 326 } 327 return (error); 328 } 329 330 /* 331 * When a file is memory mapped, we must keep the IO data synchronized 332 * between the DMU cache and the memory mapped pages. What this means: 333 * 334 * On Read: We "read" preferentially from memory mapped pages, 335 * else we default from the dmu buffer. 336 * 337 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 338 * the file is memory mapped. 339 */ 340 static int 341 mappedread(vnode_t *vp, char *addr, int nbytes, uio_t *uio) 342 { 343 int64_t start, off, bytes; 344 int len = nbytes; 345 int error = 0; 346 347 start = uio->uio_loffset; 348 off = start & PAGEOFFSET; 349 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 350 page_t *pp; 351 352 bytes = MIN(PAGESIZE - off, len); 353 if (pp = page_lookup(vp, start, SE_SHARED)) { 354 caddr_t va; 355 356 va = ppmapin(pp, PROT_READ, (caddr_t)-1L); 357 error = uiomove(va + off, bytes, UIO_READ, uio); 358 ppmapout(va); 359 page_unlock(pp); 360 } else { 361 /* XXX use dmu_read here? */ 362 error = uiomove(addr, bytes, UIO_READ, uio); 363 } 364 len -= bytes; 365 addr += bytes; 366 off = 0; 367 if (error) 368 break; 369 } 370 return (error); 371 } 372 373 uint_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 374 375 /* 376 * Read bytes from specified file into supplied buffer. 377 * 378 * IN: vp - vnode of file to be read from. 379 * uio - structure supplying read location, range info, 380 * and return buffer. 381 * ioflag - SYNC flags; used to provide FRSYNC semantics. 382 * cr - credentials of caller. 383 * 384 * OUT: uio - updated offset and range, buffer filled. 385 * 386 * RETURN: 0 if success 387 * error code if failure 388 * 389 * Side Effects: 390 * vp - atime updated if byte count > 0 391 */ 392 /* ARGSUSED */ 393 static int 394 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 395 { 396 znode_t *zp = VTOZ(vp); 397 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 398 uint64_t delta; 399 ssize_t n, size, cnt, ndone; 400 int error, i, numbufs; 401 dmu_buf_t *dbp, **dbpp; 402 rl_t *rl; 403 404 ZFS_ENTER(zfsvfs); 405 406 /* 407 * Validate file offset 408 */ 409 if (uio->uio_loffset < (offset_t)0) { 410 ZFS_EXIT(zfsvfs); 411 return (EINVAL); 412 } 413 414 /* 415 * Fasttrack empty reads 416 */ 417 if (uio->uio_resid == 0) { 418 ZFS_EXIT(zfsvfs); 419 return (0); 420 } 421 422 /* 423 * Check for mandatory locks 424 */ 425 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 426 if (error = chklock(vp, FREAD, 427 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 428 ZFS_EXIT(zfsvfs); 429 return (error); 430 } 431 } 432 433 /* 434 * If we're in FRSYNC mode, sync out this znode before reading it. 435 */ 436 if (ioflag & FRSYNC) 437 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 438 439 /* 440 * Lock the range against changes. 441 */ 442 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 443 444 /* 445 * If we are reading past end-of-file we can skip 446 * to the end; but we might still need to set atime. 447 */ 448 if (uio->uio_loffset >= zp->z_phys->zp_size) { 449 cnt = 0; 450 error = 0; 451 goto out; 452 } 453 454 cnt = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 455 456 for (ndone = 0; ndone < cnt; ndone += zfs_read_chunk_size) { 457 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 458 n = MIN(zfs_read_chunk_size, 459 zp->z_phys->zp_size - uio->uio_loffset); 460 n = MIN(n, cnt); 461 error = dmu_buf_hold_array_by_bonus(zp->z_dbuf, 462 uio->uio_loffset, n, TRUE, FTAG, &numbufs, &dbpp); 463 if (error) 464 goto out; 465 /* 466 * Compute the adjustment to align the dmu buffers 467 * with the uio buffer. 468 */ 469 delta = uio->uio_loffset - dbpp[0]->db_offset; 470 471 for (i = 0; i < numbufs; i++) { 472 if (n < 0) 473 break; 474 dbp = dbpp[i]; 475 size = dbp->db_size - delta; 476 /* 477 * XXX -- this is correct, but may be suboptimal. 478 * If the pages are all clean, we don't need to 479 * go through mappedread(). Maybe the VMODSORT 480 * stuff can help us here. 481 */ 482 if (vn_has_cached_data(vp)) { 483 error = mappedread(vp, (caddr_t)dbp->db_data + 484 delta, (n < size ? n : size), uio); 485 } else { 486 error = uiomove((caddr_t)dbp->db_data + delta, 487 (n < size ? n : size), UIO_READ, uio); 488 } 489 if (error) { 490 dmu_buf_rele_array(dbpp, numbufs, FTAG); 491 goto out; 492 } 493 n -= dbp->db_size; 494 if (delta) { 495 n += delta; 496 delta = 0; 497 } 498 } 499 dmu_buf_rele_array(dbpp, numbufs, FTAG); 500 } 501 out: 502 zfs_range_unlock(rl); 503 504 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 505 ZFS_EXIT(zfsvfs); 506 return (error); 507 } 508 509 /* 510 * Fault in the pages of the first n bytes specified by the uio structure. 511 * 1 byte in each page is touched and the uio struct is unmodified. 512 * Any error will exit this routine as this is only a best 513 * attempt to get the pages resident. This is a copy of ufs_trans_touch(). 514 */ 515 static void 516 zfs_prefault_write(ssize_t n, struct uio *uio) 517 { 518 struct iovec *iov; 519 ulong_t cnt, incr; 520 caddr_t p; 521 uint8_t tmp; 522 523 iov = uio->uio_iov; 524 525 while (n) { 526 cnt = MIN(iov->iov_len, n); 527 if (cnt == 0) { 528 /* empty iov entry */ 529 iov++; 530 continue; 531 } 532 n -= cnt; 533 /* 534 * touch each page in this segment. 535 */ 536 p = iov->iov_base; 537 while (cnt) { 538 switch (uio->uio_segflg) { 539 case UIO_USERSPACE: 540 case UIO_USERISPACE: 541 if (fuword8(p, &tmp)) 542 return; 543 break; 544 case UIO_SYSSPACE: 545 if (kcopy(p, &tmp, 1)) 546 return; 547 break; 548 } 549 incr = MIN(cnt, PAGESIZE); 550 p += incr; 551 cnt -= incr; 552 } 553 /* 554 * touch the last byte in case it straddles a page. 555 */ 556 p--; 557 switch (uio->uio_segflg) { 558 case UIO_USERSPACE: 559 case UIO_USERISPACE: 560 if (fuword8(p, &tmp)) 561 return; 562 break; 563 case UIO_SYSSPACE: 564 if (kcopy(p, &tmp, 1)) 565 return; 566 break; 567 } 568 iov++; 569 } 570 } 571 572 /* 573 * Write the bytes to a file. 574 * 575 * IN: vp - vnode of file to be written to. 576 * uio - structure supplying write location, range info, 577 * and data buffer. 578 * ioflag - FAPPEND flag set if in append mode. 579 * cr - credentials of caller. 580 * 581 * OUT: uio - updated offset and range. 582 * 583 * RETURN: 0 if success 584 * error code if failure 585 * 586 * Timestamps: 587 * vp - ctime|mtime updated if byte count > 0 588 */ 589 /* ARGSUSED */ 590 static int 591 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 592 { 593 znode_t *zp = VTOZ(vp); 594 rlim64_t limit = uio->uio_llimit; 595 ssize_t start_resid = uio->uio_resid; 596 ssize_t tx_bytes; 597 uint64_t end_size; 598 dmu_tx_t *tx; 599 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 600 zilog_t *zilog = zfsvfs->z_log; 601 offset_t woff; 602 ssize_t n, nbytes; 603 rl_t *rl; 604 int max_blksz = zfsvfs->z_max_blksz; 605 int error; 606 607 /* 608 * Fasttrack empty write 609 */ 610 n = start_resid; 611 if (n == 0) 612 return (0); 613 614 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 615 limit = MAXOFFSET_T; 616 617 ZFS_ENTER(zfsvfs); 618 619 /* 620 * Pre-fault the pages to ensure slow (eg NFS) pages 621 * don't hold up txg. 622 */ 623 zfs_prefault_write(n, uio); 624 625 /* 626 * If in append mode, set the io offset pointer to eof. 627 */ 628 if (ioflag & FAPPEND) { 629 /* 630 * Range lock for a file append: 631 * The value for the start of range will be determined by 632 * zfs_range_lock() (to guarantee append semantics). 633 * If this write will cause the block size to increase, 634 * zfs_range_lock() will lock the entire file, so we must 635 * later reduce the range after we grow the block size. 636 */ 637 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 638 if (rl->r_len == UINT64_MAX) { 639 /* overlocked, zp_size can't change */ 640 woff = uio->uio_loffset = zp->z_phys->zp_size; 641 } else { 642 woff = uio->uio_loffset = rl->r_off; 643 } 644 } else { 645 woff = uio->uio_loffset; 646 /* 647 * Validate file offset 648 */ 649 if (woff < 0) { 650 ZFS_EXIT(zfsvfs); 651 return (EINVAL); 652 } 653 654 /* 655 * If we need to grow the block size then zfs_range_lock() 656 * will lock a wider range than we request here. 657 * Later after growing the block size we reduce the range. 658 */ 659 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 660 } 661 662 if (woff >= limit) { 663 error = EFBIG; 664 goto no_tx_done; 665 } 666 667 if ((woff + n) > limit || woff > (limit - n)) 668 n = limit - woff; 669 670 /* 671 * Check for mandatory locks 672 */ 673 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 674 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) 675 goto no_tx_done; 676 end_size = MAX(zp->z_phys->zp_size, woff + n); 677 top: 678 tx = dmu_tx_create(zfsvfs->z_os); 679 dmu_tx_hold_bonus(tx, zp->z_id); 680 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 681 error = dmu_tx_assign(tx, zfsvfs->z_assign); 682 if (error) { 683 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 684 dmu_tx_wait(tx); 685 dmu_tx_abort(tx); 686 goto top; 687 } 688 dmu_tx_abort(tx); 689 goto no_tx_done; 690 } 691 692 /* 693 * If zfs_range_lock() over-locked we grow the blocksize 694 * and then reduce the lock range. 695 */ 696 if (rl->r_len == UINT64_MAX) { 697 uint64_t new_blksz; 698 699 if (zp->z_blksz > max_blksz) { 700 ASSERT(!ISP2(zp->z_blksz)); 701 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 702 } else { 703 new_blksz = MIN(end_size, max_blksz); 704 } 705 zfs_grow_blocksize(zp, new_blksz, tx); 706 zfs_range_reduce(rl, woff, n); 707 } 708 709 /* 710 * The file data does not fit in the znode "cache", so we 711 * will be writing to the file block data buffers. 712 * Each buffer will be written in a separate transaction; 713 * this keeps the intent log records small and allows us 714 * to do more fine-grained space accounting. 715 */ 716 while (n > 0) { 717 /* 718 * XXX - should we really limit each write to z_max_blksz? 719 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 720 */ 721 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 722 rw_enter(&zp->z_map_lock, RW_READER); 723 724 tx_bytes = uio->uio_resid; 725 if (vn_has_cached_data(vp)) { 726 rw_exit(&zp->z_map_lock); 727 error = mappedwrite(vp, woff, nbytes, uio, tx); 728 } else { 729 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 730 woff, nbytes, uio, tx); 731 rw_exit(&zp->z_map_lock); 732 } 733 tx_bytes -= uio->uio_resid; 734 735 if (error) { 736 /* XXX - do we need to "clean up" the dmu buffer? */ 737 break; 738 } 739 740 ASSERT(tx_bytes == nbytes); 741 742 /* 743 * Clear Set-UID/Set-GID bits on successful write if not 744 * privileged and at least one of the excute bits is set. 745 * 746 * It would be nice to to this after all writes have 747 * been done, but that would still expose the ISUID/ISGID 748 * to another app after the partial write is committed. 749 */ 750 751 mutex_enter(&zp->z_acl_lock); 752 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 753 (S_IXUSR >> 6))) != 0 && 754 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 755 secpolicy_vnode_setid_retain(cr, 756 (zp->z_phys->zp_mode & S_ISUID) != 0 && 757 zp->z_phys->zp_uid == 0) != 0) { 758 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 759 } 760 mutex_exit(&zp->z_acl_lock); 761 762 n -= nbytes; 763 if (n <= 0) 764 break; 765 766 /* 767 * We have more work ahead of us, so wrap up this transaction 768 * and start another. Exact same logic as tx_done below. 769 */ 770 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) { 771 dmu_buf_will_dirty(zp->z_dbuf, tx); 772 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 773 uio->uio_loffset); 774 } 775 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 776 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, 777 ioflag, uio); 778 dmu_tx_commit(tx); 779 780 /* 781 * Start another transaction. 