1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* Portions Copyright 2007 Jeremy Teo */ 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/taskq.h> 43 #include <sys/uio.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/vm.h> 47 #include <vm/seg_vn.h> 48 #include <vm/pvn.h> 49 #include <vm/as.h> 50 #include <vm/kpm.h> 51 #include <vm/seg_kpm.h> 52 #include <sys/mman.h> 53 #include <sys/pathname.h> 54 #include <sys/cmn_err.h> 55 #include <sys/errno.h> 56 #include <sys/unistd.h> 57 #include <sys/zfs_dir.h> 58 #include <sys/zfs_acl.h> 59 #include <sys/zfs_ioctl.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/dmu.h> 62 #include <sys/dmu_objset.h> 63 #include <sys/spa.h> 64 #include <sys/txg.h> 65 #include <sys/dbuf.h> 66 #include <sys/zap.h> 67 #include <sys/sa.h> 68 #include <sys/dirent.h> 69 #include <sys/policy.h> 70 #include <sys/sunddi.h> 71 #include <sys/filio.h> 72 #include <sys/sid.h> 73 #include "fs/fs_subr.h" 74 #include <sys/zfs_ctldir.h> 75 #include <sys/zfs_fuid.h> 76 #include <sys/zfs_sa.h> 77 #include <sys/dnlc.h> 78 #include <sys/zfs_rlock.h> 79 #include <sys/extdirent.h> 80 #include <sys/kidmap.h> 81 #include <sys/cred.h> 82 #include <sys/attr.h> 83 84 /* 85 * Programming rules. 86 * 87 * Each vnode op performs some logical unit of work. To do this, the ZPL must 88 * properly lock its in-core state, create a DMU transaction, do the work, 89 * record this work in the intent log (ZIL), commit the DMU transaction, 90 * and wait for the intent log to commit if it is a synchronous operation. 91 * Moreover, the vnode ops must work in both normal and log replay context. 92 * The ordering of events is important to avoid deadlocks and references 93 * to freed memory. The example below illustrates the following Big Rules: 94 * 95 * (1) A check must be made in each zfs thread for a mounted file system. 96 * This is done avoiding races using ZFS_ENTER(zfsvfs). 97 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 98 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 99 * can return EIO from the calling function. 100 * 101 * (2) VN_RELE() should always be the last thing except for zil_commit() 102 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 103 * First, if it's the last reference, the vnode/znode 104 * can be freed, so the zp may point to freed memory. Second, the last 105 * reference will call zfs_zinactive(), which may induce a lot of work -- 106 * pushing cached pages (which acquires range locks) and syncing out 107 * cached atime changes. Third, zfs_zinactive() may require a new tx, 108 * which could deadlock the system if you were already holding one. 109 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 110 * 111 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 112 * as they can span dmu_tx_assign() calls. 113 * 114 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 115 * dmu_tx_assign(). This is critical because we don't want to block 116 * while holding locks. 117 * 118 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 119 * reduces lock contention and CPU usage when we must wait (note that if 120 * throughput is constrained by the storage, nearly every transaction 121 * must wait). 122 * 123 * Note, in particular, that if a lock is sometimes acquired before 124 * the tx assigns, and sometimes after (e.g. z_lock), then failing 125 * to use a non-blocking assign can deadlock the system. The scenario: 126 * 127 * Thread A has grabbed a lock before calling dmu_tx_assign(). 128 * Thread B is in an already-assigned tx, and blocks for this lock. 129 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 130 * forever, because the previous txg can't quiesce until B's tx commits. 131 * 132 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 133 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 134 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT, 135 * to indicate that this operation has already called dmu_tx_wait(). 136 * This will ensure that we don't retry forever, waiting a short bit 137 * each time. 138 * 139 * (5) If the operation succeeded, generate the intent log entry for it 140 * before dropping locks. This ensures that the ordering of events 141 * in the intent log matches the order in which they actually occurred. 142 * During ZIL replay the zfs_log_* functions will update the sequence 143 * number to indicate the zil transaction has replayed. 144 * 145 * (6) At the end of each vnode op, the DMU tx must always commit, 146 * regardless of whether there were any errors. 147 * 148 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 149 * to ensure that synchronous semantics are provided when necessary. 150 * 151 * In general, this is how things should be ordered in each vnode op: 152 * 153 * ZFS_ENTER(zfsvfs); // exit if unmounted 154 * top: 155 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 156 * rw_enter(...); // grab any other locks you need 157 * tx = dmu_tx_create(...); // get DMU tx 158 * dmu_tx_hold_*(); // hold each object you might modify 159 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 160 * if (error) { 161 * rw_exit(...); // drop locks 162 * zfs_dirent_unlock(dl); // unlock directory entry 163 * VN_RELE(...); // release held vnodes 164 * if (error == ERESTART) { 165 * waited = B_TRUE; 166 * dmu_tx_wait(tx); 167 * dmu_tx_abort(tx); 168 * goto top; 169 * } 170 * dmu_tx_abort(tx); // abort DMU tx 171 * ZFS_EXIT(zfsvfs); // finished in zfs 172 * return (error); // really out of space 173 * } 174 * error = do_real_work(); // do whatever this VOP does 175 * if (error == 0) 176 * zfs_log_*(...); // on success, make ZIL entry 177 * dmu_tx_commit(tx); // commit DMU tx -- error or not 178 * rw_exit(...); // drop locks 179 * zfs_dirent_unlock(dl); // unlock directory entry 180 * VN_RELE(...); // release held vnodes 181 * zil_commit(zilog, foid); // synchronous when necessary 182 * ZFS_EXIT(zfsvfs); // finished in zfs 183 * return (error); // done, report error 184 */ 185 186 /* ARGSUSED */ 187 static int 188 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 189 { 190 znode_t *zp = VTOZ(*vpp); 191 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 192 193 ZFS_ENTER(zfsvfs); 194 ZFS_VERIFY_ZP(zp); 195 196 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 197 ((flag & FAPPEND) == 0)) { 198 ZFS_EXIT(zfsvfs); 199 return (SET_ERROR(EPERM)); 200 } 201 202 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 203 ZTOV(zp)->v_type == VREG && 204 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 205 if (fs_vscan(*vpp, cr, 0) != 0) { 206 ZFS_EXIT(zfsvfs); 207 return (SET_ERROR(EACCES)); 208 } 209 } 210 211 /* Keep a count of the synchronous opens in the znode */ 212 if (flag & (FSYNC | FDSYNC)) 213 atomic_inc_32(&zp->z_sync_cnt); 214 215 ZFS_EXIT(zfsvfs); 216 return (0); 217 } 218 219 /* ARGSUSED */ 220 static int 221 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 222 caller_context_t *ct) 223 { 224 znode_t *zp = VTOZ(vp); 225 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 226 227 /* 228 * Clean up any locks held by this process on the vp. 229 */ 230 cleanlocks(vp, ddi_get_pid(), 0); 231 cleanshares(vp, ddi_get_pid()); 232 233 ZFS_ENTER(zfsvfs); 234 ZFS_VERIFY_ZP(zp); 235 236 /* Decrement the synchronous opens in the znode */ 237 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 238 atomic_dec_32(&zp->z_sync_cnt); 239 240 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 241 ZTOV(zp)->v_type == VREG && 242 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 243 VERIFY(fs_vscan(vp, cr, 1) == 0); 244 245 ZFS_EXIT(zfsvfs); 246 return (0); 247 } 248 249 /* 250 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 251 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 252 */ 253 static int 254 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 255 { 256 znode_t *zp = VTOZ(vp); 257 uint64_t noff = (uint64_t)*off; /* new offset */ 258 uint64_t file_sz; 259 int error; 260 boolean_t hole; 261 262 file_sz = zp->z_size; 263 if (noff >= file_sz) { 264 return (SET_ERROR(ENXIO)); 265 } 266 267 if (cmd == _FIO_SEEK_HOLE) 268 hole = B_TRUE; 269 else 270 hole = B_FALSE; 271 272 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 273 274 /* end of file? */ 275 if ((error == ESRCH) || (noff > file_sz)) { 276 /* 277 * Handle the virtual hole at the end of file. 278 */ 279 if (hole) { 280 *off = file_sz; 281 return (0); 282 } 283 return (SET_ERROR(ENXIO)); 284 } 285 286 if (noff < *off) 287 return (error); 288 *off = noff; 289 return (error); 290 } 291 292 /* ARGSUSED */ 293 static int 294 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 295 int *rvalp, caller_context_t *ct) 296 { 297 offset_t off; 298 int error; 299 zfsvfs_t *zfsvfs; 300 znode_t *zp; 301 302 switch (com) { 303 case _FIOFFS: 304 return (zfs_sync(vp->v_vfsp, 0, cred)); 305 306 /* 307 * The following two ioctls are used by bfu. Faking out, 308 * necessary to avoid bfu errors. 309 */ 310 case _FIOGDIO: 311 case _FIOSDIO: 312 return (0); 313 314 case _FIO_SEEK_DATA: 315 case _FIO_SEEK_HOLE: 316 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 317 return (SET_ERROR(EFAULT)); 318 319 zp = VTOZ(vp); 320 zfsvfs = zp->z_zfsvfs; 321 ZFS_ENTER(zfsvfs); 322 ZFS_VERIFY_ZP(zp); 323 324 /* offset parameter is in/out */ 325 error = zfs_holey(vp, com, &off); 326 ZFS_EXIT(zfsvfs); 327 if (error) 328 return (error); 329 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 330 return (SET_ERROR(EFAULT)); 331 return (0); 332 } 333 return (SET_ERROR(ENOTTY)); 334 } 335 336 /* 337 * Utility functions to map and unmap a single physical page. These 338 * are used to manage the mappable copies of ZFS file data, and therefore 339 * do not update ref/mod bits. 340 */ 341 caddr_t 342 zfs_map_page(page_t *pp, enum seg_rw rw) 343 { 344 if (kpm_enable) 345 return (hat_kpm_mapin(pp, 0)); 346 ASSERT(rw == S_READ || rw == S_WRITE); 347 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 348 (caddr_t)-1)); 349 } 350 351 void 352 zfs_unmap_page(page_t *pp, caddr_t addr) 353 { 354 if (kpm_enable) { 355 hat_kpm_mapout(pp, 0, addr); 356 } else { 357 ppmapout(addr); 358 } 359 } 360 361 /* 362 * When a file is memory mapped, we must keep the IO data synchronized 363 * between the DMU cache and the memory mapped pages. What this means: 364 * 365 * On Write: If we find a memory mapped page, we write to *both* 366 * the page and the dmu buffer. 367 */ 368 static void 369 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 370 { 371 int64_t off; 372 373 off = start & PAGEOFFSET; 374 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 375 page_t *pp; 376 uint64_t nbytes = MIN(PAGESIZE - off, len); 377 378 if (pp = page_lookup(vp, start, SE_SHARED)) { 379 caddr_t va; 380 381 va = zfs_map_page(pp, S_WRITE); 382 (void) dmu_read(os, oid, start+off, nbytes, va+off, 383 DMU_READ_PREFETCH); 384 zfs_unmap_page(pp, va); 385 page_unlock(pp); 386 } 387 len -= nbytes; 388 off = 0; 389 } 390 } 391 392 /* 393 * When a file is memory mapped, we must keep the IO data synchronized 394 * between the DMU cache and the memory mapped pages. What this means: 395 * 396 * On Read: We "read" preferentially from memory mapped pages, 397 * else we default from the dmu buffer. 398 * 399 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 400 * the file is memory mapped. 401 */ 402 static int 403 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 404 { 405 znode_t *zp = VTOZ(vp); 406 objset_t *os = zp->z_zfsvfs->z_os; 407 int64_t start, off; 408 int len = nbytes; 409 int error = 0; 410 411 start = uio->uio_loffset; 412 off = start & PAGEOFFSET; 413 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 414 page_t *pp; 415 uint64_t bytes = MIN(PAGESIZE - off, len); 416 417 if (pp = page_lookup(vp, start, SE_SHARED)) { 418 caddr_t va; 419 420 va = zfs_map_page(pp, S_READ); 421 error = uiomove(va + off, bytes, UIO_READ, uio); 422 zfs_unmap_page(pp, va); 423 page_unlock(pp); 424 } else { 425 error = dmu_read_uio(os, zp->z_id, uio, bytes); 426 } 427 len -= bytes; 428 off = 0; 429 if (error) 430 break; 431 } 432 return (error); 433 } 434 435 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 436 437 /* 438 * Read bytes from specified file into supplied buffer. 439 * 440 * IN: vp - vnode of file to be read from. 441 * uio - structure supplying read location, range info, 442 * and return buffer. 443 * ioflag - SYNC flags; used to provide FRSYNC semantics. 444 * cr - credentials of caller. 445 * ct - caller context 446 * 447 * OUT: uio - updated offset and range, buffer filled. 448 * 449 * RETURN: 0 on success, error code on failure. 450 * 451 * Side Effects: 452 * vp - atime updated if byte count > 0 453 */ 454 /* ARGSUSED */ 455 static int 456 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 457 { 458 znode_t *zp = VTOZ(vp); 459 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 460 objset_t *os; 461 ssize_t n, nbytes; 462 int error = 0; 463 rl_t *rl; 464 xuio_t *xuio = NULL; 465 466 ZFS_ENTER(zfsvfs); 467 ZFS_VERIFY_ZP(zp); 468 os = zfsvfs->z_os; 469 470 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 471 ZFS_EXIT(zfsvfs); 472 return (SET_ERROR(EACCES)); 473 } 474 475 /* 476 * Validate file offset 477 */ 478 if (uio->uio_loffset < (offset_t)0) { 479 ZFS_EXIT(zfsvfs); 480 return (SET_ERROR(EINVAL)); 481 } 482 483 /* 484 * Fasttrack empty reads 485 */ 486 if (uio->uio_resid == 0) { 487 ZFS_EXIT(zfsvfs); 488 return (0); 489 } 490 491 /* 492 * Check for mandatory locks 493 */ 494 if (MANDMODE(zp->z_mode)) { 495 if (error = chklock(vp, FREAD, 496 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 497 ZFS_EXIT(zfsvfs); 498 return (error); 499 } 500 } 501 502 /* 503 * If we're in FRSYNC mode, sync out this znode before reading it. 504 */ 505 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 506 zil_commit(zfsvfs->z_log, zp->z_id); 507 508 /* 509 * Lock the range against changes. 