xref: /titanic_44/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision 6ed9368a130d7c9a82e574da808d34034da33748)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013, 2014 by Delphix. All rights reserved.
24  * Copyright 2014 Nexenta Systems, Inc.  All rights reserved.
25  */
26 
27 /* Portions Copyright 2007 Jeremy Teo */
28 /* Portions Copyright 2010 Robert Milkowski */
29 
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/resource.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/taskq.h>
43 #include <sys/uio.h>
44 #include <sys/vmsystm.h>
45 #include <sys/atomic.h>
46 #include <sys/vm.h>
47 #include <vm/seg_vn.h>
48 #include <vm/pvn.h>
49 #include <vm/as.h>
50 #include <vm/kpm.h>
51 #include <vm/seg_kpm.h>
52 #include <sys/mman.h>
53 #include <sys/pathname.h>
54 #include <sys/cmn_err.h>
55 #include <sys/errno.h>
56 #include <sys/unistd.h>
57 #include <sys/zfs_dir.h>
58 #include <sys/zfs_acl.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/dmu.h>
62 #include <sys/dmu_objset.h>
63 #include <sys/spa.h>
64 #include <sys/txg.h>
65 #include <sys/dbuf.h>
66 #include <sys/zap.h>
67 #include <sys/sa.h>
68 #include <sys/dirent.h>
69 #include <sys/policy.h>
70 #include <sys/sunddi.h>
71 #include <sys/filio.h>
72 #include <sys/sid.h>
73 #include "fs/fs_subr.h"
74 #include <sys/zfs_ctldir.h>
75 #include <sys/zfs_fuid.h>
76 #include <sys/zfs_sa.h>
77 #include <sys/dnlc.h>
78 #include <sys/zfs_rlock.h>
79 #include <sys/extdirent.h>
80 #include <sys/kidmap.h>
81 #include <sys/cred.h>
82 #include <sys/attr.h>
83 
84 /*
85  * Programming rules.
86  *
87  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
88  * properly lock its in-core state, create a DMU transaction, do the work,
89  * record this work in the intent log (ZIL), commit the DMU transaction,
90  * and wait for the intent log to commit if it is a synchronous operation.
91  * Moreover, the vnode ops must work in both normal and log replay context.
92  * The ordering of events is important to avoid deadlocks and references
93  * to freed memory.  The example below illustrates the following Big Rules:
94  *
95  *  (1)	A check must be made in each zfs thread for a mounted file system.
96  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
97  *	A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
98  *	must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
99  *	can return EIO from the calling function.
100  *
101  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
102  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
103  *	First, if it's the last reference, the vnode/znode
104  *	can be freed, so the zp may point to freed memory.  Second, the last
105  *	reference will call zfs_zinactive(), which may induce a lot of work --
106  *	pushing cached pages (which acquires range locks) and syncing out
107  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
108  *	which could deadlock the system if you were already holding one.
109  *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
110  *
111  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
112  *	as they can span dmu_tx_assign() calls.
113  *
114  *  (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
115  *      dmu_tx_assign().  This is critical because we don't want to block
116  *      while holding locks.
117  *
118  *	If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT.  This
119  *	reduces lock contention and CPU usage when we must wait (note that if
120  *	throughput is constrained by the storage, nearly every transaction
121  *	must wait).
122  *
123  *      Note, in particular, that if a lock is sometimes acquired before
124  *      the tx assigns, and sometimes after (e.g. z_lock), then failing
125  *      to use a non-blocking assign can deadlock the system.  The scenario:
126  *
127  *	Thread A has grabbed a lock before calling dmu_tx_assign().
128  *	Thread B is in an already-assigned tx, and blocks for this lock.
129  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
130  *	forever, because the previous txg can't quiesce until B's tx commits.
131  *
132  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
133  *	then drop all locks, call dmu_tx_wait(), and try again.  On subsequent
134  *	calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
135  *	to indicate that this operation has already called dmu_tx_wait().
136  *	This will ensure that we don't retry forever, waiting a short bit
137  *	each time.
138  *
139  *  (5)	If the operation succeeded, generate the intent log entry for it
140  *	before dropping locks.  This ensures that the ordering of events
141  *	in the intent log matches the order in which they actually occurred.
142  *	During ZIL replay the zfs_log_* functions will update the sequence
143  *	number to indicate the zil transaction has replayed.
144  *
145  *  (6)	At the end of each vnode op, the DMU tx must always commit,
146  *	regardless of whether there were any errors.
147  *
148  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
149  *	to ensure that synchronous semantics are provided when necessary.
150  *
151  * In general, this is how things should be ordered in each vnode op:
152  *
153  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
154  * top:
155  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
156  *	rw_enter(...);			// grab any other locks you need
157  *	tx = dmu_tx_create(...);	// get DMU tx
158  *	dmu_tx_hold_*();		// hold each object you might modify
159  *	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
160  *	if (error) {
161  *		rw_exit(...);		// drop locks
162  *		zfs_dirent_unlock(dl);	// unlock directory entry
163  *		VN_RELE(...);		// release held vnodes
164  *		if (error == ERESTART) {
165  *			waited = B_TRUE;
166  *			dmu_tx_wait(tx);
167  *			dmu_tx_abort(tx);
168  *			goto top;
169  *		}
170  *		dmu_tx_abort(tx);	// abort DMU tx
171  *		ZFS_EXIT(zfsvfs);	// finished in zfs
172  *		return (error);		// really out of space
173  *	}
174  *	error = do_real_work();		// do whatever this VOP does
175  *	if (error == 0)
176  *		zfs_log_*(...);		// on success, make ZIL entry
177  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
178  *	rw_exit(...);			// drop locks
179  *	zfs_dirent_unlock(dl);		// unlock directory entry
180  *	VN_RELE(...);			// release held vnodes
181  *	zil_commit(zilog, foid);	// synchronous when necessary
182  *	ZFS_EXIT(zfsvfs);		// finished in zfs
183  *	return (error);			// done, report error
184  */
185 
186 /* ARGSUSED */
187 static int
188 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
189 {
190 	znode_t	*zp = VTOZ(*vpp);
191 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
192 
193 	ZFS_ENTER(zfsvfs);
194 	ZFS_VERIFY_ZP(zp);
195 
196 	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
197 	    ((flag & FAPPEND) == 0)) {
198 		ZFS_EXIT(zfsvfs);
199 		return (SET_ERROR(EPERM));
200 	}
201 
202 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
203 	    ZTOV(zp)->v_type == VREG &&
204 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
205 		if (fs_vscan(*vpp, cr, 0) != 0) {
206 			ZFS_EXIT(zfsvfs);
207 			return (SET_ERROR(EACCES));
208 		}
209 	}
210 
211 	/* Keep a count of the synchronous opens in the znode */
212 	if (flag & (FSYNC | FDSYNC))
213 		atomic_inc_32(&zp->z_sync_cnt);
214 
215 	ZFS_EXIT(zfsvfs);
216 	return (0);
217 }
218 
219 /* ARGSUSED */
220 static int
221 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
222     caller_context_t *ct)
223 {
224 	znode_t	*zp = VTOZ(vp);
225 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
226 
227 	/*
228 	 * Clean up any locks held by this process on the vp.
229 	 */
230 	cleanlocks(vp, ddi_get_pid(), 0);
231 	cleanshares(vp, ddi_get_pid());
232 
233 	ZFS_ENTER(zfsvfs);
234 	ZFS_VERIFY_ZP(zp);
235 
236 	/* Decrement the synchronous opens in the znode */
237 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
238 		atomic_dec_32(&zp->z_sync_cnt);
239 
240 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
241 	    ZTOV(zp)->v_type == VREG &&
242 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
243 		VERIFY(fs_vscan(vp, cr, 1) == 0);
244 
245 	ZFS_EXIT(zfsvfs);
246 	return (0);
247 }
248 
249 /*
250  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
251  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
252  */
253 static int
254 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
255 {
256 	znode_t	*zp = VTOZ(vp);
257 	uint64_t noff = (uint64_t)*off; /* new offset */
258 	uint64_t file_sz;
259 	int error;
260 	boolean_t hole;
261 
262 	file_sz = zp->z_size;
263 	if (noff >= file_sz)  {
264 		return (SET_ERROR(ENXIO));
265 	}
266 
267 	if (cmd == _FIO_SEEK_HOLE)
268 		hole = B_TRUE;
269 	else
270 		hole = B_FALSE;
271 
272 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
273 
274 	/* end of file? */
275 	if ((error == ESRCH) || (noff > file_sz)) {
276 		/*
277 		 * Handle the virtual hole at the end of file.
278 		 */
279 		if (hole) {
280 			*off = file_sz;
281 			return (0);
282 		}
283 		return (SET_ERROR(ENXIO));
284 	}
285 
286 	if (noff < *off)
287 		return (error);
288 	*off = noff;
289 	return (error);
290 }
291 
292 /* ARGSUSED */
293 static int
294 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
295     int *rvalp, caller_context_t *ct)
296 {
297 	offset_t off;
298 	int error;
299 	zfsvfs_t *zfsvfs;
300 	znode_t *zp;
301 
302 	switch (com) {
303 	case _FIOFFS:
304 		return (zfs_sync(vp->v_vfsp, 0, cred));
305 
306 		/*
307 		 * The following two ioctls are used by bfu.  Faking out,
308 		 * necessary to avoid bfu errors.
309 		 */
310 	case _FIOGDIO:
311 	case _FIOSDIO:
312 		return (0);
313 
314 	case _FIO_SEEK_DATA:
315 	case _FIO_SEEK_HOLE:
316 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
317 			return (SET_ERROR(EFAULT));
318 
319 		zp = VTOZ(vp);
320 		zfsvfs = zp->z_zfsvfs;
321 		ZFS_ENTER(zfsvfs);
322 		ZFS_VERIFY_ZP(zp);
323 
324 		/* offset parameter is in/out */
325 		error = zfs_holey(vp, com, &off);
326 		ZFS_EXIT(zfsvfs);
327 		if (error)
328 			return (error);
329 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
330 			return (SET_ERROR(EFAULT));
331 		return (0);
332 	}
333 	return (SET_ERROR(ENOTTY));
334 }
335 
336 /*
337  * Utility functions to map and unmap a single physical page.  These
338  * are used to manage the mappable copies of ZFS file data, and therefore
339  * do not update ref/mod bits.
340  */
341 caddr_t
342 zfs_map_page(page_t *pp, enum seg_rw rw)
343 {
344 	if (kpm_enable)
345 		return (hat_kpm_mapin(pp, 0));
346 	ASSERT(rw == S_READ || rw == S_WRITE);
347 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
348 	    (caddr_t)-1));
349 }
350 
351 void
352 zfs_unmap_page(page_t *pp, caddr_t addr)
353 {
354 	if (kpm_enable) {
355 		hat_kpm_mapout(pp, 0, addr);
356 	} else {
357 		ppmapout(addr);
358 	}
359 }
360 
361 /*
362  * When a file is memory mapped, we must keep the IO data synchronized
363  * between the DMU cache and the memory mapped pages.  What this means:
364  *
365  * On Write:	If we find a memory mapped page, we write to *both*
366  *		the page and the dmu buffer.
367  */
368 static void
369 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
370 {
371 	int64_t	off;
372 
373 	off = start & PAGEOFFSET;
374 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
375 		page_t *pp;
376 		uint64_t nbytes = MIN(PAGESIZE - off, len);
377 
378 		if (pp = page_lookup(vp, start, SE_SHARED)) {
379 			caddr_t va;
380 
381 			va = zfs_map_page(pp, S_WRITE);
382 			(void) dmu_read(os, oid, start+off, nbytes, va+off,
383 			    DMU_READ_PREFETCH);
384 			zfs_unmap_page(pp, va);
385 			page_unlock(pp);
386 		}
387 		len -= nbytes;
388 		off = 0;
389 	}
390 }
391 
392 /*
393  * When a file is memory mapped, we must keep the IO data synchronized
394  * between the DMU cache and the memory mapped pages.  What this means:
395  *
396  * On Read:	We "read" preferentially from memory mapped pages,
397  *		else we default from the dmu buffer.
398  *
399  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
400  *	 the file is memory mapped.
401  */
402 static int
403 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
404 {
405 	znode_t *zp = VTOZ(vp);
406 	objset_t *os = zp->z_zfsvfs->z_os;
407 	int64_t	start, off;
408 	int len = nbytes;
409 	int error = 0;
410 
411 	start = uio->uio_loffset;
412 	off = start & PAGEOFFSET;
413 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
414 		page_t *pp;
415 		uint64_t bytes = MIN(PAGESIZE - off, len);
416 
417 		if (pp = page_lookup(vp, start, SE_SHARED)) {
418 			caddr_t va;
419 
420 			va = zfs_map_page(pp, S_READ);
421 			error = uiomove(va + off, bytes, UIO_READ, uio);
422 			zfs_unmap_page(pp, va);
423 			page_unlock(pp);
424 		} else {
425 			error = dmu_read_uio(os, zp->z_id, uio, bytes);
426 		}
427 		len -= bytes;
428 		off = 0;
429 		if (error)
430 			break;
431 	}
432 	return (error);
433 }
434 
435 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
436 
437 /*
438  * Read bytes from specified file into supplied buffer.
439  *
440  *	IN:	vp	- vnode of file to be read from.
441  *		uio	- structure supplying read location, range info,
442  *			  and return buffer.
443  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
444  *		cr	- credentials of caller.
445  *		ct	- caller context
446  *
447  *	OUT:	uio	- updated offset and range, buffer filled.
448  *
449  *	RETURN:	0 on success, error code on failure.
450  *
451  * Side Effects:
452  *	vp - atime updated if byte count > 0
453  */
454 /* ARGSUSED */
455 static int
456 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
457 {
458 	znode_t		*zp = VTOZ(vp);
459 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
460 	objset_t	*os;
461 	ssize_t		n, nbytes;
462 	int		error = 0;
463 	rl_t		*rl;
464 	xuio_t		*xuio = NULL;
465 
466 	ZFS_ENTER(zfsvfs);
467 	ZFS_VERIFY_ZP(zp);
468 	os = zfsvfs->z_os;
469 
470 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
471 		ZFS_EXIT(zfsvfs);
472 		return (SET_ERROR(EACCES));
473 	}
474 
475 	/*
476 	 * Validate file offset
477 	 */
478 	if (uio->uio_loffset < (offset_t)0) {
479 		ZFS_EXIT(zfsvfs);
480 		return (SET_ERROR(EINVAL));
481 	}
482 
483 	/*
484 	 * Fasttrack empty reads
485 	 */
486 	if (uio->uio_resid == 0) {
487 		ZFS_EXIT(zfsvfs);
488 		return (0);
489 	}
490 
491 	/*
492 	 * Check for mandatory locks
493 	 */
494 	if (MANDMODE(zp->z_mode)) {
495 		if (error = chklock(vp, FREAD,
496 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
497 			ZFS_EXIT(zfsvfs);
498 			return (error);
499 		}
500 	}
501 
502 	/*
503 	 * If we're in FRSYNC mode, sync out this znode before reading it.
504 	 */
505 	if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
506 		zil_commit(zfsvfs->z_log, zp->z_id);
507 
508 	/*
509 	 * Lock the range against changes.
510 	 */
511 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
512 
513 	/*
514 	 * If we are reading past end-of-file we can skip
515 	 * to the end; but we might still need to set atime.
516 	 */
517 	if (uio->uio_loffset >= zp->z_size) {
518 		error = 0;
519 		goto out;
520 	}
521 
522 	ASSERT(uio->uio_loffset < zp->z_size);
523 	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
524 
525 	if ((uio->uio_extflg == UIO_XUIO) &&
526 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
527 		int nblk;
528 		int blksz = zp->z_blksz;
529 		uint64_t offset = uio->uio_loffset;
530 
531 		xuio = (xuio_t *)uio;
532 		if ((ISP2(blksz))) {
533 			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
534 			    blksz)) / blksz;
535 		} else {
536 			ASSERT(offset + n <= blksz);
537 			nblk = 1;
538 		}
539 		(void) dmu_xuio_init(xuio, nblk);
540 
541 		if (vn_has_cached_data(vp)) {
542 			/*
543 			 * For simplicity, we always allocate a full buffer
544 			 * even if we only expect to read a portion of a block.
545 			 */
546 			while (--nblk >= 0) {
547 				(void) dmu_xuio_add(xuio,
548 				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
549 				    blksz), 0, blksz);
550 			}
551 		}
552 	}
553 
554 	while (n > 0) {
555 		nbytes = MIN(n, zfs_read_chunk_size -
556 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
557 
558 		if (vn_has_cached_data(vp))
559 			error = mappedread(vp, nbytes, uio);
560 		else
561 			error = dmu_read_uio(os, zp->z_id, uio, nbytes);
562 		if (error) {
563 			/* convert checksum errors into IO errors */
564 			if (error == ECKSUM)
565 				error = SET_ERROR(EIO);
566 			break;
567 		}
568 
569 		n -= nbytes;
570 	}
571 out:
572 	zfs_range_unlock(rl);
573 
574 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
575 	ZFS_EXIT(zfsvfs);
576 	return (error);
577 }
578 
579 /*
580  * Write the bytes to a file.
581  *
582  *	IN:	vp	- vnode of file to be written to.
583  *		uio	- structure supplying write location, range info,
584  *			  and data buffer.
585  *		ioflag	- FAPPEND, FSYNC, and/or FDSYNC.  FAPPEND is
586  *			  set if in append mode.
587  *		cr	- credentials of caller.
588  *		ct	- caller context (NFS/CIFS fem monitor only)
589  *
590  *	OUT:	uio	- updated offset and range.
591  *
592  *	RETURN:	0 on success, error code on failure.
593  *
594  * Timestamps:
595  *	vp - ctime|mtime updated if byte count > 0
596  */
597 
598 /* ARGSUSED */
599 static int
600 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
601 {
602 	znode_t		*zp = VTOZ(vp);
603 	rlim64_t	limit = uio->uio_llimit;
604 	ssize_t		start_resid = uio->uio_resid;
605 	ssize_t		tx_bytes;
606 	uint64_t	end_size;
607 	dmu_tx_t	*tx;
608 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
609 	zilog_t		*zilog;
610 	offset_t	woff;
611 	ssize_t		n, nbytes;
612 	rl_t		*rl;
613 	int		max_blksz = zfsvfs->z_max_blksz;
614 	int		error = 0;
615 	arc_buf_t	*abuf;
616 	iovec_t		*aiov = NULL;
617 	xuio_t		*xuio = NULL;
618 	int		i_iov = 0;
619 	int		iovcnt = uio->uio_iovcnt;
620 	iovec_t		*iovp = uio->uio_iov;
621 	int		write_eof;
622 	int		count = 0;
623 	sa_bulk_attr_t	bulk[4];
624 	uint64_t	mtime[2], ctime[2];
625 
626 	/*
627 	 * Fasttrack empty write
628 	 */
629 	n = start_resid;
630 	if (n == 0)
631 		return (0);
632 
633 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
634 		limit = MAXOFFSET_T;
635 
636 	ZFS_ENTER(zfsvfs);
637 	ZFS_VERIFY_ZP(zp);
638 
639 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
640 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
641 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
642 	    &zp->z_size, 8);
643 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
644 	    &zp->z_pflags, 8);
645 
646 	/*
647 	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
648 	 * callers might not be able to detect properly that we are read-only,
649 	 * so check it explicitly here.
650 	 */
651 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
652 		ZFS_EXIT(zfsvfs);
653 		return (SET_ERROR(EROFS));
654 	}
655 
656 	/*
657 	 * If immutable or not appending then return EPERM
658 	 */
659 	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
660 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
661 	    (uio->uio_loffset < zp->z_size))) {
662 		ZFS_EXIT(zfsvfs);
663 		return (SET_ERROR(EPERM));
664 	}
665 
666 	zilog = zfsvfs->z_log;
667 
668 	/*
669 	 * Validate file offset
670 	 */
671 	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
672 	if (woff < 0) {
673 		ZFS_EXIT(zfsvfs);
674 		return (SET_ERROR(EINVAL));
675 	}
676 
677 	/*
678 	 * Check for mandatory locks before calling zfs_range_lock()
679 	 * in order to prevent a deadlock with locks set via fcntl().