782 */ 783 woff = uio->uio_loffset; 784 tx = dmu_tx_create(zfsvfs->z_os); 785 dmu_tx_hold_bonus(tx, zp->z_id); 786 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 787 error = dmu_tx_assign(tx, zfsvfs->z_assign); 788 if (error) { 789 if (error == ERESTART && 790 zfsvfs->z_assign == TXG_NOWAIT) { 791 dmu_tx_wait(tx); 792 dmu_tx_abort(tx); 793 goto top; 794 } 795 dmu_tx_abort(tx); 796 goto no_tx_done; 797 } 798 } 799 800 tx_done: 801 802 if (tx_bytes != 0) { 803 /* 804 * Update the file size if it has changed; account 805 * for possible concurrent updates. 806 */ 807 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) { 808 dmu_buf_will_dirty(zp->z_dbuf, tx); 809 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 810 uio->uio_loffset); 811 } 812 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 813 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, 814 ioflag, uio); 815 } 816 dmu_tx_commit(tx); 817 818 819 no_tx_done: 820 821 zfs_range_unlock(rl); 822 823 /* 824 * If we're in replay mode, or we made no progress, return error. 825 * Otherwise, it's at least a partial write, so it's successful. 826 */ 827 if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) { 828 ZFS_EXIT(zfsvfs); 829 return (error); 830 } 831 832 if (ioflag & (FSYNC | FDSYNC)) 833 zil_commit(zilog, zp->z_last_itx, zp->z_id); 834 835 ZFS_EXIT(zfsvfs); 836 return (0); 837 } 838 839 void 840 zfs_get_done(dmu_buf_t *db, void *vzgd) 841 { 842 zgd_t *zgd = (zgd_t *)vzgd; 843 rl_t *rl = zgd->zgd_rl; 844 vnode_t *vp = ZTOV(rl->r_zp); 845 846 dmu_buf_rele(db, vzgd); 847 zfs_range_unlock(rl); 848 VN_RELE(vp); 849 zil_add_vdev(zgd->zgd_zilog, DVA_GET_VDEV(BP_IDENTITY(zgd->zgd_bp))); 850 kmem_free(zgd, sizeof (zgd_t)); 851 } 852 853 /* 854 * Get data to generate a TX_WRITE intent log record. 855 */ 856 int 857 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 858 { 859 zfsvfs_t *zfsvfs = arg; 860 objset_t *os = zfsvfs->z_os; 861 znode_t *zp; 862 uint64_t off = lr->lr_offset; 863 dmu_buf_t *db; 864 rl_t *rl; 865 zgd_t *zgd; 866 int dlen = lr->lr_length; /* length of user data */ 867 int error = 0; 868 869 ASSERT(zio); 870 ASSERT(dlen != 0); 871 872 /* 873 * Nothing to do if the file has been removed 874 */ 875 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 876 return (ENOENT); 877 if (zp->z_reap) { 878 VN_RELE(ZTOV(zp)); 879 return (ENOENT); 880 } 881 882 /* 883 * Write records come in two flavors: immediate and indirect. 884 * For small writes it's cheaper to store the data with the 885 * log record (immediate); for large writes it's cheaper to 886 * sync the data and get a pointer to it (indirect) so that 887 * we don't have to write the data twice. 888 */ 889 if (buf != NULL) { /* immediate write */ 890 rl = zfs_range_lock(zp, off, dlen, RL_READER); 891 /* test for truncation needs to be done while range locked */ 892 if (off >= zp->z_phys->zp_size) { 893 error = ENOENT; 894 goto out; 895 } 896 VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf)); 897 } else { /* indirect write */ 898 uint64_t boff; /* block starting offset */ 899 900 ASSERT3U(dlen, <=, zp->z_blksz); 901 /* 902 * Have to lock the whole block to ensure when it's 903 * written out and it's checksum is being calculated 904 * that no one can change the data. We need to re-check 905 * blocksize after we get the lock in case it's changed! 906 */ 907 for (;;) { 908 if (ISP2(zp->z_blksz)) { 909 boff = P2ALIGN_TYPED(off, zp->z_blksz, 910 uint64_t); 911 } else { 912 boff = 0; 913 } 914 dlen = zp->z_blksz; 915 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 916 if (zp->z_blksz == dlen) 917 break; 918 zfs_range_unlock(rl); 919 } 920 /* test for truncation needs to be done while range locked */ 921 if (off >= zp->z_phys->zp_size) { 922 error = ENOENT; 923 goto out; 924 } 925 zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP); 926 zgd->zgd_rl = rl; 927 zgd->zgd_zilog = zfsvfs->z_log; 928 zgd->zgd_bp = &lr->lr_blkptr; 929 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db)); 930 ASSERT(boff == db->db_offset); 931 lr->lr_blkoff = off - boff; 932 error = dmu_sync(zio, db, &lr->lr_blkptr, 933 lr->lr_common.lrc_txg, zfs_get_done, zgd); 934 if (error == 0) { 935 zil_add_vdev(zfsvfs->z_log, 936 DVA_GET_VDEV(BP_IDENTITY(&lr->lr_blkptr))); 937 } 938 /* 939 * If we get EINPROGRESS, then we need to wait for a 940 * write IO initiated by dmu_sync() to complete before 941 * we can release this dbuf. We will finish everything 942 * up in the zfs_get_done() callback. 943 */ 944 if (error == EINPROGRESS) 945 return (0); 946 dmu_buf_rele(db, zgd); 947 kmem_free(zgd, sizeof (zgd_t)); 948 } 949 out: 950 zfs_range_unlock(rl); 951 VN_RELE(ZTOV(zp)); 952 return (error); 953 } 954 955 /*ARGSUSED*/ 956 static int 957 zfs_access(vnode_t *vp, int mode, int flags, cred_t *cr) 958 { 959 znode_t *zp = VTOZ(vp); 960 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 961 int error; 962 963 ZFS_ENTER(zfsvfs); 964 error = zfs_zaccess_rwx(zp, mode, cr); 965 ZFS_EXIT(zfsvfs); 966 return (error); 967 } 968 969 /* 970 * Lookup an entry in a directory, or an extended attribute directory. 971 * If it exists, return a held vnode reference for it. 972 * 973 * IN: dvp - vnode of directory to search. 974 * nm - name of entry to lookup. 975 * pnp - full pathname to lookup [UNUSED]. 976 * flags - LOOKUP_XATTR set if looking for an attribute. 977 * rdir - root directory vnode [UNUSED]. 978 * cr - credentials of caller. 979 * 980 * OUT: vpp - vnode of located entry, NULL if not found. 981 * 982 * RETURN: 0 if success 983 * error code if failure 984 * 985 * Timestamps: 986 * NA 987 */ 988 /* ARGSUSED */ 989 static int 990 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 991 int flags, vnode_t *rdir, cred_t *cr) 992 { 993 994 znode_t *zdp = VTOZ(dvp); 995 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 996 int error; 997 998 ZFS_ENTER(zfsvfs); 999 1000 *vpp = NULL; 1001 1002 if (flags & LOOKUP_XATTR) { 1003 /* 1004 * If the xattr property is off, refuse the lookup request. 1005 */ 1006 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1007 ZFS_EXIT(zfsvfs); 1008 return (EINVAL); 1009 } 1010 1011 /* 1012 * We don't allow recursive attributes.. 1013 * Maybe someday we will. 1014 */ 1015 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 1016 ZFS_EXIT(zfsvfs); 1017 return (EINVAL); 1018 } 1019 1020 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1021 ZFS_EXIT(zfsvfs); 1022 return (error); 1023 } 1024 1025 /* 1026 * Do we have permission to get into attribute directory? 1027 */ 1028 1029 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, cr)) { 1030 VN_RELE(*vpp); 1031 } 1032 1033 ZFS_EXIT(zfsvfs); 1034 return (error); 1035 } 1036 1037 if (dvp->v_type != VDIR) { 1038 ZFS_EXIT(zfsvfs); 1039 return (ENOTDIR); 1040 } 1041 1042 /* 1043 * Check accessibility of directory. 1044 */ 1045 1046 if (error = zfs_zaccess(zdp, ACE_EXECUTE, cr)) { 1047 ZFS_EXIT(zfsvfs); 1048 return (error); 1049 } 1050 1051 if ((error = zfs_dirlook(zdp, nm, vpp)) == 0) { 1052 1053 /* 1054 * Convert device special files 1055 */ 1056 if (IS_DEVVP(*vpp)) { 1057 vnode_t *svp; 1058 1059 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1060 VN_RELE(*vpp); 1061 if (svp == NULL) 1062 error = ENOSYS; 1063 else 1064 *vpp = svp; 1065 } 1066 } 1067 1068 ZFS_EXIT(zfsvfs); 1069 return (error); 1070 } 1071 1072 /* 1073 * Attempt to create a new entry in a directory. If the entry 1074 * already exists, truncate the file if permissible, else return 1075 * an error. Return the vp of the created or trunc'd file. 1076 * 1077 * IN: dvp - vnode of directory to put new file entry in. 1078 * name - name of new file entry. 1079 * vap - attributes of new file. 1080 * excl - flag indicating exclusive or non-exclusive mode. 1081 * mode - mode to open file with. 1082 * cr - credentials of caller. 1083 * flag - large file flag [UNUSED]. 1084 * 1085 * OUT: vpp - vnode of created or trunc'd entry. 1086 * 1087 * RETURN: 0 if success 1088 * error code if failure 1089 * 1090 * Timestamps: 1091 * dvp - ctime|mtime updated if new entry created 1092 * vp - ctime|mtime always, atime if new 1093 */ 1094 /* ARGSUSED */ 1095 static int 1096 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1097 int mode, vnode_t **vpp, cred_t *cr, int flag) 1098 { 1099 znode_t *zp, *dzp = VTOZ(dvp); 1100 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1101 zilog_t *zilog = zfsvfs->z_log; 1102 objset_t *os = zfsvfs->z_os; 1103 zfs_dirlock_t *dl; 1104 dmu_tx_t *tx; 1105 int error; 1106 uint64_t zoid; 1107 1108 ZFS_ENTER(zfsvfs); 1109 1110 top: 1111 *vpp = NULL; 1112 1113 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1114 vap->va_mode &= ~VSVTX; 1115 1116 if (*name == '\0') { 1117 /* 1118 * Null component name refers to the directory itself. 1119 */ 1120 VN_HOLD(dvp); 1121 zp = dzp; 1122 dl = NULL; 1123 error = 0; 1124 } else { 1125 /* possible VN_HOLD(zp) */ 1126 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, 0)) { 1127 if (strcmp(name, "..") == 0) 1128 error = EISDIR; 1129 ZFS_EXIT(zfsvfs); 1130 return (error); 1131 } 1132 } 1133 1134 zoid = zp ? zp->z_id : -1ULL; 1135 1136 if (zp == NULL) { 1137 /* 1138 * Create a new file object and update the directory 1139 * to reference it. 1140 */ 1141 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 1142 goto out; 1143 } 1144 1145 /* 1146 * We only support the creation of regular files in 1147 * extended attribute directories. 1148 */ 1149 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1150 (vap->va_type != VREG)) { 1151 error = EINVAL; 1152 goto out; 1153 } 1154 1155 tx = dmu_tx_create(os); 1156 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1157 dmu_tx_hold_bonus(tx, dzp->z_id); 1158 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1159 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1160 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1161 0, SPA_MAXBLOCKSIZE); 1162 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1163 if (error) { 1164 zfs_dirent_unlock(dl); 1165 if (error == ERESTART && 1166 zfsvfs->z_assign == TXG_NOWAIT) { 1167 dmu_tx_wait(tx); 1168 dmu_tx_abort(tx); 1169 goto top; 1170 } 1171 dmu_tx_abort(tx); 1172 ZFS_EXIT(zfsvfs); 1173 return (error); 1174 } 1175 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1176 ASSERT(zp->z_id == zoid); 1177 (void) zfs_link_create(dl, zp, tx, ZNEW); 1178 zfs_log_create(zilog, tx, TX_CREATE, dzp, zp, name); 1179 dmu_tx_commit(tx); 1180 } else { 1181 /* 1182 * A directory entry already exists for this name. 1183 */ 1184 /* 1185 * Can't truncate an existing file if in exclusive mode. 1186 */ 1187 if (excl == EXCL) { 1188 error = EEXIST; 1189 goto out; 1190 } 1191 /* 1192 * Can't open a directory for writing. 1193 */ 1194 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1195 error = EISDIR; 1196 goto out; 1197 } 1198 /* 1199 * Verify requested access to file. 1200 */ 1201 if (mode && (error = zfs_zaccess_rwx(zp, mode, cr))) { 1202 goto out; 1203 } 1204 1205 mutex_enter(&dzp->z_lock); 1206 dzp->z_seq++; 1207 mutex_exit(&dzp->z_lock); 1208 1209 /* 1210 * Truncate regular files if requested. 1211 */ 1212 if ((ZTOV(zp)->v_type == VREG) && 1213 (zp->z_phys->zp_size != 0) && 1214 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1215 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1216 if (error == ERESTART && 1217 zfsvfs->z_assign == TXG_NOWAIT) { 1218 /* NB: we already did dmu_tx_wait() */ 1219 zfs_dirent_unlock(dl); 1220 VN_RELE(ZTOV(zp)); 1221 goto top; 1222 } 1223 } 1224 } 1225 out: 1226 1227 if (dl) 1228 zfs_dirent_unlock(dl); 1229 1230 if (error) { 1231 if (zp) 1232 VN_RELE(ZTOV(zp)); 1233 } else { 1234 *vpp = ZTOV(zp); 1235 /* 1236 * If vnode is for a device return a specfs vnode instead. 