510 */ 511 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 512 513 /* 514 * If we are reading past end-of-file we can skip 515 * to the end; but we might still need to set atime. 516 */ 517 if (uio->uio_loffset >= zp->z_size) { 518 error = 0; 519 goto out; 520 } 521 522 ASSERT(uio->uio_loffset < zp->z_size); 523 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 524 525 if ((uio->uio_extflg == UIO_XUIO) && 526 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 527 int nblk; 528 int blksz = zp->z_blksz; 529 uint64_t offset = uio->uio_loffset; 530 531 xuio = (xuio_t *)uio; 532 if ((ISP2(blksz))) { 533 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 534 blksz)) / blksz; 535 } else { 536 ASSERT(offset + n <= blksz); 537 nblk = 1; 538 } 539 (void) dmu_xuio_init(xuio, nblk); 540 541 if (vn_has_cached_data(vp)) { 542 /* 543 * For simplicity, we always allocate a full buffer 544 * even if we only expect to read a portion of a block. 545 */ 546 while (--nblk >= 0) { 547 (void) dmu_xuio_add(xuio, 548 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 549 blksz), 0, blksz); 550 } 551 } 552 } 553 554 while (n > 0) { 555 nbytes = MIN(n, zfs_read_chunk_size - 556 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 557 558 if (vn_has_cached_data(vp)) 559 error = mappedread(vp, nbytes, uio); 560 else 561 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 562 if (error) { 563 /* convert checksum errors into IO errors */ 564 if (error == ECKSUM) 565 error = SET_ERROR(EIO); 566 break; 567 } 568 569 n -= nbytes; 570 } 571 out: 572 zfs_range_unlock(rl); 573 574 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 575 ZFS_EXIT(zfsvfs); 576 return (error); 577 } 578 579 /* 580 * Write the bytes to a file. 581 * 582 * IN: vp - vnode of file to be written to. 583 * uio - structure supplying write location, range info, 584 * and data buffer. 585 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 586 * set if in append mode. 587 * cr - credentials of caller. 588 * ct - caller context (NFS/CIFS fem monitor only) 589 * 590 * OUT: uio - updated offset and range. 591 * 592 * RETURN: 0 on success, error code on failure. 593 * 594 * Timestamps: 595 * vp - ctime|mtime updated if byte count > 0 596 */ 597 598 /* ARGSUSED */ 599 static int 600 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 601 { 602 znode_t *zp = VTOZ(vp); 603 rlim64_t limit = uio->uio_llimit; 604 ssize_t start_resid = uio->uio_resid; 605 ssize_t tx_bytes; 606 uint64_t end_size; 607 dmu_tx_t *tx; 608 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 609 zilog_t *zilog; 610 offset_t woff; 611 ssize_t n, nbytes; 612 rl_t *rl; 613 int max_blksz = zfsvfs->z_max_blksz; 614 int error = 0; 615 arc_buf_t *abuf; 616 iovec_t *aiov = NULL; 617 xuio_t *xuio = NULL; 618 int i_iov = 0; 619 int iovcnt = uio->uio_iovcnt; 620 iovec_t *iovp = uio->uio_iov; 621 int write_eof; 622 int count = 0; 623 sa_bulk_attr_t bulk[4]; 624 uint64_t mtime[2], ctime[2]; 625 626 /* 627 * Fasttrack empty write 628 */ 629 n = start_resid; 630 if (n == 0) 631 return (0); 632 633 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 634 limit = MAXOFFSET_T; 635 636 ZFS_ENTER(zfsvfs); 637 ZFS_VERIFY_ZP(zp); 638 639 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 640 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 641 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 642 &zp->z_size, 8); 643 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 644 &zp->z_pflags, 8); 645 646 /* 647 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 648 * callers might not be able to detect properly that we are read-only, 649 * so check it explicitly here. 650 */ 651 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 652 ZFS_EXIT(zfsvfs); 653 return (SET_ERROR(EROFS)); 654 } 655 656 /* 657 * If immutable or not appending then return EPERM 658 */ 659 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 660 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 661 (uio->uio_loffset < zp->z_size))) { 662 ZFS_EXIT(zfsvfs); 663 return (SET_ERROR(EPERM)); 664 } 665 666 zilog = zfsvfs->z_log; 667 668 /* 669 * Validate file offset 670 */ 671 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 672 if (woff < 0) { 673 ZFS_EXIT(zfsvfs); 674 return (SET_ERROR(EINVAL)); 675 } 676 677 /* 678 * Check for mandatory locks before calling zfs_range_lock() 679 * in order to prevent a deadlock with locks set via fcntl(). 680 */ 681 if (MANDMODE((mode_t)zp->z_mode) && 682 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 683 ZFS_EXIT(zfsvfs); 684 return (error); 685 } 686 687 /* 688 * Pre-fault the pages to ensure slow (eg NFS) pages 689 * don't hold up txg. 690 * Skip this if uio contains loaned arc_buf. 691 */ 692 if ((uio->uio_extflg == UIO_XUIO) && 693 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 694 xuio = (xuio_t *)uio; 695 else 696 uio_prefaultpages(MIN(n, max_blksz), uio); 697 698 /* 699 * If in append mode, set the io offset pointer to eof. 700 */ 701 if (ioflag & FAPPEND) { 702 /* 703 * Obtain an appending range lock to guarantee file append 704 * semantics. We reset the write offset once we have the lock. 705 */ 706 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 707 woff = rl->r_off; 708 if (rl->r_len == UINT64_MAX) { 709 /* 710 * We overlocked the file because this write will cause 711 * the file block size to increase. 712 * Note that zp_size cannot change with this lock held. 713 */ 714 woff = zp->z_size; 715 } 716 uio->uio_loffset = woff; 717 } else { 718 /* 719 * Note that if the file block size will change as a result of 720 * this write, then this range lock will lock the entire file 721 * so that we can re-write the block safely. 722 */ 723 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 724 } 725 726 if (woff >= limit) { 727 zfs_range_unlock(rl); 728 ZFS_EXIT(zfsvfs); 729 return (SET_ERROR(EFBIG)); 730 } 731 732 if ((woff + n) > limit || woff > (limit - n)) 733 n = limit - woff; 734 735 /* Will this write extend the file length? */ 736 write_eof = (woff + n > zp->z_size); 737 738 end_size = MAX(zp->z_size, woff + n); 739 740 /* 741 * Write the file in reasonable size chunks. Each chunk is written 742 * in a separate transaction; this keeps the intent log records small 743 * and allows us to do more fine-grained space accounting. 744 */ 745 while (n > 0) { 746 abuf = NULL; 747 woff = uio->uio_loffset; 748 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 749 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 750 if (abuf != NULL) 751 dmu_return_arcbuf(abuf); 752 error = SET_ERROR(EDQUOT); 753 break; 754 } 755 756 if (xuio && abuf == NULL) { 757 ASSERT(i_iov < iovcnt); 758 aiov = &iovp[i_iov]; 759 abuf = dmu_xuio_arcbuf(xuio, i_iov); 760 dmu_xuio_clear(xuio, i_iov); 761 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 762 iovec_t *, aiov, arc_buf_t *, abuf); 763 ASSERT((aiov->iov_base == abuf->b_data) || 764 ((char *)aiov->iov_base - (char *)abuf->b_data + 765 aiov->iov_len == arc_buf_size(abuf))); 766 i_iov++; 767 } else if (abuf == NULL && n >= max_blksz && 768 woff >= zp->z_size && 769 P2PHASE(woff, max_blksz) == 0 && 770 zp->z_blksz == max_blksz) { 771 /* 772 * This write covers a full block. "Borrow" a buffer 773 * from the dmu so that we can fill it before we enter 774 * a transaction. This avoids the possibility of 775 * holding up the transaction if the data copy hangs 776 * up on a pagefault (e.g., from an NFS server mapping). 777 */ 778 size_t cbytes; 779 780 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 781 max_blksz); 782 ASSERT(abuf != NULL); 783 ASSERT(arc_buf_size(abuf) == max_blksz); 784 if (error = uiocopy(abuf->b_data, max_blksz, 785 UIO_WRITE, uio, &cbytes)) { 786 dmu_return_arcbuf(abuf); 787 break; 788 } 789 ASSERT(cbytes == max_blksz); 790 } 791 792 /* 793 * Start a transaction. 794 */ 795 tx = dmu_tx_create(zfsvfs->z_os); 796 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 797 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 798 zfs_sa_upgrade_txholds(tx, zp); 799 error = dmu_tx_assign(tx, TXG_WAIT); 800 if (error) { 801 dmu_tx_abort(tx); 802 if (abuf != NULL) 803 dmu_return_arcbuf(abuf); 804 break; 805 } 806 807 /* 808 * If zfs_range_lock() over-locked we grow the blocksize 809 * and then reduce the lock range. This will only happen 810 * on the first iteration since zfs_range_reduce() will 811 * shrink down r_len to the appropriate size. 812 */ 813 if (rl->r_len == UINT64_MAX) { 814 uint64_t new_blksz; 815 816 if (zp->z_blksz > max_blksz) { 817 ASSERT(!ISP2(zp->z_blksz)); 818 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 819 } else { 820 new_blksz = MIN(end_size, max_blksz); 821 } 822 zfs_grow_blocksize(zp, new_blksz, tx); 823 zfs_range_reduce(rl, woff, n); 824 } 825 826 /* 827 * XXX - should we really limit each write to z_max_blksz? 828 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 829 */ 830 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 831 832 if (abuf == NULL) { 833 tx_bytes = uio->uio_resid; 834 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 835 uio, nbytes, tx); 836 tx_bytes -= uio->uio_resid; 837 } else { 838 tx_bytes = nbytes; 839 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 840 /* 841 * If this is not a full block write, but we are 842 * extending the file past EOF and this data starts 843 * block-aligned, use assign_arcbuf(). Otherwise, 844 * write via dmu_write(). 845 */ 846 if (tx_bytes < max_blksz && (!write_eof || 847 aiov->iov_base != abuf->b_data)) { 848 ASSERT(xuio); 849 dmu_write(zfsvfs->z_os, zp->z_id, woff, 850 aiov->iov_len, aiov->iov_base, tx); 851 dmu_return_arcbuf(abuf); 852 xuio_stat_wbuf_copied(); 853 } else { 854 ASSERT(xuio || tx_bytes == max_blksz); 855 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 856 woff, abuf, tx); 857 } 858 ASSERT(tx_bytes <= uio->uio_resid); 859 uioskip(uio, tx_bytes); 860 } 861 if (tx_bytes && vn_has_cached_data(vp)) { 862 update_pages(vp, woff, 863 tx_bytes, zfsvfs->z_os, zp->z_id); 864 } 865 866 /* 867 * If we made no progress, we're done. If we made even 868 * partial progress, update the znode and ZIL accordingly. 869 */ 870 if (tx_bytes == 0) { 871 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 872 (void *)&zp->z_size, sizeof (uint64_t), tx); 873 dmu_tx_commit(tx); 874 ASSERT(error != 0); 875 break; 876 } 877 878 /* 879 * Clear Set-UID/Set-GID bits on successful write if not 880 * privileged and at least one of the excute bits is set. 881 * 882 * It would be nice to to this after all writes have 883 * been done, but that would still expose the ISUID/ISGID 884 * to another app after the partial write is committed. 885 * 886 * Note: we don't call zfs_fuid_map_id() here because 887 * user 0 is not an ephemeral uid. 888 */ 889 mutex_enter(&zp->z_acl_lock); 890 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 891 (S_IXUSR >> 6))) != 0 && 892 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 893 secpolicy_vnode_setid_retain(cr, 894 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 895 uint64_t newmode; 896 zp->z_mode &= ~(S_ISUID | S_ISGID); 897 newmode = zp->z_mode; 898 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 899 (void *)&newmode, sizeof (uint64_t), tx); 900 } 901 mutex_exit(&zp->z_acl_lock); 902 903 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 904 B_TRUE); 905 906 /* 907 * Update the file size (zp_size) if it has changed; 908 * account for possible concurrent updates. 909 */ 910 while ((end_size = zp->z_size) < uio->uio_loffset) { 911 (void) atomic_cas_64(&zp->z_size, end_size, 912 uio->uio_loffset); 913 ASSERT(error == 0); 914 } 915 /* 916 * If we are replaying and eof is non zero then force 917 * the file size to the specified eof. Note, there's no 918 * concurrency during replay. 919 */ 920 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 921 zp->z_size = zfsvfs->z_replay_eof; 922 923 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 924 925 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 926 dmu_tx_commit(tx); 927 928 if (error != 0) 929 break; 930 ASSERT(tx_bytes == nbytes); 931 n -= nbytes; 932 933 if (!xuio && n > 0) 934 uio_prefaultpages(MIN(n, max_blksz), uio); 935 } 936 937 zfs_range_unlock(rl); 938 939 /* 940 * If we're in replay mode, or we made no progress, return error. 941 * Otherwise, it's at least a partial write, so it's successful. 942 */ 943 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 944 ZFS_EXIT(zfsvfs); 945 return (error); 946 } 947 948 if (ioflag & (FSYNC | FDSYNC) || 949 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 950 zil_commit(zilog, zp->z_id); 951 952 ZFS_EXIT(zfsvfs); 953 return (0); 954 } 955 956 void 957 zfs_get_done(zgd_t *zgd, int error) 958 { 959 znode_t *zp = zgd->zgd_private; 960 objset_t *os = zp->z_zfsvfs->z_os; 961 962 if (zgd->zgd_db) 963 dmu_buf_rele(zgd->zgd_db, zgd); 964 965 zfs_range_unlock(zgd->zgd_rl); 966 967 /* 968 * Release the vnode asynchronously as we currently have the 969 * txg stopped from syncing. 970 */ 971 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 972 973 if (error == 0 && zgd->zgd_bp) 974 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 975 976 kmem_free(zgd, sizeof (zgd_t)); 977 } 978 979 #ifdef DEBUG 980 static int zil_fault_io = 0; 981 #endif 982 983 /* 984 * Get data to generate a TX_WRITE intent log record. 