680 	 */
681 	if (MANDMODE((mode_t)zp->z_mode) &&
682 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
683 		ZFS_EXIT(zfsvfs);
684 		return (error);
685 	}
686 
687 	/*
688 	 * Pre-fault the pages to ensure slow (eg NFS) pages
689 	 * don't hold up txg.
690 	 * Skip this if uio contains loaned arc_buf.
691 	 */
692 	if ((uio->uio_extflg == UIO_XUIO) &&
693 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
694 		xuio = (xuio_t *)uio;
695 	else
696 		uio_prefaultpages(MIN(n, max_blksz), uio);
697 
698 	/*
699 	 * If in append mode, set the io offset pointer to eof.
700 	 */
701 	if (ioflag & FAPPEND) {
702 		/*
703 		 * Obtain an appending range lock to guarantee file append
704 		 * semantics.  We reset the write offset once we have the lock.
705 		 */
706 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
707 		woff = rl->r_off;
708 		if (rl->r_len == UINT64_MAX) {
709 			/*
710 			 * We overlocked the file because this write will cause
711 			 * the file block size to increase.
712 			 * Note that zp_size cannot change with this lock held.
713 			 */
714 			woff = zp->z_size;
715 		}
716 		uio->uio_loffset = woff;
717 	} else {
718 		/*
719 		 * Note that if the file block size will change as a result of
720 		 * this write, then this range lock will lock the entire file
721 		 * so that we can re-write the block safely.
722 		 */
723 		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
724 	}
725 
726 	if (woff >= limit) {
727 		zfs_range_unlock(rl);
728 		ZFS_EXIT(zfsvfs);
729 		return (SET_ERROR(EFBIG));
730 	}
731 
732 	if ((woff + n) > limit || woff > (limit - n))
733 		n = limit - woff;
734 
735 	/* Will this write extend the file length? */
736 	write_eof = (woff + n > zp->z_size);
737 
738 	end_size = MAX(zp->z_size, woff + n);
739 
740 	/*
741 	 * Write the file in reasonable size chunks.  Each chunk is written
742 	 * in a separate transaction; this keeps the intent log records small
743 	 * and allows us to do more fine-grained space accounting.
744 	 */
745 	while (n > 0) {
746 		abuf = NULL;
747 		woff = uio->uio_loffset;
748 		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
749 		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
750 			if (abuf != NULL)
751 				dmu_return_arcbuf(abuf);
752 			error = SET_ERROR(EDQUOT);
753 			break;
754 		}
755 
756 		if (xuio && abuf == NULL) {
757 			ASSERT(i_iov < iovcnt);
758 			aiov = &iovp[i_iov];
759 			abuf = dmu_xuio_arcbuf(xuio, i_iov);
760 			dmu_xuio_clear(xuio, i_iov);
761 			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
762 			    iovec_t *, aiov, arc_buf_t *, abuf);
763 			ASSERT((aiov->iov_base == abuf->b_data) ||
764 			    ((char *)aiov->iov_base - (char *)abuf->b_data +
765 			    aiov->iov_len == arc_buf_size(abuf)));
766 			i_iov++;
767 		} else if (abuf == NULL && n >= max_blksz &&
768 		    woff >= zp->z_size &&
769 		    P2PHASE(woff, max_blksz) == 0 &&
770 		    zp->z_blksz == max_blksz) {
771 			/*
772 			 * This write covers a full block.  "Borrow" a buffer
773 			 * from the dmu so that we can fill it before we enter
774 			 * a transaction.  This avoids the possibility of
775 			 * holding up the transaction if the data copy hangs
776 			 * up on a pagefault (e.g., from an NFS server mapping).
777 			 */
778 			size_t cbytes;
779 
780 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
781 			    max_blksz);
782 			ASSERT(abuf != NULL);
783 			ASSERT(arc_buf_size(abuf) == max_blksz);
784 			if (error = uiocopy(abuf->b_data, max_blksz,
785 			    UIO_WRITE, uio, &cbytes)) {
786 				dmu_return_arcbuf(abuf);
787 				break;
788 			}
789 			ASSERT(cbytes == max_blksz);
790 		}
791 
792 		/*
793 		 * Start a transaction.
794 		 */
795 		tx = dmu_tx_create(zfsvfs->z_os);
796 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
797 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
798 		zfs_sa_upgrade_txholds(tx, zp);
799 		error = dmu_tx_assign(tx, TXG_WAIT);
800 		if (error) {
801 			dmu_tx_abort(tx);
802 			if (abuf != NULL)
803 				dmu_return_arcbuf(abuf);
804 			break;
805 		}
806 
807 		/*
808 		 * If zfs_range_lock() over-locked we grow the blocksize
809 		 * and then reduce the lock range.  This will only happen
810 		 * on the first iteration since zfs_range_reduce() will
811 		 * shrink down r_len to the appropriate size.
812 		 */
813 		if (rl->r_len == UINT64_MAX) {
814 			uint64_t new_blksz;
815 
816 			if (zp->z_blksz > max_blksz) {
817 				ASSERT(!ISP2(zp->z_blksz));
818 				new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
819 			} else {
820 				new_blksz = MIN(end_size, max_blksz);
821 			}
822 			zfs_grow_blocksize(zp, new_blksz, tx);
823 			zfs_range_reduce(rl, woff, n);
824 		}
825 
826 		/*
827 		 * XXX - should we really limit each write to z_max_blksz?
828 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
829 		 */
830 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
831 
832 		if (abuf == NULL) {
833 			tx_bytes = uio->uio_resid;
834 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
835 			    uio, nbytes, tx);
836 			tx_bytes -= uio->uio_resid;
837 		} else {
838 			tx_bytes = nbytes;
839 			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
840 			/*
841 			 * If this is not a full block write, but we are
842 			 * extending the file past EOF and this data starts
843 			 * block-aligned, use assign_arcbuf().  Otherwise,
844 			 * write via dmu_write().
845 			 */
846 			if (tx_bytes < max_blksz && (!write_eof ||
847 			    aiov->iov_base != abuf->b_data)) {
848 				ASSERT(xuio);
849 				dmu_write(zfsvfs->z_os, zp->z_id, woff,
850 				    aiov->iov_len, aiov->iov_base, tx);
851 				dmu_return_arcbuf(abuf);
852 				xuio_stat_wbuf_copied();
853 			} else {
854 				ASSERT(xuio || tx_bytes == max_blksz);
855 				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
856 				    woff, abuf, tx);
857 			}
858 			ASSERT(tx_bytes <= uio->uio_resid);
859 			uioskip(uio, tx_bytes);
860 		}
861 		if (tx_bytes && vn_has_cached_data(vp)) {
862 			update_pages(vp, woff,
863 			    tx_bytes, zfsvfs->z_os, zp->z_id);
864 		}
865 
866 		/*
867 		 * If we made no progress, we're done.  If we made even
868 		 * partial progress, update the znode and ZIL accordingly.
869 		 */
870 		if (tx_bytes == 0) {
871 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
872 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
873 			dmu_tx_commit(tx);
874 			ASSERT(error != 0);
875 			break;
876 		}
877 
878 		/*
879 		 * Clear Set-UID/Set-GID bits on successful write if not
880 		 * privileged and at least one of the excute bits is set.
881 		 *
882 		 * It would be nice to to this after all writes have
883 		 * been done, but that would still expose the ISUID/ISGID
884 		 * to another app after the partial write is committed.
885 		 *
886 		 * Note: we don't call zfs_fuid_map_id() here because
887 		 * user 0 is not an ephemeral uid.
888 		 */
889 		mutex_enter(&zp->z_acl_lock);
890 		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
891 		    (S_IXUSR >> 6))) != 0 &&
892 		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
893 		    secpolicy_vnode_setid_retain(cr,
894 		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
895 			uint64_t newmode;
896 			zp->z_mode &= ~(S_ISUID | S_ISGID);
897 			newmode = zp->z_mode;
898 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
899 			    (void *)&newmode, sizeof (uint64_t), tx);
900 		}
901 		mutex_exit(&zp->z_acl_lock);
902 
903 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
904 		    B_TRUE);
905 
906 		/*
907 		 * Update the file size (zp_size) if it has changed;
908 		 * account for possible concurrent updates.
909 		 */
910 		while ((end_size = zp->z_size) < uio->uio_loffset) {
911 			(void) atomic_cas_64(&zp->z_size, end_size,
912 			    uio->uio_loffset);
913 			ASSERT(error == 0);
914 		}
915 		/*
916 		 * If we are replaying and eof is non zero then force
917 		 * the file size to the specified eof. Note, there's no
918 		 * concurrency during replay.
919 		 */
920 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
921 			zp->z_size = zfsvfs->z_replay_eof;
922 
923 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
924 
925 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
926 		dmu_tx_commit(tx);
927 
928 		if (error != 0)
929 			break;
930 		ASSERT(tx_bytes == nbytes);
931 		n -= nbytes;
932 
933 		if (!xuio && n > 0)
934 			uio_prefaultpages(MIN(n, max_blksz), uio);
935 	}
936 
937 	zfs_range_unlock(rl);
938 
939 	/*
940 	 * If we're in replay mode, or we made no progress, return error.
941 	 * Otherwise, it's at least a partial write, so it's successful.
942 	 */
943 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
944 		ZFS_EXIT(zfsvfs);
945 		return (error);
946 	}
947 
948 	if (ioflag & (FSYNC | FDSYNC) ||
949 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
950 		zil_commit(zilog, zp->z_id);
951 
952 	ZFS_EXIT(zfsvfs);
953 	return (0);
954 }
955 
956 void
957 zfs_get_done(zgd_t *zgd, int error)
958 {
959 	znode_t *zp = zgd->zgd_private;
960 	objset_t *os = zp->z_zfsvfs->z_os;
961 
962 	if (zgd->zgd_db)
963 		dmu_buf_rele(zgd->zgd_db, zgd);
964 
965 	zfs_range_unlock(zgd->zgd_rl);
966 
967 	/*
968 	 * Release the vnode asynchronously as we currently have the
969 	 * txg stopped from syncing.
970 	 */
971 	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
972 
973 	if (error == 0 && zgd->zgd_bp)
974 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
975 
976 	kmem_free(zgd, sizeof (zgd_t));
977 }
978 
979 #ifdef DEBUG
980 static int zil_fault_io = 0;
981 #endif
982 
983 /*
984  * Get data to generate a TX_WRITE intent log record.
985  */
986 int
987 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
988 {
989 	zfsvfs_t *zfsvfs = arg;
990 	objset_t *os = zfsvfs->z_os;
991 	znode_t *zp;
992 	uint64_t object = lr->lr_foid;
993 	uint64_t offset = lr->lr_offset;
994 	uint64_t size = lr->lr_length;
995 	blkptr_t *bp = &lr->lr_blkptr;
996 	dmu_buf_t *db;
997 	zgd_t *zgd;
998 	int error = 0;
999 
1000 	ASSERT(zio != NULL);
1001 	ASSERT(size != 0);
1002 
1003 	/*
1004 	 * Nothing to do if the file has been removed
1005 	 */
1006 	if (zfs_zget(zfsvfs, object, &zp) != 0)
1007 		return (SET_ERROR(ENOENT));
1008 	if (zp->z_unlinked) {
1009 		/*
1010 		 * Release the vnode asynchronously as we currently have the
1011 		 * txg stopped from syncing.
1012 		 */
1013 		VN_RELE_ASYNC(ZTOV(zp),
1014 		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1015 		return (SET_ERROR(ENOENT));
1016 	}
1017 
1018 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1019 	zgd->zgd_zilog = zfsvfs->z_log;
1020 	zgd->zgd_private = zp;
1021 
1022 	/*
1023 	 * Write records come in two flavors: immediate and indirect.
1024 	 * For small writes it's cheaper to store the data with the
1025 	 * log record (immediate); for large writes it's cheaper to
1026 	 * sync the data and get a pointer to it (indirect) so that
1027 	 * we don't have to write the data twice.
1028 	 */
1029 	if (buf != NULL) { /* immediate write */
1030 		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1031 		/* test for truncation needs to be done while range locked */
1032 		if (offset >= zp->z_size) {
1033 			error = SET_ERROR(ENOENT);
1034 		} else {
1035 			error = dmu_read(os, object, offset, size, buf,
1036 			    DMU_READ_NO_PREFETCH);
1037 		}
1038 		ASSERT(error == 0 || error == ENOENT);
1039 	} else { /* indirect write */
1040 		/*
1041 		 * Have to lock the whole block to ensure when it's
1042 		 * written out and it's checksum is being calculated
1043 		 * that no one can change the data. We need to re-check
1044 		 * blocksize after we get the lock in case it's changed!
1045 		 */
1046 		for (;;) {
1047 			uint64_t blkoff;
1048 			size = zp->z_blksz;
1049 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1050 			offset -= blkoff;
1051 			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1052 			    RL_READER);
1053 			if (zp->z_blksz == size)
1054 				break;
1055 			offset += blkoff;
1056 			zfs_range_unlock(zgd->zgd_rl);
1057 		}
1058 		/* test for truncation needs to be done while range locked */
1059 		if (lr->lr_offset >= zp->z_size)
1060 			error = SET_ERROR(ENOENT);
1061 #ifdef DEBUG
1062 		if (zil_fault_io) {
1063 			error = SET_ERROR(EIO);
1064 			zil_fault_io = 0;
1065 		}
1066 #endif
1067 		if (error == 0)
1068 			error = dmu_buf_hold(os, object, offset, zgd, &db,
1069 			    DMU_READ_NO_PREFETCH);
1070 
1071 		if (error == 0) {
1072 			blkptr_t *obp = dmu_buf_get_blkptr(db);
1073 			if (obp) {
1074 				ASSERT(BP_IS_HOLE(bp));
1075 				*bp = *obp;
1076 			}
1077 
1078 			zgd->zgd_db = db;
1079 			zgd->zgd_bp = bp;
1080 
1081 			ASSERT(db->db_offset == offset);
1082 			ASSERT(db->db_size == size);
1083 
1084 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1085 			    zfs_get_done, zgd);
1086 			ASSERT(error || lr->lr_length <= zp->z_blksz);
1087 
1088 			/*
1089 			 * On success, we need to wait for the write I/O
1090 			 * initiated by dmu_sync() to complete before we can
1091 			 * release this dbuf.  We will finish everything up
1092 			 * in the zfs_get_done() callback.
1093 			 */
1094 			if (error == 0)
1095 				return (0);
1096 
1097 			if (error == EALREADY) {
1098 				lr->lr_common.lrc_txtype = TX_WRITE2;
1099 				error = 0;
1100 			}
1101 		}
1102 	}
1103 
1104 	zfs_get_done(zgd, error);
1105 
1106 	return (error);
1107 }
1108 
1109 /*ARGSUSED*/
1110 static int
1111 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1112     caller_context_t *ct)
1113 {
1114 	znode_t *zp = VTOZ(vp);
1115 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1116 	int error;
1117 
1118 	ZFS_ENTER(zfsvfs);
1119 	ZFS_VERIFY_ZP(zp);
1120 
1121 	if (flag & V_ACE_MASK)
1122 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1123 	else
1124 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1125 
1126 	ZFS_EXIT(zfsvfs);
1127 	return (error);
1128 }
1129 
1130 /*
1131  * If vnode is for a device return a specfs vnode instead.
1132  */
1133 static int
1134 specvp_check(vnode_t **vpp, cred_t *cr)
1135 {
1136 	int error = 0;
1137 
1138 	if (IS_DEVVP(*vpp)) {
1139 		struct vnode *svp;
1140 
1141 		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1142 		VN_RELE(*vpp);
1143 		if (svp == NULL)
1144 			error = SET_ERROR(ENOSYS);
1145 		*vpp = svp;
1146 	}
1147 	return (error);
1148 }
1149 
1150 
1151 /*
1152  * Lookup an entry in a directory, or an extended attribute directory.
1153  * If it exists, return a held vnode reference for it.
1154  *
1155  *	IN:	dvp	- vnode of directory to search.
1156  *		nm	- name of entry to lookup.
1157  *		pnp	- full pathname to lookup [UNUSED].
1158  *		flags	- LOOKUP_XATTR set if looking for an attribute.
1159  *		rdir	- root directory vnode [UNUSED].
1160  *		cr	- credentials of caller.
1161  *		ct	- caller context
1162  *		direntflags - directory lookup flags
1163  *		realpnp - returned pathname.
1164  *
1165  *	OUT:	vpp	- vnode of located entry, NULL if not found.
1166  *
1167  *	RETURN:	0 on success, error code on failure.
1168  *
1169  * Timestamps:
1170  *	NA
1171  */
1172 /* ARGSUSED */
1173 static int
1174 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1175     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1176     int *direntflags, pathname_t *realpnp)
1177 {
1178 	znode_t *zdp = VTOZ(dvp);
1179 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1180 	int	error = 0;
1181 
1182 	/* fast path */
1183 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1184 
1185 		if (dvp->v_type != VDIR) {
1186 			return (SET_ERROR(ENOTDIR));
1187 		} else if (zdp->z_sa_hdl == NULL) {
1188 			return (SET_ERROR(EIO));
1189 		}
1190 
1191 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1192 			error = zfs_fastaccesschk_execute(zdp, cr);
1193 			if (!error) {
1194 				*vpp = dvp;
1195 				VN_HOLD(*vpp);
1196 				return (0);
1197 			}
1198 			return (error);
1199 		} else {
1200 			vnode_t *tvp = dnlc_lookup(dvp, nm);
1201 
1202 			if (tvp) {
1203 				error = zfs_fastaccesschk_execute(zdp, cr);
1204 				if (error) {
1205 					VN_RELE(tvp);
1206 					return (error);
1207 				}
1208 				if (tvp == DNLC_NO_VNODE) {
1209 					VN_RELE(tvp);
1210 					return (SET_ERROR(ENOENT));
1211 				} else {
1212 					*vpp = tvp;
1213 					return (specvp_check(vpp, cr));
1214 				}
1215 			}
1216 		}
1217 	}
1218 
1219 	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1220 
1221 	ZFS_ENTER(zfsvfs);
1222 	ZFS_VERIFY_ZP(zdp);
1223 
1224 	*vpp = NULL;
1225 
1226 	if (flags & LOOKUP_XATTR) {
1227 		/*
1228 		 * If the xattr property is off, refuse the lookup request.
1229 		 */
1230 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1231 			ZFS_EXIT(zfsvfs);
1232 			return (SET_ERROR(EINVAL));
1233 		}
1234 
1235 		/*
1236 		 * We don't allow recursive attributes..
1237 		 * Maybe someday we will.
1238 		 */
1239 		if (zdp->z_pflags & ZFS_XATTR) {
1240 			ZFS_EXIT(zfsvfs);
1241 			return (SET_ERROR(EINVAL));
1242 		}
1243 
1244 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1245 			ZFS_EXIT(zfsvfs);
1246 			return (error);
1247 		}
1248 
1249 		/*
1250 		 * Do we have permission to get into attribute directory?
1251 		 */
1252 
1253 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1254 		    B_FALSE, cr)) {
1255 			VN_RELE(*vpp);
1256 			*vpp = NULL;
1257 		}
1258 
1259 		ZFS_EXIT(zfsvfs);
1260 		return (error);
1261 	}
1262 
1263 	if (dvp->v_type != VDIR) {
1264 		ZFS_EXIT(zfsvfs);
1265 		return (SET_ERROR(ENOTDIR));
1266 	}
1267 
1268 	/*
1269 	 * Check accessibility of directory.
1270 	 */
1271 
1272 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1273 		ZFS_EXIT(zfsvfs);
1274 		return (error);
1275 	}
1276 
1277 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1278 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1279 		ZFS_EXIT(zfsvfs);
1280 		return (SET_ERROR(EILSEQ));
1281 	}
1282 
1283 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1284 	if (error == 0)
1285 		error = specvp_check(vpp, cr);
1286 
1287 	ZFS_EXIT(zfsvfs);
1288 	return (error);
1289 }
1290 
1291 /*
1292  * Attempt to create a new entry in a directory.  If the entry
1293  * already exists, truncate the file if permissible, else return
1294  * an error.  Return the vp of the created or trunc'd file.
1295  *
1296  *	IN:	dvp	- vnode of directory to put new file entry in.
1297  *		name	- name of new file entry.
1298  *		vap	- attributes of new file.
1299  *		excl	- flag indicating exclusive or non-exclusive mode.
1300  *		mode	- mode to open file with.
1301  *		cr	- credentials of caller.
1302  *		flag	- large file flag [UNUSED].