1237 */ 1238 if (IS_DEVVP(*vpp)) { 1239 struct vnode *svp; 1240 1241 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1242 VN_RELE(*vpp); 1243 if (svp == NULL) { 1244 error = ENOSYS; 1245 } 1246 *vpp = svp; 1247 } 1248 } 1249 1250 ZFS_EXIT(zfsvfs); 1251 return (error); 1252 } 1253 1254 /* 1255 * Remove an entry from a directory. 1256 * 1257 * IN: dvp - vnode of directory to remove entry from. 1258 * name - name of entry to remove. 1259 * cr - credentials of caller. 1260 * 1261 * RETURN: 0 if success 1262 * error code if failure 1263 * 1264 * Timestamps: 1265 * dvp - ctime|mtime 1266 * vp - ctime (if nlink > 0) 1267 */ 1268 static int 1269 zfs_remove(vnode_t *dvp, char *name, cred_t *cr) 1270 { 1271 znode_t *zp, *dzp = VTOZ(dvp); 1272 znode_t *xzp = NULL; 1273 vnode_t *vp; 1274 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1275 zilog_t *zilog = zfsvfs->z_log; 1276 uint64_t acl_obj, xattr_obj; 1277 zfs_dirlock_t *dl; 1278 dmu_tx_t *tx; 1279 int may_delete_now, delete_now = FALSE; 1280 int reaped; 1281 int error; 1282 1283 ZFS_ENTER(zfsvfs); 1284 1285 top: 1286 /* 1287 * Attempt to lock directory; fail if entry doesn't exist. 1288 */ 1289 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1290 ZFS_EXIT(zfsvfs); 1291 return (error); 1292 } 1293 1294 vp = ZTOV(zp); 1295 1296 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1297 goto out; 1298 } 1299 1300 /* 1301 * Need to use rmdir for removing directories. 1302 */ 1303 if (vp->v_type == VDIR) { 1304 error = EPERM; 1305 goto out; 1306 } 1307 1308 vnevent_remove(vp); 1309 1310 dnlc_remove(dvp, name); 1311 1312 mutex_enter(&vp->v_lock); 1313 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1314 mutex_exit(&vp->v_lock); 1315 1316 /* 1317 * We may delete the znode now, or we may put it on the delete queue; 1318 * it depends on whether we're the last link, and on whether there are 1319 * other holds on the vnode. So we dmu_tx_hold() the right things to 1320 * allow for either case. 1321 */ 1322 tx = dmu_tx_create(zfsvfs->z_os); 1323 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1324 dmu_tx_hold_bonus(tx, zp->z_id); 1325 if (may_delete_now) 1326 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 1327 1328 /* are there any extended attributes? */ 1329 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1330 /* 1331 * XXX - There is a possibility that the delete 1332 * of the parent file could succeed, but then we get 1333 * an ENOSPC when we try to delete the xattrs... 1334 * so we would need to re-try the deletes periodically 1335 */ 1336 /* XXX - do we need this if we are deleting? */ 1337 dmu_tx_hold_bonus(tx, xattr_obj); 1338 } 1339 1340 /* are there any additional acls */ 1341 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1342 may_delete_now) 1343 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1344 1345 /* charge as an update -- would be nice not to charge at all */ 1346 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL); 1347 1348 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1349 if (error) { 1350 zfs_dirent_unlock(dl); 1351 VN_RELE(vp); 1352 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1353 dmu_tx_wait(tx); 1354 dmu_tx_abort(tx); 1355 goto top; 1356 } 1357 dmu_tx_abort(tx); 1358 ZFS_EXIT(zfsvfs); 1359 return (error); 1360 } 1361 1362 /* 1363 * Remove the directory entry. 1364 */ 1365 error = zfs_link_destroy(dl, zp, tx, 0, &reaped); 1366 1367 if (error) { 1368 dmu_tx_commit(tx); 1369 goto out; 1370 } 1371 1372 if (reaped) { 1373 mutex_enter(&vp->v_lock); 1374 delete_now = may_delete_now && 1375 vp->v_count == 1 && !vn_has_cached_data(vp) && 1376 zp->z_phys->zp_xattr == xattr_obj && 1377 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1378 mutex_exit(&vp->v_lock); 1379 } 1380 1381 if (delete_now) { 1382 if (zp->z_phys->zp_xattr) { 1383 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1384 ASSERT3U(error, ==, 0); 1385 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1386 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1387 mutex_enter(&xzp->z_lock); 1388 xzp->z_reap = 1; 1389 xzp->z_phys->zp_links = 0; 1390 mutex_exit(&xzp->z_lock); 1391 zfs_dq_add(xzp, tx); 1392 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1393 } 1394 mutex_enter(&zp->z_lock); 1395 mutex_enter(&vp->v_lock); 1396 vp->v_count--; 1397 ASSERT3U(vp->v_count, ==, 0); 1398 mutex_exit(&vp->v_lock); 1399 mutex_exit(&zp->z_lock); 1400 zfs_znode_delete(zp, tx); 1401 VFS_RELE(zfsvfs->z_vfs); 1402 } else if (reaped) { 1403 zfs_dq_add(zp, tx); 1404 } 1405 1406 zfs_log_remove(zilog, tx, TX_REMOVE, dzp, name); 1407 1408 dmu_tx_commit(tx); 1409 out: 1410 zfs_dirent_unlock(dl); 1411 1412 if (!delete_now) { 1413 VN_RELE(vp); 1414 } else if (xzp) { 1415 /* this rele delayed to prevent nesting transactions */ 1416 VN_RELE(ZTOV(xzp)); 1417 } 1418 1419 ZFS_EXIT(zfsvfs); 1420 return (error); 1421 } 1422 1423 /* 1424 * Create a new directory and insert it into dvp using the name 1425 * provided. Return a pointer to the inserted directory. 1426 * 1427 * IN: dvp - vnode of directory to add subdir to. 1428 * dirname - name of new directory. 1429 * vap - attributes of new directory. 1430 * cr - credentials of caller. 1431 * 1432 * OUT: vpp - vnode of created directory. 1433 * 1434 * RETURN: 0 if success 1435 * error code if failure 1436 * 1437 * Timestamps: 1438 * dvp - ctime|mtime updated 1439 * vp - ctime|mtime|atime updated 1440 */ 1441 static int 1442 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr) 1443 { 1444 znode_t *zp, *dzp = VTOZ(dvp); 1445 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1446 zilog_t *zilog = zfsvfs->z_log; 1447 zfs_dirlock_t *dl; 1448 uint64_t zoid = 0; 1449 dmu_tx_t *tx; 1450 int error; 1451 1452 ASSERT(vap->va_type == VDIR); 1453 1454 ZFS_ENTER(zfsvfs); 1455 1456 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1457 ZFS_EXIT(zfsvfs); 1458 return (EINVAL); 1459 } 1460 top: 1461 *vpp = NULL; 1462 1463 /* 1464 * First make sure the new directory doesn't exist. 1465 */ 1466 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, ZNEW)) { 1467 ZFS_EXIT(zfsvfs); 1468 return (error); 1469 } 1470 1471 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, cr)) { 1472 zfs_dirent_unlock(dl); 1473 ZFS_EXIT(zfsvfs); 1474 return (error); 1475 } 1476 1477 /* 1478 * Add a new entry to the directory. 1479 */ 1480 tx = dmu_tx_create(zfsvfs->z_os); 1481 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1482 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1483 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1484 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1485 0, SPA_MAXBLOCKSIZE); 1486 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1487 if (error) { 1488 zfs_dirent_unlock(dl); 1489 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1490 dmu_tx_wait(tx); 1491 dmu_tx_abort(tx); 1492 goto top; 1493 } 1494 dmu_tx_abort(tx); 1495 ZFS_EXIT(zfsvfs); 1496 return (error); 1497 } 1498 1499 /* 1500 * Create new node. 1501 */ 1502 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1503 1504 /* 1505 * Now put new name in parent dir. 1506 */ 1507 (void) zfs_link_create(dl, zp, tx, ZNEW); 1508 1509 *vpp = ZTOV(zp); 1510 1511 zfs_log_create(zilog, tx, TX_MKDIR, dzp, zp, dirname); 1512 dmu_tx_commit(tx); 1513 1514 zfs_dirent_unlock(dl); 1515 1516 ZFS_EXIT(zfsvfs); 1517 return (0); 1518 } 1519 1520 /* 1521 * Remove a directory subdir entry. If the current working 1522 * directory is the same as the subdir to be removed, the 1523 * remove will fail. 1524 * 1525 * IN: dvp - vnode of directory to remove from. 1526 * name - name of directory to be removed. 1527 * cwd - vnode of current working directory. 1528 * cr - credentials of caller. 1529 * 1530 * RETURN: 0 if success 1531 * error code if failure 1532 * 1533 * Timestamps: 1534 * dvp - ctime|mtime updated 1535 */ 1536 static int 1537 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr) 1538 { 1539 znode_t *dzp = VTOZ(dvp); 1540 znode_t *zp; 1541 vnode_t *vp; 1542 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1543 zilog_t *zilog = zfsvfs->z_log; 1544 zfs_dirlock_t *dl; 1545 dmu_tx_t *tx; 1546 int error; 1547 1548 ZFS_ENTER(zfsvfs); 1549 1550 top: 1551 zp = NULL; 1552 1553 /* 1554 * Attempt to lock directory; fail if entry doesn't exist. 1555 */ 1556 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1557 ZFS_EXIT(zfsvfs); 1558 return (error); 1559 } 1560 1561 vp = ZTOV(zp); 1562 1563 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1564 goto out; 1565 } 1566 1567 if (vp->v_type != VDIR) { 1568 error = ENOTDIR; 1569 goto out; 1570 } 1571 1572 if (vp == cwd) { 1573 error = EINVAL; 1574 goto out; 1575 } 1576 1577 vnevent_rmdir(vp); 1578 1579 /* 1580 * Grab a lock on the parent pointer make sure we play well 1581 * with the treewalk and directory rename code. 1582 */ 1583 rw_enter(&zp->z_parent_lock, RW_WRITER); 1584 1585 tx = dmu_tx_create(zfsvfs->z_os); 1586 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1587 dmu_tx_hold_bonus(tx, zp->z_id); 1588 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL); 1589 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1590 if (error) { 1591 rw_exit(&zp->z_parent_lock); 1592 zfs_dirent_unlock(dl); 1593 VN_RELE(vp); 1594 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1595 dmu_tx_wait(tx); 1596 dmu_tx_abort(tx); 1597 goto top; 1598 } 1599 dmu_tx_abort(tx); 1600 ZFS_EXIT(zfsvfs); 1601 return (error); 1602 } 1603 1604 error = zfs_link_destroy(dl, zp, tx, 0, NULL); 1605 1606 if (error == 0) 1607 zfs_log_remove(zilog, tx, TX_RMDIR, dzp, name); 1608 1609 dmu_tx_commit(tx); 1610 1611 rw_exit(&zp->z_parent_lock); 1612 out: 1613 zfs_dirent_unlock(dl); 1614 1615 VN_RELE(vp); 1616 1617 ZFS_EXIT(zfsvfs); 1618 return (error); 1619 } 1620 1621 /* 1622 * Read as many directory entries as will fit into the provided 1623 * buffer from the given directory cursor position (specified in 1624 * the uio structure. 1625 * 1626 * IN: vp - vnode of directory to read. 1627 * uio - structure supplying read location, range info, 1628 * and return buffer. 1629 * cr - credentials of caller. 1630 * 1631 * OUT: uio - updated offset and range, buffer filled. 1632 * eofp - set to true if end-of-file detected. 1633 * 1634 * RETURN: 0 if success 1635 * error code if failure 1636 * 1637 * Timestamps: 1638 * vp - atime updated 1639 * 1640 * Note that the low 4 bits of the cookie returned by zap is always zero. 1641 * This allows us to use the low range for "special" directory entries: 1642 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1643 * we use the offset 2 for the '.zfs' directory. 1644 */ 1645 /* ARGSUSED */ 1646 static int 1647 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp) 1648 { 1649 znode_t *zp = VTOZ(vp); 1650 iovec_t *iovp; 1651 dirent64_t *odp; 1652 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1653 objset_t *os; 1654 caddr_t outbuf; 1655 size_t bufsize; 1656 zap_cursor_t zc; 1657 zap_attribute_t zap; 1658 uint_t bytes_wanted; 1659 ushort_t this_reclen; 1660 uint64_t offset; /* must be unsigned; checks for < 1 */ 1661 off64_t *next; 1662 int local_eof; 1663 int outcount; 1664 int error; 1665 uint8_t prefetch; 1666 1667 ZFS_ENTER(zfsvfs); 1668 1669 /* 1670 * If we are not given an eof variable, 1671 * use a local one. 1672 */ 1673 if (eofp == NULL) 1674 eofp = &local_eof; 1675 1676 /* 1677 * Check for valid iov_len. 1678 */ 1679 if (uio->uio_iov->iov_len <= 0) { 1680 ZFS_EXIT(zfsvfs); 1681 return (EINVAL); 1682 } 1683 1684 /* 1685 * Quit if directory has been removed (posix) 1686 */ 1687 if ((*eofp = zp->z_reap) != 0) { 1688 ZFS_EXIT(zfsvfs); 1689 return (0); 1690 } 1691 1692 error = 0; 1693 os = zfsvfs->z_os; 1694 offset = uio->uio_loffset; 1695 prefetch = zp->z_zn_prefetch; 1696 1697 /* 1698 * Initialize the iterator cursor. 