985 */ 986 int 987 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 988 { 989 zfsvfs_t *zfsvfs = arg; 990 objset_t *os = zfsvfs->z_os; 991 znode_t *zp; 992 uint64_t object = lr->lr_foid; 993 uint64_t offset = lr->lr_offset; 994 uint64_t size = lr->lr_length; 995 blkptr_t *bp = &lr->lr_blkptr; 996 dmu_buf_t *db; 997 zgd_t *zgd; 998 int error = 0; 999 1000 ASSERT(zio != NULL); 1001 ASSERT(size != 0); 1002 1003 /* 1004 * Nothing to do if the file has been removed 1005 */ 1006 if (zfs_zget(zfsvfs, object, &zp) != 0) 1007 return (SET_ERROR(ENOENT)); 1008 if (zp->z_unlinked) { 1009 /* 1010 * Release the vnode asynchronously as we currently have the 1011 * txg stopped from syncing. 1012 */ 1013 VN_RELE_ASYNC(ZTOV(zp), 1014 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1015 return (SET_ERROR(ENOENT)); 1016 } 1017 1018 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1019 zgd->zgd_zilog = zfsvfs->z_log; 1020 zgd->zgd_private = zp; 1021 1022 /* 1023 * Write records come in two flavors: immediate and indirect. 1024 * For small writes it's cheaper to store the data with the 1025 * log record (immediate); for large writes it's cheaper to 1026 * sync the data and get a pointer to it (indirect) so that 1027 * we don't have to write the data twice. 1028 */ 1029 if (buf != NULL) { /* immediate write */ 1030 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1031 /* test for truncation needs to be done while range locked */ 1032 if (offset >= zp->z_size) { 1033 error = SET_ERROR(ENOENT); 1034 } else { 1035 error = dmu_read(os, object, offset, size, buf, 1036 DMU_READ_NO_PREFETCH); 1037 } 1038 ASSERT(error == 0 || error == ENOENT); 1039 } else { /* indirect write */ 1040 /* 1041 * Have to lock the whole block to ensure when it's 1042 * written out and it's checksum is being calculated 1043 * that no one can change the data. We need to re-check 1044 * blocksize after we get the lock in case it's changed! 1045 */ 1046 for (;;) { 1047 uint64_t blkoff; 1048 size = zp->z_blksz; 1049 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1050 offset -= blkoff; 1051 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1052 RL_READER); 1053 if (zp->z_blksz == size) 1054 break; 1055 offset += blkoff; 1056 zfs_range_unlock(zgd->zgd_rl); 1057 } 1058 /* test for truncation needs to be done while range locked */ 1059 if (lr->lr_offset >= zp->z_size) 1060 error = SET_ERROR(ENOENT); 1061 #ifdef DEBUG 1062 if (zil_fault_io) { 1063 error = SET_ERROR(EIO); 1064 zil_fault_io = 0; 1065 } 1066 #endif 1067 if (error == 0) 1068 error = dmu_buf_hold(os, object, offset, zgd, &db, 1069 DMU_READ_NO_PREFETCH); 1070 1071 if (error == 0) { 1072 blkptr_t *obp = dmu_buf_get_blkptr(db); 1073 if (obp) { 1074 ASSERT(BP_IS_HOLE(bp)); 1075 *bp = *obp; 1076 } 1077 1078 zgd->zgd_db = db; 1079 zgd->zgd_bp = bp; 1080 1081 ASSERT(db->db_offset == offset); 1082 ASSERT(db->db_size == size); 1083 1084 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1085 zfs_get_done, zgd); 1086 ASSERT(error || lr->lr_length <= zp->z_blksz); 1087 1088 /* 1089 * On success, we need to wait for the write I/O 1090 * initiated by dmu_sync() to complete before we can 1091 * release this dbuf. We will finish everything up 1092 * in the zfs_get_done() callback. 1093 */ 1094 if (error == 0) 1095 return (0); 1096 1097 if (error == EALREADY) { 1098 lr->lr_common.lrc_txtype = TX_WRITE2; 1099 error = 0; 1100 } 1101 } 1102 } 1103 1104 zfs_get_done(zgd, error); 1105 1106 return (error); 1107 } 1108 1109 /*ARGSUSED*/ 1110 static int 1111 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1112 caller_context_t *ct) 1113 { 1114 znode_t *zp = VTOZ(vp); 1115 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1116 int error; 1117 1118 ZFS_ENTER(zfsvfs); 1119 ZFS_VERIFY_ZP(zp); 1120 1121 if (flag & V_ACE_MASK) 1122 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1123 else 1124 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1125 1126 ZFS_EXIT(zfsvfs); 1127 return (error); 1128 } 1129 1130 /* 1131 * If vnode is for a device return a specfs vnode instead. 1132 */ 1133 static int 1134 specvp_check(vnode_t **vpp, cred_t *cr) 1135 { 1136 int error = 0; 1137 1138 if (IS_DEVVP(*vpp)) { 1139 struct vnode *svp; 1140 1141 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1142 VN_RELE(*vpp); 1143 if (svp == NULL) 1144 error = SET_ERROR(ENOSYS); 1145 *vpp = svp; 1146 } 1147 return (error); 1148 } 1149 1150 1151 /* 1152 * Lookup an entry in a directory, or an extended attribute directory. 1153 * If it exists, return a held vnode reference for it. 1154 * 1155 * IN: dvp - vnode of directory to search. 1156 * nm - name of entry to lookup. 1157 * pnp - full pathname to lookup [UNUSED]. 1158 * flags - LOOKUP_XATTR set if looking for an attribute. 1159 * rdir - root directory vnode [UNUSED]. 1160 * cr - credentials of caller. 1161 * ct - caller context 1162 * direntflags - directory lookup flags 1163 * realpnp - returned pathname. 1164 * 1165 * OUT: vpp - vnode of located entry, NULL if not found. 1166 * 1167 * RETURN: 0 on success, error code on failure. 1168 * 1169 * Timestamps: 1170 * NA 1171 */ 1172 /* ARGSUSED */ 1173 static int 1174 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1175 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1176 int *direntflags, pathname_t *realpnp) 1177 { 1178 znode_t *zdp = VTOZ(dvp); 1179 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1180 int error = 0; 1181 1182 /* fast path */ 1183 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1184 1185 if (dvp->v_type != VDIR) { 1186 return (SET_ERROR(ENOTDIR)); 1187 } else if (zdp->z_sa_hdl == NULL) { 1188 return (SET_ERROR(EIO)); 1189 } 1190 1191 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1192 error = zfs_fastaccesschk_execute(zdp, cr); 1193 if (!error) { 1194 *vpp = dvp; 1195 VN_HOLD(*vpp); 1196 return (0); 1197 } 1198 return (error); 1199 } else { 1200 vnode_t *tvp = dnlc_lookup(dvp, nm); 1201 1202 if (tvp) { 1203 error = zfs_fastaccesschk_execute(zdp, cr); 1204 if (error) { 1205 VN_RELE(tvp); 1206 return (error); 1207 } 1208 if (tvp == DNLC_NO_VNODE) { 1209 VN_RELE(tvp); 1210 return (SET_ERROR(ENOENT)); 1211 } else { 1212 *vpp = tvp; 1213 return (specvp_check(vpp, cr)); 1214 } 1215 } 1216 } 1217 } 1218 1219 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1220 1221 ZFS_ENTER(zfsvfs); 1222 ZFS_VERIFY_ZP(zdp); 1223 1224 *vpp = NULL; 1225 1226 if (flags & LOOKUP_XATTR) { 1227 /* 1228 * If the xattr property is off, refuse the lookup request. 1229 */ 1230 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1231 ZFS_EXIT(zfsvfs); 1232 return (SET_ERROR(EINVAL)); 1233 } 1234 1235 /* 1236 * We don't allow recursive attributes.. 1237 * Maybe someday we will. 1238 */ 1239 if (zdp->z_pflags & ZFS_XATTR) { 1240 ZFS_EXIT(zfsvfs); 1241 return (SET_ERROR(EINVAL)); 1242 } 1243 1244 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1245 ZFS_EXIT(zfsvfs); 1246 return (error); 1247 } 1248 1249 /* 1250 * Do we have permission to get into attribute directory? 1251 */ 1252 1253 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1254 B_FALSE, cr)) { 1255 VN_RELE(*vpp); 1256 *vpp = NULL; 1257 } 1258 1259 ZFS_EXIT(zfsvfs); 1260 return (error); 1261 } 1262 1263 if (dvp->v_type != VDIR) { 1264 ZFS_EXIT(zfsvfs); 1265 return (SET_ERROR(ENOTDIR)); 1266 } 1267 1268 /* 1269 * Check accessibility of directory. 1270 */ 1271 1272 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1273 ZFS_EXIT(zfsvfs); 1274 return (error); 1275 } 1276 1277 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1278 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1279 ZFS_EXIT(zfsvfs); 1280 return (SET_ERROR(EILSEQ)); 1281 } 1282 1283 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1284 if (error == 0) 1285 error = specvp_check(vpp, cr); 1286 1287 ZFS_EXIT(zfsvfs); 1288 return (error); 1289 } 1290 1291 /* 1292 * Attempt to create a new entry in a directory. If the entry 1293 * already exists, truncate the file if permissible, else return 1294 * an error. Return the vp of the created or trunc'd file. 1295 * 1296 * IN: dvp - vnode of directory to put new file entry in. 1297 * name - name of new file entry. 1298 * vap - attributes of new file. 1299 * excl - flag indicating exclusive or non-exclusive mode. 1300 * mode - mode to open file with. 1301 * cr - credentials of caller. 1302 * flag - large file flag [UNUSED]. 1303 * ct - caller context 1304 * vsecp - ACL to be set 1305 * 1306 * OUT: vpp - vnode of created or trunc'd entry. 1307 * 1308 * RETURN: 0 on success, error code on failure. 1309 * 1310 * Timestamps: 1311 * dvp - ctime|mtime updated if new entry created 1312 * vp - ctime|mtime always, atime if new 1313 */ 1314 1315 /* ARGSUSED */ 1316 static int 1317 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1318 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1319 vsecattr_t *vsecp) 1320 { 1321 znode_t *zp, *dzp = VTOZ(dvp); 1322 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1323 zilog_t *zilog; 1324 objset_t *os; 1325 zfs_dirlock_t *dl; 1326 dmu_tx_t *tx; 1327 int error; 1328 ksid_t *ksid; 1329 uid_t uid; 1330 gid_t gid = crgetgid(cr); 1331 zfs_acl_ids_t acl_ids; 1332 boolean_t fuid_dirtied; 1333 boolean_t have_acl = B_FALSE; 1334 boolean_t waited = B_FALSE; 1335 1336 /* 1337 * If we have an ephemeral id, ACL, or XVATTR then 1338 * make sure file system is at proper version 1339 */ 1340 1341 ksid = crgetsid(cr, KSID_OWNER); 1342 if (ksid) 1343 uid = ksid_getid(ksid); 1344 else 1345 uid = crgetuid(cr); 1346 1347 if (zfsvfs->z_use_fuids == B_FALSE && 1348 (vsecp || (vap->va_mask & AT_XVATTR) || 1349 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1350 return (SET_ERROR(EINVAL)); 1351 1352 ZFS_ENTER(zfsvfs); 1353 ZFS_VERIFY_ZP(dzp); 1354 os = zfsvfs->z_os; 1355 zilog = zfsvfs->z_log; 1356 1357 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1358 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1359 ZFS_EXIT(zfsvfs); 1360 return (SET_ERROR(EILSEQ)); 1361 } 1362 1363 if (vap->va_mask & AT_XVATTR) { 1364 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1365 crgetuid(cr), cr, vap->va_type)) != 0) { 1366 ZFS_EXIT(zfsvfs); 1367 return (error); 1368 } 1369 } 1370 top: 1371 *vpp = NULL; 1372 1373 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1374 vap->va_mode &= ~VSVTX; 1375 1376 if (*name == '\0') { 1377 /* 1378 * Null component name refers to the directory itself. 1379 */ 1380 VN_HOLD(dvp); 1381 zp = dzp; 1382 dl = NULL; 1383 error = 0; 1384 } else { 1385 /* possible VN_HOLD(zp) */ 1386 int zflg = 0; 1387 1388 if (flag & FIGNORECASE) 1389 zflg |= ZCILOOK; 1390 1391 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1392 NULL, NULL); 1393 if (error) { 1394 if (have_acl) 1395 zfs_acl_ids_free(&acl_ids); 1396 if (strcmp(name, "..") == 0) 1397 error = SET_ERROR(EISDIR); 1398 ZFS_EXIT(zfsvfs); 1399 return (error); 1400 } 1401 } 1402 1403 if (zp == NULL) { 1404 uint64_t txtype; 1405 1406 /* 1407 * Create a new file object and update the directory 1408 * to reference it. 1409 */ 1410 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1411 if (have_acl) 1412 zfs_acl_ids_free(&acl_ids); 1413 goto out; 1414 } 1415 1416 /* 1417 * We only support the creation of regular files in 1418 * extended attribute directories. 1419 */ 1420 1421 if ((dzp->z_pflags & ZFS_XATTR) && 1422 (vap->va_type != VREG)) { 1423 if (have_acl) 1424 zfs_acl_ids_free(&acl_ids); 1425 error = SET_ERROR(EINVAL); 1426 goto out; 1427 } 1428 1429 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1430 cr, vsecp, &acl_ids)) != 0) 1431 goto out; 1432 have_acl = B_TRUE; 1433 1434 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1435 zfs_acl_ids_free(&acl_ids); 1436 error = SET_ERROR(EDQUOT); 1437 goto out; 1438 } 1439 1440 tx = dmu_tx_create(os); 1441 1442 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1443 ZFS_SA_BASE_ATTR_SIZE); 1444 1445 fuid_dirtied = zfsvfs->z_fuid_dirty; 1446 if (fuid_dirtied) 1447 zfs_fuid_txhold(zfsvfs, tx); 1448 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1449 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1450 if (!zfsvfs->z_use_sa && 1451 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1452 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1453 0, acl_ids.z_aclp->z_acl_bytes); 1454 } 1455 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1456 if (error) { 1457 zfs_dirent_unlock(dl); 1458 if (error == ERESTART) { 1459 waited = B_TRUE; 1460 dmu_tx_wait(tx); 1461 dmu_tx_abort(tx); 1462 goto top; 1463 } 1464 zfs_acl_ids_free(&acl_ids); 1465 dmu_tx_abort(tx); 1466 ZFS_EXIT(zfsvfs); 1467 return (error); 1468 } 1469 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1470 1471 if (fuid_dirtied) 1472 zfs_fuid_sync(zfsvfs, tx); 1473 1474 (void) zfs_link_create(dl, zp, tx, ZNEW); 1475 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1476 if (flag & FIGNORECASE) 1477 txtype |= TX_CI; 1478 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1479 vsecp, acl_ids.z_fuidp, vap); 1480 zfs_acl_ids_free(&acl_ids); 1481 dmu_tx_commit(tx); 1482 } else { 1483 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1484 1485 if (have_acl) 1486 zfs_acl_ids_free(&acl_ids); 1487 have_acl = B_FALSE; 1488 1489 /* 1490 * A directory entry already exists for this name. 1491 */ 1492 /* 1493 * Can't truncate an existing file if in exclusive mode. 1494 */ 1495 if (excl == EXCL) { 1496 error = SET_ERROR(EEXIST); 1497 goto out; 1498 } 1499 /* 1500 * Can't open a directory for writing. 1501 */ 1502 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1503 error = SET_ERROR(EISDIR); 1504 goto out; 1505 } 1506 /* 1507 * Verify requested access to file. 1508 */ 1509 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1510 goto out; 1511 } 1512 1513 mutex_enter(&dzp->z_lock); 1514 dzp->z_seq++; 1515 mutex_exit(&dzp->z_lock); 1516 1517 /* 1518 * Truncate regular files if requested. 