1303  *		ct	- caller context
1304  *		vsecp	- ACL to be set
1305  *
1306  *	OUT:	vpp	- vnode of created or trunc'd entry.
1307  *
1308  *	RETURN:	0 on success, error code on failure.
1309  *
1310  * Timestamps:
1311  *	dvp - ctime|mtime updated if new entry created
1312  *	 vp - ctime|mtime always, atime if new
1313  */
1314 
1315 /* ARGSUSED */
1316 static int
1317 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1318     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1319     vsecattr_t *vsecp)
1320 {
1321 	znode_t		*zp, *dzp = VTOZ(dvp);
1322 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1323 	zilog_t		*zilog;
1324 	objset_t	*os;
1325 	zfs_dirlock_t	*dl;
1326 	dmu_tx_t	*tx;
1327 	int		error;
1328 	ksid_t		*ksid;
1329 	uid_t		uid;
1330 	gid_t		gid = crgetgid(cr);
1331 	zfs_acl_ids_t   acl_ids;
1332 	boolean_t	fuid_dirtied;
1333 	boolean_t	have_acl = B_FALSE;
1334 	boolean_t	waited = B_FALSE;
1335 
1336 	/*
1337 	 * If we have an ephemeral id, ACL, or XVATTR then
1338 	 * make sure file system is at proper version
1339 	 */
1340 
1341 	ksid = crgetsid(cr, KSID_OWNER);
1342 	if (ksid)
1343 		uid = ksid_getid(ksid);
1344 	else
1345 		uid = crgetuid(cr);
1346 
1347 	if (zfsvfs->z_use_fuids == B_FALSE &&
1348 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1349 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1350 		return (SET_ERROR(EINVAL));
1351 
1352 	ZFS_ENTER(zfsvfs);
1353 	ZFS_VERIFY_ZP(dzp);
1354 	os = zfsvfs->z_os;
1355 	zilog = zfsvfs->z_log;
1356 
1357 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1358 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1359 		ZFS_EXIT(zfsvfs);
1360 		return (SET_ERROR(EILSEQ));
1361 	}
1362 
1363 	if (vap->va_mask & AT_XVATTR) {
1364 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1365 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1366 			ZFS_EXIT(zfsvfs);
1367 			return (error);
1368 		}
1369 	}
1370 top:
1371 	*vpp = NULL;
1372 
1373 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1374 		vap->va_mode &= ~VSVTX;
1375 
1376 	if (*name == '\0') {
1377 		/*
1378 		 * Null component name refers to the directory itself.
1379 		 */
1380 		VN_HOLD(dvp);
1381 		zp = dzp;
1382 		dl = NULL;
1383 		error = 0;
1384 	} else {
1385 		/* possible VN_HOLD(zp) */
1386 		int zflg = 0;
1387 
1388 		if (flag & FIGNORECASE)
1389 			zflg |= ZCILOOK;
1390 
1391 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1392 		    NULL, NULL);
1393 		if (error) {
1394 			if (have_acl)
1395 				zfs_acl_ids_free(&acl_ids);
1396 			if (strcmp(name, "..") == 0)
1397 				error = SET_ERROR(EISDIR);
1398 			ZFS_EXIT(zfsvfs);
1399 			return (error);
1400 		}
1401 	}
1402 
1403 	if (zp == NULL) {
1404 		uint64_t txtype;
1405 
1406 		/*
1407 		 * Create a new file object and update the directory
1408 		 * to reference it.
1409 		 */
1410 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1411 			if (have_acl)
1412 				zfs_acl_ids_free(&acl_ids);
1413 			goto out;
1414 		}
1415 
1416 		/*
1417 		 * We only support the creation of regular files in
1418 		 * extended attribute directories.
1419 		 */
1420 
1421 		if ((dzp->z_pflags & ZFS_XATTR) &&
1422 		    (vap->va_type != VREG)) {
1423 			if (have_acl)
1424 				zfs_acl_ids_free(&acl_ids);
1425 			error = SET_ERROR(EINVAL);
1426 			goto out;
1427 		}
1428 
1429 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1430 		    cr, vsecp, &acl_ids)) != 0)
1431 			goto out;
1432 		have_acl = B_TRUE;
1433 
1434 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1435 			zfs_acl_ids_free(&acl_ids);
1436 			error = SET_ERROR(EDQUOT);
1437 			goto out;
1438 		}
1439 
1440 		tx = dmu_tx_create(os);
1441 
1442 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1443 		    ZFS_SA_BASE_ATTR_SIZE);
1444 
1445 		fuid_dirtied = zfsvfs->z_fuid_dirty;
1446 		if (fuid_dirtied)
1447 			zfs_fuid_txhold(zfsvfs, tx);
1448 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1449 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1450 		if (!zfsvfs->z_use_sa &&
1451 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1452 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1453 			    0, acl_ids.z_aclp->z_acl_bytes);
1454 		}
1455 		error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1456 		if (error) {
1457 			zfs_dirent_unlock(dl);
1458 			if (error == ERESTART) {
1459 				waited = B_TRUE;
1460 				dmu_tx_wait(tx);
1461 				dmu_tx_abort(tx);
1462 				goto top;
1463 			}
1464 			zfs_acl_ids_free(&acl_ids);
1465 			dmu_tx_abort(tx);
1466 			ZFS_EXIT(zfsvfs);
1467 			return (error);
1468 		}
1469 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1470 
1471 		if (fuid_dirtied)
1472 			zfs_fuid_sync(zfsvfs, tx);
1473 
1474 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1475 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1476 		if (flag & FIGNORECASE)
1477 			txtype |= TX_CI;
1478 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1479 		    vsecp, acl_ids.z_fuidp, vap);
1480 		zfs_acl_ids_free(&acl_ids);
1481 		dmu_tx_commit(tx);
1482 	} else {
1483 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1484 
1485 		if (have_acl)
1486 			zfs_acl_ids_free(&acl_ids);
1487 		have_acl = B_FALSE;
1488 
1489 		/*
1490 		 * A directory entry already exists for this name.
1491 		 */
1492 		/*
1493 		 * Can't truncate an existing file if in exclusive mode.
1494 		 */
1495 		if (excl == EXCL) {
1496 			error = SET_ERROR(EEXIST);
1497 			goto out;
1498 		}
1499 		/*
1500 		 * Can't open a directory for writing.
1501 		 */
1502 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1503 			error = SET_ERROR(EISDIR);
1504 			goto out;
1505 		}
1506 		/*
1507 		 * Verify requested access to file.
1508 		 */
1509 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1510 			goto out;
1511 		}
1512 
1513 		mutex_enter(&dzp->z_lock);
1514 		dzp->z_seq++;
1515 		mutex_exit(&dzp->z_lock);
1516 
1517 		/*
1518 		 * Truncate regular files if requested.
1519 		 */
1520 		if ((ZTOV(zp)->v_type == VREG) &&
1521 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1522 			/* we can't hold any locks when calling zfs_freesp() */
1523 			zfs_dirent_unlock(dl);
1524 			dl = NULL;
1525 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1526 			if (error == 0) {
1527 				vnevent_create(ZTOV(zp), ct);
1528 			}
1529 		}
1530 	}
1531 out:
1532 
1533 	if (dl)
1534 		zfs_dirent_unlock(dl);
1535 
1536 	if (error) {
1537 		if (zp)
1538 			VN_RELE(ZTOV(zp));
1539 	} else {
1540 		*vpp = ZTOV(zp);
1541 		error = specvp_check(vpp, cr);
1542 	}
1543 
1544 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1545 		zil_commit(zilog, 0);
1546 
1547 	ZFS_EXIT(zfsvfs);
1548 	return (error);
1549 }
1550 
1551 /*
1552  * Remove an entry from a directory.
1553  *
1554  *	IN:	dvp	- vnode of directory to remove entry from.
1555  *		name	- name of entry to remove.
1556  *		cr	- credentials of caller.
1557  *		ct	- caller context
1558  *		flags	- case flags
1559  *
1560  *	RETURN:	0 on success, error code on failure.
1561  *
1562  * Timestamps:
1563  *	dvp - ctime|mtime
1564  *	 vp - ctime (if nlink > 0)
1565  */
1566 
1567 uint64_t null_xattr = 0;
1568 
1569 /*ARGSUSED*/
1570 static int
1571 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1572     int flags)
1573 {
1574 	znode_t		*zp, *dzp = VTOZ(dvp);
1575 	znode_t		*xzp;
1576 	vnode_t		*vp;
1577 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1578 	zilog_t		*zilog;
1579 	uint64_t	acl_obj, xattr_obj;
1580 	uint64_t	xattr_obj_unlinked = 0;
1581 	uint64_t	obj = 0;
1582 	zfs_dirlock_t	*dl;
1583 	dmu_tx_t	*tx;
1584 	boolean_t	may_delete_now, delete_now = FALSE;
1585 	boolean_t	unlinked, toobig = FALSE;
1586 	uint64_t	txtype;
1587 	pathname_t	*realnmp = NULL;
1588 	pathname_t	realnm;
1589 	int		error;
1590 	int		zflg = ZEXISTS;
1591 	boolean_t	waited = B_FALSE;
1592 
1593 	ZFS_ENTER(zfsvfs);
1594 	ZFS_VERIFY_ZP(dzp);
1595 	zilog = zfsvfs->z_log;
1596 
1597 	if (flags & FIGNORECASE) {
1598 		zflg |= ZCILOOK;
1599 		pn_alloc(&realnm);
1600 		realnmp = &realnm;
1601 	}
1602 
1603 top:
1604 	xattr_obj = 0;
1605 	xzp = NULL;
1606 	/*
1607 	 * Attempt to lock directory; fail if entry doesn't exist.
1608 	 */
1609 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1610 	    NULL, realnmp)) {
1611 		if (realnmp)
1612 			pn_free(realnmp);
1613 		ZFS_EXIT(zfsvfs);
1614 		return (error);
1615 	}
1616 
1617 	vp = ZTOV(zp);
1618 
1619 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1620 		goto out;
1621 	}
1622 
1623 	/*
1624 	 * Need to use rmdir for removing directories.
1625 	 */
1626 	if (vp->v_type == VDIR) {
1627 		error = SET_ERROR(EPERM);
1628 		goto out;
1629 	}
1630 
1631 	vnevent_remove(vp, dvp, name, ct);
1632 
1633 	if (realnmp)
1634 		dnlc_remove(dvp, realnmp->pn_buf);
1635 	else
1636 		dnlc_remove(dvp, name);
1637 
1638 	mutex_enter(&vp->v_lock);
1639 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1640 	mutex_exit(&vp->v_lock);
1641 
1642 	/*
1643 	 * We may delete the znode now, or we may put it in the unlinked set;
1644 	 * it depends on whether we're the last link, and on whether there are
1645 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1646 	 * allow for either case.
1647 	 */
1648 	obj = zp->z_id;
1649 	tx = dmu_tx_create(zfsvfs->z_os);
1650 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1651 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1652 	zfs_sa_upgrade_txholds(tx, zp);
1653 	zfs_sa_upgrade_txholds(tx, dzp);
1654 	if (may_delete_now) {
1655 		toobig =
1656 		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1657 		/* if the file is too big, only hold_free a token amount */
1658 		dmu_tx_hold_free(tx, zp->z_id, 0,
1659 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1660 	}
1661 
1662 	/* are there any extended attributes? */
1663 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1664 	    &xattr_obj, sizeof (xattr_obj));
1665 	if (error == 0 && xattr_obj) {
1666 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1667 		ASSERT0(error);
1668 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1669 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1670 	}
1671 
1672 	mutex_enter(&zp->z_lock);
1673 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1674 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1675 	mutex_exit(&zp->z_lock);
1676 
1677 	/* charge as an update -- would be nice not to charge at all */
1678 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1679 
1680 	/*
1681 	 * Mark this transaction as typically resulting in a net free of
1682 	 * space, unless object removal will be delayed indefinitely
1683 	 * (due to active holds on the vnode due to the file being open).
1684 	 */
1685 	if (may_delete_now)
1686 		dmu_tx_mark_netfree(tx);
1687 
1688 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1689 	if (error) {
1690 		zfs_dirent_unlock(dl);
1691 		VN_RELE(vp);
1692 		if (xzp)
1693 			VN_RELE(ZTOV(xzp));
1694 		if (error == ERESTART) {
1695 			waited = B_TRUE;
1696 			dmu_tx_wait(tx);
1697 			dmu_tx_abort(tx);
1698 			goto top;
1699 		}
1700 		if (realnmp)
1701 			pn_free(realnmp);
1702 		dmu_tx_abort(tx);
1703 		ZFS_EXIT(zfsvfs);
1704 		return (error);
1705 	}
1706 
1707 	/*
1708 	 * Remove the directory entry.
1709 	 */
1710 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1711 
1712 	if (error) {
1713 		dmu_tx_commit(tx);
1714 		goto out;
1715 	}
1716 
1717 	if (unlinked) {
1718 		/*
1719 		 * Hold z_lock so that we can make sure that the ACL obj
1720 		 * hasn't changed.  Could have been deleted due to
1721 		 * zfs_sa_upgrade().
1722 		 */
1723 		mutex_enter(&zp->z_lock);
1724 		mutex_enter(&vp->v_lock);
1725 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1726 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1727 		delete_now = may_delete_now && !toobig &&
1728 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1729 		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1730 		    acl_obj;
1731 		mutex_exit(&vp->v_lock);
1732 	}
1733 
1734 	if (delete_now) {
1735 		if (xattr_obj_unlinked) {
1736 			ASSERT3U(xzp->z_links, ==, 2);
1737 			mutex_enter(&xzp->z_lock);
1738 			xzp->z_unlinked = 1;
1739 			xzp->z_links = 0;
1740 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1741 			    &xzp->z_links, sizeof (xzp->z_links), tx);
1742 			ASSERT3U(error,  ==,  0);
1743 			mutex_exit(&xzp->z_lock);
1744 			zfs_unlinked_add(xzp, tx);
1745 
1746 			if (zp->z_is_sa)
1747 				error = sa_remove(zp->z_sa_hdl,
1748 				    SA_ZPL_XATTR(zfsvfs), tx);
1749 			else
1750 				error = sa_update(zp->z_sa_hdl,
1751 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1752 				    sizeof (uint64_t), tx);
1753 			ASSERT0(error);
1754 		}
1755 		mutex_enter(&vp->v_lock);
1756 		vp->v_count--;
1757 		ASSERT0(vp->v_count);
1758 		mutex_exit(&vp->v_lock);
1759 		mutex_exit(&zp->z_lock);
1760 		zfs_znode_delete(zp, tx);
1761 	} else if (unlinked) {
1762 		mutex_exit(&zp->z_lock);
1763 		zfs_unlinked_add(zp, tx);
1764 	}
1765 
1766 	txtype = TX_REMOVE;
1767 	if (flags & FIGNORECASE)
1768 		txtype |= TX_CI;
1769 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1770 
1771 	dmu_tx_commit(tx);
1772 out:
1773 	if (realnmp)
1774 		pn_free(realnmp);
1775 
1776 	zfs_dirent_unlock(dl);
1777 
1778 	if (!delete_now)
1779 		VN_RELE(vp);
1780 	if (xzp)
1781 		VN_RELE(ZTOV(xzp));
1782 
1783 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1784 		zil_commit(zilog, 0);
1785 
1786 	ZFS_EXIT(zfsvfs);
1787 	return (error);
1788 }
1789 
1790 /*
1791  * Create a new directory and insert it into dvp using the name
1792  * provided.  Return a pointer to the inserted directory.
1793  *
1794  *	IN:	dvp	- vnode of directory to add subdir to.
1795  *		dirname	- name of new directory.
1796  *		vap	- attributes of new directory.
1797  *		cr	- credentials of caller.
1798  *		ct	- caller context
1799  *		flags	- case flags
1800  *		vsecp	- ACL to be set
1801  *
1802  *	OUT:	vpp	- vnode of created directory.
1803  *
1804  *	RETURN:	0 on success, error code on failure.
1805  *
1806  * Timestamps:
1807  *	dvp - ctime|mtime updated
1808  *	 vp - ctime|mtime|atime updated
1809  */
1810 /*ARGSUSED*/
1811 static int
1812 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1813     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1814 {
1815 	znode_t		*zp, *dzp = VTOZ(dvp);
1816 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1817 	zilog_t		*zilog;
1818 	zfs_dirlock_t	*dl;
1819 	uint64_t	txtype;
1820 	dmu_tx_t	*tx;
1821 	int		error;
1822 	int		zf = ZNEW;
1823 	ksid_t		*ksid;
1824 	uid_t		uid;
1825 	gid_t		gid = crgetgid(cr);
1826 	zfs_acl_ids_t   acl_ids;
1827 	boolean_t	fuid_dirtied;
1828 	boolean_t	waited = B_FALSE;
1829 
1830 	ASSERT(vap->va_type == VDIR);
1831 
1832 	/*
1833 	 * If we have an ephemeral id, ACL, or XVATTR then
1834 	 * make sure file system is at proper version
1835 	 */
1836 
1837 	ksid = crgetsid(cr, KSID_OWNER);
1838 	if (ksid)
1839 		uid = ksid_getid(ksid);
1840 	else
1841 		uid = crgetuid(cr);
1842 	if (zfsvfs->z_use_fuids == B_FALSE &&
1843 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1844 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1845 		return (SET_ERROR(EINVAL));
1846 
1847 	ZFS_ENTER(zfsvfs);
1848 	ZFS_VERIFY_ZP(dzp);
1849 	zilog = zfsvfs->z_log;
1850 
1851 	if (dzp->z_pflags & ZFS_XATTR) {
1852 		ZFS_EXIT(zfsvfs);
1853 		return (SET_ERROR(EINVAL));
1854 	}
1855 
1856 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1857 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1858 		ZFS_EXIT(zfsvfs);
1859 		return (SET_ERROR(EILSEQ));
1860 	}
1861 	if (flags & FIGNORECASE)
1862 		zf |= ZCILOOK;
1863 
1864 	if (vap->va_mask & AT_XVATTR) {
1865 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1866 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1867 			ZFS_EXIT(zfsvfs);
1868 			return (error);
1869 		}
1870 	}
1871 
1872 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1873 	    vsecp, &acl_ids)) != 0) {
1874 		ZFS_EXIT(zfsvfs);
1875 		return (error);
1876 	}
1877 	/*
1878 	 * First make sure the new directory doesn't exist.
1879 	 *
1880 	 * Existence is checked first to make sure we don't return
1881 	 * EACCES instead of EEXIST which can cause some applications
1882 	 * to fail.
1883 	 */
1884 top:
1885 	*vpp = NULL;
1886 
1887 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1888 	    NULL, NULL)) {
1889 		zfs_acl_ids_free(&acl_ids);
1890 		ZFS_EXIT(zfsvfs);
1891 		return (error);
1892 	}
1893 
1894 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1895 		zfs_acl_ids_free(&acl_ids);
1896 		zfs_dirent_unlock(dl);
1897 		ZFS_EXIT(zfsvfs);
1898 		return (error);
1899 	}
1900 
1901 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1902 		zfs_acl_ids_free(&acl_ids);
1903 		zfs_dirent_unlock(dl);
1904 		ZFS_EXIT(zfsvfs);
1905 		return (SET_ERROR(EDQUOT));
1906 	}
1907 
1908 	/*
1909 	 * Add a new entry to the directory.
1910 	 */
1911 	tx = dmu_tx_create(zfsvfs->z_os);
1912 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1913 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1914 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1915 	if (fuid_dirtied)
1916 		zfs_fuid_txhold(zfsvfs, tx);
1917 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1918 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1919 		    acl_ids.z_aclp->z_acl_bytes);
1920 	}
1921 
1922 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1923 	    ZFS_SA_BASE_ATTR_SIZE);
1924 
1925 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1926 	if (error) {
1927 		zfs_dirent_unlock(dl);
1928 		if (error == ERESTART) {
1929 			waited = B_TRUE;
1930 			dmu_tx_wait(tx);
1931 			dmu_tx_abort(tx);
1932 			goto top;
1933 		}
1934 		zfs_acl_ids_free(&acl_ids);
1935 		dmu_tx_abort(tx);
1936 		ZFS_EXIT(zfsvfs);
1937 		return (error);
1938 	}
1939 
1940 	/*
1941 	 * Create new node.