1699 */ 1700 if (offset <= 3) { 1701 /* 1702 * Start iteration from the beginning of the directory. 1703 */ 1704 zap_cursor_init(&zc, os, zp->z_id); 1705 } else { 1706 /* 1707 * The offset is a serialized cursor. 1708 */ 1709 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1710 } 1711 1712 /* 1713 * Get space to change directory entries into fs independent format. 1714 */ 1715 iovp = uio->uio_iov; 1716 bytes_wanted = iovp->iov_len; 1717 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1718 bufsize = bytes_wanted; 1719 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1720 odp = (struct dirent64 *)outbuf; 1721 } else { 1722 bufsize = bytes_wanted; 1723 odp = (struct dirent64 *)iovp->iov_base; 1724 } 1725 1726 /* 1727 * Transform to file-system independent format 1728 */ 1729 outcount = 0; 1730 while (outcount < bytes_wanted) { 1731 /* 1732 * Special case `.', `..', and `.zfs'. 1733 */ 1734 if (offset == 0) { 1735 (void) strcpy(zap.za_name, "."); 1736 zap.za_first_integer = zp->z_id; 1737 this_reclen = DIRENT64_RECLEN(1); 1738 } else if (offset == 1) { 1739 (void) strcpy(zap.za_name, ".."); 1740 zap.za_first_integer = zp->z_phys->zp_parent; 1741 this_reclen = DIRENT64_RECLEN(2); 1742 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1743 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1744 zap.za_first_integer = ZFSCTL_INO_ROOT; 1745 this_reclen = 1746 DIRENT64_RECLEN(sizeof (ZFS_CTLDIR_NAME) - 1); 1747 } else { 1748 /* 1749 * Grab next entry. 1750 */ 1751 if (error = zap_cursor_retrieve(&zc, &zap)) { 1752 if ((*eofp = (error == ENOENT)) != 0) 1753 break; 1754 else 1755 goto update; 1756 } 1757 1758 if (zap.za_integer_length != 8 || 1759 zap.za_num_integers != 1) { 1760 cmn_err(CE_WARN, "zap_readdir: bad directory " 1761 "entry, obj = %lld, offset = %lld\n", 1762 (u_longlong_t)zp->z_id, 1763 (u_longlong_t)offset); 1764 error = ENXIO; 1765 goto update; 1766 } 1767 this_reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 1768 } 1769 1770 /* 1771 * Will this entry fit in the buffer? 1772 */ 1773 if (outcount + this_reclen > bufsize) { 1774 /* 1775 * Did we manage to fit anything in the buffer? 1776 */ 1777 if (!outcount) { 1778 error = EINVAL; 1779 goto update; 1780 } 1781 break; 1782 } 1783 /* 1784 * Add this entry: 1785 */ 1786 odp->d_ino = (ino64_t)zap.za_first_integer; 1787 odp->d_reclen = (ushort_t)this_reclen; 1788 /* NOTE: d_off is the offset for the *next* entry */ 1789 next = &(odp->d_off); 1790 (void) strncpy(odp->d_name, zap.za_name, 1791 DIRENT64_NAMELEN(this_reclen)); 1792 outcount += this_reclen; 1793 odp = (dirent64_t *)((intptr_t)odp + this_reclen); 1794 1795 ASSERT(outcount <= bufsize); 1796 1797 /* Prefetch znode */ 1798 if (prefetch) 1799 dmu_prefetch(os, zap.za_first_integer, 0, 0); 1800 1801 /* 1802 * Move to the next entry, fill in the previous offset. 1803 */ 1804 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 1805 zap_cursor_advance(&zc); 1806 offset = zap_cursor_serialize(&zc); 1807 } else { 1808 offset += 1; 1809 } 1810 *next = offset; 1811 } 1812 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 1813 1814 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 1815 iovp->iov_base += outcount; 1816 iovp->iov_len -= outcount; 1817 uio->uio_resid -= outcount; 1818 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 1819 /* 1820 * Reset the pointer. 1821 */ 1822 offset = uio->uio_loffset; 1823 } 1824 1825 update: 1826 zap_cursor_fini(&zc); 1827 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 1828 kmem_free(outbuf, bufsize); 1829 1830 if (error == ENOENT) 1831 error = 0; 1832 1833 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 1834 1835 uio->uio_loffset = offset; 1836 ZFS_EXIT(zfsvfs); 1837 return (error); 1838 } 1839 1840 static int 1841 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr) 1842 { 1843 znode_t *zp = VTOZ(vp); 1844 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1845 1846 /* 1847 * Regardless of whether this is required for standards conformance, 1848 * this is the logical behavior when fsync() is called on a file with 1849 * dirty pages. We use B_ASYNC since the ZIL transactions are already 1850 * going to be pushed out as part of the zil_commit(). 1851 */ 1852 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 1853 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 1854 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr); 1855 1856 ZFS_ENTER(zfsvfs); 1857 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 1858 ZFS_EXIT(zfsvfs); 1859 return (0); 1860 } 1861 1862 /* 1863 * Get the requested file attributes and place them in the provided 1864 * vattr structure. 1865 * 1866 * IN: vp - vnode of file. 1867 * vap - va_mask identifies requested attributes. 1868 * flags - [UNUSED] 1869 * cr - credentials of caller. 1870 * 1871 * OUT: vap - attribute values. 1872 * 1873 * RETURN: 0 (always succeeds) 1874 */ 1875 /* ARGSUSED */ 1876 static int 1877 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 1878 { 1879 znode_t *zp = VTOZ(vp); 1880 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1881 znode_phys_t *pzp = zp->z_phys; 1882 int error; 1883 1884 ZFS_ENTER(zfsvfs); 1885 1886 /* 1887 * Return all attributes. It's cheaper to provide the answer 1888 * than to determine whether we were asked the question. 1889 */ 1890 mutex_enter(&zp->z_lock); 1891 1892 vap->va_type = vp->v_type; 1893 vap->va_mode = pzp->zp_mode & MODEMASK; 1894 vap->va_uid = zp->z_phys->zp_uid; 1895 vap->va_gid = zp->z_phys->zp_gid; 1896 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 1897 vap->va_nodeid = zp->z_id; 1898 vap->va_nlink = MIN(pzp->zp_links, UINT32_MAX); /* nlink_t limit! */ 1899 vap->va_size = pzp->zp_size; 1900 vap->va_rdev = vp->v_rdev; 1901 vap->va_seq = zp->z_seq; 1902 1903 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 1904 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 1905 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 1906 1907 /* 1908 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 1909 * Also, if we are the owner don't bother, since owner should 1910 * always be allowed to read basic attributes of file. 1911 */ 1912 if (!(zp->z_phys->zp_flags & ZFS_ACL_TRIVIAL) && 1913 (zp->z_phys->zp_uid != crgetuid(cr))) { 1914 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, cr)) { 1915 mutex_exit(&zp->z_lock); 1916 ZFS_EXIT(zfsvfs); 1917 return (error); 1918 } 1919 } 1920 1921 mutex_exit(&zp->z_lock); 1922 1923 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 1924 1925 if (zp->z_blksz == 0) { 1926 /* 1927 * Block size hasn't been set; suggest maximal I/O transfers. 1928 */ 1929 vap->va_blksize = zfsvfs->z_max_blksz; 1930 } 1931 1932 ZFS_EXIT(zfsvfs); 1933 return (0); 1934 } 1935 1936 /* 1937 * Set the file attributes to the values contained in the 1938 * vattr structure. 1939 * 1940 * IN: vp - vnode of file to be modified. 1941 * vap - new attribute values. 1942 * flags - ATTR_UTIME set if non-default time values provided. 1943 * cr - credentials of caller. 1944 * 1945 * RETURN: 0 if success 1946 * error code if failure 1947 * 1948 * Timestamps: 1949 * vp - ctime updated, mtime updated if size changed. 1950 */ 1951 /* ARGSUSED */ 1952 static int 1953 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1954 caller_context_t *ct) 1955 { 1956 struct znode *zp = VTOZ(vp); 1957 znode_phys_t *pzp = zp->z_phys; 1958 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1959 zilog_t *zilog = zfsvfs->z_log; 1960 dmu_tx_t *tx; 1961 vattr_t oldva; 1962 uint_t mask = vap->va_mask; 1963 uint_t saved_mask; 1964 int trim_mask = 0; 1965 uint64_t new_mode; 1966 znode_t *attrzp; 1967 int need_policy = FALSE; 1968 int err; 1969 1970 if (mask == 0) 1971 return (0); 1972 1973 if (mask & AT_NOSET) 1974 return (EINVAL); 1975 1976 if (mask & AT_SIZE && vp->v_type == VDIR) 1977 return (EISDIR); 1978 1979 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) 1980 return (EINVAL); 1981 1982 ZFS_ENTER(zfsvfs); 1983 1984 top: 1985 attrzp = NULL; 1986 1987 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 1988 ZFS_EXIT(zfsvfs); 1989 return (EROFS); 1990 } 1991 1992 /* 1993 * First validate permissions 1994 */ 1995 1996 if (mask & AT_SIZE) { 1997 err = zfs_zaccess(zp, ACE_WRITE_DATA, cr); 1998 if (err) { 1999 ZFS_EXIT(zfsvfs); 2000 return (err); 2001 } 2002 /* 2003 * XXX - Note, we are not providing any open 2004 * mode flags here (like FNDELAY), so we may 2005 * block if there are locks present... this 2006 * should be addressed in openat(). 2007 */ 2008 do { 2009 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2010 /* NB: we already did dmu_tx_wait() if necessary */ 2011 } while (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 2012 if (err) { 2013 ZFS_EXIT(zfsvfs); 2014 return (err); 2015 } 2016 } 2017 2018 if (mask & (AT_ATIME|AT_MTIME)) 2019 need_policy = zfs_zaccess_v4_perm(zp, ACE_WRITE_ATTRIBUTES, cr); 2020 2021 if (mask & (AT_UID|AT_GID)) { 2022 int idmask = (mask & (AT_UID|AT_GID)); 2023 int take_owner; 2024 int take_group; 2025 2026 /* 2027 * NOTE: even if a new mode is being set, 2028 * we may clear S_ISUID/S_ISGID bits. 2029 */ 2030 2031 if (!(mask & AT_MODE)) 2032 vap->va_mode = pzp->zp_mode; 2033 2034 /* 2035 * Take ownership or chgrp to group we are a member of 2036 */ 2037 2038 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2039 take_group = (mask & AT_GID) && groupmember(vap->va_gid, cr); 2040 2041 /* 2042 * If both AT_UID and AT_GID are set then take_owner and 2043 * take_group must both be set in order to allow taking 2044 * ownership. 2045 * 2046 * Otherwise, send the check through secpolicy_vnode_setattr() 2047 * 2048 */ 2049 2050 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2051 ((idmask == AT_UID) && take_owner) || 2052 ((idmask == AT_GID) && take_group)) { 2053 if (zfs_zaccess_v4_perm(zp, ACE_WRITE_OWNER, cr) == 0) { 2054 /* 2055 * Remove setuid/setgid for non-privileged users 2056 */ 2057 secpolicy_setid_clear(vap, cr); 2058 trim_mask = (mask & (AT_UID|AT_GID)); 2059 } else { 2060 need_policy = TRUE; 2061 } 2062 } else { 2063 need_policy = TRUE; 2064 } 2065 } 2066 2067 mutex_enter(&zp->z_lock); 2068 oldva.va_mode = pzp->zp_mode; 2069 oldva.va_uid = zp->z_phys->zp_uid; 2070 oldva.va_gid = zp->z_phys->zp_gid; 2071 mutex_exit(&zp->z_lock); 2072 2073 if (mask & AT_MODE) { 2074 if (zfs_zaccess_v4_perm(zp, ACE_WRITE_ACL, cr) == 0) { 2075 err = secpolicy_setid_setsticky_clear(vp, vap, 2076 &oldva, cr); 2077 if (err) { 2078 ZFS_EXIT(zfsvfs); 2079 return (err); 2080 } 2081 trim_mask |= AT_MODE; 2082 } else { 2083 need_policy = TRUE; 2084 } 2085 } 2086 2087 if (need_policy) { 2088 /* 2089 * If trim_mask is set then take ownership 2090 * has been granted or write_acl is present and user 2091 * has the ability to modify mode. In that case remove 2092 * UID|GID and or MODE from mask so that 2093 * secpolicy_vnode_setattr() doesn't revoke it. 2094 */ 2095 2096 if (trim_mask) { 2097 saved_mask = vap->va_mask; 2098 vap->va_mask &= ~trim_mask; 2099 2100 } 2101 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2102 (int (*)(void *, int, cred_t *))zfs_zaccess_rwx, zp); 2103 if (err) { 2104 ZFS_EXIT(zfsvfs); 2105 return (err); 2106 } 2107 2108 if (trim_mask) 2109 vap->va_mask |= saved_mask; 2110 } 2111 2112 /* 2113 * secpolicy_vnode_setattr, or take ownership may have 2114 * changed va_mask 2115 */ 2116 mask = vap->va_mask; 2117 2118 tx = dmu_tx_create(zfsvfs->z_os); 2119 dmu_tx_hold_bonus(tx, zp->z_id); 2120 2121 if (mask & AT_MODE) { 2122 uint64_t pmode = pzp->zp_mode; 2123 2124 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2125 2126 if (zp->z_phys->zp_acl.z_acl_extern_obj) 2127 dmu_tx_hold_write(tx, 2128 pzp->zp_acl.z_acl_extern_obj, 0, SPA_MAXBLOCKSIZE); 2129 else 2130 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2131 0, ZFS_ACL_SIZE(MAX_ACL_SIZE)); 2132 } 2133 2134 if ((mask & (AT_UID | AT_GID)) && zp->z_phys->zp_xattr != 0) { 2135 err = zfs_zget(zp->z_zfsvfs, zp->z_phys->zp_xattr, &attrzp); 2136 if (err) { 2137 dmu_tx_abort(tx); 2138 ZFS_EXIT(zfsvfs); 2139 return (err); 2140 } 2141 dmu_tx_hold_bonus(tx, attrzp->z_id); 2142 } 2143 2144 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2145 if (err) { 2146 if (attrzp) 2147 VN_RELE(ZTOV(attrzp)); 2148 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2149 dmu_tx_wait(tx); 2150 dmu_tx_abort(tx); 2151 goto top; 2152 } 2153 dmu_tx_abort(tx); 2154 ZFS_EXIT(zfsvfs); 2155 return (err); 2156 } 2157 2158 dmu_buf_will_dirty(zp->z_dbuf, tx); 2159 2160 /* 2161 * Set each attribute requested. 