1519 */ 1520 if ((ZTOV(zp)->v_type == VREG) && 1521 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1522 /* we can't hold any locks when calling zfs_freesp() */ 1523 zfs_dirent_unlock(dl); 1524 dl = NULL; 1525 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1526 if (error == 0) { 1527 vnevent_create(ZTOV(zp), ct); 1528 } 1529 } 1530 } 1531 out: 1532 1533 if (dl) 1534 zfs_dirent_unlock(dl); 1535 1536 if (error) { 1537 if (zp) 1538 VN_RELE(ZTOV(zp)); 1539 } else { 1540 *vpp = ZTOV(zp); 1541 error = specvp_check(vpp, cr); 1542 } 1543 1544 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1545 zil_commit(zilog, 0); 1546 1547 ZFS_EXIT(zfsvfs); 1548 return (error); 1549 } 1550 1551 /* 1552 * Remove an entry from a directory. 1553 * 1554 * IN: dvp - vnode of directory to remove entry from. 1555 * name - name of entry to remove. 1556 * cr - credentials of caller. 1557 * ct - caller context 1558 * flags - case flags 1559 * 1560 * RETURN: 0 on success, error code on failure. 1561 * 1562 * Timestamps: 1563 * dvp - ctime|mtime 1564 * vp - ctime (if nlink > 0) 1565 */ 1566 1567 uint64_t null_xattr = 0; 1568 1569 /*ARGSUSED*/ 1570 static int 1571 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1572 int flags) 1573 { 1574 znode_t *zp, *dzp = VTOZ(dvp); 1575 znode_t *xzp; 1576 vnode_t *vp; 1577 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1578 zilog_t *zilog; 1579 uint64_t acl_obj, xattr_obj; 1580 uint64_t xattr_obj_unlinked = 0; 1581 uint64_t obj = 0; 1582 zfs_dirlock_t *dl; 1583 dmu_tx_t *tx; 1584 boolean_t may_delete_now, delete_now = FALSE; 1585 boolean_t unlinked, toobig = FALSE; 1586 uint64_t txtype; 1587 pathname_t *realnmp = NULL; 1588 pathname_t realnm; 1589 int error; 1590 int zflg = ZEXISTS; 1591 boolean_t waited = B_FALSE; 1592 1593 ZFS_ENTER(zfsvfs); 1594 ZFS_VERIFY_ZP(dzp); 1595 zilog = zfsvfs->z_log; 1596 1597 if (flags & FIGNORECASE) { 1598 zflg |= ZCILOOK; 1599 pn_alloc(&realnm); 1600 realnmp = &realnm; 1601 } 1602 1603 top: 1604 xattr_obj = 0; 1605 xzp = NULL; 1606 /* 1607 * Attempt to lock directory; fail if entry doesn't exist. 1608 */ 1609 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1610 NULL, realnmp)) { 1611 if (realnmp) 1612 pn_free(realnmp); 1613 ZFS_EXIT(zfsvfs); 1614 return (error); 1615 } 1616 1617 vp = ZTOV(zp); 1618 1619 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1620 goto out; 1621 } 1622 1623 /* 1624 * Need to use rmdir for removing directories. 1625 */ 1626 if (vp->v_type == VDIR) { 1627 error = SET_ERROR(EPERM); 1628 goto out; 1629 } 1630 1631 vnevent_remove(vp, dvp, name, ct); 1632 1633 if (realnmp) 1634 dnlc_remove(dvp, realnmp->pn_buf); 1635 else 1636 dnlc_remove(dvp, name); 1637 1638 mutex_enter(&vp->v_lock); 1639 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1640 mutex_exit(&vp->v_lock); 1641 1642 /* 1643 * We may delete the znode now, or we may put it in the unlinked set; 1644 * it depends on whether we're the last link, and on whether there are 1645 * other holds on the vnode. So we dmu_tx_hold() the right things to 1646 * allow for either case. 1647 */ 1648 obj = zp->z_id; 1649 tx = dmu_tx_create(zfsvfs->z_os); 1650 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1651 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1652 zfs_sa_upgrade_txholds(tx, zp); 1653 zfs_sa_upgrade_txholds(tx, dzp); 1654 if (may_delete_now) { 1655 toobig = 1656 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1657 /* if the file is too big, only hold_free a token amount */ 1658 dmu_tx_hold_free(tx, zp->z_id, 0, 1659 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1660 } 1661 1662 /* are there any extended attributes? */ 1663 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1664 &xattr_obj, sizeof (xattr_obj)); 1665 if (error == 0 && xattr_obj) { 1666 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1667 ASSERT0(error); 1668 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1669 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1670 } 1671 1672 mutex_enter(&zp->z_lock); 1673 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1674 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1675 mutex_exit(&zp->z_lock); 1676 1677 /* charge as an update -- would be nice not to charge at all */ 1678 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1679 1680 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1681 if (error) { 1682 zfs_dirent_unlock(dl); 1683 VN_RELE(vp); 1684 if (xzp) 1685 VN_RELE(ZTOV(xzp)); 1686 if (error == ERESTART) { 1687 waited = B_TRUE; 1688 dmu_tx_wait(tx); 1689 dmu_tx_abort(tx); 1690 goto top; 1691 } 1692 if (realnmp) 1693 pn_free(realnmp); 1694 dmu_tx_abort(tx); 1695 ZFS_EXIT(zfsvfs); 1696 return (error); 1697 } 1698 1699 /* 1700 * Remove the directory entry. 1701 */ 1702 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1703 1704 if (error) { 1705 dmu_tx_commit(tx); 1706 goto out; 1707 } 1708 1709 if (unlinked) { 1710 1711 /* 1712 * Hold z_lock so that we can make sure that the ACL obj 1713 * hasn't changed. Could have been deleted due to 1714 * zfs_sa_upgrade(). 1715 */ 1716 mutex_enter(&zp->z_lock); 1717 mutex_enter(&vp->v_lock); 1718 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1719 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1720 delete_now = may_delete_now && !toobig && 1721 vp->v_count == 1 && !vn_has_cached_data(vp) && 1722 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1723 acl_obj; 1724 mutex_exit(&vp->v_lock); 1725 } 1726 1727 if (delete_now) { 1728 if (xattr_obj_unlinked) { 1729 ASSERT3U(xzp->z_links, ==, 2); 1730 mutex_enter(&xzp->z_lock); 1731 xzp->z_unlinked = 1; 1732 xzp->z_links = 0; 1733 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1734 &xzp->z_links, sizeof (xzp->z_links), tx); 1735 ASSERT3U(error, ==, 0); 1736 mutex_exit(&xzp->z_lock); 1737 zfs_unlinked_add(xzp, tx); 1738 1739 if (zp->z_is_sa) 1740 error = sa_remove(zp->z_sa_hdl, 1741 SA_ZPL_XATTR(zfsvfs), tx); 1742 else 1743 error = sa_update(zp->z_sa_hdl, 1744 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1745 sizeof (uint64_t), tx); 1746 ASSERT0(error); 1747 } 1748 mutex_enter(&vp->v_lock); 1749 vp->v_count--; 1750 ASSERT0(vp->v_count); 1751 mutex_exit(&vp->v_lock); 1752 mutex_exit(&zp->z_lock); 1753 zfs_znode_delete(zp, tx); 1754 } else if (unlinked) { 1755 mutex_exit(&zp->z_lock); 1756 zfs_unlinked_add(zp, tx); 1757 } 1758 1759 txtype = TX_REMOVE; 1760 if (flags & FIGNORECASE) 1761 txtype |= TX_CI; 1762 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1763 1764 dmu_tx_commit(tx); 1765 out: 1766 if (realnmp) 1767 pn_free(realnmp); 1768 1769 zfs_dirent_unlock(dl); 1770 1771 if (!delete_now) 1772 VN_RELE(vp); 1773 if (xzp) 1774 VN_RELE(ZTOV(xzp)); 1775 1776 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1777 zil_commit(zilog, 0); 1778 1779 ZFS_EXIT(zfsvfs); 1780 return (error); 1781 } 1782 1783 /* 1784 * Create a new directory and insert it into dvp using the name 1785 * provided. Return a pointer to the inserted directory. 1786 * 1787 * IN: dvp - vnode of directory to add subdir to. 1788 * dirname - name of new directory. 1789 * vap - attributes of new directory. 1790 * cr - credentials of caller. 1791 * ct - caller context 1792 * flags - case flags 1793 * vsecp - ACL to be set 1794 * 1795 * OUT: vpp - vnode of created directory. 1796 * 1797 * RETURN: 0 on success, error code on failure. 1798 * 1799 * Timestamps: 1800 * dvp - ctime|mtime updated 1801 * vp - ctime|mtime|atime updated 1802 */ 1803 /*ARGSUSED*/ 1804 static int 1805 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1806 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1807 { 1808 znode_t *zp, *dzp = VTOZ(dvp); 1809 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1810 zilog_t *zilog; 1811 zfs_dirlock_t *dl; 1812 uint64_t txtype; 1813 dmu_tx_t *tx; 1814 int error; 1815 int zf = ZNEW; 1816 ksid_t *ksid; 1817 uid_t uid; 1818 gid_t gid = crgetgid(cr); 1819 zfs_acl_ids_t acl_ids; 1820 boolean_t fuid_dirtied; 1821 boolean_t waited = B_FALSE; 1822 1823 ASSERT(vap->va_type == VDIR); 1824 1825 /* 1826 * If we have an ephemeral id, ACL, or XVATTR then 1827 * make sure file system is at proper version 1828 */ 1829 1830 ksid = crgetsid(cr, KSID_OWNER); 1831 if (ksid) 1832 uid = ksid_getid(ksid); 1833 else 1834 uid = crgetuid(cr); 1835 if (zfsvfs->z_use_fuids == B_FALSE && 1836 (vsecp || (vap->va_mask & AT_XVATTR) || 1837 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1838 return (SET_ERROR(EINVAL)); 1839 1840 ZFS_ENTER(zfsvfs); 1841 ZFS_VERIFY_ZP(dzp); 1842 zilog = zfsvfs->z_log; 1843 1844 if (dzp->z_pflags & ZFS_XATTR) { 1845 ZFS_EXIT(zfsvfs); 1846 return (SET_ERROR(EINVAL)); 1847 } 1848 1849 if (zfsvfs->z_utf8 && u8_validate(dirname, 1850 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1851 ZFS_EXIT(zfsvfs); 1852 return (SET_ERROR(EILSEQ)); 1853 } 1854 if (flags & FIGNORECASE) 1855 zf |= ZCILOOK; 1856 1857 if (vap->va_mask & AT_XVATTR) { 1858 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1859 crgetuid(cr), cr, vap->va_type)) != 0) { 1860 ZFS_EXIT(zfsvfs); 1861 return (error); 1862 } 1863 } 1864 1865 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1866 vsecp, &acl_ids)) != 0) { 1867 ZFS_EXIT(zfsvfs); 1868 return (error); 1869 } 1870 /* 1871 * First make sure the new directory doesn't exist. 1872 * 1873 * Existence is checked first to make sure we don't return 1874 * EACCES instead of EEXIST which can cause some applications 1875 * to fail. 1876 */ 1877 top: 1878 *vpp = NULL; 1879 1880 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1881 NULL, NULL)) { 1882 zfs_acl_ids_free(&acl_ids); 1883 ZFS_EXIT(zfsvfs); 1884 return (error); 1885 } 1886 1887 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1888 zfs_acl_ids_free(&acl_ids); 1889 zfs_dirent_unlock(dl); 1890 ZFS_EXIT(zfsvfs); 1891 return (error); 1892 } 1893 1894 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1895 zfs_acl_ids_free(&acl_ids); 1896 zfs_dirent_unlock(dl); 1897 ZFS_EXIT(zfsvfs); 1898 return (SET_ERROR(EDQUOT)); 1899 } 1900 1901 /* 1902 * Add a new entry to the directory. 1903 */ 1904 tx = dmu_tx_create(zfsvfs->z_os); 1905 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1906 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1907 fuid_dirtied = zfsvfs->z_fuid_dirty; 1908 if (fuid_dirtied) 1909 zfs_fuid_txhold(zfsvfs, tx); 1910 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1911 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1912 acl_ids.z_aclp->z_acl_bytes); 1913 } 1914 1915 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1916 ZFS_SA_BASE_ATTR_SIZE); 1917 1918 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1919 if (error) { 1920 zfs_dirent_unlock(dl); 1921 if (error == ERESTART) { 1922 waited = B_TRUE; 1923 dmu_tx_wait(tx); 1924 dmu_tx_abort(tx); 1925 goto top; 1926 } 1927 zfs_acl_ids_free(&acl_ids); 1928 dmu_tx_abort(tx); 1929 ZFS_EXIT(zfsvfs); 1930 return (error); 1931 } 1932 1933 /* 1934 * Create new node. 1935 */ 1936 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1937 1938 if (fuid_dirtied) 1939 zfs_fuid_sync(zfsvfs, tx); 1940 1941 /* 1942 * Now put new name in parent dir. 1943 */ 1944 (void) zfs_link_create(dl, zp, tx, ZNEW); 1945 1946 *vpp = ZTOV(zp); 1947 1948 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1949 if (flags & FIGNORECASE) 1950 txtype |= TX_CI; 1951 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1952 acl_ids.z_fuidp, vap); 1953 1954 zfs_acl_ids_free(&acl_ids); 1955 1956 dmu_tx_commit(tx); 1957 1958 zfs_dirent_unlock(dl); 1959 1960 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1961 zil_commit(zilog, 0); 1962 1963 ZFS_EXIT(zfsvfs); 1964 return (0); 1965 } 1966 1967 /* 1968 * Remove a directory subdir entry. If the current working 1969 * directory is the same as the subdir to be removed, the 1970 * remove will fail. 1971 * 1972 * IN: dvp - vnode of directory to remove from. 1973 * name - name of directory to be removed. 1974 * cwd - vnode of current working directory. 1975 * cr - credentials of caller. 1976 * ct - caller context 1977 * flags - case flags 1978 * 1979 * RETURN: 0 on success, error code on failure. 1980 * 1981 * Timestamps: 1982 * dvp - ctime|mtime updated 1983 */ 1984 /*ARGSUSED*/ 1985 static int 1986 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1987 caller_context_t *ct, int flags) 1988 { 1989 znode_t *dzp = VTOZ(dvp); 1990 znode_t *zp; 1991 vnode_t *vp; 1992 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1993 zilog_t *zilog; 1994 zfs_dirlock_t *dl; 1995 dmu_tx_t *tx; 1996 int error; 1997 int zflg = ZEXISTS; 1998 boolean_t waited = B_FALSE; 1999 2000 ZFS_ENTER(zfsvfs); 2001 ZFS_VERIFY_ZP(dzp); 2002 zilog = zfsvfs->z_log; 2003 2004 if (flags & FIGNORECASE) 2005 zflg |= ZCILOOK; 2006 top: 2007 zp = NULL; 2008 2009 /* 2010 * Attempt to lock directory; fail if entry doesn't exist. 2011 */ 2012 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2013 NULL, NULL)) { 2014 ZFS_EXIT(zfsvfs); 2015 return (error); 2016 } 2017 2018 vp = ZTOV(zp); 2019 2020 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2021 goto out; 2022 } 2023 2024 if (vp->v_type != VDIR) { 2025 error = SET_ERROR(ENOTDIR); 2026 goto out; 2027 } 2028 2029 if (vp == cwd) { 2030 error = SET_ERROR(EINVAL); 2031 goto out; 2032 } 2033 2034 vnevent_rmdir(vp, dvp, name, ct); 2035 2036 /* 2037 * Grab a lock on the directory to make sure that noone is 2038 * trying to add (or lookup) entries while we are removing it. 2039 */ 2040 rw_enter(&zp->z_name_lock, RW_WRITER); 2041 2042 /* 2043 * Grab a lock on the parent pointer to make sure we play well 2044 * with the treewalk and directory rename code. 2045 */ 2046 rw_enter(&zp->z_parent_lock, RW_WRITER); 2047 2048 tx = dmu_tx_create(zfsvfs->z_os); 2049 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2050 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2051 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2052 zfs_sa_upgrade_txholds(tx, zp); 2053 zfs_sa_upgrade_txholds(tx, dzp); 2054 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 2055 if (error) { 2056 rw_exit(&zp->z_parent_lock); 2057 rw_exit(&zp->z_name_lock); 2058 zfs_dirent_unlock(dl); 2059 VN_RELE(vp); 2060 if (error == ERESTART) { 2061 waited = B_TRUE; 2062 dmu_tx_wait(tx); 2063 dmu_tx_abort(tx); 2064 goto top; 2065 } 2066 dmu_tx_abort(tx); 2067 ZFS_EXIT(zfsvfs); 2068 return (error); 2069 } 2070 2071 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2072 2073 if (error == 0) { 2074 uint64_t txtype = TX_RMDIR; 2075 if (flags & FIGNORECASE) 2076 txtype |= TX_CI; 2077 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2078 } 2079 2080 dmu_tx_commit(tx); 2081 2082 rw_exit(&zp->z_parent_lock); 2083 rw_exit(&zp->z_name_lock); 2084 out: 2085 zfs_dirent_unlock(dl); 2086 2087 VN_RELE(vp); 2088 2089 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2090 zil_commit(zilog, 0); 2091 2092 ZFS_EXIT(zfsvfs); 2093 return (error); 2094 } 2095 2096 /* 2097 * Read as many directory entries as will fit into the provided 2098 * buffer from the given directory cursor position (specified in 2099 * the uio structure). 