1942 	 */
1943 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1944 
1945 	if (fuid_dirtied)
1946 		zfs_fuid_sync(zfsvfs, tx);
1947 
1948 	/*
1949 	 * Now put new name in parent dir.
1950 	 */
1951 	(void) zfs_link_create(dl, zp, tx, ZNEW);
1952 
1953 	*vpp = ZTOV(zp);
1954 
1955 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1956 	if (flags & FIGNORECASE)
1957 		txtype |= TX_CI;
1958 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1959 	    acl_ids.z_fuidp, vap);
1960 
1961 	zfs_acl_ids_free(&acl_ids);
1962 
1963 	dmu_tx_commit(tx);
1964 
1965 	zfs_dirent_unlock(dl);
1966 
1967 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1968 		zil_commit(zilog, 0);
1969 
1970 	ZFS_EXIT(zfsvfs);
1971 	return (0);
1972 }
1973 
1974 /*
1975  * Remove a directory subdir entry.  If the current working
1976  * directory is the same as the subdir to be removed, the
1977  * remove will fail.
1978  *
1979  *	IN:	dvp	- vnode of directory to remove from.
1980  *		name	- name of directory to be removed.
1981  *		cwd	- vnode of current working directory.
1982  *		cr	- credentials of caller.
1983  *		ct	- caller context
1984  *		flags	- case flags
1985  *
1986  *	RETURN:	0 on success, error code on failure.
1987  *
1988  * Timestamps:
1989  *	dvp - ctime|mtime updated
1990  */
1991 /*ARGSUSED*/
1992 static int
1993 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1994     caller_context_t *ct, int flags)
1995 {
1996 	znode_t		*dzp = VTOZ(dvp);
1997 	znode_t		*zp;
1998 	vnode_t		*vp;
1999 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
2000 	zilog_t		*zilog;
2001 	zfs_dirlock_t	*dl;
2002 	dmu_tx_t	*tx;
2003 	int		error;
2004 	int		zflg = ZEXISTS;
2005 	boolean_t	waited = B_FALSE;
2006 
2007 	ZFS_ENTER(zfsvfs);
2008 	ZFS_VERIFY_ZP(dzp);
2009 	zilog = zfsvfs->z_log;
2010 
2011 	if (flags & FIGNORECASE)
2012 		zflg |= ZCILOOK;
2013 top:
2014 	zp = NULL;
2015 
2016 	/*
2017 	 * Attempt to lock directory; fail if entry doesn't exist.
2018 	 */
2019 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2020 	    NULL, NULL)) {
2021 		ZFS_EXIT(zfsvfs);
2022 		return (error);
2023 	}
2024 
2025 	vp = ZTOV(zp);
2026 
2027 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2028 		goto out;
2029 	}
2030 
2031 	if (vp->v_type != VDIR) {
2032 		error = SET_ERROR(ENOTDIR);
2033 		goto out;
2034 	}
2035 
2036 	if (vp == cwd) {
2037 		error = SET_ERROR(EINVAL);
2038 		goto out;
2039 	}
2040 
2041 	vnevent_rmdir(vp, dvp, name, ct);
2042 
2043 	/*
2044 	 * Grab a lock on the directory to make sure that noone is
2045 	 * trying to add (or lookup) entries while we are removing it.
2046 	 */
2047 	rw_enter(&zp->z_name_lock, RW_WRITER);
2048 
2049 	/*
2050 	 * Grab a lock on the parent pointer to make sure we play well
2051 	 * with the treewalk and directory rename code.
2052 	 */
2053 	rw_enter(&zp->z_parent_lock, RW_WRITER);
2054 
2055 	tx = dmu_tx_create(zfsvfs->z_os);
2056 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2057 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2058 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2059 	zfs_sa_upgrade_txholds(tx, zp);
2060 	zfs_sa_upgrade_txholds(tx, dzp);
2061 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2062 	if (error) {
2063 		rw_exit(&zp->z_parent_lock);
2064 		rw_exit(&zp->z_name_lock);
2065 		zfs_dirent_unlock(dl);
2066 		VN_RELE(vp);
2067 		if (error == ERESTART) {
2068 			waited = B_TRUE;
2069 			dmu_tx_wait(tx);
2070 			dmu_tx_abort(tx);
2071 			goto top;
2072 		}
2073 		dmu_tx_abort(tx);
2074 		ZFS_EXIT(zfsvfs);
2075 		return (error);
2076 	}
2077 
2078 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2079 
2080 	if (error == 0) {
2081 		uint64_t txtype = TX_RMDIR;
2082 		if (flags & FIGNORECASE)
2083 			txtype |= TX_CI;
2084 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2085 	}
2086 
2087 	dmu_tx_commit(tx);
2088 
2089 	rw_exit(&zp->z_parent_lock);
2090 	rw_exit(&zp->z_name_lock);
2091 out:
2092 	zfs_dirent_unlock(dl);
2093 
2094 	VN_RELE(vp);
2095 
2096 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2097 		zil_commit(zilog, 0);
2098 
2099 	ZFS_EXIT(zfsvfs);
2100 	return (error);
2101 }
2102 
2103 /*
2104  * Read as many directory entries as will fit into the provided
2105  * buffer from the given directory cursor position (specified in
2106  * the uio structure).
2107  *
2108  *	IN:	vp	- vnode of directory to read.
2109  *		uio	- structure supplying read location, range info,
2110  *			  and return buffer.
2111  *		cr	- credentials of caller.
2112  *		ct	- caller context
2113  *		flags	- case flags
2114  *
2115  *	OUT:	uio	- updated offset and range, buffer filled.
2116  *		eofp	- set to true if end-of-file detected.
2117  *
2118  *	RETURN:	0 on success, error code on failure.
2119  *
2120  * Timestamps:
2121  *	vp - atime updated
2122  *
2123  * Note that the low 4 bits of the cookie returned by zap is always zero.
2124  * This allows us to use the low range for "special" directory entries:
2125  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2126  * we use the offset 2 for the '.zfs' directory.
2127  */
2128 /* ARGSUSED */
2129 static int
2130 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2131     caller_context_t *ct, int flags)
2132 {
2133 	znode_t		*zp = VTOZ(vp);
2134 	iovec_t		*iovp;
2135 	edirent_t	*eodp;
2136 	dirent64_t	*odp;
2137 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2138 	objset_t	*os;
2139 	caddr_t		outbuf;
2140 	size_t		bufsize;
2141 	zap_cursor_t	zc;
2142 	zap_attribute_t	zap;
2143 	uint_t		bytes_wanted;
2144 	uint64_t	offset; /* must be unsigned; checks for < 1 */
2145 	uint64_t	parent;
2146 	int		local_eof;
2147 	int		outcount;
2148 	int		error;
2149 	uint8_t		prefetch;
2150 	boolean_t	check_sysattrs;
2151 
2152 	ZFS_ENTER(zfsvfs);
2153 	ZFS_VERIFY_ZP(zp);
2154 
2155 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2156 	    &parent, sizeof (parent))) != 0) {
2157 		ZFS_EXIT(zfsvfs);
2158 		return (error);
2159 	}
2160 
2161 	/*
2162 	 * If we are not given an eof variable,
2163 	 * use a local one.
2164 	 */
2165 	if (eofp == NULL)
2166 		eofp = &local_eof;
2167 
2168 	/*
2169 	 * Check for valid iov_len.
2170 	 */
2171 	if (uio->uio_iov->iov_len <= 0) {
2172 		ZFS_EXIT(zfsvfs);
2173 		return (SET_ERROR(EINVAL));
2174 	}
2175 
2176 	/*
2177 	 * Quit if directory has been removed (posix)
2178 	 */
2179 	if ((*eofp = zp->z_unlinked) != 0) {
2180 		ZFS_EXIT(zfsvfs);
2181 		return (0);
2182 	}
2183 
2184 	error = 0;
2185 	os = zfsvfs->z_os;
2186 	offset = uio->uio_loffset;
2187 	prefetch = zp->z_zn_prefetch;
2188 
2189 	/*
2190 	 * Initialize the iterator cursor.
2191 	 */
2192 	if (offset <= 3) {
2193 		/*
2194 		 * Start iteration from the beginning of the directory.
2195 		 */
2196 		zap_cursor_init(&zc, os, zp->z_id);
2197 	} else {
2198 		/*
2199 		 * The offset is a serialized cursor.
2200 		 */
2201 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2202 	}
2203 
2204 	/*
2205 	 * Get space to change directory entries into fs independent format.
2206 	 */
2207 	iovp = uio->uio_iov;
2208 	bytes_wanted = iovp->iov_len;
2209 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2210 		bufsize = bytes_wanted;
2211 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2212 		odp = (struct dirent64 *)outbuf;
2213 	} else {
2214 		bufsize = bytes_wanted;
2215 		outbuf = NULL;
2216 		odp = (struct dirent64 *)iovp->iov_base;
2217 	}
2218 	eodp = (struct edirent *)odp;
2219 
2220 	/*
2221 	 * If this VFS supports the system attribute view interface; and
2222 	 * we're looking at an extended attribute directory; and we care
2223 	 * about normalization conflicts on this vfs; then we must check
2224 	 * for normalization conflicts with the sysattr name space.
2225 	 */
2226 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2227 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2228 	    (flags & V_RDDIR_ENTFLAGS);
2229 
2230 	/*
2231 	 * Transform to file-system independent format
2232 	 */
2233 	outcount = 0;
2234 	while (outcount < bytes_wanted) {
2235 		ino64_t objnum;
2236 		ushort_t reclen;
2237 		off64_t *next = NULL;
2238 
2239 		/*
2240 		 * Special case `.', `..', and `.zfs'.
2241 		 */
2242 		if (offset == 0) {
2243 			(void) strcpy(zap.za_name, ".");
2244 			zap.za_normalization_conflict = 0;
2245 			objnum = zp->z_id;
2246 		} else if (offset == 1) {
2247 			(void) strcpy(zap.za_name, "..");
2248 			zap.za_normalization_conflict = 0;
2249 			objnum = parent;
2250 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2251 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2252 			zap.za_normalization_conflict = 0;
2253 			objnum = ZFSCTL_INO_ROOT;
2254 		} else {
2255 			/*
2256 			 * Grab next entry.
2257 			 */
2258 			if (error = zap_cursor_retrieve(&zc, &zap)) {
2259 				if ((*eofp = (error == ENOENT)) != 0)
2260 					break;
2261 				else
2262 					goto update;
2263 			}
2264 
2265 			if (zap.za_integer_length != 8 ||
2266 			    zap.za_num_integers != 1) {
2267 				cmn_err(CE_WARN, "zap_readdir: bad directory "
2268 				    "entry, obj = %lld, offset = %lld\n",
2269 				    (u_longlong_t)zp->z_id,
2270 				    (u_longlong_t)offset);
2271 				error = SET_ERROR(ENXIO);
2272 				goto update;
2273 			}
2274 
2275 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2276 			/*
2277 			 * MacOS X can extract the object type here such as:
2278 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2279 			 */
2280 
2281 			if (check_sysattrs && !zap.za_normalization_conflict) {
2282 				zap.za_normalization_conflict =
2283 				    xattr_sysattr_casechk(zap.za_name);
2284 			}
2285 		}
2286 
2287 		if (flags & V_RDDIR_ACCFILTER) {
2288 			/*
2289 			 * If we have no access at all, don't include
2290 			 * this entry in the returned information
2291 			 */
2292 			znode_t	*ezp;
2293 			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2294 				goto skip_entry;
2295 			if (!zfs_has_access(ezp, cr)) {
2296 				VN_RELE(ZTOV(ezp));
2297 				goto skip_entry;
2298 			}
2299 			VN_RELE(ZTOV(ezp));
2300 		}
2301 
2302 		if (flags & V_RDDIR_ENTFLAGS)
2303 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2304 		else
2305 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2306 
2307 		/*
2308 		 * Will this entry fit in the buffer?
2309 		 */
2310 		if (outcount + reclen > bufsize) {
2311 			/*
2312 			 * Did we manage to fit anything in the buffer?
2313 			 */
2314 			if (!outcount) {
2315 				error = SET_ERROR(EINVAL);
2316 				goto update;
2317 			}
2318 			break;
2319 		}
2320 		if (flags & V_RDDIR_ENTFLAGS) {
2321 			/*
2322 			 * Add extended flag entry:
2323 			 */
2324 			eodp->ed_ino = objnum;
2325 			eodp->ed_reclen = reclen;
2326 			/* NOTE: ed_off is the offset for the *next* entry */
2327 			next = &(eodp->ed_off);
2328 			eodp->ed_eflags = zap.za_normalization_conflict ?
2329 			    ED_CASE_CONFLICT : 0;
2330 			(void) strncpy(eodp->ed_name, zap.za_name,
2331 			    EDIRENT_NAMELEN(reclen));
2332 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2333 		} else {
2334 			/*
2335 			 * Add normal entry:
2336 			 */
2337 			odp->d_ino = objnum;
2338 			odp->d_reclen = reclen;
2339 			/* NOTE: d_off is the offset for the *next* entry */
2340 			next = &(odp->d_off);
2341 			(void) strncpy(odp->d_name, zap.za_name,
2342 			    DIRENT64_NAMELEN(reclen));
2343 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2344 		}
2345 		outcount += reclen;
2346 
2347 		ASSERT(outcount <= bufsize);
2348 
2349 		/* Prefetch znode */
2350 		if (prefetch)
2351 			dmu_prefetch(os, objnum, 0, 0);
2352 
2353 	skip_entry:
2354 		/*
2355 		 * Move to the next entry, fill in the previous offset.
2356 		 */
2357 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2358 			zap_cursor_advance(&zc);
2359 			offset = zap_cursor_serialize(&zc);
2360 		} else {
2361 			offset += 1;
2362 		}
2363 		if (next)
2364 			*next = offset;
2365 	}
2366 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2367 
2368 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2369 		iovp->iov_base += outcount;
2370 		iovp->iov_len -= outcount;
2371 		uio->uio_resid -= outcount;
2372 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2373 		/*
2374 		 * Reset the pointer.
2375 		 */
2376 		offset = uio->uio_loffset;
2377 	}
2378 
2379 update:
2380 	zap_cursor_fini(&zc);
2381 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2382 		kmem_free(outbuf, bufsize);
2383 
2384 	if (error == ENOENT)
2385 		error = 0;
2386 
2387 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2388 
2389 	uio->uio_loffset = offset;
2390 	ZFS_EXIT(zfsvfs);
2391 	return (error);
2392 }
2393 
2394 ulong_t zfs_fsync_sync_cnt = 4;
2395 
2396 static int
2397 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2398 {
2399 	znode_t	*zp = VTOZ(vp);
2400 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2401 
2402 	/*
2403 	 * Regardless of whether this is required for standards conformance,
2404 	 * this is the logical behavior when fsync() is called on a file with
2405 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2406 	 * going to be pushed out as part of the zil_commit().
2407 	 */
2408 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2409 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2410 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2411 
2412 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2413 
2414 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2415 		ZFS_ENTER(zfsvfs);
2416 		ZFS_VERIFY_ZP(zp);
2417 		zil_commit(zfsvfs->z_log, zp->z_id);
2418 		ZFS_EXIT(zfsvfs);
2419 	}
2420 	return (0);
2421 }
2422 
2423 
2424 /*
2425  * Get the requested file attributes and place them in the provided
2426  * vattr structure.
2427  *
2428  *	IN:	vp	- vnode of file.
2429  *		vap	- va_mask identifies requested attributes.
2430  *			  If AT_XVATTR set, then optional attrs are requested
2431  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2432  *		cr	- credentials of caller.
2433  *		ct	- caller context
2434  *
2435  *	OUT:	vap	- attribute values.
2436  *
2437  *	RETURN:	0 (always succeeds).
2438  */
2439 /* ARGSUSED */
2440 static int
2441 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2442     caller_context_t *ct)
2443 {
2444 	znode_t *zp = VTOZ(vp);
2445 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2446 	int	error = 0;
2447 	uint64_t links;
2448 	uint64_t mtime[2], ctime[2];
2449 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2450 	xoptattr_t *xoap = NULL;
2451 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2452 	sa_bulk_attr_t bulk[2];
2453 	int count = 0;
2454 
2455 	ZFS_ENTER(zfsvfs);
2456 	ZFS_VERIFY_ZP(zp);
2457 
2458 	zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2459 
2460 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2461 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2462 
2463 	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2464 		ZFS_EXIT(zfsvfs);
2465 		return (error);
2466 	}
2467 
2468 	/*
2469 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2470 	 * Also, if we are the owner don't bother, since owner should
2471 	 * always be allowed to read basic attributes of file.
2472 	 */
2473 	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2474 	    (vap->va_uid != crgetuid(cr))) {
2475 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2476 		    skipaclchk, cr)) {
2477 			ZFS_EXIT(zfsvfs);
2478 			return (error);
2479 		}
2480 	}
2481 
2482 	/*
2483 	 * Return all attributes.  It's cheaper to provide the answer
2484 	 * than to determine whether we were asked the question.
2485 	 */
2486 
2487 	mutex_enter(&zp->z_lock);
2488 	vap->va_type = vp->v_type;
2489 	vap->va_mode = zp->z_mode & MODEMASK;
2490 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2491 	vap->va_nodeid = zp->z_id;
2492 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2493 		links = zp->z_links + 1;
2494 	else
2495 		links = zp->z_links;
2496 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2497 	vap->va_size = zp->z_size;
2498 	vap->va_rdev = vp->v_rdev;
2499 	vap->va_seq = zp->z_seq;
2500 
2501 	/*
2502 	 * Add in any requested optional attributes and the create time.
2503 	 * Also set the corresponding bits in the returned attribute bitmap.
2504 	 */
2505 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2506 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2507 			xoap->xoa_archive =
2508 			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2509 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2510 		}
2511 
2512 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2513 			xoap->xoa_readonly =
2514 			    ((zp->z_pflags & ZFS_READONLY) != 0);
2515 			XVA_SET_RTN(xvap, XAT_READONLY);
2516 		}
2517 
2518 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2519 			xoap->xoa_system =
2520 			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2521 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2522 		}
2523 
2524 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2525 			xoap->xoa_hidden =
2526 			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2527 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2528 		}
2529 
2530 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2531 			xoap->xoa_nounlink =
2532 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2533 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2534 		}
2535 
2536 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2537 			xoap->xoa_immutable =
2538 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2539 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2540 		}
2541 
2542 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2543 			xoap->xoa_appendonly =
2544 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2545 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2546 		}
2547 
2548 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2549 			xoap->xoa_nodump =
2550 			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2551 			XVA_SET_RTN(xvap, XAT_NODUMP);
2552 		}
2553 
2554 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2555 			xoap->xoa_opaque =
2556 			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2557 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2558 		}
2559 
2560 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2561 			xoap->xoa_av_quarantined =
2562 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2563 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2564 		}
2565 
2566 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2567 			xoap->xoa_av_modified =
2568 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2569 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2570 		}
2571 
2572 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2573 		    vp->v_type == VREG) {
2574 			zfs_sa_get_scanstamp(zp, xvap);
2575 		}
2576 
2577 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2578 			uint64_t times[2];
2579 
2580 			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2581 			    times, sizeof (times));
2582 			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2583 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2584 		}
2585 
2586 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2587 			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2588 			XVA_SET_RTN(xvap, XAT_REPARSE);
2589 		}
2590 		if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2591 			xoap->xoa_generation = zp->z_gen;
2592 			XVA_SET_RTN(xvap, XAT_GEN);
2593 		}
2594 
2595 		if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2596 			xoap->xoa_offline =
2597 			    ((zp->z_pflags & ZFS_OFFLINE) != 0);
2598 			XVA_SET_RTN(xvap, XAT_OFFLINE);
2599 		}
2600 
2601 		if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2602 			xoap->xoa_sparse =
2603 			    ((zp->z_pflags & ZFS_SPARSE) != 0);
2604 			XVA_SET_RTN(xvap, XAT_SPARSE);
2605 		}
2606 	}
2607 
2608 	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2609 	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2610 	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2611 
2612 	mutex_exit(&zp->z_lock);
2613 
2614 	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2615 
2616 	if (zp->z_blksz == 0) {
2617 		/*
2618 		 * Block size hasn't been set; suggest maximal I/O transfers.
2619 		 */
2620 		vap->va_blksize = zfsvfs->z_max_blksz;
2621 	}
2622 
2623 	ZFS_EXIT(zfsvfs);
2624 	return (0);
2625 }
2626 
2627 /*
2628  * Set the file attributes to the values contained in the
2629  * vattr structure.