2162 * We group settings according to the locks they need to acquire. 2163 * 2164 * Note: you cannot set ctime directly, although it will be 2165 * updated as a side-effect of calling this function. 2166 */ 2167 2168 mutex_enter(&zp->z_lock); 2169 2170 if (mask & AT_MODE) { 2171 err = zfs_acl_chmod_setattr(zp, new_mode, tx); 2172 ASSERT3U(err, ==, 0); 2173 } 2174 2175 if (attrzp) 2176 mutex_enter(&attrzp->z_lock); 2177 2178 if (mask & AT_UID) { 2179 zp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2180 if (attrzp) { 2181 attrzp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2182 } 2183 } 2184 2185 if (mask & AT_GID) { 2186 zp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2187 if (attrzp) 2188 attrzp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2189 } 2190 2191 if (attrzp) 2192 mutex_exit(&attrzp->z_lock); 2193 2194 if (mask & AT_ATIME) 2195 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2196 2197 if (mask & AT_MTIME) 2198 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2199 2200 if (mask & AT_SIZE) 2201 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2202 else if (mask != 0) 2203 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2204 2205 if (mask != 0) 2206 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask); 2207 2208 mutex_exit(&zp->z_lock); 2209 2210 if (attrzp) 2211 VN_RELE(ZTOV(attrzp)); 2212 2213 dmu_tx_commit(tx); 2214 2215 ZFS_EXIT(zfsvfs); 2216 return (err); 2217 } 2218 2219 typedef struct zfs_zlock { 2220 krwlock_t *zl_rwlock; /* lock we acquired */ 2221 znode_t *zl_znode; /* znode we held */ 2222 struct zfs_zlock *zl_next; /* next in list */ 2223 } zfs_zlock_t; 2224 2225 /* 2226 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2227 */ 2228 static void 2229 zfs_rename_unlock(zfs_zlock_t **zlpp) 2230 { 2231 zfs_zlock_t *zl; 2232 2233 while ((zl = *zlpp) != NULL) { 2234 if (zl->zl_znode != NULL) 2235 VN_RELE(ZTOV(zl->zl_znode)); 2236 rw_exit(zl->zl_rwlock); 2237 *zlpp = zl->zl_next; 2238 kmem_free(zl, sizeof (*zl)); 2239 } 2240 } 2241 2242 /* 2243 * Search back through the directory tree, using the ".." entries. 2244 * Lock each directory in the chain to prevent concurrent renames. 2245 * Fail any attempt to move a directory into one of its own descendants. 2246 * XXX - z_parent_lock can overlap with map or grow locks 2247 */ 2248 static int 2249 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2250 { 2251 zfs_zlock_t *zl; 2252 znode_t *zp = tdzp; 2253 uint64_t rootid = zp->z_zfsvfs->z_root; 2254 uint64_t *oidp = &zp->z_id; 2255 krwlock_t *rwlp = &szp->z_parent_lock; 2256 krw_t rw = RW_WRITER; 2257 2258 /* 2259 * First pass write-locks szp and compares to zp->z_id. 2260 * Later passes read-lock zp and compare to zp->z_parent. 2261 */ 2262 do { 2263 if (!rw_tryenter(rwlp, rw)) { 2264 /* 2265 * Another thread is renaming in this path. 2266 * Note that if we are a WRITER, we don't have any 2267 * parent_locks held yet. 2268 */ 2269 if (rw == RW_READER && zp->z_id > szp->z_id) { 2270 /* 2271 * Drop our locks and restart 2272 */ 2273 zfs_rename_unlock(&zl); 2274 *zlpp = NULL; 2275 zp = tdzp; 2276 oidp = &zp->z_id; 2277 rwlp = &szp->z_parent_lock; 2278 rw = RW_WRITER; 2279 continue; 2280 } else { 2281 /* 2282 * Wait for other thread to drop its locks 2283 */ 2284 rw_enter(rwlp, rw); 2285 } 2286 } 2287 2288 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2289 zl->zl_rwlock = rwlp; 2290 zl->zl_znode = NULL; 2291 zl->zl_next = *zlpp; 2292 *zlpp = zl; 2293 2294 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2295 return (EINVAL); 2296 2297 if (*oidp == rootid) /* We've hit the top */ 2298 return (0); 2299 2300 if (rw == RW_READER) { /* i.e. not the first pass */ 2301 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2302 if (error) 2303 return (error); 2304 zl->zl_znode = zp; 2305 } 2306 oidp = &zp->z_phys->zp_parent; 2307 rwlp = &zp->z_parent_lock; 2308 rw = RW_READER; 2309 2310 } while (zp->z_id != sdzp->z_id); 2311 2312 return (0); 2313 } 2314 2315 /* 2316 * Move an entry from the provided source directory to the target 2317 * directory. Change the entry name as indicated. 2318 * 2319 * IN: sdvp - Source directory containing the "old entry". 2320 * snm - Old entry name. 2321 * tdvp - Target directory to contain the "new entry". 2322 * tnm - New entry name. 2323 * cr - credentials of caller. 2324 * 2325 * RETURN: 0 if success 2326 * error code if failure 2327 * 2328 * Timestamps: 2329 * sdvp,tdvp - ctime|mtime updated 2330 */ 2331 static int 2332 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr) 2333 { 2334 znode_t *tdzp, *szp, *tzp; 2335 znode_t *sdzp = VTOZ(sdvp); 2336 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2337 zilog_t *zilog = zfsvfs->z_log; 2338 vnode_t *realvp; 2339 zfs_dirlock_t *sdl, *tdl; 2340 dmu_tx_t *tx; 2341 zfs_zlock_t *zl; 2342 int cmp, serr, terr, error; 2343 2344 ZFS_ENTER(zfsvfs); 2345 2346 /* 2347 * Make sure we have the real vp for the target directory. 2348 */ 2349 if (VOP_REALVP(tdvp, &realvp) == 0) 2350 tdvp = realvp; 2351 2352 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2353 ZFS_EXIT(zfsvfs); 2354 return (EXDEV); 2355 } 2356 2357 tdzp = VTOZ(tdvp); 2358 top: 2359 szp = NULL; 2360 tzp = NULL; 2361 zl = NULL; 2362 2363 /* 2364 * This is to prevent the creation of links into attribute space 2365 * by renaming a linked file into/outof an attribute directory. 2366 * See the comment in zfs_link() for why this is considered bad. 2367 */ 2368 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 2369 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 2370 ZFS_EXIT(zfsvfs); 2371 return (EINVAL); 2372 } 2373 2374 /* 2375 * Lock source and target directory entries. To prevent deadlock, 2376 * a lock ordering must be defined. We lock the directory with 2377 * the smallest object id first, or if it's a tie, the one with 2378 * the lexically first name. 2379 */ 2380 if (sdzp->z_id < tdzp->z_id) { 2381 cmp = -1; 2382 } else if (sdzp->z_id > tdzp->z_id) { 2383 cmp = 1; 2384 } else { 2385 cmp = strcmp(snm, tnm); 2386 if (cmp == 0) { 2387 /* 2388 * POSIX: "If the old argument and the new argument 2389 * both refer to links to the same existing file, 2390 * the rename() function shall return successfully 2391 * and perform no other action." 2392 */ 2393 ZFS_EXIT(zfsvfs); 2394 return (0); 2395 } 2396 } 2397 if (cmp < 0) { 2398 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2399 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2400 } else { 2401 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2402 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2403 } 2404 2405 if (serr) { 2406 /* 2407 * Source entry invalid or not there. 2408 */ 2409 if (!terr) { 2410 zfs_dirent_unlock(tdl); 2411 if (tzp) 2412 VN_RELE(ZTOV(tzp)); 2413 } 2414 if (strcmp(snm, "..") == 0) 2415 serr = EINVAL; 2416 ZFS_EXIT(zfsvfs); 2417 return (serr); 2418 } 2419 if (terr) { 2420 zfs_dirent_unlock(sdl); 2421 VN_RELE(ZTOV(szp)); 2422 if (strcmp(tnm, "..") == 0) 2423 terr = EINVAL; 2424 ZFS_EXIT(zfsvfs); 2425 return (terr); 2426 } 2427 2428 /* 2429 * Must have write access at the source to remove the old entry 2430 * and write access at the target to create the new entry. 2431 * Note that if target and source are the same, this can be 2432 * done in a single check. 2433 */ 2434 2435 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 2436 goto out; 2437 2438 if (ZTOV(szp)->v_type == VDIR) { 2439 /* 2440 * Check to make sure rename is valid. 2441 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 2442 */ 2443 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 2444 goto out; 2445 } 2446 2447 /* 2448 * Does target exist? 2449 */ 2450 if (tzp) { 2451 /* 2452 * Source and target must be the same type. 2453 */ 2454 if (ZTOV(szp)->v_type == VDIR) { 2455 if (ZTOV(tzp)->v_type != VDIR) { 2456 error = ENOTDIR; 2457 goto out; 2458 } 2459 } else { 2460 if (ZTOV(tzp)->v_type == VDIR) { 2461 error = EISDIR; 2462 goto out; 2463 } 2464 } 2465 /* 2466 * POSIX dictates that when the source and target 2467 * entries refer to the same file object, rename 2468 * must do nothing and exit without error. 2469 */ 2470 if (szp->z_id == tzp->z_id) { 2471 error = 0; 2472 goto out; 2473 } 2474 } 2475 2476 vnevent_rename_src(ZTOV(szp)); 2477 if (tzp) 2478 vnevent_rename_dest(ZTOV(tzp)); 2479 2480 tx = dmu_tx_create(zfsvfs->z_os); 2481 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 2482 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 2483 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 2484 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 2485 if (sdzp != tdzp) 2486 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 2487 if (tzp) 2488 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 2489 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL); 2490 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2491 if (error) { 2492 if (zl != NULL) 2493 zfs_rename_unlock(&zl); 2494 zfs_dirent_unlock(sdl); 2495 zfs_dirent_unlock(tdl); 2496 VN_RELE(ZTOV(szp)); 2497 if (tzp) 2498 VN_RELE(ZTOV(tzp)); 2499 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2500 dmu_tx_wait(tx); 2501 dmu_tx_abort(tx); 2502 goto top; 2503 } 2504 dmu_tx_abort(tx); 2505 ZFS_EXIT(zfsvfs); 2506 return (error); 2507 } 2508 2509 if (tzp) /* Attempt to remove the existing target */ 2510 error = zfs_link_destroy(tdl, tzp, tx, 0, NULL); 2511 2512 if (error == 0) { 2513 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 2514 if (error == 0) { 2515 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 2516 ASSERT(error == 0); 2517 zfs_log_rename(zilog, tx, TX_RENAME, sdzp, 2518 sdl->dl_name, tdzp, tdl->dl_name, szp); 2519 } 2520 } 2521 2522 dmu_tx_commit(tx); 2523 out: 2524 if (zl != NULL) 2525 zfs_rename_unlock(&zl); 2526 2527 zfs_dirent_unlock(sdl); 2528 zfs_dirent_unlock(tdl); 2529 2530 VN_RELE(ZTOV(szp)); 2531 if (tzp) 2532 VN_RELE(ZTOV(tzp)); 2533 2534 ZFS_EXIT(zfsvfs); 2535 return (error); 2536 } 2537 2538 /* 2539 * Insert the indicated symbolic reference entry into the directory. 2540 * 2541 * IN: dvp - Directory to contain new symbolic link. 2542 * link - Name for new symlink entry. 2543 * vap - Attributes of new entry. 2544 * target - Target path of new symlink. 2545 * cr - credentials of caller. 