2100 * 2101 * IN: vp - vnode of directory to read. 2102 * uio - structure supplying read location, range info, 2103 * and return buffer. 2104 * cr - credentials of caller. 2105 * ct - caller context 2106 * flags - case flags 2107 * 2108 * OUT: uio - updated offset and range, buffer filled. 2109 * eofp - set to true if end-of-file detected. 2110 * 2111 * RETURN: 0 on success, error code on failure. 2112 * 2113 * Timestamps: 2114 * vp - atime updated 2115 * 2116 * Note that the low 4 bits of the cookie returned by zap is always zero. 2117 * This allows us to use the low range for "special" directory entries: 2118 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2119 * we use the offset 2 for the '.zfs' directory. 2120 */ 2121 /* ARGSUSED */ 2122 static int 2123 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2124 caller_context_t *ct, int flags) 2125 { 2126 znode_t *zp = VTOZ(vp); 2127 iovec_t *iovp; 2128 edirent_t *eodp; 2129 dirent64_t *odp; 2130 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2131 objset_t *os; 2132 caddr_t outbuf; 2133 size_t bufsize; 2134 zap_cursor_t zc; 2135 zap_attribute_t zap; 2136 uint_t bytes_wanted; 2137 uint64_t offset; /* must be unsigned; checks for < 1 */ 2138 uint64_t parent; 2139 int local_eof; 2140 int outcount; 2141 int error; 2142 uint8_t prefetch; 2143 boolean_t check_sysattrs; 2144 2145 ZFS_ENTER(zfsvfs); 2146 ZFS_VERIFY_ZP(zp); 2147 2148 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2149 &parent, sizeof (parent))) != 0) { 2150 ZFS_EXIT(zfsvfs); 2151 return (error); 2152 } 2153 2154 /* 2155 * If we are not given an eof variable, 2156 * use a local one. 2157 */ 2158 if (eofp == NULL) 2159 eofp = &local_eof; 2160 2161 /* 2162 * Check for valid iov_len. 2163 */ 2164 if (uio->uio_iov->iov_len <= 0) { 2165 ZFS_EXIT(zfsvfs); 2166 return (SET_ERROR(EINVAL)); 2167 } 2168 2169 /* 2170 * Quit if directory has been removed (posix) 2171 */ 2172 if ((*eofp = zp->z_unlinked) != 0) { 2173 ZFS_EXIT(zfsvfs); 2174 return (0); 2175 } 2176 2177 error = 0; 2178 os = zfsvfs->z_os; 2179 offset = uio->uio_loffset; 2180 prefetch = zp->z_zn_prefetch; 2181 2182 /* 2183 * Initialize the iterator cursor. 2184 */ 2185 if (offset <= 3) { 2186 /* 2187 * Start iteration from the beginning of the directory. 2188 */ 2189 zap_cursor_init(&zc, os, zp->z_id); 2190 } else { 2191 /* 2192 * The offset is a serialized cursor. 2193 */ 2194 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2195 } 2196 2197 /* 2198 * Get space to change directory entries into fs independent format. 2199 */ 2200 iovp = uio->uio_iov; 2201 bytes_wanted = iovp->iov_len; 2202 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2203 bufsize = bytes_wanted; 2204 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2205 odp = (struct dirent64 *)outbuf; 2206 } else { 2207 bufsize = bytes_wanted; 2208 outbuf = NULL; 2209 odp = (struct dirent64 *)iovp->iov_base; 2210 } 2211 eodp = (struct edirent *)odp; 2212 2213 /* 2214 * If this VFS supports the system attribute view interface; and 2215 * we're looking at an extended attribute directory; and we care 2216 * about normalization conflicts on this vfs; then we must check 2217 * for normalization conflicts with the sysattr name space. 2218 */ 2219 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2220 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2221 (flags & V_RDDIR_ENTFLAGS); 2222 2223 /* 2224 * Transform to file-system independent format 2225 */ 2226 outcount = 0; 2227 while (outcount < bytes_wanted) { 2228 ino64_t objnum; 2229 ushort_t reclen; 2230 off64_t *next = NULL; 2231 2232 /* 2233 * Special case `.', `..', and `.zfs'. 2234 */ 2235 if (offset == 0) { 2236 (void) strcpy(zap.za_name, "."); 2237 zap.za_normalization_conflict = 0; 2238 objnum = zp->z_id; 2239 } else if (offset == 1) { 2240 (void) strcpy(zap.za_name, ".."); 2241 zap.za_normalization_conflict = 0; 2242 objnum = parent; 2243 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2244 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2245 zap.za_normalization_conflict = 0; 2246 objnum = ZFSCTL_INO_ROOT; 2247 } else { 2248 /* 2249 * Grab next entry. 2250 */ 2251 if (error = zap_cursor_retrieve(&zc, &zap)) { 2252 if ((*eofp = (error == ENOENT)) != 0) 2253 break; 2254 else 2255 goto update; 2256 } 2257 2258 if (zap.za_integer_length != 8 || 2259 zap.za_num_integers != 1) { 2260 cmn_err(CE_WARN, "zap_readdir: bad directory " 2261 "entry, obj = %lld, offset = %lld\n", 2262 (u_longlong_t)zp->z_id, 2263 (u_longlong_t)offset); 2264 error = SET_ERROR(ENXIO); 2265 goto update; 2266 } 2267 2268 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2269 /* 2270 * MacOS X can extract the object type here such as: 2271 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2272 */ 2273 2274 if (check_sysattrs && !zap.za_normalization_conflict) { 2275 zap.za_normalization_conflict = 2276 xattr_sysattr_casechk(zap.za_name); 2277 } 2278 } 2279 2280 if (flags & V_RDDIR_ACCFILTER) { 2281 /* 2282 * If we have no access at all, don't include 2283 * this entry in the returned information 2284 */ 2285 znode_t *ezp; 2286 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2287 goto skip_entry; 2288 if (!zfs_has_access(ezp, cr)) { 2289 VN_RELE(ZTOV(ezp)); 2290 goto skip_entry; 2291 } 2292 VN_RELE(ZTOV(ezp)); 2293 } 2294 2295 if (flags & V_RDDIR_ENTFLAGS) 2296 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2297 else 2298 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2299 2300 /* 2301 * Will this entry fit in the buffer? 2302 */ 2303 if (outcount + reclen > bufsize) { 2304 /* 2305 * Did we manage to fit anything in the buffer? 2306 */ 2307 if (!outcount) { 2308 error = SET_ERROR(EINVAL); 2309 goto update; 2310 } 2311 break; 2312 } 2313 if (flags & V_RDDIR_ENTFLAGS) { 2314 /* 2315 * Add extended flag entry: 2316 */ 2317 eodp->ed_ino = objnum; 2318 eodp->ed_reclen = reclen; 2319 /* NOTE: ed_off is the offset for the *next* entry */ 2320 next = &(eodp->ed_off); 2321 eodp->ed_eflags = zap.za_normalization_conflict ? 2322 ED_CASE_CONFLICT : 0; 2323 (void) strncpy(eodp->ed_name, zap.za_name, 2324 EDIRENT_NAMELEN(reclen)); 2325 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2326 } else { 2327 /* 2328 * Add normal entry: 2329 */ 2330 odp->d_ino = objnum; 2331 odp->d_reclen = reclen; 2332 /* NOTE: d_off is the offset for the *next* entry */ 2333 next = &(odp->d_off); 2334 (void) strncpy(odp->d_name, zap.za_name, 2335 DIRENT64_NAMELEN(reclen)); 2336 odp = (dirent64_t *)((intptr_t)odp + reclen); 2337 } 2338 outcount += reclen; 2339 2340 ASSERT(outcount <= bufsize); 2341 2342 /* Prefetch znode */ 2343 if (prefetch) 2344 dmu_prefetch(os, objnum, 0, 0); 2345 2346 skip_entry: 2347 /* 2348 * Move to the next entry, fill in the previous offset. 2349 */ 2350 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2351 zap_cursor_advance(&zc); 2352 offset = zap_cursor_serialize(&zc); 2353 } else { 2354 offset += 1; 2355 } 2356 if (next) 2357 *next = offset; 2358 } 2359 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2360 2361 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2362 iovp->iov_base += outcount; 2363 iovp->iov_len -= outcount; 2364 uio->uio_resid -= outcount; 2365 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2366 /* 2367 * Reset the pointer. 2368 */ 2369 offset = uio->uio_loffset; 2370 } 2371 2372 update: 2373 zap_cursor_fini(&zc); 2374 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2375 kmem_free(outbuf, bufsize); 2376 2377 if (error == ENOENT) 2378 error = 0; 2379 2380 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2381 2382 uio->uio_loffset = offset; 2383 ZFS_EXIT(zfsvfs); 2384 return (error); 2385 } 2386 2387 ulong_t zfs_fsync_sync_cnt = 4; 2388 2389 static int 2390 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2391 { 2392 znode_t *zp = VTOZ(vp); 2393 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2394 2395 /* 2396 * Regardless of whether this is required for standards conformance, 2397 * this is the logical behavior when fsync() is called on a file with 2398 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2399 * going to be pushed out as part of the zil_commit(). 2400 */ 2401 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2402 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2403 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2404 2405 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2406 2407 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2408 ZFS_ENTER(zfsvfs); 2409 ZFS_VERIFY_ZP(zp); 2410 zil_commit(zfsvfs->z_log, zp->z_id); 2411 ZFS_EXIT(zfsvfs); 2412 } 2413 return (0); 2414 } 2415 2416 2417 /* 2418 * Get the requested file attributes and place them in the provided 2419 * vattr structure. 2420 * 2421 * IN: vp - vnode of file. 2422 * vap - va_mask identifies requested attributes. 2423 * If AT_XVATTR set, then optional attrs are requested 2424 * flags - ATTR_NOACLCHECK (CIFS server context) 2425 * cr - credentials of caller. 2426 * ct - caller context 2427 * 2428 * OUT: vap - attribute values. 2429 * 2430 * RETURN: 0 (always succeeds). 2431 */ 2432 /* ARGSUSED */ 2433 static int 2434 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2435 caller_context_t *ct) 2436 { 2437 znode_t *zp = VTOZ(vp); 2438 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2439 int error = 0; 2440 uint64_t links; 2441 uint64_t mtime[2], ctime[2]; 2442 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2443 xoptattr_t *xoap = NULL; 2444 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2445 sa_bulk_attr_t bulk[2]; 2446 int count = 0; 2447 2448 ZFS_ENTER(zfsvfs); 2449 ZFS_VERIFY_ZP(zp); 2450 2451 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2452 2453 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2454 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2455 2456 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2457 ZFS_EXIT(zfsvfs); 2458 return (error); 2459 } 2460 2461 /* 2462 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2463 * Also, if we are the owner don't bother, since owner should 2464 * always be allowed to read basic attributes of file. 2465 */ 2466 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2467 (vap->va_uid != crgetuid(cr))) { 2468 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2469 skipaclchk, cr)) { 2470 ZFS_EXIT(zfsvfs); 2471 return (error); 2472 } 2473 } 2474 2475 /* 2476 * Return all attributes. It's cheaper to provide the answer 2477 * than to determine whether we were asked the question. 2478 */ 2479 2480 mutex_enter(&zp->z_lock); 2481 vap->va_type = vp->v_type; 2482 vap->va_mode = zp->z_mode & MODEMASK; 2483 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2484 vap->va_nodeid = zp->z_id; 2485 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2486 links = zp->z_links + 1; 2487 else 2488 links = zp->z_links; 2489 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2490 vap->va_size = zp->z_size; 2491 vap->va_rdev = vp->v_rdev; 2492 vap->va_seq = zp->z_seq; 2493 2494 /* 2495 * Add in any requested optional attributes and the create time. 2496 * Also set the corresponding bits in the returned attribute bitmap. 