2630  *
2631  *	IN:	vp	- vnode of file to be modified.
2632  *		vap	- new attribute values.
2633  *			  If AT_XVATTR set, then optional attrs are being set
2634  *		flags	- ATTR_UTIME set if non-default time values provided.
2635  *			- ATTR_NOACLCHECK (CIFS context only).
2636  *		cr	- credentials of caller.
2637  *		ct	- caller context
2638  *
2639  *	RETURN:	0 on success, error code on failure.
2640  *
2641  * Timestamps:
2642  *	vp - ctime updated, mtime updated if size changed.
2643  */
2644 /* ARGSUSED */
2645 static int
2646 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2647     caller_context_t *ct)
2648 {
2649 	znode_t		*zp = VTOZ(vp);
2650 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2651 	zilog_t		*zilog;
2652 	dmu_tx_t	*tx;
2653 	vattr_t		oldva;
2654 	xvattr_t	tmpxvattr;
2655 	uint_t		mask = vap->va_mask;
2656 	uint_t		saved_mask = 0;
2657 	int		trim_mask = 0;
2658 	uint64_t	new_mode;
2659 	uint64_t	new_uid, new_gid;
2660 	uint64_t	xattr_obj;
2661 	uint64_t	mtime[2], ctime[2];
2662 	znode_t		*attrzp;
2663 	int		need_policy = FALSE;
2664 	int		err, err2;
2665 	zfs_fuid_info_t *fuidp = NULL;
2666 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2667 	xoptattr_t	*xoap;
2668 	zfs_acl_t	*aclp;
2669 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2670 	boolean_t	fuid_dirtied = B_FALSE;
2671 	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
2672 	int		count = 0, xattr_count = 0;
2673 
2674 	if (mask == 0)
2675 		return (0);
2676 
2677 	if (mask & AT_NOSET)
2678 		return (SET_ERROR(EINVAL));
2679 
2680 	ZFS_ENTER(zfsvfs);
2681 	ZFS_VERIFY_ZP(zp);
2682 
2683 	zilog = zfsvfs->z_log;
2684 
2685 	/*
2686 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2687 	 * that file system is at proper version level
2688 	 */
2689 
2690 	if (zfsvfs->z_use_fuids == B_FALSE &&
2691 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2692 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2693 	    (mask & AT_XVATTR))) {
2694 		ZFS_EXIT(zfsvfs);
2695 		return (SET_ERROR(EINVAL));
2696 	}
2697 
2698 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2699 		ZFS_EXIT(zfsvfs);
2700 		return (SET_ERROR(EISDIR));
2701 	}
2702 
2703 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2704 		ZFS_EXIT(zfsvfs);
2705 		return (SET_ERROR(EINVAL));
2706 	}
2707 
2708 	/*
2709 	 * If this is an xvattr_t, then get a pointer to the structure of
2710 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2711 	 */
2712 	xoap = xva_getxoptattr(xvap);
2713 
2714 	xva_init(&tmpxvattr);
2715 
2716 	/*
2717 	 * Immutable files can only alter immutable bit and atime
2718 	 */
2719 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2720 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2721 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2722 		ZFS_EXIT(zfsvfs);
2723 		return (SET_ERROR(EPERM));
2724 	}
2725 
2726 	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2727 		ZFS_EXIT(zfsvfs);
2728 		return (SET_ERROR(EPERM));
2729 	}
2730 
2731 	/*
2732 	 * Verify timestamps doesn't overflow 32 bits.
2733 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2734 	 * handle times greater than 2039.  This check should be removed
2735 	 * once large timestamps are fully supported.
2736 	 */
2737 	if (mask & (AT_ATIME | AT_MTIME)) {
2738 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2739 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2740 			ZFS_EXIT(zfsvfs);
2741 			return (SET_ERROR(EOVERFLOW));
2742 		}
2743 	}
2744 
2745 top:
2746 	attrzp = NULL;
2747 	aclp = NULL;
2748 
2749 	/* Can this be moved to before the top label? */
2750 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2751 		ZFS_EXIT(zfsvfs);
2752 		return (SET_ERROR(EROFS));
2753 	}
2754 
2755 	/*
2756 	 * First validate permissions
2757 	 */
2758 
2759 	if (mask & AT_SIZE) {
2760 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2761 		if (err) {
2762 			ZFS_EXIT(zfsvfs);
2763 			return (err);
2764 		}
2765 		/*
2766 		 * XXX - Note, we are not providing any open
2767 		 * mode flags here (like FNDELAY), so we may
2768 		 * block if there are locks present... this
2769 		 * should be addressed in openat().
2770 		 */
2771 		/* XXX - would it be OK to generate a log record here? */
2772 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2773 		if (err) {
2774 			ZFS_EXIT(zfsvfs);
2775 			return (err);
2776 		}
2777 
2778 		if (vap->va_size == 0)
2779 			vnevent_truncate(ZTOV(zp), ct);
2780 	}
2781 
2782 	if (mask & (AT_ATIME|AT_MTIME) ||
2783 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2784 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2785 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2786 	    XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2787 	    XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2788 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2789 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2790 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2791 		    skipaclchk, cr);
2792 	}
2793 
2794 	if (mask & (AT_UID|AT_GID)) {
2795 		int	idmask = (mask & (AT_UID|AT_GID));
2796 		int	take_owner;
2797 		int	take_group;
2798 
2799 		/*
2800 		 * NOTE: even if a new mode is being set,
2801 		 * we may clear S_ISUID/S_ISGID bits.
2802 		 */
2803 
2804 		if (!(mask & AT_MODE))
2805 			vap->va_mode = zp->z_mode;
2806 
2807 		/*
2808 		 * Take ownership or chgrp to group we are a member of
2809 		 */
2810 
2811 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2812 		take_group = (mask & AT_GID) &&
2813 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2814 
2815 		/*
2816 		 * If both AT_UID and AT_GID are set then take_owner and
2817 		 * take_group must both be set in order to allow taking
2818 		 * ownership.
2819 		 *
2820 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2821 		 *
2822 		 */
2823 
2824 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2825 		    ((idmask == AT_UID) && take_owner) ||
2826 		    ((idmask == AT_GID) && take_group)) {
2827 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2828 			    skipaclchk, cr) == 0) {
2829 				/*
2830 				 * Remove setuid/setgid for non-privileged users
2831 				 */
2832 				secpolicy_setid_clear(vap, cr);
2833 				trim_mask = (mask & (AT_UID|AT_GID));
2834 			} else {
2835 				need_policy =  TRUE;
2836 			}
2837 		} else {
2838 			need_policy =  TRUE;
2839 		}
2840 	}
2841 
2842 	mutex_enter(&zp->z_lock);
2843 	oldva.va_mode = zp->z_mode;
2844 	zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2845 	if (mask & AT_XVATTR) {
2846 		/*
2847 		 * Update xvattr mask to include only those attributes
2848 		 * that are actually changing.
2849 		 *
2850 		 * the bits will be restored prior to actually setting
2851 		 * the attributes so the caller thinks they were set.
2852 		 */
2853 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2854 			if (xoap->xoa_appendonly !=
2855 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2856 				need_policy = TRUE;
2857 			} else {
2858 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2859 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2860 			}
2861 		}
2862 
2863 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2864 			if (xoap->xoa_nounlink !=
2865 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2866 				need_policy = TRUE;
2867 			} else {
2868 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2869 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2870 			}
2871 		}
2872 
2873 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2874 			if (xoap->xoa_immutable !=
2875 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2876 				need_policy = TRUE;
2877 			} else {
2878 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2879 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2880 			}
2881 		}
2882 
2883 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2884 			if (xoap->xoa_nodump !=
2885 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2886 				need_policy = TRUE;
2887 			} else {
2888 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2889 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2890 			}
2891 		}
2892 
2893 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2894 			if (xoap->xoa_av_modified !=
2895 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2896 				need_policy = TRUE;
2897 			} else {
2898 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2899 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2900 			}
2901 		}
2902 
2903 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2904 			if ((vp->v_type != VREG &&
2905 			    xoap->xoa_av_quarantined) ||
2906 			    xoap->xoa_av_quarantined !=
2907 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2908 				need_policy = TRUE;
2909 			} else {
2910 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2911 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2912 			}
2913 		}
2914 
2915 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2916 			mutex_exit(&zp->z_lock);
2917 			ZFS_EXIT(zfsvfs);
2918 			return (SET_ERROR(EPERM));
2919 		}
2920 
2921 		if (need_policy == FALSE &&
2922 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2923 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2924 			need_policy = TRUE;
2925 		}
2926 	}
2927 
2928 	mutex_exit(&zp->z_lock);
2929 
2930 	if (mask & AT_MODE) {
2931 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2932 			err = secpolicy_setid_setsticky_clear(vp, vap,
2933 			    &oldva, cr);
2934 			if (err) {
2935 				ZFS_EXIT(zfsvfs);
2936 				return (err);
2937 			}
2938 			trim_mask |= AT_MODE;
2939 		} else {
2940 			need_policy = TRUE;
2941 		}
2942 	}
2943 
2944 	if (need_policy) {
2945 		/*
2946 		 * If trim_mask is set then take ownership
2947 		 * has been granted or write_acl is present and user
2948 		 * has the ability to modify mode.  In that case remove
2949 		 * UID|GID and or MODE from mask so that
2950 		 * secpolicy_vnode_setattr() doesn't revoke it.
2951 		 */
2952 
2953 		if (trim_mask) {
2954 			saved_mask = vap->va_mask;
2955 			vap->va_mask &= ~trim_mask;
2956 		}
2957 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2958 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2959 		if (err) {
2960 			ZFS_EXIT(zfsvfs);
2961 			return (err);
2962 		}
2963 
2964 		if (trim_mask)
2965 			vap->va_mask |= saved_mask;
2966 	}
2967 
2968 	/*
2969 	 * secpolicy_vnode_setattr, or take ownership may have
2970 	 * changed va_mask
2971 	 */
2972 	mask = vap->va_mask;
2973 
2974 	if ((mask & (AT_UID | AT_GID))) {
2975 		err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2976 		    &xattr_obj, sizeof (xattr_obj));
2977 
2978 		if (err == 0 && xattr_obj) {
2979 			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2980 			if (err)
2981 				goto out2;
2982 		}
2983 		if (mask & AT_UID) {
2984 			new_uid = zfs_fuid_create(zfsvfs,
2985 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2986 			if (new_uid != zp->z_uid &&
2987 			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
2988 				if (attrzp)
2989 					VN_RELE(ZTOV(attrzp));
2990 				err = SET_ERROR(EDQUOT);
2991 				goto out2;
2992 			}
2993 		}
2994 
2995 		if (mask & AT_GID) {
2996 			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2997 			    cr, ZFS_GROUP, &fuidp);
2998 			if (new_gid != zp->z_gid &&
2999 			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3000 				if (attrzp)
3001 					VN_RELE(ZTOV(attrzp));
3002 				err = SET_ERROR(EDQUOT);
3003 				goto out2;
3004 			}
3005 		}
3006 	}
3007 	tx = dmu_tx_create(zfsvfs->z_os);
3008 
3009 	if (mask & AT_MODE) {
3010 		uint64_t pmode = zp->z_mode;
3011 		uint64_t acl_obj;
3012 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3013 
3014 		if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3015 		    !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3016 			err = SET_ERROR(EPERM);
3017 			goto out;
3018 		}
3019 
3020 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3021 			goto out;
3022 
3023 		mutex_enter(&zp->z_lock);
3024 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3025 			/*
3026 			 * Are we upgrading ACL from old V0 format
3027 			 * to V1 format?
3028 			 */
3029 			if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3030 			    zfs_znode_acl_version(zp) ==
3031 			    ZFS_ACL_VERSION_INITIAL) {
3032 				dmu_tx_hold_free(tx, acl_obj, 0,
3033 				    DMU_OBJECT_END);
3034 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3035 				    0, aclp->z_acl_bytes);
3036 			} else {
3037 				dmu_tx_hold_write(tx, acl_obj, 0,
3038 				    aclp->z_acl_bytes);
3039 			}
3040 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3041 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3042 			    0, aclp->z_acl_bytes);
3043 		}
3044 		mutex_exit(&zp->z_lock);
3045 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3046 	} else {
3047 		if ((mask & AT_XVATTR) &&
3048 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3049 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3050 		else
3051 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3052 	}
3053 
3054 	if (attrzp) {
3055 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3056 	}
3057 
3058 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3059 	if (fuid_dirtied)
3060 		zfs_fuid_txhold(zfsvfs, tx);
3061 
3062 	zfs_sa_upgrade_txholds(tx, zp);
3063 
3064 	err = dmu_tx_assign(tx, TXG_WAIT);
3065 	if (err)
3066 		goto out;
3067 
3068 	count = 0;
3069 	/*
3070 	 * Set each attribute requested.
3071 	 * We group settings according to the locks they need to acquire.
3072 	 *
3073 	 * Note: you cannot set ctime directly, although it will be
3074 	 * updated as a side-effect of calling this function.
3075 	 */
3076 
3077 
3078 	if (mask & (AT_UID|AT_GID|AT_MODE))
3079 		mutex_enter(&zp->z_acl_lock);
3080 	mutex_enter(&zp->z_lock);
3081 
3082 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3083 	    &zp->z_pflags, sizeof (zp->z_pflags));
3084 
3085 	if (attrzp) {
3086 		if (mask & (AT_UID|AT_GID|AT_MODE))
3087 			mutex_enter(&attrzp->z_acl_lock);
3088 		mutex_enter(&attrzp->z_lock);
3089 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3090 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3091 		    sizeof (attrzp->z_pflags));
3092 	}
3093 
3094 	if (mask & (AT_UID|AT_GID)) {
3095 
3096 		if (mask & AT_UID) {
3097 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3098 			    &new_uid, sizeof (new_uid));
3099 			zp->z_uid = new_uid;
3100 			if (attrzp) {
3101 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3102 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3103 				    sizeof (new_uid));
3104 				attrzp->z_uid = new_uid;
3105 			}
3106 		}
3107 
3108 		if (mask & AT_GID) {
3109 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3110 			    NULL, &new_gid, sizeof (new_gid));
3111 			zp->z_gid = new_gid;
3112 			if (attrzp) {
3113 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3114 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3115 				    sizeof (new_gid));
3116 				attrzp->z_gid = new_gid;
3117 			}
3118 		}
3119 		if (!(mask & AT_MODE)) {
3120 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3121 			    NULL, &new_mode, sizeof (new_mode));
3122 			new_mode = zp->z_mode;
3123 		}
3124 		err = zfs_acl_chown_setattr(zp);
3125 		ASSERT(err == 0);
3126 		if (attrzp) {
3127 			err = zfs_acl_chown_setattr(attrzp);
3128 			ASSERT(err == 0);
3129 		}
3130 	}
3131 
3132 	if (mask & AT_MODE) {
3133 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3134 		    &new_mode, sizeof (new_mode));
3135 		zp->z_mode = new_mode;
3136 		ASSERT3U((uintptr_t)aclp, !=, NULL);
3137 		err = zfs_aclset_common(zp, aclp, cr, tx);
3138 		ASSERT0(err);
3139 		if (zp->z_acl_cached)
3140 			zfs_acl_free(zp->z_acl_cached);
3141 		zp->z_acl_cached = aclp;
3142 		aclp = NULL;
3143 	}
3144 
3145 
3146 	if (mask & AT_ATIME) {
3147 		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3148 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3149 		    &zp->z_atime, sizeof (zp->z_atime));
3150 	}
3151 
3152 	if (mask & AT_MTIME) {
3153 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3154 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3155 		    mtime, sizeof (mtime));
3156 	}
3157 
3158 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3159 	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3160 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3161 		    NULL, mtime, sizeof (mtime));
3162 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3163 		    &ctime, sizeof (ctime));
3164 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3165 		    B_TRUE);
3166 	} else if (mask != 0) {
3167 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3168 		    &ctime, sizeof (ctime));
3169 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3170 		    B_TRUE);
3171 		if (attrzp) {
3172 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3173 			    SA_ZPL_CTIME(zfsvfs), NULL,
3174 			    &ctime, sizeof (ctime));
3175 			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3176 			    mtime, ctime, B_TRUE);
3177 		}
3178 	}
3179 	/*
3180 	 * Do this after setting timestamps to prevent timestamp
3181 	 * update from toggling bit
3182 	 */
3183 
3184 	if (xoap && (mask & AT_XVATTR)) {
3185 
3186 		/*
3187 		 * restore trimmed off masks
3188 		 * so that return masks can be set for caller.
3189 		 */
3190 
3191 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3192 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3193 		}
3194 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3195 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3196 		}
3197 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3198 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3199 		}
3200 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3201 			XVA_SET_REQ(xvap, XAT_NODUMP);
3202 		}
3203 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3204 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3205 		}
3206 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3207 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3208 		}
3209 
3210 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3211 			ASSERT(vp->v_type == VREG);
3212 
3213 		zfs_xvattr_set(zp, xvap, tx);
3214 	}
3215 
3216 	if (fuid_dirtied)
3217 		zfs_fuid_sync(zfsvfs, tx);
3218 
3219 	if (mask != 0)
3220 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3221 
3222 	mutex_exit(&zp->z_lock);
3223 	if (mask & (AT_UID|AT_GID|AT_MODE))
3224 		mutex_exit(&zp->z_acl_lock);
3225 
3226 	if (attrzp) {
3227 		if (mask & (AT_UID|AT_GID|AT_MODE))
3228 			mutex_exit(&attrzp->z_acl_lock);
3229 		mutex_exit(&attrzp->z_lock);
3230 	}
3231 out:
3232 	if (err == 0 && attrzp) {
3233 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3234 		    xattr_count, tx);
3235 		ASSERT(err2 == 0);
3236 	}
3237 
3238 	if (attrzp)
3239 		VN_RELE(ZTOV(attrzp));
3240 
3241 	if (aclp)
3242 		zfs_acl_free(aclp);
3243 
3244 	if (fuidp) {
3245 		zfs_fuid_info_free(fuidp);
3246 		fuidp = NULL;
3247 	}
3248 
3249 	if (err) {
3250 		dmu_tx_abort(tx);
3251 		if (err == ERESTART)
3252 			goto top;
3253 	} else {
3254 		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3255 		dmu_tx_commit(tx);
3256 	}
3257 
3258 out2:
3259 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3260 		zil_commit(zilog, 0);
3261 
3262 	ZFS_EXIT(zfsvfs);
3263 	return (err);
3264 }
3265 
3266 typedef struct zfs_zlock {
3267 	krwlock_t	*zl_rwlock;	/* lock we acquired */
3268 	znode_t		*zl_znode;	/* znode we held */
3269 	struct zfs_zlock *zl_next;	/* next in list */
3270 } zfs_zlock_t;
3271 
3272 /*
3273  * Drop locks and release vnodes that were held by zfs_rename_lock().
3274  */
3275 static void
3276 zfs_rename_unlock(zfs_zlock_t **zlpp)
3277 {
3278 	zfs_zlock_t *zl;
3279 
3280 	while ((zl = *zlpp) != NULL) {
3281 		if (zl->zl_znode != NULL)
3282 			VN_RELE(ZTOV(zl->zl_znode));
3283 		rw_exit(zl->zl_rwlock);
3284 		*zlpp = zl->zl_next;
3285 		kmem_free(zl, sizeof (*zl));
3286 	}
3287 }
3288 
3289 /*
3290  * Search back through the directory tree, using the ".." entries.
3291  * Lock each directory in the chain to prevent concurrent renames.
3292  * Fail any attempt to move a directory into one of its own descendants.
3293  * XXX - z_parent_lock can overlap with map or grow locks
3294  */
3295 static int
3296 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3297 {
3298 	zfs_zlock_t	*zl;
3299 	znode_t		*zp = tdzp;
3300 	uint64_t	rootid = zp->z_zfsvfs->z_root;
3301 	uint64_t	oidp = zp->z_id;
3302 	krwlock_t	*rwlp = &szp->z_parent_lock;
3303 	krw_t		rw = RW_WRITER;
3304 
3305 	/*
3306 	 * First pass write-locks szp and compares to zp->z_id.
3307 	 * Later passes read-lock zp and compare to zp->z_parent.