2546 * 2547 * RETURN: 0 if success 2548 * error code if failure 2549 * 2550 * Timestamps: 2551 * dvp - ctime|mtime updated 2552 */ 2553 static int 2554 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr) 2555 { 2556 znode_t *zp, *dzp = VTOZ(dvp); 2557 zfs_dirlock_t *dl; 2558 dmu_tx_t *tx; 2559 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2560 zilog_t *zilog = zfsvfs->z_log; 2561 uint64_t zoid; 2562 int len = strlen(link); 2563 int error; 2564 2565 ASSERT(vap->va_type == VLNK); 2566 2567 ZFS_ENTER(zfsvfs); 2568 top: 2569 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2570 ZFS_EXIT(zfsvfs); 2571 return (error); 2572 } 2573 2574 if (len > MAXPATHLEN) { 2575 ZFS_EXIT(zfsvfs); 2576 return (ENAMETOOLONG); 2577 } 2578 2579 /* 2580 * Attempt to lock directory; fail if entry already exists. 2581 */ 2582 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZNEW)) { 2583 ZFS_EXIT(zfsvfs); 2584 return (error); 2585 } 2586 2587 tx = dmu_tx_create(zfsvfs->z_os); 2588 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 2589 dmu_tx_hold_bonus(tx, dzp->z_id); 2590 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 2591 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 2592 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 2593 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2594 if (error) { 2595 zfs_dirent_unlock(dl); 2596 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2597 dmu_tx_wait(tx); 2598 dmu_tx_abort(tx); 2599 goto top; 2600 } 2601 dmu_tx_abort(tx); 2602 ZFS_EXIT(zfsvfs); 2603 return (error); 2604 } 2605 2606 dmu_buf_will_dirty(dzp->z_dbuf, tx); 2607 2608 /* 2609 * Create a new object for the symlink. 2610 * Put the link content into bonus buffer if it will fit; 2611 * otherwise, store it just like any other file data. 2612 */ 2613 zoid = 0; 2614 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 2615 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, len); 2616 if (len != 0) 2617 bcopy(link, zp->z_phys + 1, len); 2618 } else { 2619 dmu_buf_t *dbp; 2620 2621 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 2622 2623 /* 2624 * Nothing can access the znode yet so no locking needed 2625 * for growing the znode's blocksize. 2626 */ 2627 zfs_grow_blocksize(zp, len, tx); 2628 2629 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, zoid, 0, FTAG, &dbp)); 2630 dmu_buf_will_dirty(dbp, tx); 2631 2632 ASSERT3U(len, <=, dbp->db_size); 2633 bcopy(link, dbp->db_data, len); 2634 dmu_buf_rele(dbp, FTAG); 2635 } 2636 zp->z_phys->zp_size = len; 2637 2638 /* 2639 * Insert the new object into the directory. 2640 */ 2641 (void) zfs_link_create(dl, zp, tx, ZNEW); 2642 out: 2643 if (error == 0) 2644 zfs_log_symlink(zilog, tx, TX_SYMLINK, dzp, zp, name, link); 2645 2646 dmu_tx_commit(tx); 2647 2648 zfs_dirent_unlock(dl); 2649 2650 VN_RELE(ZTOV(zp)); 2651 2652 ZFS_EXIT(zfsvfs); 2653 return (error); 2654 } 2655 2656 /* 2657 * Return, in the buffer contained in the provided uio structure, 2658 * the symbolic path referred to by vp. 2659 * 2660 * IN: vp - vnode of symbolic link. 2661 * uoip - structure to contain the link path. 2662 * cr - credentials of caller. 2663 * 2664 * OUT: uio - structure to contain the link path. 2665 * 2666 * RETURN: 0 if success 2667 * error code if failure 2668 * 2669 * Timestamps: 2670 * vp - atime updated 2671 */ 2672 /* ARGSUSED */ 2673 static int 2674 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr) 2675 { 2676 znode_t *zp = VTOZ(vp); 2677 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2678 size_t bufsz; 2679 int error; 2680 2681 ZFS_ENTER(zfsvfs); 2682 2683 bufsz = (size_t)zp->z_phys->zp_size; 2684 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 2685 error = uiomove(zp->z_phys + 1, 2686 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2687 } else { 2688 dmu_buf_t *dbp; 2689 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 2690 if (error) { 2691 ZFS_EXIT(zfsvfs); 2692 return (error); 2693 } 2694 error = uiomove(dbp->db_data, 2695 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2696 dmu_buf_rele(dbp, FTAG); 2697 } 2698 2699 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2700 ZFS_EXIT(zfsvfs); 2701 return (error); 2702 } 2703 2704 /* 2705 * Insert a new entry into directory tdvp referencing svp. 2706 * 2707 * IN: tdvp - Directory to contain new entry. 2708 * svp - vnode of new entry. 2709 * name - name of new entry. 2710 * cr - credentials of caller. 2711 * 2712 * RETURN: 0 if success 2713 * error code if failure 2714 * 2715 * Timestamps: 2716 * tdvp - ctime|mtime updated 2717 * svp - ctime updated 2718 */ 2719 /* ARGSUSED */ 2720 static int 2721 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr) 2722 { 2723 znode_t *dzp = VTOZ(tdvp); 2724 znode_t *tzp, *szp; 2725 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2726 zilog_t *zilog = zfsvfs->z_log; 2727 zfs_dirlock_t *dl; 2728 dmu_tx_t *tx; 2729 vnode_t *realvp; 2730 int error; 2731 2732 ASSERT(tdvp->v_type == VDIR); 2733 2734 ZFS_ENTER(zfsvfs); 2735 2736 if (VOP_REALVP(svp, &realvp) == 0) 2737 svp = realvp; 2738 2739 if (svp->v_vfsp != tdvp->v_vfsp) { 2740 ZFS_EXIT(zfsvfs); 2741 return (EXDEV); 2742 } 2743 2744 szp = VTOZ(svp); 2745 top: 2746 /* 2747 * We do not support links between attributes and non-attributes 2748 * because of the potential security risk of creating links 2749 * into "normal" file space in order to circumvent restrictions 2750 * imposed in attribute space. 2751 */ 2752 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 2753 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 2754 ZFS_EXIT(zfsvfs); 2755 return (EINVAL); 2756 } 2757 2758 /* 2759 * POSIX dictates that we return EPERM here. 2760 * Better choices include ENOTSUP or EISDIR. 2761 */ 2762 if (svp->v_type == VDIR) { 2763 ZFS_EXIT(zfsvfs); 2764 return (EPERM); 2765 } 2766 2767 if ((uid_t)szp->z_phys->zp_uid != crgetuid(cr) && 2768 secpolicy_basic_link(cr) != 0) { 2769 ZFS_EXIT(zfsvfs); 2770 return (EPERM); 2771 } 2772 2773 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2774 ZFS_EXIT(zfsvfs); 2775 return (error); 2776 } 2777 2778 /* 2779 * Attempt to lock directory; fail if entry already exists. 2780 */ 2781 if (error = zfs_dirent_lock(&dl, dzp, name, &tzp, ZNEW)) { 2782 ZFS_EXIT(zfsvfs); 2783 return (error); 2784 } 2785 2786 tx = dmu_tx_create(zfsvfs->z_os); 2787 dmu_tx_hold_bonus(tx, szp->z_id); 2788 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 2789 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2790 if (error) { 2791 zfs_dirent_unlock(dl); 2792 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2793 dmu_tx_wait(tx); 2794 dmu_tx_abort(tx); 2795 goto top; 2796 } 2797 dmu_tx_abort(tx); 2798 ZFS_EXIT(zfsvfs); 2799 return (error); 2800 } 2801 2802 error = zfs_link_create(dl, szp, tx, 0); 2803 2804 if (error == 0) 2805 zfs_log_link(zilog, tx, TX_LINK, dzp, szp, name); 2806 2807 dmu_tx_commit(tx); 2808 2809 zfs_dirent_unlock(dl); 2810 2811 ZFS_EXIT(zfsvfs); 2812 return (error); 2813 } 2814 2815 /* 2816 * zfs_null_putapage() is used when the file system has been force 2817 * unmounted. It just drops the pages. 2818 */ 2819 /* ARGSUSED */ 2820 static int 2821 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2822 size_t *lenp, int flags, cred_t *cr) 2823 { 2824 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 2825 return (0); 2826 } 2827 2828 /* 2829 * Push a page out to disk, klustering if possible. 2830 * 2831 * IN: vp - file to push page to. 2832 * pp - page to push. 2833 * flags - additional flags. 2834 * cr - credentials of caller. 2835 * 2836 * OUT: offp - start of range pushed. 2837 * lenp - len of range pushed. 2838 * 2839 * RETURN: 0 if success 2840 * error code if failure 2841 * 2842 * NOTE: callers must have locked the page to be pushed. On 2843 * exit, the page (and all other pages in the kluster) must be 2844 * unlocked. 2845 */ 2846 /* ARGSUSED */ 2847 static int 2848 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2849 size_t *lenp, int flags, cred_t *cr) 2850 { 2851 znode_t *zp = VTOZ(vp); 2852 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2853 zilog_t *zilog = zfsvfs->z_log; 2854 dmu_tx_t *tx; 2855 rl_t *rl; 2856 u_offset_t off, koff; 2857 size_t len, klen; 2858 int err; 2859 2860 off = pp->p_offset; 2861 len = PAGESIZE; 2862 /* 2863 * If our blocksize is bigger than the page size, try to kluster 2864 * muiltiple pages so that we write a full block (thus avoiding 2865 * a read-modify-write). 2866 */ 2867 if (zp->z_blksz > PAGESIZE) { 2868 uint64_t filesz = zp->z_phys->zp_size; 2869 2870 if (!ISP2(zp->z_blksz)) { 2871 /* Only one block in the file. */ 2872 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 2873 koff = 0; 2874 } else { 2875 klen = zp->z_blksz; 2876 koff = P2ALIGN(off, (u_offset_t)klen); 2877 } 2878 ASSERT(koff <= filesz); 2879 if (koff + klen > filesz) 2880 klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE); 2881 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 2882 } 2883 ASSERT3U(btop(len), ==, btopr(len)); 2884 top: 2885 rl = zfs_range_lock(zp, off, len, RL_WRITER); 2886 /* 2887 * Can't push pages past end-of-file. 2888 */ 2889 if (off >= zp->z_phys->zp_size) { 2890 /* discard all pages */ 2891 flags |= B_INVAL; 2892 err = 0; 2893 goto out; 2894 } else if (off + len > zp->z_phys->zp_size) { 2895 int npages = btopr(zp->z_phys->zp_size - off); 2896 page_t *trunc; 2897 2898 page_list_break(&pp, &trunc, npages); 2899 /* discard pages past end of file */ 2900 if (trunc) 2901 pvn_write_done(trunc, B_INVAL | flags); 2902 len = zp->z_phys->zp_size - off; 2903 } 2904 2905 tx = dmu_tx_create(zfsvfs->z_os); 2906 dmu_tx_hold_write(tx, zp->z_id, off, len); 2907 dmu_tx_hold_bonus(tx, zp->z_id); 2908 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2909 if (err != 0) { 2910 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2911 zfs_range_unlock(rl); 2912 dmu_tx_wait(tx); 2913 dmu_tx_abort(tx); 2914 err = 0; 2915 goto top; 2916 } 2917 dmu_tx_abort(tx); 2918 goto out; 2919 } 2920 2921 if (zp->z_blksz <= PAGESIZE) { 2922 caddr_t va = ppmapin(pp, PROT_READ, (caddr_t)-1); 2923 ASSERT3U(len, <=, PAGESIZE); 2924 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 2925 ppmapout(va); 2926 } else { 2927 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 2928 } 2929 2930 if (err == 0) { 2931 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 2932 (void) zfs_log_write( 2933 zilog, tx, TX_WRITE, zp, off, len, 0, NULL); 2934 dmu_tx_commit(tx); 2935 } 2936 2937 out: 2938 zfs_range_unlock(rl); 2939 pvn_write_done(pp, (err ? B_ERROR : 0) | B_WRITE | flags); 2940 if (offp) 2941 *offp = off; 2942 if (lenp) 2943 *lenp = len; 2944 2945 return (err); 2946 } 2947 2948 /* 2949 * Copy the portion of the file indicated from pages into the file. 2950 * The pages are stored in a page list attached to the files vnode. 2951 * 2952 * IN: vp - vnode of file to push page data to. 2953 * off - position in file to put data. 2954 * len - amount of data to write. 2955 * flags - flags to control the operation. 2956 * cr - credentials of caller. 2957 * 2958 * RETURN: 0 if success 2959 * error code if failure 2960 * 2961 * Timestamps: 2962 * vp - ctime|mtime updated 2963 */ 2964 static int 2965 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 2966 { 2967 znode_t *zp = VTOZ(vp); 2968 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2969 page_t *pp; 2970 size_t io_len; 2971 u_offset_t io_off; 2972 uint64_t filesz; 2973 int error = 0; 2974 2975 ZFS_ENTER(zfsvfs); 2976 2977 ASSERT(zp->z_dbuf_held && zp->z_phys); 2978 2979 if (len == 0) { 2980 /* 2981 * Search the entire vp list for pages >= off. 2982 */ 2983 error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage, 2984 flags, cr); 2985 goto out; 2986 } 2987 2988 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 2989 if (off > filesz) { 2990 /* past end of file */ 2991 ZFS_EXIT(zfsvfs); 2992 return (0); 2993 } 2994 2995 len = MIN(len, filesz - off); 2996 2997 for (io_off = off; io_off < off + len; io_off += io_len) { 2998 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 2999 pp = page_lookup(vp, io_off, 3000 (flags & (B_INVAL | B_FREE)) ? 