2497 */ 2498 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2499 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2500 xoap->xoa_archive = 2501 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2502 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2503 } 2504 2505 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2506 xoap->xoa_readonly = 2507 ((zp->z_pflags & ZFS_READONLY) != 0); 2508 XVA_SET_RTN(xvap, XAT_READONLY); 2509 } 2510 2511 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2512 xoap->xoa_system = 2513 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2514 XVA_SET_RTN(xvap, XAT_SYSTEM); 2515 } 2516 2517 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2518 xoap->xoa_hidden = 2519 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2520 XVA_SET_RTN(xvap, XAT_HIDDEN); 2521 } 2522 2523 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2524 xoap->xoa_nounlink = 2525 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2526 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2527 } 2528 2529 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2530 xoap->xoa_immutable = 2531 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2532 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2533 } 2534 2535 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2536 xoap->xoa_appendonly = 2537 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2538 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2539 } 2540 2541 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2542 xoap->xoa_nodump = 2543 ((zp->z_pflags & ZFS_NODUMP) != 0); 2544 XVA_SET_RTN(xvap, XAT_NODUMP); 2545 } 2546 2547 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2548 xoap->xoa_opaque = 2549 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2550 XVA_SET_RTN(xvap, XAT_OPAQUE); 2551 } 2552 2553 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2554 xoap->xoa_av_quarantined = 2555 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2556 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2557 } 2558 2559 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2560 xoap->xoa_av_modified = 2561 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2562 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2563 } 2564 2565 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2566 vp->v_type == VREG) { 2567 zfs_sa_get_scanstamp(zp, xvap); 2568 } 2569 2570 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2571 uint64_t times[2]; 2572 2573 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2574 times, sizeof (times)); 2575 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2576 XVA_SET_RTN(xvap, XAT_CREATETIME); 2577 } 2578 2579 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2580 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2581 XVA_SET_RTN(xvap, XAT_REPARSE); 2582 } 2583 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2584 xoap->xoa_generation = zp->z_gen; 2585 XVA_SET_RTN(xvap, XAT_GEN); 2586 } 2587 2588 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2589 xoap->xoa_offline = 2590 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2591 XVA_SET_RTN(xvap, XAT_OFFLINE); 2592 } 2593 2594 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2595 xoap->xoa_sparse = 2596 ((zp->z_pflags & ZFS_SPARSE) != 0); 2597 XVA_SET_RTN(xvap, XAT_SPARSE); 2598 } 2599 } 2600 2601 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2602 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2603 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2604 2605 mutex_exit(&zp->z_lock); 2606 2607 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2608 2609 if (zp->z_blksz == 0) { 2610 /* 2611 * Block size hasn't been set; suggest maximal I/O transfers. 2612 */ 2613 vap->va_blksize = zfsvfs->z_max_blksz; 2614 } 2615 2616 ZFS_EXIT(zfsvfs); 2617 return (0); 2618 } 2619 2620 /* 2621 * Set the file attributes to the values contained in the 2622 * vattr structure. 2623 * 2624 * IN: vp - vnode of file to be modified. 2625 * vap - new attribute values. 2626 * If AT_XVATTR set, then optional attrs are being set 2627 * flags - ATTR_UTIME set if non-default time values provided. 2628 * - ATTR_NOACLCHECK (CIFS context only). 2629 * cr - credentials of caller. 2630 * ct - caller context 2631 * 2632 * RETURN: 0 on success, error code on failure. 2633 * 2634 * Timestamps: 2635 * vp - ctime updated, mtime updated if size changed. 2636 */ 2637 /* ARGSUSED */ 2638 static int 2639 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2640 caller_context_t *ct) 2641 { 2642 znode_t *zp = VTOZ(vp); 2643 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2644 zilog_t *zilog; 2645 dmu_tx_t *tx; 2646 vattr_t oldva; 2647 xvattr_t tmpxvattr; 2648 uint_t mask = vap->va_mask; 2649 uint_t saved_mask = 0; 2650 int trim_mask = 0; 2651 uint64_t new_mode; 2652 uint64_t new_uid, new_gid; 2653 uint64_t xattr_obj; 2654 uint64_t mtime[2], ctime[2]; 2655 znode_t *attrzp; 2656 int need_policy = FALSE; 2657 int err, err2; 2658 zfs_fuid_info_t *fuidp = NULL; 2659 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2660 xoptattr_t *xoap; 2661 zfs_acl_t *aclp; 2662 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2663 boolean_t fuid_dirtied = B_FALSE; 2664 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2665 int count = 0, xattr_count = 0; 2666 2667 if (mask == 0) 2668 return (0); 2669 2670 if (mask & AT_NOSET) 2671 return (SET_ERROR(EINVAL)); 2672 2673 ZFS_ENTER(zfsvfs); 2674 ZFS_VERIFY_ZP(zp); 2675 2676 zilog = zfsvfs->z_log; 2677 2678 /* 2679 * Make sure that if we have ephemeral uid/gid or xvattr specified 2680 * that file system is at proper version level 2681 */ 2682 2683 if (zfsvfs->z_use_fuids == B_FALSE && 2684 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2685 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2686 (mask & AT_XVATTR))) { 2687 ZFS_EXIT(zfsvfs); 2688 return (SET_ERROR(EINVAL)); 2689 } 2690 2691 if (mask & AT_SIZE && vp->v_type == VDIR) { 2692 ZFS_EXIT(zfsvfs); 2693 return (SET_ERROR(EISDIR)); 2694 } 2695 2696 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2697 ZFS_EXIT(zfsvfs); 2698 return (SET_ERROR(EINVAL)); 2699 } 2700 2701 /* 2702 * If this is an xvattr_t, then get a pointer to the structure of 2703 * optional attributes. If this is NULL, then we have a vattr_t. 2704 */ 2705 xoap = xva_getxoptattr(xvap); 2706 2707 xva_init(&tmpxvattr); 2708 2709 /* 2710 * Immutable files can only alter immutable bit and atime 2711 */ 2712 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2713 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2714 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2715 ZFS_EXIT(zfsvfs); 2716 return (SET_ERROR(EPERM)); 2717 } 2718 2719 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2720 ZFS_EXIT(zfsvfs); 2721 return (SET_ERROR(EPERM)); 2722 } 2723 2724 /* 2725 * Verify timestamps doesn't overflow 32 bits. 2726 * ZFS can handle large timestamps, but 32bit syscalls can't 2727 * handle times greater than 2039. This check should be removed 2728 * once large timestamps are fully supported. 2729 */ 2730 if (mask & (AT_ATIME | AT_MTIME)) { 2731 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2732 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2733 ZFS_EXIT(zfsvfs); 2734 return (SET_ERROR(EOVERFLOW)); 2735 } 2736 } 2737 2738 top: 2739 attrzp = NULL; 2740 aclp = NULL; 2741 2742 /* Can this be moved to before the top label? */ 2743 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2744 ZFS_EXIT(zfsvfs); 2745 return (SET_ERROR(EROFS)); 2746 } 2747 2748 /* 2749 * First validate permissions 2750 */ 2751 2752 if (mask & AT_SIZE) { 2753 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2754 if (err) { 2755 ZFS_EXIT(zfsvfs); 2756 return (err); 2757 } 2758 /* 2759 * XXX - Note, we are not providing any open 2760 * mode flags here (like FNDELAY), so we may 2761 * block if there are locks present... this 2762 * should be addressed in openat(). 2763 */ 2764 /* XXX - would it be OK to generate a log record here? */ 2765 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2766 if (err) { 2767 ZFS_EXIT(zfsvfs); 2768 return (err); 2769 } 2770 2771 if (vap->va_size == 0) 2772 vnevent_truncate(ZTOV(zp), ct); 2773 } 2774 2775 if (mask & (AT_ATIME|AT_MTIME) || 2776 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2777 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2778 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2779 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2780 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2781 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2782 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2783 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2784 skipaclchk, cr); 2785 } 2786 2787 if (mask & (AT_UID|AT_GID)) { 2788 int idmask = (mask & (AT_UID|AT_GID)); 2789 int take_owner; 2790 int take_group; 2791 2792 /* 2793 * NOTE: even if a new mode is being set, 2794 * we may clear S_ISUID/S_ISGID bits. 2795 */ 2796 2797 if (!(mask & AT_MODE)) 2798 vap->va_mode = zp->z_mode; 2799 2800 /* 2801 * Take ownership or chgrp to group we are a member of 2802 */ 2803 2804 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2805 take_group = (mask & AT_GID) && 2806 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2807 2808 /* 2809 * If both AT_UID and AT_GID are set then take_owner and 2810 * take_group must both be set in order to allow taking 2811 * ownership. 2812 * 2813 * Otherwise, send the check through secpolicy_vnode_setattr() 2814 * 2815 */ 2816 2817 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2818 ((idmask == AT_UID) && take_owner) || 2819 ((idmask == AT_GID) && take_group)) { 2820 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2821 skipaclchk, cr) == 0) { 2822 /* 2823 * Remove setuid/setgid for non-privileged users 2824 */ 2825 secpolicy_setid_clear(vap, cr); 2826 trim_mask = (mask & (AT_UID|AT_GID)); 2827 } else { 2828 need_policy = TRUE; 2829 } 2830 } else { 2831 need_policy = TRUE; 2832 } 2833 } 2834 2835 mutex_enter(&zp->z_lock); 2836 oldva.va_mode = zp->z_mode; 2837 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2838 if (mask & AT_XVATTR) { 2839 /* 2840 * Update xvattr mask to include only those attributes 2841 * that are actually changing. 2842 * 2843 * the bits will be restored prior to actually setting 2844 * the attributes so the caller thinks they were set. 2845 */ 2846 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2847 if (xoap->xoa_appendonly != 2848 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2849 need_policy = TRUE; 2850 } else { 2851 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2852 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2853 } 2854 } 2855 2856 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2857 if (xoap->xoa_nounlink != 2858 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2859 need_policy = TRUE; 2860 } else { 2861 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2862 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2863 } 2864 } 2865 2866 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2867 if (xoap->xoa_immutable != 2868 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2869 need_policy = TRUE; 2870 } else { 2871 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2872 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2873 } 2874 } 2875 2876 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2877 if (xoap->xoa_nodump != 2878 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2879 need_policy = TRUE; 2880 } else { 2881 XVA_CLR_REQ(xvap, XAT_NODUMP); 2882 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2883 } 2884 } 2885 2886 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2887 if (xoap->xoa_av_modified != 2888 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2889 need_policy = TRUE; 2890 } else { 2891 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2892 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2893 } 2894 } 2895 2896 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2897 if ((vp->v_type != VREG && 2898 xoap->xoa_av_quarantined) || 2899 xoap->xoa_av_quarantined != 2900 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2901 need_policy = TRUE; 2902 } else { 2903 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2904 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2905 } 2906 } 2907 2908 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2909 mutex_exit(&zp->z_lock); 2910 ZFS_EXIT(zfsvfs); 2911 return (SET_ERROR(EPERM)); 2912 } 2913 2914 if (need_policy == FALSE && 2915 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2916 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2917 need_policy = TRUE; 2918 } 2919 } 2920 2921 mutex_exit(&zp->z_lock); 2922 2923 if (mask & AT_MODE) { 2924 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2925 err = secpolicy_setid_setsticky_clear(vp, vap, 2926 &oldva, cr); 2927 if (err) { 2928 ZFS_EXIT(zfsvfs); 2929 return (err); 2930 } 2931 trim_mask |= AT_MODE; 2932 } else { 2933 need_policy = TRUE; 2934 } 2935 } 2936 2937 if (need_policy) { 2938 /* 2939 * If trim_mask is set then take ownership 2940 * has been granted or write_acl is present and user 2941 * has the ability to modify mode. In that case remove 2942 * UID|GID and or MODE from mask so that 2943 * secpolicy_vnode_setattr() doesn't revoke it. 2944 */ 2945 2946 if (trim_mask) { 2947 saved_mask = vap->va_mask; 2948 vap->va_mask &= ~trim_mask; 2949 } 2950 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2951 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2952 if (err) { 2953 ZFS_EXIT(zfsvfs); 2954 return (err); 2955 } 2956 2957 if (trim_mask) 2958 vap->va_mask |= saved_mask; 2959 } 2960 2961 /* 2962 * secpolicy_vnode_setattr, or take ownership may have 2963 * changed va_mask 2964 */ 2965 mask = vap->va_mask; 2966 2967 if ((mask & (AT_UID | AT_GID))) { 2968 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 2969 &xattr_obj, sizeof (xattr_obj)); 2970 2971 if (err == 0 && xattr_obj) { 2972 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 2973 if (err) 2974 goto out2; 2975 } 2976 if (mask & AT_UID) { 2977 new_uid = zfs_fuid_create(zfsvfs, 2978 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2979 if (new_uid != zp->z_uid && 2980 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 2981 if (attrzp) 2982 VN_RELE(ZTOV(attrzp)); 2983 err = SET_ERROR(EDQUOT); 2984 goto out2; 2985 } 2986 } 2987 2988 if (mask & AT_GID) { 2989 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 2990 cr, ZFS_GROUP, &fuidp); 2991 if (new_gid != zp->z_gid && 2992 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 2993 if (attrzp) 2994 VN_RELE(ZTOV(attrzp)); 2995 err = SET_ERROR(EDQUOT); 2996 goto out2; 2997 } 2998 } 2999 } 3000 tx = dmu_tx_create(zfsvfs->z_os); 3001 3002 if (mask & AT_MODE) { 3003 uint64_t pmode = zp->z_mode; 3004 uint64_t acl_obj; 3005 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 3006 3007 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 3008 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 3009 err = SET_ERROR(EPERM); 3010 goto out; 3011 } 3012 3013 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3014 goto out; 3015 3016 mutex_enter(&zp->z_lock); 3017 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3018 /* 3019 * Are we upgrading ACL from old V0 format 3020 * to V1 format? 