3308 	 */
3309 	do {
3310 		if (!rw_tryenter(rwlp, rw)) {
3311 			/*
3312 			 * Another thread is renaming in this path.
3313 			 * Note that if we are a WRITER, we don't have any
3314 			 * parent_locks held yet.
3315 			 */
3316 			if (rw == RW_READER && zp->z_id > szp->z_id) {
3317 				/*
3318 				 * Drop our locks and restart
3319 				 */
3320 				zfs_rename_unlock(&zl);
3321 				*zlpp = NULL;
3322 				zp = tdzp;
3323 				oidp = zp->z_id;
3324 				rwlp = &szp->z_parent_lock;
3325 				rw = RW_WRITER;
3326 				continue;
3327 			} else {
3328 				/*
3329 				 * Wait for other thread to drop its locks
3330 				 */
3331 				rw_enter(rwlp, rw);
3332 			}
3333 		}
3334 
3335 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3336 		zl->zl_rwlock = rwlp;
3337 		zl->zl_znode = NULL;
3338 		zl->zl_next = *zlpp;
3339 		*zlpp = zl;
3340 
3341 		if (oidp == szp->z_id)		/* We're a descendant of szp */
3342 			return (SET_ERROR(EINVAL));
3343 
3344 		if (oidp == rootid)		/* We've hit the top */
3345 			return (0);
3346 
3347 		if (rw == RW_READER) {		/* i.e. not the first pass */
3348 			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3349 			if (error)
3350 				return (error);
3351 			zl->zl_znode = zp;
3352 		}
3353 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3354 		    &oidp, sizeof (oidp));
3355 		rwlp = &zp->z_parent_lock;
3356 		rw = RW_READER;
3357 
3358 	} while (zp->z_id != sdzp->z_id);
3359 
3360 	return (0);
3361 }
3362 
3363 /*
3364  * Move an entry from the provided source directory to the target
3365  * directory.  Change the entry name as indicated.
3366  *
3367  *	IN:	sdvp	- Source directory containing the "old entry".
3368  *		snm	- Old entry name.
3369  *		tdvp	- Target directory to contain the "new entry".
3370  *		tnm	- New entry name.
3371  *		cr	- credentials of caller.
3372  *		ct	- caller context
3373  *		flags	- case flags
3374  *
3375  *	RETURN:	0 on success, error code on failure.
3376  *
3377  * Timestamps:
3378  *	sdvp,tdvp - ctime|mtime updated
3379  */
3380 /*ARGSUSED*/
3381 static int
3382 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3383     caller_context_t *ct, int flags)
3384 {
3385 	znode_t		*tdzp, *szp, *tzp;
3386 	znode_t		*sdzp = VTOZ(sdvp);
3387 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3388 	zilog_t		*zilog;
3389 	vnode_t		*realvp;
3390 	zfs_dirlock_t	*sdl, *tdl;
3391 	dmu_tx_t	*tx;
3392 	zfs_zlock_t	*zl;
3393 	int		cmp, serr, terr;
3394 	int		error = 0;
3395 	int		zflg = 0;
3396 	boolean_t	waited = B_FALSE;
3397 
3398 	ZFS_ENTER(zfsvfs);
3399 	ZFS_VERIFY_ZP(sdzp);
3400 	zilog = zfsvfs->z_log;
3401 
3402 	/*
3403 	 * Make sure we have the real vp for the target directory.
3404 	 */
3405 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3406 		tdvp = realvp;
3407 
3408 	tdzp = VTOZ(tdvp);
3409 	ZFS_VERIFY_ZP(tdzp);
3410 
3411 	/*
3412 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3413 	 * ctldir appear to have the same v_vfsp.
3414 	 */
3415 	if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3416 		ZFS_EXIT(zfsvfs);
3417 		return (SET_ERROR(EXDEV));
3418 	}
3419 
3420 	if (zfsvfs->z_utf8 && u8_validate(tnm,
3421 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3422 		ZFS_EXIT(zfsvfs);
3423 		return (SET_ERROR(EILSEQ));
3424 	}
3425 
3426 	if (flags & FIGNORECASE)
3427 		zflg |= ZCILOOK;
3428 
3429 top:
3430 	szp = NULL;
3431 	tzp = NULL;
3432 	zl = NULL;
3433 
3434 	/*
3435 	 * This is to prevent the creation of links into attribute space
3436 	 * by renaming a linked file into/outof an attribute directory.
3437 	 * See the comment in zfs_link() for why this is considered bad.
3438 	 */
3439 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3440 		ZFS_EXIT(zfsvfs);
3441 		return (SET_ERROR(EINVAL));
3442 	}
3443 
3444 	/*
3445 	 * Lock source and target directory entries.  To prevent deadlock,
3446 	 * a lock ordering must be defined.  We lock the directory with
3447 	 * the smallest object id first, or if it's a tie, the one with
3448 	 * the lexically first name.
3449 	 */
3450 	if (sdzp->z_id < tdzp->z_id) {
3451 		cmp = -1;
3452 	} else if (sdzp->z_id > tdzp->z_id) {
3453 		cmp = 1;
3454 	} else {
3455 		/*
3456 		 * First compare the two name arguments without
3457 		 * considering any case folding.
3458 		 */
3459 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3460 
3461 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3462 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3463 		if (cmp == 0) {
3464 			/*
3465 			 * POSIX: "If the old argument and the new argument
3466 			 * both refer to links to the same existing file,
3467 			 * the rename() function shall return successfully
3468 			 * and perform no other action."
3469 			 */
3470 			ZFS_EXIT(zfsvfs);
3471 			return (0);
3472 		}
3473 		/*
3474 		 * If the file system is case-folding, then we may
3475 		 * have some more checking to do.  A case-folding file
3476 		 * system is either supporting mixed case sensitivity
3477 		 * access or is completely case-insensitive.  Note
3478 		 * that the file system is always case preserving.
3479 		 *
3480 		 * In mixed sensitivity mode case sensitive behavior
3481 		 * is the default.  FIGNORECASE must be used to
3482 		 * explicitly request case insensitive behavior.
3483 		 *
3484 		 * If the source and target names provided differ only
3485 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3486 		 * we will treat this as a special case in the
3487 		 * case-insensitive mode: as long as the source name
3488 		 * is an exact match, we will allow this to proceed as
3489 		 * a name-change request.
3490 		 */
3491 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3492 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3493 		    flags & FIGNORECASE)) &&
3494 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3495 		    &error) == 0) {
3496 			/*
3497 			 * case preserving rename request, require exact
3498 			 * name matches
3499 			 */
3500 			zflg |= ZCIEXACT;
3501 			zflg &= ~ZCILOOK;
3502 		}
3503 	}
3504 
3505 	/*
3506 	 * If the source and destination directories are the same, we should
3507 	 * grab the z_name_lock of that directory only once.
3508 	 */
3509 	if (sdzp == tdzp) {
3510 		zflg |= ZHAVELOCK;
3511 		rw_enter(&sdzp->z_name_lock, RW_READER);
3512 	}
3513 
3514 	if (cmp < 0) {
3515 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3516 		    ZEXISTS | zflg, NULL, NULL);
3517 		terr = zfs_dirent_lock(&tdl,
3518 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3519 	} else {
3520 		terr = zfs_dirent_lock(&tdl,
3521 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3522 		serr = zfs_dirent_lock(&sdl,
3523 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3524 		    NULL, NULL);
3525 	}
3526 
3527 	if (serr) {
3528 		/*
3529 		 * Source entry invalid or not there.
3530 		 */
3531 		if (!terr) {
3532 			zfs_dirent_unlock(tdl);
3533 			if (tzp)
3534 				VN_RELE(ZTOV(tzp));
3535 		}
3536 
3537 		if (sdzp == tdzp)
3538 			rw_exit(&sdzp->z_name_lock);
3539 
3540 		if (strcmp(snm, "..") == 0)
3541 			serr = SET_ERROR(EINVAL);
3542 		ZFS_EXIT(zfsvfs);
3543 		return (serr);
3544 	}
3545 	if (terr) {
3546 		zfs_dirent_unlock(sdl);
3547 		VN_RELE(ZTOV(szp));
3548 
3549 		if (sdzp == tdzp)
3550 			rw_exit(&sdzp->z_name_lock);
3551 
3552 		if (strcmp(tnm, "..") == 0)
3553 			terr = SET_ERROR(EINVAL);
3554 		ZFS_EXIT(zfsvfs);
3555 		return (terr);
3556 	}
3557 
3558 	/*
3559 	 * Must have write access at the source to remove the old entry
3560 	 * and write access at the target to create the new entry.
3561 	 * Note that if target and source are the same, this can be
3562 	 * done in a single check.
3563 	 */
3564 
3565 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3566 		goto out;
3567 
3568 	if (ZTOV(szp)->v_type == VDIR) {
3569 		/*
3570 		 * Check to make sure rename is valid.
3571 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3572 		 */
3573 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3574 			goto out;
3575 	}
3576 
3577 	/*
3578 	 * Does target exist?
3579 	 */
3580 	if (tzp) {
3581 		/*
3582 		 * Source and target must be the same type.
3583 		 */
3584 		if (ZTOV(szp)->v_type == VDIR) {
3585 			if (ZTOV(tzp)->v_type != VDIR) {
3586 				error = SET_ERROR(ENOTDIR);
3587 				goto out;
3588 			}
3589 		} else {
3590 			if (ZTOV(tzp)->v_type == VDIR) {
3591 				error = SET_ERROR(EISDIR);
3592 				goto out;
3593 			}
3594 		}
3595 		/*
3596 		 * POSIX dictates that when the source and target
3597 		 * entries refer to the same file object, rename
3598 		 * must do nothing and exit without error.
3599 		 */
3600 		if (szp->z_id == tzp->z_id) {
3601 			error = 0;
3602 			goto out;
3603 		}
3604 	}
3605 
3606 	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3607 	if (tzp)
3608 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3609 
3610 	/*
3611 	 * notify the target directory if it is not the same
3612 	 * as source directory.
3613 	 */
3614 	if (tdvp != sdvp) {
3615 		vnevent_rename_dest_dir(tdvp, ct);
3616 	}
3617 
3618 	tx = dmu_tx_create(zfsvfs->z_os);
3619 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3620 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3621 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3622 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3623 	if (sdzp != tdzp) {
3624 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3625 		zfs_sa_upgrade_txholds(tx, tdzp);
3626 	}
3627 	if (tzp) {
3628 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3629 		zfs_sa_upgrade_txholds(tx, tzp);
3630 	}
3631 
3632 	zfs_sa_upgrade_txholds(tx, szp);
3633 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3634 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3635 	if (error) {
3636 		if (zl != NULL)
3637 			zfs_rename_unlock(&zl);
3638 		zfs_dirent_unlock(sdl);
3639 		zfs_dirent_unlock(tdl);
3640 
3641 		if (sdzp == tdzp)
3642 			rw_exit(&sdzp->z_name_lock);
3643 
3644 		VN_RELE(ZTOV(szp));
3645 		if (tzp)
3646 			VN_RELE(ZTOV(tzp));
3647 		if (error == ERESTART) {
3648 			waited = B_TRUE;
3649 			dmu_tx_wait(tx);
3650 			dmu_tx_abort(tx);
3651 			goto top;
3652 		}
3653 		dmu_tx_abort(tx);
3654 		ZFS_EXIT(zfsvfs);
3655 		return (error);
3656 	}
3657 
3658 	if (tzp)	/* Attempt to remove the existing target */
3659 		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3660 
3661 	if (error == 0) {
3662 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3663 		if (error == 0) {
3664 			szp->z_pflags |= ZFS_AV_MODIFIED;
3665 
3666 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3667 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3668 			ASSERT0(error);
3669 
3670 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3671 			if (error == 0) {
3672 				zfs_log_rename(zilog, tx, TX_RENAME |
3673 				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3674 				    sdl->dl_name, tdzp, tdl->dl_name, szp);
3675 
3676 				/*
3677 				 * Update path information for the target vnode
3678 				 */
3679 				vn_renamepath(tdvp, ZTOV(szp), tnm,
3680 				    strlen(tnm));
3681 			} else {
3682 				/*
3683 				 * At this point, we have successfully created
3684 				 * the target name, but have failed to remove
3685 				 * the source name.  Since the create was done
3686 				 * with the ZRENAMING flag, there are
3687 				 * complications; for one, the link count is
3688 				 * wrong.  The easiest way to deal with this
3689 				 * is to remove the newly created target, and
3690 				 * return the original error.  This must
3691 				 * succeed; fortunately, it is very unlikely to
3692 				 * fail, since we just created it.
3693 				 */
3694 				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3695 				    ZRENAMING, NULL), ==, 0);
3696 			}
3697 		}
3698 	}
3699 
3700 	dmu_tx_commit(tx);
3701 out:
3702 	if (zl != NULL)
3703 		zfs_rename_unlock(&zl);
3704 
3705 	zfs_dirent_unlock(sdl);
3706 	zfs_dirent_unlock(tdl);
3707 
3708 	if (sdzp == tdzp)
3709 		rw_exit(&sdzp->z_name_lock);
3710 
3711 
3712 	VN_RELE(ZTOV(szp));
3713 	if (tzp)
3714 		VN_RELE(ZTOV(tzp));
3715 
3716 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3717 		zil_commit(zilog, 0);
3718 
3719 	ZFS_EXIT(zfsvfs);
3720 	return (error);
3721 }
3722 
3723 /*
3724  * Insert the indicated symbolic reference entry into the directory.
3725  *
3726  *	IN:	dvp	- Directory to contain new symbolic link.
3727  *		link	- Name for new symlink entry.
3728  *		vap	- Attributes of new entry.
3729  *		cr	- credentials of caller.
3730  *		ct	- caller context
3731  *		flags	- case flags
3732  *
3733  *	RETURN:	0 on success, error code on failure.
3734  *
3735  * Timestamps:
3736  *	dvp - ctime|mtime updated
3737  */
3738 /*ARGSUSED*/
3739 static int
3740 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3741     caller_context_t *ct, int flags)
3742 {
3743 	znode_t		*zp, *dzp = VTOZ(dvp);
3744 	zfs_dirlock_t	*dl;
3745 	dmu_tx_t	*tx;
3746 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3747 	zilog_t		*zilog;
3748 	uint64_t	len = strlen(link);
3749 	int		error;
3750 	int		zflg = ZNEW;
3751 	zfs_acl_ids_t	acl_ids;
3752 	boolean_t	fuid_dirtied;
3753 	uint64_t	txtype = TX_SYMLINK;
3754 	boolean_t	waited = B_FALSE;
3755 
3756 	ASSERT(vap->va_type == VLNK);
3757 
3758 	ZFS_ENTER(zfsvfs);
3759 	ZFS_VERIFY_ZP(dzp);
3760 	zilog = zfsvfs->z_log;
3761 
3762 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3763 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3764 		ZFS_EXIT(zfsvfs);
3765 		return (SET_ERROR(EILSEQ));
3766 	}
3767 	if (flags & FIGNORECASE)
3768 		zflg |= ZCILOOK;
3769 
3770 	if (len > MAXPATHLEN) {
3771 		ZFS_EXIT(zfsvfs);
3772 		return (SET_ERROR(ENAMETOOLONG));
3773 	}
3774 
3775 	if ((error = zfs_acl_ids_create(dzp, 0,
3776 	    vap, cr, NULL, &acl_ids)) != 0) {
3777 		ZFS_EXIT(zfsvfs);
3778 		return (error);
3779 	}
3780 top:
3781 	/*
3782 	 * Attempt to lock directory; fail if entry already exists.
3783 	 */
3784 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3785 	if (error) {
3786 		zfs_acl_ids_free(&acl_ids);
3787 		ZFS_EXIT(zfsvfs);
3788 		return (error);
3789 	}
3790 
3791 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3792 		zfs_acl_ids_free(&acl_ids);
3793 		zfs_dirent_unlock(dl);
3794 		ZFS_EXIT(zfsvfs);
3795 		return (error);
3796 	}
3797 
3798 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3799 		zfs_acl_ids_free(&acl_ids);
3800 		zfs_dirent_unlock(dl);
3801 		ZFS_EXIT(zfsvfs);
3802 		return (SET_ERROR(EDQUOT));
3803 	}
3804 	tx = dmu_tx_create(zfsvfs->z_os);
3805 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3806 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3807 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3808 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3809 	    ZFS_SA_BASE_ATTR_SIZE + len);
3810 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3811 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3812 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3813 		    acl_ids.z_aclp->z_acl_bytes);
3814 	}
3815 	if (fuid_dirtied)
3816 		zfs_fuid_txhold(zfsvfs, tx);
3817 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3818 	if (error) {
3819 		zfs_dirent_unlock(dl);
3820 		if (error == ERESTART) {
3821 			waited = B_TRUE;
3822 			dmu_tx_wait(tx);
3823 			dmu_tx_abort(tx);
3824 			goto top;
3825 		}
3826 		zfs_acl_ids_free(&acl_ids);
3827 		dmu_tx_abort(tx);
3828 		ZFS_EXIT(zfsvfs);
3829 		return (error);
3830 	}
3831 
3832 	/*
3833 	 * Create a new object for the symlink.
3834 	 * for version 4 ZPL datsets the symlink will be an SA attribute
3835 	 */
3836 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3837 
3838 	if (fuid_dirtied)
3839 		zfs_fuid_sync(zfsvfs, tx);
3840 
3841 	mutex_enter(&zp->z_lock);
3842 	if (zp->z_is_sa)
3843 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3844 		    link, len, tx);
3845 	else
3846 		zfs_sa_symlink(zp, link, len, tx);
3847 	mutex_exit(&zp->z_lock);
3848 
3849 	zp->z_size = len;
3850 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3851 	    &zp->z_size, sizeof (zp->z_size), tx);
3852 	/*
3853 	 * Insert the new object into the directory.
3854 	 */
3855 	(void) zfs_link_create(dl, zp, tx, ZNEW);
3856 
3857 	if (flags & FIGNORECASE)
3858 		txtype |= TX_CI;
3859 	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3860 
3861 	zfs_acl_ids_free(&acl_ids);
3862 
3863 	dmu_tx_commit(tx);
3864 
3865 	zfs_dirent_unlock(dl);
3866 
3867 	VN_RELE(ZTOV(zp));
3868 
3869 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3870 		zil_commit(zilog, 0);
3871 
3872 	ZFS_EXIT(zfsvfs);
3873 	return (error);
3874 }
3875 
3876 /*
3877  * Return, in the buffer contained in the provided uio structure,
3878  * the symbolic path referred to by vp.
3879  *
3880  *	IN:	vp	- vnode of symbolic link.
3881  *		uio	- structure to contain the link path.
3882  *		cr	- credentials of caller.
3883  *		ct	- caller context
3884  *
3885  *	OUT:	uio	- structure containing the link path.
3886  *
3887  *	RETURN:	0 on success, error code on failure.
3888  *
3889  * Timestamps:
3890  *	vp - atime updated
3891  */
3892 /* ARGSUSED */
3893 static int
3894 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3895 {
3896 	znode_t		*zp = VTOZ(vp);
3897 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3898 	int		error;
3899 
3900 	ZFS_ENTER(zfsvfs);
3901 	ZFS_VERIFY_ZP(zp);
3902 
3903 	mutex_enter(&zp->z_lock);
3904 	if (zp->z_is_sa)
3905 		error = sa_lookup_uio(zp->z_sa_hdl,
3906 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3907 	else
3908 		error = zfs_sa_readlink(zp, uio);
3909 	mutex_exit(&zp->z_lock);
3910 
3911 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3912 
3913 	ZFS_EXIT(zfsvfs);
3914 	return (error);
3915 }
3916 
3917 /*
3918  * Insert a new entry into directory tdvp referencing svp.
3919  *
3920  *	IN:	tdvp	- Directory to contain new entry.
3921  *		svp	- vnode of new entry.
3922  *		name	- name of new entry.
3923  *		cr	- credentials of caller.
3924  *		ct	- caller context
3925  *
3926  *	RETURN:	0 on success, error code on failure.