3001 SE_EXCL : SE_SHARED); 3002 } else { 3003 pp = page_lookup_nowait(vp, io_off, 3004 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 3005 } 3006 3007 if (pp != NULL && pvn_getdirty(pp, flags)) { 3008 int err; 3009 3010 /* 3011 * Found a dirty page to push 3012 */ 3013 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 3014 if (err) 3015 error = err; 3016 } else { 3017 io_len = PAGESIZE; 3018 } 3019 } 3020 out: 3021 if ((flags & B_ASYNC) == 0) 3022 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 3023 ZFS_EXIT(zfsvfs); 3024 return (error); 3025 } 3026 3027 void 3028 zfs_inactive(vnode_t *vp, cred_t *cr) 3029 { 3030 znode_t *zp = VTOZ(vp); 3031 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3032 int error; 3033 3034 rw_enter(&zfsvfs->z_um_lock, RW_READER); 3035 if (zfsvfs->z_unmounted2) { 3036 ASSERT(zp->z_dbuf_held == 0); 3037 3038 if (vn_has_cached_data(vp)) { 3039 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 3040 B_INVAL, cr); 3041 } 3042 3043 mutex_enter(&zp->z_lock); 3044 vp->v_count = 0; /* count arrives as 1 */ 3045 if (zp->z_dbuf == NULL) { 3046 mutex_exit(&zp->z_lock); 3047 zfs_znode_free(zp); 3048 } else { 3049 mutex_exit(&zp->z_lock); 3050 } 3051 rw_exit(&zfsvfs->z_um_lock); 3052 VFS_RELE(zfsvfs->z_vfs); 3053 return; 3054 } 3055 3056 /* 3057 * Attempt to push any data in the page cache. If this fails 3058 * we will get kicked out later in zfs_zinactive(). 3059 */ 3060 if (vn_has_cached_data(vp)) { 3061 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 3062 cr); 3063 } 3064 3065 if (zp->z_atime_dirty && zp->z_reap == 0) { 3066 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 3067 3068 dmu_tx_hold_bonus(tx, zp->z_id); 3069 error = dmu_tx_assign(tx, TXG_WAIT); 3070 if (error) { 3071 dmu_tx_abort(tx); 3072 } else { 3073 dmu_buf_will_dirty(zp->z_dbuf, tx); 3074 mutex_enter(&zp->z_lock); 3075 zp->z_atime_dirty = 0; 3076 mutex_exit(&zp->z_lock); 3077 dmu_tx_commit(tx); 3078 } 3079 } 3080 3081 zfs_zinactive(zp); 3082 rw_exit(&zfsvfs->z_um_lock); 3083 } 3084 3085 /* 3086 * Bounds-check the seek operation. 3087 * 3088 * IN: vp - vnode seeking within 3089 * ooff - old file offset 3090 * noffp - pointer to new file offset 3091 * 3092 * RETURN: 0 if success 3093 * EINVAL if new offset invalid 3094 */ 3095 /* ARGSUSED */ 3096 static int 3097 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 3098 { 3099 if (vp->v_type == VDIR) 3100 return (0); 3101 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 3102 } 3103 3104 /* 3105 * Pre-filter the generic locking function to trap attempts to place 3106 * a mandatory lock on a memory mapped file. 3107 */ 3108 static int 3109 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 3110 flk_callback_t *flk_cbp, cred_t *cr) 3111 { 3112 znode_t *zp = VTOZ(vp); 3113 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3114 int error; 3115 3116 ZFS_ENTER(zfsvfs); 3117 3118 /* 3119 * We are following the UFS semantics with respect to mapcnt 3120 * here: If we see that the file is mapped already, then we will 3121 * return an error, but we don't worry about races between this 3122 * function and zfs_map(). 3123 */ 3124 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3125 ZFS_EXIT(zfsvfs); 3126 return (EAGAIN); 3127 } 3128 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr); 3129 ZFS_EXIT(zfsvfs); 3130 return (error); 3131 } 3132 3133 /* 3134 * If we can't find a page in the cache, we will create a new page 3135 * and fill it with file data. For efficiency, we may try to fill 3136 * multiple pages at once (klustering). 3137 */ 3138 static int 3139 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3140 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3141 { 3142 znode_t *zp = VTOZ(vp); 3143 page_t *pp, *cur_pp; 3144 objset_t *os = zp->z_zfsvfs->z_os; 3145 caddr_t va; 3146 u_offset_t io_off, total; 3147 uint64_t oid = zp->z_id; 3148 size_t io_len; 3149 uint64_t filesz; 3150 int err; 3151 3152 /* 3153 * If we are only asking for a single page don't bother klustering. 3154 */ 3155 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3156 if (off >= filesz) 3157 return (EFAULT); 3158 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 3159 io_off = off; 3160 io_len = PAGESIZE; 3161 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 3162 } else { 3163 /* 3164 * Try to fill a kluster of pages (a blocks worth). 3165 */ 3166 size_t klen; 3167 u_offset_t koff; 3168 3169 if (!ISP2(zp->z_blksz)) { 3170 /* Only one block in the file. */ 3171 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3172 koff = 0; 3173 } else { 3174 /* 3175 * It would be ideal to align our offset to the 3176 * blocksize but doing so has resulted in some 3177 * strange application crashes. For now, we 3178 * leave the offset as is and only adjust the 3179 * length if we are off the end of the file. 3180 */ 3181 koff = off; 3182 klen = plsz; 3183 } 3184 ASSERT(koff <= filesz); 3185 if (koff + klen > filesz) 3186 klen = P2ROUNDUP(filesz, (uint64_t)PAGESIZE) - koff; 3187 ASSERT3U(off, >=, koff); 3188 ASSERT3U(off, <, koff + klen); 3189 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3190 &io_len, koff, klen, 0); 3191 } 3192 if (pp == NULL) { 3193 /* 3194 * Some other thread entered the page before us. 3195 * Return to zfs_getpage to retry the lookup. 3196 */ 3197 *pl = NULL; 3198 return (0); 3199 } 3200 3201 /* 3202 * Fill the pages in the kluster. 3203 */ 3204 cur_pp = pp; 3205 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3206 ASSERT3U(io_off, ==, cur_pp->p_offset); 3207 va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 3208 err = dmu_read(os, oid, io_off, PAGESIZE, va); 3209 ppmapout(va); 3210 if (err) { 3211 /* On error, toss the entire kluster */ 3212 pvn_read_done(pp, B_ERROR); 3213 return (err); 3214 } 3215 cur_pp = cur_pp->p_next; 3216 } 3217 out: 3218 /* 3219 * Fill in the page list array from the kluster. If 3220 * there are too many pages in the kluster, return 3221 * as many pages as possible starting from the desired 3222 * offset `off'. 3223 * NOTE: the page list will always be null terminated. 3224 */ 3225 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3226 3227 return (0); 3228 } 3229 3230 /* 3231 * Return pointers to the pages for the file region [off, off + len] 3232 * in the pl array. If plsz is greater than len, this function may 3233 * also return page pointers from before or after the specified 3234 * region (i.e. some region [off', off' + plsz]). These additional 3235 * pages are only returned if they are already in the cache, or were 3236 * created as part of a klustered read. 3237 * 3238 * IN: vp - vnode of file to get data from. 3239 * off - position in file to get data from. 3240 * len - amount of data to retrieve. 3241 * plsz - length of provided page list. 3242 * seg - segment to obtain pages for. 3243 * addr - virtual address of fault. 3244 * rw - mode of created pages. 3245 * cr - credentials of caller. 3246 * 3247 * OUT: protp - protection mode of created pages. 3248 * pl - list of pages created. 3249 * 3250 * RETURN: 0 if success 3251 * error code if failure 3252 * 3253 * Timestamps: 3254 * vp - atime updated 3255 */ 3256 /* ARGSUSED */ 3257 static int 3258 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3259 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3260 enum seg_rw rw, cred_t *cr) 3261 { 3262 znode_t *zp = VTOZ(vp); 3263 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3264 page_t *pp, **pl0 = pl; 3265 int need_unlock = 0, err = 0; 3266 offset_t orig_off; 3267 3268 ZFS_ENTER(zfsvfs); 3269 3270 if (protp) 3271 *protp = PROT_ALL; 3272 3273 ASSERT(zp->z_dbuf_held && zp->z_phys); 3274 3275 /* no faultahead (for now) */ 3276 if (pl == NULL) { 3277 ZFS_EXIT(zfsvfs); 3278 return (0); 3279 } 3280 3281 /* can't fault past EOF */ 3282 if (off >= zp->z_phys->zp_size) { 3283 ZFS_EXIT(zfsvfs); 3284 return (EFAULT); 3285 } 3286 orig_off = off; 3287 3288 /* 3289 * If we already own the lock, then we must be page faulting 3290 * in the middle of a write to this file (i.e., we are writing 3291 * to this file using data from a mapped region of the file). 3292 */ 3293 if (rw_owner(&zp->z_map_lock) != curthread) { 3294 rw_enter(&zp->z_map_lock, RW_WRITER); 3295 need_unlock = TRUE; 3296 } 3297 3298 /* 3299 * Loop through the requested range [off, off + len] looking 3300 * for pages. If we don't find a page, we will need to create 3301 * a new page and fill it with data from the file. 3302 */ 3303 while (len > 0) { 3304 if (plsz < PAGESIZE) 3305 break; 3306 if (pp = page_lookup(vp, off, SE_SHARED)) { 3307 *pl++ = pp; 3308 off += PAGESIZE; 3309 addr += PAGESIZE; 3310 len -= PAGESIZE; 3311 plsz -= PAGESIZE; 3312 } else { 3313 err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw); 3314 if (err) 3315 goto out; 3316 /* 3317 * klustering may have changed our region 3318 * to be block aligned. 3319 */ 3320 if (((pp = *pl) != 0) && (off != pp->p_offset)) { 3321 int delta = off - pp->p_offset; 3322 len += delta; 3323 off -= delta; 3324 addr -= delta; 3325 } 3326 while (*pl) { 3327 pl++; 3328 off += PAGESIZE; 3329 addr += PAGESIZE; 3330 plsz -= PAGESIZE; 3331 if (len > PAGESIZE) 3332 len -= PAGESIZE; 3333 else 3334 len = 0; 3335 } 3336 } 3337 } 3338 3339 /* 3340 * Fill out the page array with any pages already in the cache. 3341 */ 3342 while (plsz > 0) { 3343 pp = page_lookup_nowait(vp, off, SE_SHARED); 3344 if (pp == NULL) 3345 break; 3346 *pl++ = pp; 3347 off += PAGESIZE; 3348 plsz -= PAGESIZE; 3349 } 3350 3351 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3352 out: 3353 /* 3354 * We can't grab the range lock for the page as reader which would 3355 * stop truncation as this leads to deadlock. So we need to recheck 3356 * the file size. 3357 */ 3358 if (orig_off >= zp->z_phys->zp_size) 3359 err = EFAULT; 3360 if (err) { 3361 /* 3362 * Release any pages we have previously locked. 3363 */ 3364 while (pl > pl0) 3365 page_unlock(*--pl); 3366 } 3367 3368 *pl = NULL; 3369 3370 if (need_unlock) 3371 rw_exit(&zp->z_map_lock); 3372 3373 ZFS_EXIT(zfsvfs); 3374 return (err); 3375 } 3376 3377 /* 3378 * Request a memory map for a section of a file. This code interacts 3379 * with common code and the VM system as follows: 3380 * 3381 * common code calls mmap(), which ends up in smmap_common() 3382 * 3383 * this calls VOP_MAP(), which takes you into (say) zfs 3384 * 3385 * zfs_map() calls as_map(), passing segvn_create() as the callback 3386 * 3387 * segvn_create() creates the new segment and calls VOP_ADDMAP() 3388 * 3389 * zfs_addmap() updates z_mapcnt 3390 */ 3391 static int 3392 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 3393 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3394 { 3395 znode_t *zp = VTOZ(vp); 3396 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3397 segvn_crargs_t vn_a; 3398 int error; 3399 3400 ZFS_ENTER(zfsvfs); 3401 3402 if (vp->v_flag & VNOMAP) { 3403 ZFS_EXIT(zfsvfs); 3404 return (ENOSYS); 3405 } 3406 3407 if (off < 0 || len > MAXOFFSET_T - off) { 3408 ZFS_EXIT(zfsvfs); 3409 return (ENXIO); 3410 } 3411 3412 if (vp->v_type != VREG) { 3413 ZFS_EXIT(zfsvfs); 3414 return (ENODEV); 3415 } 3416 3417 /* 3418 * If file is locked, disallow mapping. 