3021 */ 3022 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3023 zfs_znode_acl_version(zp) == 3024 ZFS_ACL_VERSION_INITIAL) { 3025 dmu_tx_hold_free(tx, acl_obj, 0, 3026 DMU_OBJECT_END); 3027 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3028 0, aclp->z_acl_bytes); 3029 } else { 3030 dmu_tx_hold_write(tx, acl_obj, 0, 3031 aclp->z_acl_bytes); 3032 } 3033 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3034 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3035 0, aclp->z_acl_bytes); 3036 } 3037 mutex_exit(&zp->z_lock); 3038 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3039 } else { 3040 if ((mask & AT_XVATTR) && 3041 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3042 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3043 else 3044 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3045 } 3046 3047 if (attrzp) { 3048 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3049 } 3050 3051 fuid_dirtied = zfsvfs->z_fuid_dirty; 3052 if (fuid_dirtied) 3053 zfs_fuid_txhold(zfsvfs, tx); 3054 3055 zfs_sa_upgrade_txholds(tx, zp); 3056 3057 err = dmu_tx_assign(tx, TXG_WAIT); 3058 if (err) 3059 goto out; 3060 3061 count = 0; 3062 /* 3063 * Set each attribute requested. 3064 * We group settings according to the locks they need to acquire. 3065 * 3066 * Note: you cannot set ctime directly, although it will be 3067 * updated as a side-effect of calling this function. 3068 */ 3069 3070 3071 if (mask & (AT_UID|AT_GID|AT_MODE)) 3072 mutex_enter(&zp->z_acl_lock); 3073 mutex_enter(&zp->z_lock); 3074 3075 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3076 &zp->z_pflags, sizeof (zp->z_pflags)); 3077 3078 if (attrzp) { 3079 if (mask & (AT_UID|AT_GID|AT_MODE)) 3080 mutex_enter(&attrzp->z_acl_lock); 3081 mutex_enter(&attrzp->z_lock); 3082 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3083 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3084 sizeof (attrzp->z_pflags)); 3085 } 3086 3087 if (mask & (AT_UID|AT_GID)) { 3088 3089 if (mask & AT_UID) { 3090 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3091 &new_uid, sizeof (new_uid)); 3092 zp->z_uid = new_uid; 3093 if (attrzp) { 3094 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3095 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3096 sizeof (new_uid)); 3097 attrzp->z_uid = new_uid; 3098 } 3099 } 3100 3101 if (mask & AT_GID) { 3102 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3103 NULL, &new_gid, sizeof (new_gid)); 3104 zp->z_gid = new_gid; 3105 if (attrzp) { 3106 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3107 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3108 sizeof (new_gid)); 3109 attrzp->z_gid = new_gid; 3110 } 3111 } 3112 if (!(mask & AT_MODE)) { 3113 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3114 NULL, &new_mode, sizeof (new_mode)); 3115 new_mode = zp->z_mode; 3116 } 3117 err = zfs_acl_chown_setattr(zp); 3118 ASSERT(err == 0); 3119 if (attrzp) { 3120 err = zfs_acl_chown_setattr(attrzp); 3121 ASSERT(err == 0); 3122 } 3123 } 3124 3125 if (mask & AT_MODE) { 3126 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3127 &new_mode, sizeof (new_mode)); 3128 zp->z_mode = new_mode; 3129 ASSERT3U((uintptr_t)aclp, !=, NULL); 3130 err = zfs_aclset_common(zp, aclp, cr, tx); 3131 ASSERT0(err); 3132 if (zp->z_acl_cached) 3133 zfs_acl_free(zp->z_acl_cached); 3134 zp->z_acl_cached = aclp; 3135 aclp = NULL; 3136 } 3137 3138 3139 if (mask & AT_ATIME) { 3140 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3141 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3142 &zp->z_atime, sizeof (zp->z_atime)); 3143 } 3144 3145 if (mask & AT_MTIME) { 3146 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3147 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3148 mtime, sizeof (mtime)); 3149 } 3150 3151 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3152 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3153 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3154 NULL, mtime, sizeof (mtime)); 3155 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3156 &ctime, sizeof (ctime)); 3157 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3158 B_TRUE); 3159 } else if (mask != 0) { 3160 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3161 &ctime, sizeof (ctime)); 3162 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3163 B_TRUE); 3164 if (attrzp) { 3165 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3166 SA_ZPL_CTIME(zfsvfs), NULL, 3167 &ctime, sizeof (ctime)); 3168 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3169 mtime, ctime, B_TRUE); 3170 } 3171 } 3172 /* 3173 * Do this after setting timestamps to prevent timestamp 3174 * update from toggling bit 3175 */ 3176 3177 if (xoap && (mask & AT_XVATTR)) { 3178 3179 /* 3180 * restore trimmed off masks 3181 * so that return masks can be set for caller. 3182 */ 3183 3184 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3185 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3186 } 3187 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3188 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3189 } 3190 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3191 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3192 } 3193 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3194 XVA_SET_REQ(xvap, XAT_NODUMP); 3195 } 3196 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3197 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3198 } 3199 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3200 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3201 } 3202 3203 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3204 ASSERT(vp->v_type == VREG); 3205 3206 zfs_xvattr_set(zp, xvap, tx); 3207 } 3208 3209 if (fuid_dirtied) 3210 zfs_fuid_sync(zfsvfs, tx); 3211 3212 if (mask != 0) 3213 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3214 3215 mutex_exit(&zp->z_lock); 3216 if (mask & (AT_UID|AT_GID|AT_MODE)) 3217 mutex_exit(&zp->z_acl_lock); 3218 3219 if (attrzp) { 3220 if (mask & (AT_UID|AT_GID|AT_MODE)) 3221 mutex_exit(&attrzp->z_acl_lock); 3222 mutex_exit(&attrzp->z_lock); 3223 } 3224 out: 3225 if (err == 0 && attrzp) { 3226 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3227 xattr_count, tx); 3228 ASSERT(err2 == 0); 3229 } 3230 3231 if (attrzp) 3232 VN_RELE(ZTOV(attrzp)); 3233 3234 if (aclp) 3235 zfs_acl_free(aclp); 3236 3237 if (fuidp) { 3238 zfs_fuid_info_free(fuidp); 3239 fuidp = NULL; 3240 } 3241 3242 if (err) { 3243 dmu_tx_abort(tx); 3244 if (err == ERESTART) 3245 goto top; 3246 } else { 3247 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3248 dmu_tx_commit(tx); 3249 } 3250 3251 out2: 3252 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3253 zil_commit(zilog, 0); 3254 3255 ZFS_EXIT(zfsvfs); 3256 return (err); 3257 } 3258 3259 typedef struct zfs_zlock { 3260 krwlock_t *zl_rwlock; /* lock we acquired */ 3261 znode_t *zl_znode; /* znode we held */ 3262 struct zfs_zlock *zl_next; /* next in list */ 3263 } zfs_zlock_t; 3264 3265 /* 3266 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3267 */ 3268 static void 3269 zfs_rename_unlock(zfs_zlock_t **zlpp) 3270 { 3271 zfs_zlock_t *zl; 3272 3273 while ((zl = *zlpp) != NULL) { 3274 if (zl->zl_znode != NULL) 3275 VN_RELE(ZTOV(zl->zl_znode)); 3276 rw_exit(zl->zl_rwlock); 3277 *zlpp = zl->zl_next; 3278 kmem_free(zl, sizeof (*zl)); 3279 } 3280 } 3281 3282 /* 3283 * Search back through the directory tree, using the ".." entries. 3284 * Lock each directory in the chain to prevent concurrent renames. 3285 * Fail any attempt to move a directory into one of its own descendants. 3286 * XXX - z_parent_lock can overlap with map or grow locks 3287 */ 3288 static int 3289 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3290 { 3291 zfs_zlock_t *zl; 3292 znode_t *zp = tdzp; 3293 uint64_t rootid = zp->z_zfsvfs->z_root; 3294 uint64_t oidp = zp->z_id; 3295 krwlock_t *rwlp = &szp->z_parent_lock; 3296 krw_t rw = RW_WRITER; 3297 3298 /* 3299 * First pass write-locks szp and compares to zp->z_id. 3300 * Later passes read-lock zp and compare to zp->z_parent. 3301 */ 3302 do { 3303 if (!rw_tryenter(rwlp, rw)) { 3304 /* 3305 * Another thread is renaming in this path. 3306 * Note that if we are a WRITER, we don't have any 3307 * parent_locks held yet. 3308 */ 3309 if (rw == RW_READER && zp->z_id > szp->z_id) { 3310 /* 3311 * Drop our locks and restart 3312 */ 3313 zfs_rename_unlock(&zl); 3314 *zlpp = NULL; 3315 zp = tdzp; 3316 oidp = zp->z_id; 3317 rwlp = &szp->z_parent_lock; 3318 rw = RW_WRITER; 3319 continue; 3320 } else { 3321 /* 3322 * Wait for other thread to drop its locks 3323 */ 3324 rw_enter(rwlp, rw); 3325 } 3326 } 3327 3328 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3329 zl->zl_rwlock = rwlp; 3330 zl->zl_znode = NULL; 3331 zl->zl_next = *zlpp; 3332 *zlpp = zl; 3333 3334 if (oidp == szp->z_id) /* We're a descendant of szp */ 3335 return (SET_ERROR(EINVAL)); 3336 3337 if (oidp == rootid) /* We've hit the top */ 3338 return (0); 3339 3340 if (rw == RW_READER) { /* i.e. not the first pass */ 3341 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3342 if (error) 3343 return (error); 3344 zl->zl_znode = zp; 3345 } 3346 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3347 &oidp, sizeof (oidp)); 3348 rwlp = &zp->z_parent_lock; 3349 rw = RW_READER; 3350 3351 } while (zp->z_id != sdzp->z_id); 3352 3353 return (0); 3354 } 3355 3356 /* 3357 * Move an entry from the provided source directory to the target 3358 * directory. Change the entry name as indicated. 3359 * 3360 * IN: sdvp - Source directory containing the "old entry". 3361 * snm - Old entry name. 3362 * tdvp - Target directory to contain the "new entry". 3363 * tnm - New entry name. 3364 * cr - credentials of caller. 3365 * ct - caller context 3366 * flags - case flags 3367 * 3368 * RETURN: 0 on success, error code on failure. 3369 * 3370 * Timestamps: 3371 * sdvp,tdvp - ctime|mtime updated 3372 */ 3373 /*ARGSUSED*/ 3374 static int 3375 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3376 caller_context_t *ct, int flags) 3377 { 3378 znode_t *tdzp, *szp, *tzp; 3379 znode_t *sdzp = VTOZ(sdvp); 3380 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3381 zilog_t *zilog; 3382 vnode_t *realvp; 3383 zfs_dirlock_t *sdl, *tdl; 3384 dmu_tx_t *tx; 3385 zfs_zlock_t *zl; 3386 int cmp, serr, terr; 3387 int error = 0; 3388 int zflg = 0; 3389 boolean_t waited = B_FALSE; 3390 3391 ZFS_ENTER(zfsvfs); 3392 ZFS_VERIFY_ZP(sdzp); 3393 zilog = zfsvfs->z_log; 3394 3395 /* 3396 * Make sure we have the real vp for the target directory. 3397 */ 3398 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3399 tdvp = realvp; 3400 3401 tdzp = VTOZ(tdvp); 3402 ZFS_VERIFY_ZP(tdzp); 3403 3404 /* 3405 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3406 * ctldir appear to have the same v_vfsp. 3407 */ 3408 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3409 ZFS_EXIT(zfsvfs); 3410 return (SET_ERROR(EXDEV)); 3411 } 3412 3413 if (zfsvfs->z_utf8 && u8_validate(tnm, 3414 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3415 ZFS_EXIT(zfsvfs); 3416 return (SET_ERROR(EILSEQ)); 3417 } 3418 3419 if (flags & FIGNORECASE) 3420 zflg |= ZCILOOK; 3421 3422 top: 3423 szp = NULL; 3424 tzp = NULL; 3425 zl = NULL; 3426 3427 /* 3428 * This is to prevent the creation of links into attribute space 3429 * by renaming a linked file into/outof an attribute directory. 3430 * See the comment in zfs_link() for why this is considered bad. 3431 */ 3432 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3433 ZFS_EXIT(zfsvfs); 3434 return (SET_ERROR(EINVAL)); 3435 } 3436 3437 /* 3438 * Lock source and target directory entries. To prevent deadlock, 3439 * a lock ordering must be defined. We lock the directory with 3440 * the smallest object id first, or if it's a tie, the one with 3441 * the lexically first name. 3442 */ 3443 if (sdzp->z_id < tdzp->z_id) { 3444 cmp = -1; 3445 } else if (sdzp->z_id > tdzp->z_id) { 3446 cmp = 1; 3447 } else { 3448 /* 3449 * First compare the two name arguments without 3450 * considering any case folding. 3451 */ 3452 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3453 3454 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3455 ASSERT(error == 0 || !zfsvfs->z_utf8); 3456 if (cmp == 0) { 3457 /* 3458 * POSIX: "If the old argument and the new argument 3459 * both refer to links to the same existing file, 3460 * the rename() function shall return successfully 3461 * and perform no other action." 3462 */ 3463 ZFS_EXIT(zfsvfs); 3464 return (0); 3465 } 3466 /* 3467 * If the file system is case-folding, then we may 3468 * have some more checking to do. A case-folding file 3469 * system is either supporting mixed case sensitivity 3470 * access or is completely case-insensitive. Note 3471 * that the file system is always case preserving. 3472 * 3473 * In mixed sensitivity mode case sensitive behavior 3474 * is the default. FIGNORECASE must be used to 3475 * explicitly request case insensitive behavior. 3476 * 3477 * If the source and target names provided differ only 3478 * by case (e.g., a request to rename 'tim' to 'Tim'), 3479 * we will treat this as a special case in the 3480 * case-insensitive mode: as long as the source name 3481 * is an exact match, we will allow this to proceed as 3482 * a name-change request. 