3927  *
3928  * Timestamps:
3929  *	tdvp - ctime|mtime updated
3930  *	 svp - ctime updated
3931  */
3932 /* ARGSUSED */
3933 static int
3934 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3935     caller_context_t *ct, int flags)
3936 {
3937 	znode_t		*dzp = VTOZ(tdvp);
3938 	znode_t		*tzp, *szp;
3939 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3940 	zilog_t		*zilog;
3941 	zfs_dirlock_t	*dl;
3942 	dmu_tx_t	*tx;
3943 	vnode_t		*realvp;
3944 	int		error;
3945 	int		zf = ZNEW;
3946 	uint64_t	parent;
3947 	uid_t		owner;
3948 	boolean_t	waited = B_FALSE;
3949 
3950 	ASSERT(tdvp->v_type == VDIR);
3951 
3952 	ZFS_ENTER(zfsvfs);
3953 	ZFS_VERIFY_ZP(dzp);
3954 	zilog = zfsvfs->z_log;
3955 
3956 	if (VOP_REALVP(svp, &realvp, ct) == 0)
3957 		svp = realvp;
3958 
3959 	/*
3960 	 * POSIX dictates that we return EPERM here.
3961 	 * Better choices include ENOTSUP or EISDIR.
3962 	 */
3963 	if (svp->v_type == VDIR) {
3964 		ZFS_EXIT(zfsvfs);
3965 		return (SET_ERROR(EPERM));
3966 	}
3967 
3968 	szp = VTOZ(svp);
3969 	ZFS_VERIFY_ZP(szp);
3970 
3971 	/*
3972 	 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3973 	 * ctldir appear to have the same v_vfsp.
3974 	 */
3975 	if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
3976 		ZFS_EXIT(zfsvfs);
3977 		return (SET_ERROR(EXDEV));
3978 	}
3979 
3980 	/* Prevent links to .zfs/shares files */
3981 
3982 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3983 	    &parent, sizeof (uint64_t))) != 0) {
3984 		ZFS_EXIT(zfsvfs);
3985 		return (error);
3986 	}
3987 	if (parent == zfsvfs->z_shares_dir) {
3988 		ZFS_EXIT(zfsvfs);
3989 		return (SET_ERROR(EPERM));
3990 	}
3991 
3992 	if (zfsvfs->z_utf8 && u8_validate(name,
3993 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3994 		ZFS_EXIT(zfsvfs);
3995 		return (SET_ERROR(EILSEQ));
3996 	}
3997 	if (flags & FIGNORECASE)
3998 		zf |= ZCILOOK;
3999 
4000 	/*
4001 	 * We do not support links between attributes and non-attributes
4002 	 * because of the potential security risk of creating links
4003 	 * into "normal" file space in order to circumvent restrictions
4004 	 * imposed in attribute space.
4005 	 */
4006 	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4007 		ZFS_EXIT(zfsvfs);
4008 		return (SET_ERROR(EINVAL));
4009 	}
4010 
4011 
4012 	owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4013 	if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4014 		ZFS_EXIT(zfsvfs);
4015 		return (SET_ERROR(EPERM));
4016 	}
4017 
4018 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4019 		ZFS_EXIT(zfsvfs);
4020 		return (error);
4021 	}
4022 
4023 top:
4024 	/*
4025 	 * Attempt to lock directory; fail if entry already exists.
4026 	 */
4027 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4028 	if (error) {
4029 		ZFS_EXIT(zfsvfs);
4030 		return (error);
4031 	}
4032 
4033 	tx = dmu_tx_create(zfsvfs->z_os);
4034 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4035 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4036 	zfs_sa_upgrade_txholds(tx, szp);
4037 	zfs_sa_upgrade_txholds(tx, dzp);
4038 	error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4039 	if (error) {
4040 		zfs_dirent_unlock(dl);
4041 		if (error == ERESTART) {
4042 			waited = B_TRUE;
4043 			dmu_tx_wait(tx);
4044 			dmu_tx_abort(tx);
4045 			goto top;
4046 		}
4047 		dmu_tx_abort(tx);
4048 		ZFS_EXIT(zfsvfs);
4049 		return (error);
4050 	}
4051 
4052 	error = zfs_link_create(dl, szp, tx, 0);
4053 
4054 	if (error == 0) {
4055 		uint64_t txtype = TX_LINK;
4056 		if (flags & FIGNORECASE)
4057 			txtype |= TX_CI;
4058 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4059 	}
4060 
4061 	dmu_tx_commit(tx);
4062 
4063 	zfs_dirent_unlock(dl);
4064 
4065 	if (error == 0) {
4066 		vnevent_link(svp, ct);
4067 	}
4068 
4069 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4070 		zil_commit(zilog, 0);
4071 
4072 	ZFS_EXIT(zfsvfs);
4073 	return (error);
4074 }
4075 
4076 /*
4077  * zfs_null_putapage() is used when the file system has been force
4078  * unmounted. It just drops the pages.
4079  */
4080 /* ARGSUSED */
4081 static int
4082 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4083 		size_t *lenp, int flags, cred_t *cr)
4084 {
4085 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4086 	return (0);
4087 }
4088 
4089 /*
4090  * Push a page out to disk, klustering if possible.
4091  *
4092  *	IN:	vp	- file to push page to.
4093  *		pp	- page to push.
4094  *		flags	- additional flags.
4095  *		cr	- credentials of caller.
4096  *
4097  *	OUT:	offp	- start of range pushed.
4098  *		lenp	- len of range pushed.
4099  *
4100  *	RETURN:	0 on success, error code on failure.
4101  *
4102  * NOTE: callers must have locked the page to be pushed.  On
4103  * exit, the page (and all other pages in the kluster) must be
4104  * unlocked.
4105  */
4106 /* ARGSUSED */
4107 static int
4108 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4109 		size_t *lenp, int flags, cred_t *cr)
4110 {
4111 	znode_t		*zp = VTOZ(vp);
4112 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4113 	dmu_tx_t	*tx;
4114 	u_offset_t	off, koff;
4115 	size_t		len, klen;
4116 	int		err;
4117 
4118 	off = pp->p_offset;
4119 	len = PAGESIZE;
4120 	/*
4121 	 * If our blocksize is bigger than the page size, try to kluster
4122 	 * multiple pages so that we write a full block (thus avoiding
4123 	 * a read-modify-write).
4124 	 */
4125 	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4126 		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4127 		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4128 		ASSERT(koff <= zp->z_size);
4129 		if (koff + klen > zp->z_size)
4130 			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4131 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4132 	}
4133 	ASSERT3U(btop(len), ==, btopr(len));
4134 
4135 	/*
4136 	 * Can't push pages past end-of-file.
4137 	 */
4138 	if (off >= zp->z_size) {
4139 		/* ignore all pages */
4140 		err = 0;
4141 		goto out;
4142 	} else if (off + len > zp->z_size) {
4143 		int npages = btopr(zp->z_size - off);
4144 		page_t *trunc;
4145 
4146 		page_list_break(&pp, &trunc, npages);
4147 		/* ignore pages past end of file */
4148 		if (trunc)
4149 			pvn_write_done(trunc, flags);
4150 		len = zp->z_size - off;
4151 	}
4152 
4153 	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4154 	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4155 		err = SET_ERROR(EDQUOT);
4156 		goto out;
4157 	}
4158 	tx = dmu_tx_create(zfsvfs->z_os);
4159 	dmu_tx_hold_write(tx, zp->z_id, off, len);
4160 
4161 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4162 	zfs_sa_upgrade_txholds(tx, zp);
4163 	err = dmu_tx_assign(tx, TXG_WAIT);
4164 	if (err != 0) {
4165 		dmu_tx_abort(tx);
4166 		goto out;
4167 	}
4168 
4169 	if (zp->z_blksz <= PAGESIZE) {
4170 		caddr_t va = zfs_map_page(pp, S_READ);
4171 		ASSERT3U(len, <=, PAGESIZE);
4172 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4173 		zfs_unmap_page(pp, va);
4174 	} else {
4175 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4176 	}
4177 
4178 	if (err == 0) {
4179 		uint64_t mtime[2], ctime[2];
4180 		sa_bulk_attr_t bulk[3];
4181 		int count = 0;
4182 
4183 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4184 		    &mtime, 16);
4185 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4186 		    &ctime, 16);
4187 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4188 		    &zp->z_pflags, 8);
4189 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4190 		    B_TRUE);
4191 		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4192 	}
4193 	dmu_tx_commit(tx);
4194 
4195 out:
4196 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4197 	if (offp)
4198 		*offp = off;
4199 	if (lenp)
4200 		*lenp = len;
4201 
4202 	return (err);
4203 }
4204 
4205 /*
4206  * Copy the portion of the file indicated from pages into the file.
4207  * The pages are stored in a page list attached to the files vnode.
4208  *
4209  *	IN:	vp	- vnode of file to push page data to.
4210  *		off	- position in file to put data.
4211  *		len	- amount of data to write.
4212  *		flags	- flags to control the operation.
4213  *		cr	- credentials of caller.
4214  *		ct	- caller context.
4215  *
4216  *	RETURN:	0 on success, error code on failure.
4217  *
4218  * Timestamps:
4219  *	vp - ctime|mtime updated
4220  */
4221 /*ARGSUSED*/
4222 static int
4223 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4224     caller_context_t *ct)
4225 {
4226 	znode_t		*zp = VTOZ(vp);
4227 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4228 	page_t		*pp;
4229 	size_t		io_len;
4230 	u_offset_t	io_off;
4231 	uint_t		blksz;
4232 	rl_t		*rl;
4233 	int		error = 0;
4234 
4235 	ZFS_ENTER(zfsvfs);
4236 	ZFS_VERIFY_ZP(zp);
4237 
4238 	/*
4239 	 * There's nothing to do if no data is cached.
4240 	 */
4241 	if (!vn_has_cached_data(vp)) {
4242 		ZFS_EXIT(zfsvfs);
4243 		return (0);
4244 	}
4245 
4246 	/*
4247 	 * Align this request to the file block size in case we kluster.
4248 	 * XXX - this can result in pretty aggresive locking, which can
4249 	 * impact simultanious read/write access.  One option might be
4250 	 * to break up long requests (len == 0) into block-by-block
4251 	 * operations to get narrower locking.
4252 	 */
4253 	blksz = zp->z_blksz;
4254 	if (ISP2(blksz))
4255 		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4256 	else
4257 		io_off = 0;
4258 	if (len > 0 && ISP2(blksz))
4259 		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4260 	else
4261 		io_len = 0;
4262 
4263 	if (io_len == 0) {
4264 		/*
4265 		 * Search the entire vp list for pages >= io_off.
4266 		 */
4267 		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4268 		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4269 		goto out;
4270 	}
4271 	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4272 
4273 	if (off > zp->z_size) {
4274 		/* past end of file */
4275 		zfs_range_unlock(rl);
4276 		ZFS_EXIT(zfsvfs);
4277 		return (0);
4278 	}
4279 
4280 	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4281 
4282 	for (off = io_off; io_off < off + len; io_off += io_len) {
4283 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4284 			pp = page_lookup(vp, io_off,
4285 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4286 		} else {
4287 			pp = page_lookup_nowait(vp, io_off,
4288 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4289 		}
4290 
4291 		if (pp != NULL && pvn_getdirty(pp, flags)) {
4292 			int err;
4293 
4294 			/*
4295 			 * Found a dirty page to push
4296 			 */
4297 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4298 			if (err)
4299 				error = err;
4300 		} else {
4301 			io_len = PAGESIZE;
4302 		}
4303 	}
4304 out:
4305 	zfs_range_unlock(rl);
4306 	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4307 		zil_commit(zfsvfs->z_log, zp->z_id);
4308 	ZFS_EXIT(zfsvfs);
4309 	return (error);
4310 }
4311 
4312 /*ARGSUSED*/
4313 void
4314 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4315 {
4316 	znode_t	*zp = VTOZ(vp);
4317 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4318 	int error;
4319 
4320 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4321 	if (zp->z_sa_hdl == NULL) {
4322 		/*
4323 		 * The fs has been unmounted, or we did a
4324 		 * suspend/resume and this file no longer exists.
4325 		 */
4326 		if (vn_has_cached_data(vp)) {
4327 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4328 			    B_INVAL, cr);
4329 		}
4330 
4331 		mutex_enter(&zp->z_lock);
4332 		mutex_enter(&vp->v_lock);
4333 		ASSERT(vp->v_count == 1);
4334 		vp->v_count = 0;
4335 		mutex_exit(&vp->v_lock);
4336 		mutex_exit(&zp->z_lock);
4337 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4338 		zfs_znode_free(zp);
4339 		return;
4340 	}
4341 
4342 	/*
4343 	 * Attempt to push any data in the page cache.  If this fails
4344 	 * we will get kicked out later in zfs_zinactive().
4345 	 */
4346 	if (vn_has_cached_data(vp)) {
4347 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4348 		    cr);
4349 	}
4350 
4351 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4352 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4353 
4354 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4355 		zfs_sa_upgrade_txholds(tx, zp);
4356 		error = dmu_tx_assign(tx, TXG_WAIT);
4357 		if (error) {
4358 			dmu_tx_abort(tx);
4359 		} else {
4360 			mutex_enter(&zp->z_lock);
4361 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4362 			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4363 			zp->z_atime_dirty = 0;
4364 			mutex_exit(&zp->z_lock);
4365 			dmu_tx_commit(tx);
4366 		}
4367 	}
4368 
4369 	zfs_zinactive(zp);
4370 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4371 }
4372 
4373 /*
4374  * Bounds-check the seek operation.
4375  *
4376  *	IN:	vp	- vnode seeking within
4377  *		ooff	- old file offset
4378  *		noffp	- pointer to new file offset
4379  *		ct	- caller context
4380  *
4381  *	RETURN:	0 on success, EINVAL if new offset invalid.
4382  */
4383 /* ARGSUSED */
4384 static int
4385 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4386     caller_context_t *ct)
4387 {
4388 	if (vp->v_type == VDIR)
4389 		return (0);
4390 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4391 }
4392 
4393 /*
4394  * Pre-filter the generic locking function to trap attempts to place
4395  * a mandatory lock on a memory mapped file.
4396  */
4397 static int
4398 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4399     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4400 {
4401 	znode_t *zp = VTOZ(vp);
4402 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4403 
4404 	ZFS_ENTER(zfsvfs);
4405 	ZFS_VERIFY_ZP(zp);
4406 
4407 	/*
4408 	 * We are following the UFS semantics with respect to mapcnt
4409 	 * here: If we see that the file is mapped already, then we will
4410 	 * return an error, but we don't worry about races between this
4411 	 * function and zfs_map().
4412 	 */
4413 	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4414 		ZFS_EXIT(zfsvfs);
4415 		return (SET_ERROR(EAGAIN));
4416 	}
4417 	ZFS_EXIT(zfsvfs);
4418 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4419 }
4420 
4421 /*
4422  * If we can't find a page in the cache, we will create a new page
4423  * and fill it with file data.  For efficiency, we may try to fill
4424  * multiple pages at once (klustering) to fill up the supplied page
4425  * list.  Note that the pages to be filled are held with an exclusive
4426  * lock to prevent access by other threads while they are being filled.
4427  */
4428 static int
4429 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4430     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4431 {
4432 	znode_t *zp = VTOZ(vp);
4433 	page_t *pp, *cur_pp;
4434 	objset_t *os = zp->z_zfsvfs->z_os;
4435 	u_offset_t io_off, total;
4436 	size_t io_len;
4437 	int err;
4438 
4439 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4440 		/*
4441 		 * We only have a single page, don't bother klustering
4442 		 */
4443 		io_off = off;
4444 		io_len = PAGESIZE;
4445 		pp = page_create_va(vp, io_off, io_len,
4446 		    PG_EXCL | PG_WAIT, seg, addr);
4447 	} else {
4448 		/*
4449 		 * Try to find enough pages to fill the page list
4450 		 */
4451 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4452 		    &io_len, off, plsz, 0);
4453 	}
4454 	if (pp == NULL) {
4455 		/*
4456 		 * The page already exists, nothing to do here.
4457 		 */
4458 		*pl = NULL;
4459 		return (0);
4460 	}
4461 
4462 	/*
4463 	 * Fill the pages in the kluster.
4464 	 */
4465 	cur_pp = pp;
4466 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4467 		caddr_t va;
4468 
4469 		ASSERT3U(io_off, ==, cur_pp->p_offset);
4470 		va = zfs_map_page(cur_pp, S_WRITE);
4471 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4472 		    DMU_READ_PREFETCH);
4473 		zfs_unmap_page(cur_pp, va);
4474 		if (err) {
4475 			/* On error, toss the entire kluster */
4476 			pvn_read_done(pp, B_ERROR);
4477 			/* convert checksum errors into IO errors */
4478 			if (err == ECKSUM)
4479 				err = SET_ERROR(EIO);
4480 			return (err);
4481 		}
4482 		cur_pp = cur_pp->p_next;
4483 	}
4484 
4485 	/*
4486 	 * Fill in the page list array from the kluster starting
4487 	 * from the desired offset `off'.
4488 	 * NOTE: the page list will always be null terminated.
4489 	 */
4490 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4491 	ASSERT(pl == NULL || (*pl)->p_offset == off);
4492 
4493 	return (0);
4494 }
4495 
4496 /*
4497  * Return pointers to the pages for the file region [off, off + len]
4498  * in the pl array.  If plsz is greater than len, this function may
4499  * also return page pointers from after the specified region
4500  * (i.e. the region [off, off + plsz]).  These additional pages are
4501  * only returned if they are already in the cache, or were created as
4502  * part of a klustered read.
4503  *
4504  *	IN:	vp	- vnode of file to get data from.
4505  *		off	- position in file to get data from.
4506  *		len	- amount of data to retrieve.
4507  *		plsz	- length of provided page list.
4508  *		seg	- segment to obtain pages for.
4509  *		addr	- virtual address of fault.
4510  *		rw	- mode of created pages.
4511  *		cr	- credentials of caller.
4512  *		ct	- caller context.
4513  *
4514  *	OUT:	protp	- protection mode of created pages.
4515  *		pl	- list of pages created.
4516  *
4517  *	RETURN:	0 on success, error code on failure.
4518  *
4519  * Timestamps:
4520  *	vp - atime updated
4521  */
4522 /* ARGSUSED */
4523 static int
4524 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4525     page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4526     enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4527 {
4528 	znode_t		*zp = VTOZ(vp);
4529 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4530 	page_t		**pl0 = pl;
4531 	int		err = 0;
4532 
4533 	/* we do our own caching, faultahead is unnecessary */
4534 	if (pl == NULL)
4535 		return (0);
4536 	else if (len > plsz)
4537 		len = plsz;
4538 	else
4539 		len = P2ROUNDUP(len, PAGESIZE);
4540 	ASSERT(plsz >= len);
4541 
4542 	ZFS_ENTER(zfsvfs);
4543 	ZFS_VERIFY_ZP(zp);
4544 
4545 	if (protp)
4546 		*protp = PROT_ALL;
4547 
4548 	/*
4549 	 * Loop through the requested range [off, off + len) looking
4550 	 * for pages.  If we don't find a page, we will need to create
4551 	 * a new page and fill it with data from the file.
4552 	 */
4553 	while (len > 0) {
4554 		if (*pl = page_lookup(vp, off, SE_SHARED))
4555 			*(pl+1) = NULL;
4556 		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4557 			goto out;
4558 		while (*pl) {
4559 			ASSERT3U((*pl)->p_offset, ==, off);
4560 			off += PAGESIZE;
4561 			addr += PAGESIZE;
4562 			if (len > 0) {
4563 				ASSERT3U(len, >=, PAGESIZE);
4564 				len -= PAGESIZE;
4565 			}
4566 			ASSERT3U(plsz, >=, PAGESIZE);
4567 			plsz -= PAGESIZE;
4568 			pl++;
4569 		}
4570 	}
4571 
4572 	/*
4573 	 * Fill out the page array with any pages already in the cache.
4574 	 */
4575 	while (plsz > 0 &&
4576 	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4577 			off += PAGESIZE;
4578 			plsz -= PAGESIZE;
4579 	}
4580 out:
4581 	if (err) {
4582 		/*
4583 		 * Release any pages we have previously locked.