3419 */ 3420 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 3421 ZFS_EXIT(zfsvfs); 3422 return (EAGAIN); 3423 } 3424 3425 as_rangelock(as); 3426 if ((flags & MAP_FIXED) == 0) { 3427 map_addr(addrp, len, off, 1, flags); 3428 if (*addrp == NULL) { 3429 as_rangeunlock(as); 3430 ZFS_EXIT(zfsvfs); 3431 return (ENOMEM); 3432 } 3433 } else { 3434 /* 3435 * User specified address - blow away any previous mappings 3436 */ 3437 (void) as_unmap(as, *addrp, len); 3438 } 3439 3440 vn_a.vp = vp; 3441 vn_a.offset = (u_offset_t)off; 3442 vn_a.type = flags & MAP_TYPE; 3443 vn_a.prot = prot; 3444 vn_a.maxprot = maxprot; 3445 vn_a.cred = cr; 3446 vn_a.amp = NULL; 3447 vn_a.flags = flags & ~MAP_TYPE; 3448 vn_a.szc = 0; 3449 vn_a.lgrp_mem_policy_flags = 0; 3450 3451 error = as_map(as, *addrp, len, segvn_create, &vn_a); 3452 3453 as_rangeunlock(as); 3454 ZFS_EXIT(zfsvfs); 3455 return (error); 3456 } 3457 3458 /* ARGSUSED */ 3459 static int 3460 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3461 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3462 { 3463 uint64_t pages = btopr(len); 3464 3465 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 3466 return (0); 3467 } 3468 3469 /* 3470 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 3471 * more accurate mtime for the associated file. Since we don't have a way of 3472 * detecting when the data was actually modified, we have to resort to 3473 * heuristics. If an explicit msync() is done, then we mark the mtime when the 3474 * last page is pushed. The problem occurs when the msync() call is omitted, 3475 * which by far the most common case: 3476 * 3477 * open() 3478 * mmap() 3479 * <modify memory> 3480 * munmap() 3481 * close() 3482 * <time lapse> 3483 * putpage() via fsflush 3484 * 3485 * If we wait until fsflush to come along, we can have a modification time that 3486 * is some arbitrary point in the future. In order to prevent this in the 3487 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 3488 * torn down. 3489 */ 3490 /* ARGSUSED */ 3491 static int 3492 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3493 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 3494 { 3495 uint64_t pages = btopr(len); 3496 3497 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 3498 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 3499 3500 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 3501 vn_has_cached_data(vp)) 3502 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr); 3503 3504 return (0); 3505 } 3506 3507 /* 3508 * Free or allocate space in a file. Currently, this function only 3509 * supports the `F_FREESP' command. However, this command is somewhat 3510 * misnamed, as its functionality includes the ability to allocate as 3511 * well as free space. 3512 * 3513 * IN: vp - vnode of file to free data in. 3514 * cmd - action to take (only F_FREESP supported). 3515 * bfp - section of file to free/alloc. 3516 * flag - current file open mode flags. 3517 * offset - current file offset. 3518 * cr - credentials of caller [UNUSED]. 3519 * 3520 * RETURN: 0 if success 3521 * error code if failure 3522 * 3523 * Timestamps: 3524 * vp - ctime|mtime updated 3525 */ 3526 /* ARGSUSED */ 3527 static int 3528 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 3529 offset_t offset, cred_t *cr, caller_context_t *ct) 3530 { 3531 znode_t *zp = VTOZ(vp); 3532 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3533 uint64_t off, len; 3534 int error; 3535 3536 ZFS_ENTER(zfsvfs); 3537 3538 top: 3539 if (cmd != F_FREESP) { 3540 ZFS_EXIT(zfsvfs); 3541 return (EINVAL); 3542 } 3543 3544 if (error = convoff(vp, bfp, 0, offset)) { 3545 ZFS_EXIT(zfsvfs); 3546 return (error); 3547 } 3548 3549 if (bfp->l_len < 0) { 3550 ZFS_EXIT(zfsvfs); 3551 return (EINVAL); 3552 } 3553 3554 off = bfp->l_start; 3555 len = bfp->l_len; /* 0 means from off to end of file */ 3556 3557 do { 3558 error = zfs_freesp(zp, off, len, flag, TRUE); 3559 /* NB: we already did dmu_tx_wait() if necessary */ 3560 } while (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 3561 3562 ZFS_EXIT(zfsvfs); 3563 return (error); 3564 } 3565 3566 static int 3567 zfs_fid(vnode_t *vp, fid_t *fidp) 3568 { 3569 znode_t *zp = VTOZ(vp); 3570 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3571 uint32_t gen = (uint32_t)zp->z_phys->zp_gen; 3572 uint64_t object = zp->z_id; 3573 zfid_short_t *zfid; 3574 int size, i; 3575 3576 ZFS_ENTER(zfsvfs); 3577 3578 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 3579 if (fidp->fid_len < size) { 3580 fidp->fid_len = size; 3581 ZFS_EXIT(zfsvfs); 3582 return (ENOSPC); 3583 } 3584 3585 zfid = (zfid_short_t *)fidp; 3586 3587 zfid->zf_len = size; 3588 3589 for (i = 0; i < sizeof (zfid->zf_object); i++) 3590 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 3591 3592 /* Must have a non-zero generation number to distinguish from .zfs */ 3593 if (gen == 0) 3594 gen = 1; 3595 for (i = 0; i < sizeof (zfid->zf_gen); i++) 3596 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 3597 3598 if (size == LONG_FID_LEN) { 3599 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 3600 zfid_long_t *zlfid; 3601 3602 zlfid = (zfid_long_t *)fidp; 3603 3604 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 3605 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 3606 3607 /* XXX - this should be the generation number for the objset */ 3608 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 3609 zlfid->zf_setgen[i] = 0; 3610 } 3611 3612 ZFS_EXIT(zfsvfs); 3613 return (0); 3614 } 3615 3616 static int 3617 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 3618 { 3619 znode_t *zp, *xzp; 3620 zfsvfs_t *zfsvfs; 3621 zfs_dirlock_t *dl; 3622 int error; 3623 3624 switch (cmd) { 3625 case _PC_LINK_MAX: 3626 *valp = ULONG_MAX; 3627 return (0); 3628 3629 case _PC_FILESIZEBITS: 3630 *valp = 64; 3631 return (0); 3632 3633 case _PC_XATTR_EXISTS: 3634 zp = VTOZ(vp); 3635 zfsvfs = zp->z_zfsvfs; 3636 ZFS_ENTER(zfsvfs); 3637 *valp = 0; 3638 error = zfs_dirent_lock(&dl, zp, "", &xzp, 3639 ZXATTR | ZEXISTS | ZSHARED); 3640 if (error == 0) { 3641 zfs_dirent_unlock(dl); 3642 if (!zfs_dirempty(xzp)) 3643 *valp = 1; 3644 VN_RELE(ZTOV(xzp)); 3645 } else if (error == ENOENT) { 3646 /* 3647 * If there aren't extended attributes, it's the 3648 * same as having zero of them. 3649 */ 3650 error = 0; 3651 } 3652 ZFS_EXIT(zfsvfs); 3653 return (error); 3654 3655 case _PC_ACL_ENABLED: 3656 *valp = _ACL_ACE_ENABLED; 3657 return (0); 3658 3659 case _PC_MIN_HOLE_SIZE: 3660 *valp = (ulong_t)SPA_MINBLOCKSIZE; 3661 return (0); 3662 3663 default: 3664 return (fs_pathconf(vp, cmd, valp, cr)); 3665 } 3666 } 3667 3668 /*ARGSUSED*/ 3669 static int 3670 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3671 { 3672 znode_t *zp = VTOZ(vp); 3673 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3674 int error; 3675 3676 ZFS_ENTER(zfsvfs); 3677 error = zfs_getacl(zp, vsecp, cr); 3678 ZFS_EXIT(zfsvfs); 3679 3680 return (error); 3681 } 3682 3683 /*ARGSUSED*/ 3684 static int 3685 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3686 { 3687 znode_t *zp = VTOZ(vp); 3688 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3689 int error; 3690 3691 ZFS_ENTER(zfsvfs); 3692 error = zfs_setacl(zp, vsecp, cr); 3693 ZFS_EXIT(zfsvfs); 3694 return (error); 3695 } 3696 3697 /* 3698 * Predeclare these here so that the compiler assumes that 3699 * this is an "old style" function declaration that does 3700 * not include arguments => we won't get type mismatch errors 3701 * in the initializations that follow. 3702 */ 3703 static int zfs_inval(); 3704 static int zfs_isdir(); 3705 3706 static int 3707 zfs_inval() 3708 { 3709 return (EINVAL); 3710 } 3711 3712 static int 3713 zfs_isdir() 3714 { 3715 return (EISDIR); 3716 } 3717 /* 3718 * Directory vnode operations template 3719 */ 3720 vnodeops_t *zfs_dvnodeops; 3721 const fs_operation_def_t zfs_dvnodeops_template[] = { 3722 VOPNAME_OPEN, zfs_open, 3723 VOPNAME_CLOSE, zfs_close, 3724 VOPNAME_READ, zfs_isdir, 3725 VOPNAME_WRITE, zfs_isdir, 3726 VOPNAME_IOCTL, zfs_ioctl, 3727 VOPNAME_GETATTR, zfs_getattr, 3728 VOPNAME_SETATTR, zfs_setattr, 3729 VOPNAME_ACCESS, zfs_access, 3730 VOPNAME_LOOKUP, zfs_lookup, 3731 VOPNAME_CREATE, zfs_create, 3732 VOPNAME_REMOVE, zfs_remove, 3733 VOPNAME_LINK, zfs_link, 3734 VOPNAME_RENAME, zfs_rename, 3735 VOPNAME_MKDIR, zfs_mkdir, 3736 VOPNAME_RMDIR, zfs_rmdir, 3737 VOPNAME_READDIR, zfs_readdir, 3738 VOPNAME_SYMLINK, zfs_symlink, 3739 VOPNAME_FSYNC, zfs_fsync, 3740 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3741 VOPNAME_FID, zfs_fid, 3742 VOPNAME_SEEK, zfs_seek, 3743 VOPNAME_PATHCONF, zfs_pathconf, 3744 VOPNAME_GETSECATTR, zfs_getsecattr, 3745 VOPNAME_SETSECATTR, zfs_setsecattr, 3746 NULL, NULL 3747 }; 3748 3749 /* 3750 * Regular file vnode operations template 3751 */ 3752 vnodeops_t *zfs_fvnodeops; 3753 const fs_operation_def_t zfs_fvnodeops_template[] = { 3754 VOPNAME_OPEN, zfs_open, 3755 VOPNAME_CLOSE, zfs_close, 3756 VOPNAME_READ, zfs_read, 3757 VOPNAME_WRITE, zfs_write, 3758 VOPNAME_IOCTL, zfs_ioctl, 3759 VOPNAME_GETATTR, zfs_getattr, 3760 VOPNAME_SETATTR, zfs_setattr, 3761 VOPNAME_ACCESS, zfs_access, 3762 VOPNAME_LOOKUP, zfs_lookup, 3763 VOPNAME_RENAME, zfs_rename, 3764 VOPNAME_FSYNC, zfs_fsync, 3765 VOPNAME_INACTIVE, (fs_generic_func_p)zfs_inactive, 3766 VOPNAME_FID, zfs_fid, 3767 VOPNAME_SEEK, zfs_seek, 3768 VOPNAME_FRLOCK, zfs_frlock, 3769 VOPNAME_SPACE, zfs_space, 3770 VOPNAME_GETPAGE, zfs_getpage, 3771 VOPNAME_PUTPAGE, zfs_putpage, 3772 VOPNAME_MAP, (fs_generic_func_p) zfs_map, 3773 VOPNAME_ADDMAP, (fs_generic_func_p) zfs_addmap, 3774 VOPNAME_DELMAP, zfs_delmap, 3775 VOPNAME_PATHCONF, zfs_pathconf, 3776 VOPNAME_GETSECATTR, zfs_getsecattr, 3777 VOPNAME_SETSECATTR, zfs_setsecattr, 3778 VOPNAME_VNEVENT, fs_vnevent_support, 3779 NULL, NULL 3780 }; 3781 3782 /* 3783 * Symbolic link vnode operations template 3784 */ 3785 vnodeops_t *zfs_symvnodeops; 3786 const fs_operation_def_t zfs_symvnodeops_template[] = { 3787 VOPNAME_GETATTR, zfs_getattr, 3788 VOPNAME_SETATTR, zfs_setattr, 3789 VOPNAME_ACCESS, zfs_access, 3790 VOPNAME_RENAME, zfs_rename, 3791 VOPNAME_READLINK, zfs_readlink, 3792 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3793 VOPNAME_FID, zfs_fid, 3794 VOPNAME_PATHCONF, zfs_pathconf, 3795 VOPNAME_VNEVENT, fs_vnevent_support, 3796 NULL, NULL 3797 }; 3798 3799 /* 3800 * Extended attribute directory vnode operations template 3801 * This template is identical to the directory vnodes 3802 * operation template except for restricted operations: 3803 * VOP_MKDIR() 3804 * VOP_SYMLINK() 3805 * Note that there are other restrictions embedded in: 3806 * zfs_create() - restrict type to VREG 3807 * zfs_link() - no links into/out of attribute space 3808 * zfs_rename() - no moves into/out of attribute space 3809 */ 3810 vnodeops_t *zfs_xdvnodeops; 3811 const fs_operation_def_t zfs_xdvnodeops_template[] = { 3812 VOPNAME_OPEN, zfs_open, 3813 VOPNAME_CLOSE, zfs_close, 3814 VOPNAME_IOCTL, zfs_ioctl, 3815 VOPNAME_GETATTR, zfs_getattr, 3816 VOPNAME_SETATTR, zfs_setattr, 3817 VOPNAME_ACCESS, zfs_access, 3818 VOPNAME_LOOKUP, zfs_lookup, 3819 VOPNAME_CREATE, zfs_create, 3820 VOPNAME_REMOVE, zfs_remove, 3821 VOPNAME_LINK, zfs_link, 3822 VOPNAME_RENAME, zfs_rename, 3823 VOPNAME_MKDIR, zfs_inval, 3824 VOPNAME_RMDIR, zfs_rmdir, 3825 VOPNAME_READDIR, zfs_readdir, 3826 VOPNAME_SYMLINK, zfs_inval, 3827 VOPNAME_FSYNC, zfs_fsync, 3828 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3829 VOPNAME_FID, zfs_fid, 3830 VOPNAME_SEEK, zfs_seek, 3831 VOPNAME_PATHCONF, zfs_pathconf, 3832 VOPNAME_GETSECATTR, zfs_getsecattr, 3833 VOPNAME_SETSECATTR, zfs_setsecattr, 3834 VOPNAME_VNEVENT, fs_vnevent_support, 3835 NULL, NULL 3836 }; 3837 3838 /* 3839 * Error vnode operations template 3840 */ 3841 vnodeops_t *zfs_evnodeops; 3842 const fs_operation_def_t zfs_evnodeops_template[] = { 3843 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3844 VOPNAME_PATHCONF, zfs_pathconf, 3845 NULL, NULL 3846 }; 3847