4584 		 */
4585 		while (pl > pl0)
4586 			page_unlock(*--pl);
4587 	} else {
4588 		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4589 	}
4590 
4591 	*pl = NULL;
4592 
4593 	ZFS_EXIT(zfsvfs);
4594 	return (err);
4595 }
4596 
4597 /*
4598  * Request a memory map for a section of a file.  This code interacts
4599  * with common code and the VM system as follows:
4600  *
4601  * - common code calls mmap(), which ends up in smmap_common()
4602  * - this calls VOP_MAP(), which takes you into (say) zfs
4603  * - zfs_map() calls as_map(), passing segvn_create() as the callback
4604  * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4605  * - zfs_addmap() updates z_mapcnt
4606  */
4607 /*ARGSUSED*/
4608 static int
4609 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4610     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4611     caller_context_t *ct)
4612 {
4613 	znode_t *zp = VTOZ(vp);
4614 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4615 	segvn_crargs_t	vn_a;
4616 	int		error;
4617 
4618 	ZFS_ENTER(zfsvfs);
4619 	ZFS_VERIFY_ZP(zp);
4620 
4621 	if ((prot & PROT_WRITE) && (zp->z_pflags &
4622 	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4623 		ZFS_EXIT(zfsvfs);
4624 		return (SET_ERROR(EPERM));
4625 	}
4626 
4627 	if ((prot & (PROT_READ | PROT_EXEC)) &&
4628 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4629 		ZFS_EXIT(zfsvfs);
4630 		return (SET_ERROR(EACCES));
4631 	}
4632 
4633 	if (vp->v_flag & VNOMAP) {
4634 		ZFS_EXIT(zfsvfs);
4635 		return (SET_ERROR(ENOSYS));
4636 	}
4637 
4638 	if (off < 0 || len > MAXOFFSET_T - off) {
4639 		ZFS_EXIT(zfsvfs);
4640 		return (SET_ERROR(ENXIO));
4641 	}
4642 
4643 	if (vp->v_type != VREG) {
4644 		ZFS_EXIT(zfsvfs);
4645 		return (SET_ERROR(ENODEV));
4646 	}
4647 
4648 	/*
4649 	 * If file is locked, disallow mapping.
4650 	 */
4651 	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4652 		ZFS_EXIT(zfsvfs);
4653 		return (SET_ERROR(EAGAIN));
4654 	}
4655 
4656 	as_rangelock(as);
4657 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4658 	if (error != 0) {
4659 		as_rangeunlock(as);
4660 		ZFS_EXIT(zfsvfs);
4661 		return (error);
4662 	}
4663 
4664 	vn_a.vp = vp;
4665 	vn_a.offset = (u_offset_t)off;
4666 	vn_a.type = flags & MAP_TYPE;
4667 	vn_a.prot = prot;
4668 	vn_a.maxprot = maxprot;
4669 	vn_a.cred = cr;
4670 	vn_a.amp = NULL;
4671 	vn_a.flags = flags & ~MAP_TYPE;
4672 	vn_a.szc = 0;
4673 	vn_a.lgrp_mem_policy_flags = 0;
4674 
4675 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4676 
4677 	as_rangeunlock(as);
4678 	ZFS_EXIT(zfsvfs);
4679 	return (error);
4680 }
4681 
4682 /* ARGSUSED */
4683 static int
4684 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4685     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4686     caller_context_t *ct)
4687 {
4688 	uint64_t pages = btopr(len);
4689 
4690 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4691 	return (0);
4692 }
4693 
4694 /*
4695  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4696  * more accurate mtime for the associated file.  Since we don't have a way of
4697  * detecting when the data was actually modified, we have to resort to
4698  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4699  * last page is pushed.  The problem occurs when the msync() call is omitted,
4700  * which by far the most common case:
4701  *
4702  *	open()
4703  *	mmap()
4704  *	<modify memory>
4705  *	munmap()
4706  *	close()
4707  *	<time lapse>
4708  *	putpage() via fsflush
4709  *
4710  * If we wait until fsflush to come along, we can have a modification time that
4711  * is some arbitrary point in the future.  In order to prevent this in the
4712  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4713  * torn down.
4714  */
4715 /* ARGSUSED */
4716 static int
4717 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4718     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4719     caller_context_t *ct)
4720 {
4721 	uint64_t pages = btopr(len);
4722 
4723 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4724 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4725 
4726 	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4727 	    vn_has_cached_data(vp))
4728 		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4729 
4730 	return (0);
4731 }
4732 
4733 /*
4734  * Free or allocate space in a file.  Currently, this function only
4735  * supports the `F_FREESP' command.  However, this command is somewhat
4736  * misnamed, as its functionality includes the ability to allocate as
4737  * well as free space.
4738  *
4739  *	IN:	vp	- vnode of file to free data in.
4740  *		cmd	- action to take (only F_FREESP supported).
4741  *		bfp	- section of file to free/alloc.
4742  *		flag	- current file open mode flags.
4743  *		offset	- current file offset.
4744  *		cr	- credentials of caller [UNUSED].
4745  *		ct	- caller context.
4746  *
4747  *	RETURN:	0 on success, error code on failure.
4748  *
4749  * Timestamps:
4750  *	vp - ctime|mtime updated
4751  */
4752 /* ARGSUSED */
4753 static int
4754 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4755     offset_t offset, cred_t *cr, caller_context_t *ct)
4756 {
4757 	znode_t		*zp = VTOZ(vp);
4758 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4759 	uint64_t	off, len;
4760 	int		error;
4761 
4762 	ZFS_ENTER(zfsvfs);
4763 	ZFS_VERIFY_ZP(zp);
4764 
4765 	if (cmd != F_FREESP) {
4766 		ZFS_EXIT(zfsvfs);
4767 		return (SET_ERROR(EINVAL));
4768 	}
4769 
4770 	/*
4771 	 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4772 	 * callers might not be able to detect properly that we are read-only,
4773 	 * so check it explicitly here.
4774 	 */
4775 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4776 		ZFS_EXIT(zfsvfs);
4777 		return (SET_ERROR(EROFS));
4778 	}
4779 
4780 	if (error = convoff(vp, bfp, 0, offset)) {
4781 		ZFS_EXIT(zfsvfs);
4782 		return (error);
4783 	}
4784 
4785 	if (bfp->l_len < 0) {
4786 		ZFS_EXIT(zfsvfs);
4787 		return (SET_ERROR(EINVAL));
4788 	}
4789 
4790 	off = bfp->l_start;
4791 	len = bfp->l_len; /* 0 means from off to end of file */
4792 
4793 	error = zfs_freesp(zp, off, len, flag, TRUE);
4794 
4795 	if (error == 0 && off == 0 && len == 0)
4796 		vnevent_truncate(ZTOV(zp), ct);
4797 
4798 	ZFS_EXIT(zfsvfs);
4799 	return (error);
4800 }
4801 
4802 /*ARGSUSED*/
4803 static int
4804 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4805 {
4806 	znode_t		*zp = VTOZ(vp);
4807 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4808 	uint32_t	gen;
4809 	uint64_t	gen64;
4810 	uint64_t	object = zp->z_id;
4811 	zfid_short_t	*zfid;
4812 	int		size, i, error;
4813 
4814 	ZFS_ENTER(zfsvfs);
4815 	ZFS_VERIFY_ZP(zp);
4816 
4817 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4818 	    &gen64, sizeof (uint64_t))) != 0) {
4819 		ZFS_EXIT(zfsvfs);
4820 		return (error);
4821 	}
4822 
4823 	gen = (uint32_t)gen64;
4824 
4825 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4826 	if (fidp->fid_len < size) {
4827 		fidp->fid_len = size;
4828 		ZFS_EXIT(zfsvfs);
4829 		return (SET_ERROR(ENOSPC));
4830 	}
4831 
4832 	zfid = (zfid_short_t *)fidp;
4833 
4834 	zfid->zf_len = size;
4835 
4836 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4837 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4838 
4839 	/* Must have a non-zero generation number to distinguish from .zfs */
4840 	if (gen == 0)
4841 		gen = 1;
4842 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4843 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4844 
4845 	if (size == LONG_FID_LEN) {
4846 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4847 		zfid_long_t	*zlfid;
4848 
4849 		zlfid = (zfid_long_t *)fidp;
4850 
4851 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4852 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4853 
4854 		/* XXX - this should be the generation number for the objset */
4855 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4856 			zlfid->zf_setgen[i] = 0;
4857 	}
4858 
4859 	ZFS_EXIT(zfsvfs);
4860 	return (0);
4861 }
4862 
4863 static int
4864 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4865     caller_context_t *ct)
4866 {
4867 	znode_t		*zp, *xzp;
4868 	zfsvfs_t	*zfsvfs;
4869 	zfs_dirlock_t	*dl;
4870 	int		error;
4871 
4872 	switch (cmd) {
4873 	case _PC_LINK_MAX:
4874 		*valp = ULONG_MAX;
4875 		return (0);
4876 
4877 	case _PC_FILESIZEBITS:
4878 		*valp = 64;
4879 		return (0);
4880 
4881 	case _PC_XATTR_EXISTS:
4882 		zp = VTOZ(vp);
4883 		zfsvfs = zp->z_zfsvfs;
4884 		ZFS_ENTER(zfsvfs);
4885 		ZFS_VERIFY_ZP(zp);
4886 		*valp = 0;
4887 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4888 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4889 		if (error == 0) {
4890 			zfs_dirent_unlock(dl);
4891 			if (!zfs_dirempty(xzp))
4892 				*valp = 1;
4893 			VN_RELE(ZTOV(xzp));
4894 		} else if (error == ENOENT) {
4895 			/*
4896 			 * If there aren't extended attributes, it's the
4897 			 * same as having zero of them.
4898 			 */
4899 			error = 0;
4900 		}
4901 		ZFS_EXIT(zfsvfs);
4902 		return (error);
4903 
4904 	case _PC_SATTR_ENABLED:
4905 	case _PC_SATTR_EXISTS:
4906 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4907 		    (vp->v_type == VREG || vp->v_type == VDIR);
4908 		return (0);
4909 
4910 	case _PC_ACCESS_FILTERING:
4911 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4912 		    vp->v_type == VDIR;
4913 		return (0);
4914 
4915 	case _PC_ACL_ENABLED:
4916 		*valp = _ACL_ACE_ENABLED;
4917 		return (0);
4918 
4919 	case _PC_MIN_HOLE_SIZE:
4920 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
4921 		return (0);
4922 
4923 	case _PC_TIMESTAMP_RESOLUTION:
4924 		/* nanosecond timestamp resolution */
4925 		*valp = 1L;
4926 		return (0);
4927 
4928 	default:
4929 		return (fs_pathconf(vp, cmd, valp, cr, ct));
4930 	}
4931 }
4932 
4933 /*ARGSUSED*/
4934 static int
4935 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4936     caller_context_t *ct)
4937 {
4938 	znode_t *zp = VTOZ(vp);
4939 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4940 	int error;
4941 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4942 
4943 	ZFS_ENTER(zfsvfs);
4944 	ZFS_VERIFY_ZP(zp);
4945 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4946 	ZFS_EXIT(zfsvfs);
4947 
4948 	return (error);
4949 }
4950 
4951 /*ARGSUSED*/
4952 static int
4953 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4954     caller_context_t *ct)
4955 {
4956 	znode_t *zp = VTOZ(vp);
4957 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4958 	int error;
4959 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4960 	zilog_t	*zilog = zfsvfs->z_log;
4961 
4962 	ZFS_ENTER(zfsvfs);
4963 	ZFS_VERIFY_ZP(zp);
4964 
4965 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4966 
4967 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4968 		zil_commit(zilog, 0);
4969 
4970 	ZFS_EXIT(zfsvfs);
4971 	return (error);
4972 }
4973 
4974 /*
4975  * The smallest read we may consider to loan out an arcbuf.
4976  * This must be a power of 2.
4977  */
4978 int zcr_blksz_min = (1 << 10);	/* 1K */
4979 /*
4980  * If set to less than the file block size, allow loaning out of an
4981  * arcbuf for a partial block read.  This must be a power of 2.
4982  */
4983 int zcr_blksz_max = (1 << 17);	/* 128K */
4984 
4985 /*ARGSUSED*/
4986 static int
4987 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
4988     caller_context_t *ct)
4989 {
4990 	znode_t	*zp = VTOZ(vp);
4991 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4992 	int max_blksz = zfsvfs->z_max_blksz;
4993 	uio_t *uio = &xuio->xu_uio;
4994 	ssize_t size = uio->uio_resid;
4995 	offset_t offset = uio->uio_loffset;
4996 	int blksz;
4997 	int fullblk, i;
4998 	arc_buf_t *abuf;
4999 	ssize_t maxsize;
5000 	int preamble, postamble;
5001 
5002 	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5003 		return (SET_ERROR(EINVAL));
5004 
5005 	ZFS_ENTER(zfsvfs);
5006 	ZFS_VERIFY_ZP(zp);
5007 	switch (ioflag) {
5008 	case UIO_WRITE:
5009 		/*
5010 		 * Loan out an arc_buf for write if write size is bigger than
5011 		 * max_blksz, and the file's block size is also max_blksz.
5012 		 */
5013 		blksz = max_blksz;
5014 		if (size < blksz || zp->z_blksz != blksz) {
5015 			ZFS_EXIT(zfsvfs);
5016 			return (SET_ERROR(EINVAL));
5017 		}
5018 		/*
5019 		 * Caller requests buffers for write before knowing where the
5020 		 * write offset might be (e.g. NFS TCP write).
5021 		 */
5022 		if (offset == -1) {
5023 			preamble = 0;
5024 		} else {
5025 			preamble = P2PHASE(offset, blksz);
5026 			if (preamble) {
5027 				preamble = blksz - preamble;
5028 				size -= preamble;
5029 			}
5030 		}
5031 
5032 		postamble = P2PHASE(size, blksz);
5033 		size -= postamble;
5034 
5035 		fullblk = size / blksz;
5036 		(void) dmu_xuio_init(xuio,
5037 		    (preamble != 0) + fullblk + (postamble != 0));
5038 		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5039 		    int, postamble, int,
5040 		    (preamble != 0) + fullblk + (postamble != 0));
5041 
5042 		/*
5043 		 * Have to fix iov base/len for partial buffers.  They
5044 		 * currently represent full arc_buf's.
5045 		 */
5046 		if (preamble) {
5047 			/* data begins in the middle of the arc_buf */
5048 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5049 			    blksz);
5050 			ASSERT(abuf);
5051 			(void) dmu_xuio_add(xuio, abuf,
5052 			    blksz - preamble, preamble);
5053 		}
5054 
5055 		for (i = 0; i < fullblk; i++) {
5056 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5057 			    blksz);
5058 			ASSERT(abuf);
5059 			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
5060 		}
5061 
5062 		if (postamble) {
5063 			/* data ends in the middle of the arc_buf */
5064 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5065 			    blksz);
5066 			ASSERT(abuf);
5067 			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
5068 		}
5069 		break;
5070 	case UIO_READ:
5071 		/*
5072 		 * Loan out an arc_buf for read if the read size is larger than
5073 		 * the current file block size.  Block alignment is not
5074 		 * considered.  Partial arc_buf will be loaned out for read.
5075 		 */
5076 		blksz = zp->z_blksz;
5077 		if (blksz < zcr_blksz_min)
5078 			blksz = zcr_blksz_min;
5079 		if (blksz > zcr_blksz_max)
5080 			blksz = zcr_blksz_max;
5081 		/* avoid potential complexity of dealing with it */
5082 		if (blksz > max_blksz) {
5083 			ZFS_EXIT(zfsvfs);
5084 			return (SET_ERROR(EINVAL));
5085 		}
5086 
5087 		maxsize = zp->z_size - uio->uio_loffset;
5088 		if (size > maxsize)
5089 			size = maxsize;
5090 
5091 		if (size < blksz || vn_has_cached_data(vp)) {
5092 			ZFS_EXIT(zfsvfs);
5093 			return (SET_ERROR(EINVAL));
5094 		}
5095 		break;
5096 	default:
5097 		ZFS_EXIT(zfsvfs);
5098 		return (SET_ERROR(EINVAL));
5099 	}
5100 
5101 	uio->uio_extflg = UIO_XUIO;
5102 	XUIO_XUZC_RW(xuio) = ioflag;
5103 	ZFS_EXIT(zfsvfs);
5104 	return (0);
5105 }
5106 
5107 /*ARGSUSED*/
5108 static int
5109 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5110 {
5111 	int i;
5112 	arc_buf_t *abuf;
5113 	int ioflag = XUIO_XUZC_RW(xuio);
5114 
5115 	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5116 
5117 	i = dmu_xuio_cnt(xuio);
5118 	while (i-- > 0) {
5119 		abuf = dmu_xuio_arcbuf(xuio, i);
5120 		/*
5121 		 * if abuf == NULL, it must be a write buffer
5122 		 * that has been returned in zfs_write().
5123 		 */
5124 		if (abuf)
5125 			dmu_return_arcbuf(abuf);
5126 		ASSERT(abuf || ioflag == UIO_WRITE);
5127 	}
5128 
5129 	dmu_xuio_fini(xuio);
5130 	return (0);
5131 }
5132 
5133 /*
5134  * Predeclare these here so that the compiler assumes that
5135  * this is an "old style" function declaration that does
5136  * not include arguments => we won't get type mismatch errors
5137  * in the initializations that follow.
5138  */
5139 static int zfs_inval();
5140 static int zfs_isdir();
5141 
5142 static int
5143 zfs_inval()
5144 {
5145 	return (SET_ERROR(EINVAL));
5146 }
5147 
5148 static int
5149 zfs_isdir()
5150 {
5151 	return (SET_ERROR(EISDIR));
5152 }
5153 /*
5154  * Directory vnode operations template
5155  */
5156 vnodeops_t *zfs_dvnodeops;
5157 const fs_operation_def_t zfs_dvnodeops_template[] = {
5158 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5159 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5160 	VOPNAME_READ,		{ .error = zfs_isdir },
5161 	VOPNAME_WRITE,		{ .error = zfs_isdir },
5162 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5163 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5164 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5165 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5166 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5167 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5168 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5169 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5170 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5171 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5172 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5173 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5174 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5175 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5176 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5177 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5178 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5179 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5180 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5181 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5182 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5183 	NULL,			NULL
5184 };
5185 
5186 /*
5187  * Regular file vnode operations template
5188  */
5189 vnodeops_t *zfs_fvnodeops;
5190 const fs_operation_def_t zfs_fvnodeops_template[] = {
5191 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5192 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5193 	VOPNAME_READ,		{ .vop_read = zfs_read },
5194 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5195 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5196 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5197 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5198 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5199 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5200 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5201 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5202 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5203 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5204 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5205 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5206 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5207 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5208 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5209 	VOPNAME_MAP,		{ .vop_map = zfs_map },
5210 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5211 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5212 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5213 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5214 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5215 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5216 	VOPNAME_REQZCBUF,	{ .vop_reqzcbuf = zfs_reqzcbuf },
5217 	VOPNAME_RETZCBUF,	{ .vop_retzcbuf = zfs_retzcbuf },
5218 	NULL,			NULL
5219 };
5220 
5221 /*
5222  * Symbolic link vnode operations template
5223  */
5224 vnodeops_t *zfs_symvnodeops;
5225 const fs_operation_def_t zfs_symvnodeops_template[] = {
5226 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5227 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5228 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5229 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5230 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5231 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5232 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5233 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5234 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5235 	NULL,			NULL
5236 };
5237 
5238 /*
5239  * special share hidden files vnode operations template
5240  */
5241 vnodeops_t *zfs_sharevnodeops;
5242 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5243 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5244 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5245 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5246 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5247 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5248 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5249 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5250 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5251 	NULL,			NULL
5252 };
5253 
5254 /*
5255  * Extended attribute directory vnode operations template
5256  *
5257  * This template is identical to the directory vnodes
5258  * operation template except for restricted operations:
5259  *	VOP_MKDIR()
5260  *	VOP_SYMLINK()
5261  *
5262  * Note that there are other restrictions embedded in:
5263  *	zfs_create()	- restrict type to VREG
5264  *	zfs_link()	- no links into/out of attribute space
5265  *	zfs_rename()	- no moves into/out of attribute space
5266  */
5267 vnodeops_t *zfs_xdvnodeops;
5268 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5269 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5270 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5271 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5272 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5273 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5274 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5275 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5276 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5277 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5278 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5279 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5280 	VOPNAME_MKDIR,		{ .error = zfs_inval },
5281 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5282 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5283 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5284 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5285 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5286 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5287 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5288 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5289 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5290 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5291 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5292 	NULL,			NULL
5293 };
5294 
5295 /*
5296  * Error vnode operations template
5297  */
5298 vnodeops_t *zfs_evnodeops;
5299 const fs_operation_def_t zfs_evnodeops_template[] = {
5300 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5301 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5302 	NULL,			NULL
5303 };
5304