3483 */ 3484 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3485 (zfsvfs->z_case == ZFS_CASE_MIXED && 3486 flags & FIGNORECASE)) && 3487 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3488 &error) == 0) { 3489 /* 3490 * case preserving rename request, require exact 3491 * name matches 3492 */ 3493 zflg |= ZCIEXACT; 3494 zflg &= ~ZCILOOK; 3495 } 3496 } 3497 3498 /* 3499 * If the source and destination directories are the same, we should 3500 * grab the z_name_lock of that directory only once. 3501 */ 3502 if (sdzp == tdzp) { 3503 zflg |= ZHAVELOCK; 3504 rw_enter(&sdzp->z_name_lock, RW_READER); 3505 } 3506 3507 if (cmp < 0) { 3508 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3509 ZEXISTS | zflg, NULL, NULL); 3510 terr = zfs_dirent_lock(&tdl, 3511 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3512 } else { 3513 terr = zfs_dirent_lock(&tdl, 3514 tdzp, tnm, &tzp, zflg, NULL, NULL); 3515 serr = zfs_dirent_lock(&sdl, 3516 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3517 NULL, NULL); 3518 } 3519 3520 if (serr) { 3521 /* 3522 * Source entry invalid or not there. 3523 */ 3524 if (!terr) { 3525 zfs_dirent_unlock(tdl); 3526 if (tzp) 3527 VN_RELE(ZTOV(tzp)); 3528 } 3529 3530 if (sdzp == tdzp) 3531 rw_exit(&sdzp->z_name_lock); 3532 3533 if (strcmp(snm, "..") == 0) 3534 serr = SET_ERROR(EINVAL); 3535 ZFS_EXIT(zfsvfs); 3536 return (serr); 3537 } 3538 if (terr) { 3539 zfs_dirent_unlock(sdl); 3540 VN_RELE(ZTOV(szp)); 3541 3542 if (sdzp == tdzp) 3543 rw_exit(&sdzp->z_name_lock); 3544 3545 if (strcmp(tnm, "..") == 0) 3546 terr = SET_ERROR(EINVAL); 3547 ZFS_EXIT(zfsvfs); 3548 return (terr); 3549 } 3550 3551 /* 3552 * Must have write access at the source to remove the old entry 3553 * and write access at the target to create the new entry. 3554 * Note that if target and source are the same, this can be 3555 * done in a single check. 3556 */ 3557 3558 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3559 goto out; 3560 3561 if (ZTOV(szp)->v_type == VDIR) { 3562 /* 3563 * Check to make sure rename is valid. 3564 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3565 */ 3566 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3567 goto out; 3568 } 3569 3570 /* 3571 * Does target exist? 3572 */ 3573 if (tzp) { 3574 /* 3575 * Source and target must be the same type. 3576 */ 3577 if (ZTOV(szp)->v_type == VDIR) { 3578 if (ZTOV(tzp)->v_type != VDIR) { 3579 error = SET_ERROR(ENOTDIR); 3580 goto out; 3581 } 3582 } else { 3583 if (ZTOV(tzp)->v_type == VDIR) { 3584 error = SET_ERROR(EISDIR); 3585 goto out; 3586 } 3587 } 3588 /* 3589 * POSIX dictates that when the source and target 3590 * entries refer to the same file object, rename 3591 * must do nothing and exit without error. 3592 */ 3593 if (szp->z_id == tzp->z_id) { 3594 error = 0; 3595 goto out; 3596 } 3597 } 3598 3599 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3600 if (tzp) 3601 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3602 3603 /* 3604 * notify the target directory if it is not the same 3605 * as source directory. 3606 */ 3607 if (tdvp != sdvp) { 3608 vnevent_rename_dest_dir(tdvp, ct); 3609 } 3610 3611 tx = dmu_tx_create(zfsvfs->z_os); 3612 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3613 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3614 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3615 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3616 if (sdzp != tdzp) { 3617 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3618 zfs_sa_upgrade_txholds(tx, tdzp); 3619 } 3620 if (tzp) { 3621 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3622 zfs_sa_upgrade_txholds(tx, tzp); 3623 } 3624 3625 zfs_sa_upgrade_txholds(tx, szp); 3626 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3627 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3628 if (error) { 3629 if (zl != NULL) 3630 zfs_rename_unlock(&zl); 3631 zfs_dirent_unlock(sdl); 3632 zfs_dirent_unlock(tdl); 3633 3634 if (sdzp == tdzp) 3635 rw_exit(&sdzp->z_name_lock); 3636 3637 VN_RELE(ZTOV(szp)); 3638 if (tzp) 3639 VN_RELE(ZTOV(tzp)); 3640 if (error == ERESTART) { 3641 waited = B_TRUE; 3642 dmu_tx_wait(tx); 3643 dmu_tx_abort(tx); 3644 goto top; 3645 } 3646 dmu_tx_abort(tx); 3647 ZFS_EXIT(zfsvfs); 3648 return (error); 3649 } 3650 3651 if (tzp) /* Attempt to remove the existing target */ 3652 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3653 3654 if (error == 0) { 3655 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3656 if (error == 0) { 3657 szp->z_pflags |= ZFS_AV_MODIFIED; 3658 3659 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3660 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3661 ASSERT0(error); 3662 3663 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3664 if (error == 0) { 3665 zfs_log_rename(zilog, tx, TX_RENAME | 3666 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 3667 sdl->dl_name, tdzp, tdl->dl_name, szp); 3668 3669 /* 3670 * Update path information for the target vnode 3671 */ 3672 vn_renamepath(tdvp, ZTOV(szp), tnm, 3673 strlen(tnm)); 3674 } else { 3675 /* 3676 * At this point, we have successfully created 3677 * the target name, but have failed to remove 3678 * the source name. Since the create was done 3679 * with the ZRENAMING flag, there are 3680 * complications; for one, the link count is 3681 * wrong. The easiest way to deal with this 3682 * is to remove the newly created target, and 3683 * return the original error. This must 3684 * succeed; fortunately, it is very unlikely to 3685 * fail, since we just created it. 3686 */ 3687 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3688 ZRENAMING, NULL), ==, 0); 3689 } 3690 } 3691 } 3692 3693 dmu_tx_commit(tx); 3694 out: 3695 if (zl != NULL) 3696 zfs_rename_unlock(&zl); 3697 3698 zfs_dirent_unlock(sdl); 3699 zfs_dirent_unlock(tdl); 3700 3701 if (sdzp == tdzp) 3702 rw_exit(&sdzp->z_name_lock); 3703 3704 3705 VN_RELE(ZTOV(szp)); 3706 if (tzp) 3707 VN_RELE(ZTOV(tzp)); 3708 3709 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3710 zil_commit(zilog, 0); 3711 3712 ZFS_EXIT(zfsvfs); 3713 return (error); 3714 } 3715 3716 /* 3717 * Insert the indicated symbolic reference entry into the directory. 3718 * 3719 * IN: dvp - Directory to contain new symbolic link. 3720 * link - Name for new symlink entry. 3721 * vap - Attributes of new entry. 3722 * cr - credentials of caller. 3723 * ct - caller context 3724 * flags - case flags 3725 * 3726 * RETURN: 0 on success, error code on failure. 3727 * 3728 * Timestamps: 3729 * dvp - ctime|mtime updated 3730 */ 3731 /*ARGSUSED*/ 3732 static int 3733 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3734 caller_context_t *ct, int flags) 3735 { 3736 znode_t *zp, *dzp = VTOZ(dvp); 3737 zfs_dirlock_t *dl; 3738 dmu_tx_t *tx; 3739 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3740 zilog_t *zilog; 3741 uint64_t len = strlen(link); 3742 int error; 3743 int zflg = ZNEW; 3744 zfs_acl_ids_t acl_ids; 3745 boolean_t fuid_dirtied; 3746 uint64_t txtype = TX_SYMLINK; 3747 boolean_t waited = B_FALSE; 3748 3749 ASSERT(vap->va_type == VLNK); 3750 3751 ZFS_ENTER(zfsvfs); 3752 ZFS_VERIFY_ZP(dzp); 3753 zilog = zfsvfs->z_log; 3754 3755 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3756 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3757 ZFS_EXIT(zfsvfs); 3758 return (SET_ERROR(EILSEQ)); 3759 } 3760 if (flags & FIGNORECASE) 3761 zflg |= ZCILOOK; 3762 3763 if (len > MAXPATHLEN) { 3764 ZFS_EXIT(zfsvfs); 3765 return (SET_ERROR(ENAMETOOLONG)); 3766 } 3767 3768 if ((error = zfs_acl_ids_create(dzp, 0, 3769 vap, cr, NULL, &acl_ids)) != 0) { 3770 ZFS_EXIT(zfsvfs); 3771 return (error); 3772 } 3773 top: 3774 /* 3775 * Attempt to lock directory; fail if entry already exists. 3776 */ 3777 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3778 if (error) { 3779 zfs_acl_ids_free(&acl_ids); 3780 ZFS_EXIT(zfsvfs); 3781 return (error); 3782 } 3783 3784 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3785 zfs_acl_ids_free(&acl_ids); 3786 zfs_dirent_unlock(dl); 3787 ZFS_EXIT(zfsvfs); 3788 return (error); 3789 } 3790 3791 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3792 zfs_acl_ids_free(&acl_ids); 3793 zfs_dirent_unlock(dl); 3794 ZFS_EXIT(zfsvfs); 3795 return (SET_ERROR(EDQUOT)); 3796 } 3797 tx = dmu_tx_create(zfsvfs->z_os); 3798 fuid_dirtied = zfsvfs->z_fuid_dirty; 3799 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3800 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3801 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3802 ZFS_SA_BASE_ATTR_SIZE + len); 3803 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3804 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3805 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3806 acl_ids.z_aclp->z_acl_bytes); 3807 } 3808 if (fuid_dirtied) 3809 zfs_fuid_txhold(zfsvfs, tx); 3810 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3811 if (error) { 3812 zfs_dirent_unlock(dl); 3813 if (error == ERESTART) { 3814 waited = B_TRUE; 3815 dmu_tx_wait(tx); 3816 dmu_tx_abort(tx); 3817 goto top; 3818 } 3819 zfs_acl_ids_free(&acl_ids); 3820 dmu_tx_abort(tx); 3821 ZFS_EXIT(zfsvfs); 3822 return (error); 3823 } 3824 3825 /* 3826 * Create a new object for the symlink. 3827 * for version 4 ZPL datsets the symlink will be an SA attribute 3828 */ 3829 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3830 3831 if (fuid_dirtied) 3832 zfs_fuid_sync(zfsvfs, tx); 3833 3834 mutex_enter(&zp->z_lock); 3835 if (zp->z_is_sa) 3836 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3837 link, len, tx); 3838 else 3839 zfs_sa_symlink(zp, link, len, tx); 3840 mutex_exit(&zp->z_lock); 3841 3842 zp->z_size = len; 3843 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3844 &zp->z_size, sizeof (zp->z_size), tx); 3845 /* 3846 * Insert the new object into the directory. 3847 */ 3848 (void) zfs_link_create(dl, zp, tx, ZNEW); 3849 3850 if (flags & FIGNORECASE) 3851 txtype |= TX_CI; 3852 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3853 3854 zfs_acl_ids_free(&acl_ids); 3855 3856 dmu_tx_commit(tx); 3857 3858 zfs_dirent_unlock(dl); 3859 3860 VN_RELE(ZTOV(zp)); 3861 3862 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3863 zil_commit(zilog, 0); 3864 3865 ZFS_EXIT(zfsvfs); 3866 return (error); 3867 } 3868 3869 /* 3870 * Return, in the buffer contained in the provided uio structure, 3871 * the symbolic path referred to by vp. 3872 * 3873 * IN: vp - vnode of symbolic link. 3874 * uio - structure to contain the link path. 3875 * cr - credentials of caller. 3876 * ct - caller context 3877 * 3878 * OUT: uio - structure containing the link path. 3879 * 3880 * RETURN: 0 on success, error code on failure. 3881 * 3882 * Timestamps: 3883 * vp - atime updated 3884 */ 3885 /* ARGSUSED */ 3886 static int 3887 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3888 { 3889 znode_t *zp = VTOZ(vp); 3890 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3891 int error; 3892 3893 ZFS_ENTER(zfsvfs); 3894 ZFS_VERIFY_ZP(zp); 3895 3896 mutex_enter(&zp->z_lock); 3897 if (zp->z_is_sa) 3898 error = sa_lookup_uio(zp->z_sa_hdl, 3899 SA_ZPL_SYMLINK(zfsvfs), uio); 3900 else 3901 error = zfs_sa_readlink(zp, uio); 3902 mutex_exit(&zp->z_lock); 3903 3904 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3905 3906 ZFS_EXIT(zfsvfs); 3907 return (error); 3908 } 3909 3910 /* 3911 * Insert a new entry into directory tdvp referencing svp. 3912 * 3913 * IN: tdvp - Directory to contain new entry. 3914 * svp - vnode of new entry. 3915 * name - name of new entry. 3916 * cr - credentials of caller. 3917 * ct - caller context 3918 * 3919 * RETURN: 0 on success, error code on failure. 3920 * 3921 * Timestamps: 3922 * tdvp - ctime|mtime updated 3923 * svp - ctime updated 3924 */ 3925 /* ARGSUSED */ 3926 static int 3927 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3928 caller_context_t *ct, int flags) 3929 { 3930 znode_t *dzp = VTOZ(tdvp); 3931 znode_t *tzp, *szp; 3932 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3933 zilog_t *zilog; 3934 zfs_dirlock_t *dl; 3935 dmu_tx_t *tx; 3936 vnode_t *realvp; 3937 int error; 3938 int zf = ZNEW; 3939 uint64_t parent; 3940 uid_t owner; 3941 boolean_t waited = B_FALSE; 3942 3943 ASSERT(tdvp->v_type == VDIR); 3944 3945 ZFS_ENTER(zfsvfs); 3946 ZFS_VERIFY_ZP(dzp); 3947 zilog = zfsvfs->z_log; 3948 3949 if (VOP_REALVP(svp, &realvp, ct) == 0) 3950 svp = realvp; 3951 3952 /* 3953 * POSIX dictates that we return EPERM here. 3954 * Better choices include ENOTSUP or EISDIR. 3955 */ 3956 if (svp->v_type == VDIR) { 3957 ZFS_EXIT(zfsvfs); 3958 return (SET_ERROR(EPERM)); 3959 } 3960 3961 szp = VTOZ(svp); 3962 ZFS_VERIFY_ZP(szp); 3963 3964 /* 3965 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3966 * ctldir appear to have the same v_vfsp. 3967 */ 3968 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 3969 ZFS_EXIT(zfsvfs); 3970 return (SET_ERROR(EXDEV)); 3971 } 3972 3973 /* Prevent links to .zfs/shares files */ 3974 3975 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 3976 &parent, sizeof (uint64_t))) != 0) { 3977 ZFS_EXIT(zfsvfs); 3978 return (error); 3979 } 3980 if (parent == zfsvfs->z_shares_dir) { 3981 ZFS_EXIT(zfsvfs); 3982 return (SET_ERROR(EPERM)); 3983 } 3984 3985 if (zfsvfs->z_utf8 && u8_validate(name, 3986 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3987 ZFS_EXIT(zfsvfs); 3988 return (SET_ERROR(EILSEQ)); 3989 } 3990 if (flags & FIGNORECASE) 3991 zf |= ZCILOOK; 3992 3993 /* 3994 * We do not support links between attributes and non-attributes 3995 * because of the potential security risk of creating links 3996 * into "normal" file space in order to circumvent restrictions 3997 * imposed in attribute space. 3998 */ 3999 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 4000 ZFS_EXIT(zfsvfs); 4001 return (SET_ERROR(EINVAL)); 4002 } 4003 4004 4005 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 4006 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 4007 ZFS_EXIT(zfsvfs); 4008 return (SET_ERROR(EPERM)); 4009 } 4010 4011 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4012 ZFS_EXIT(zfsvfs); 4013 return (error); 4014 } 4015 4016 top: 4017 /* 4018 * Attempt to lock directory; fail if entry already exists. 4019 */ 4020 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4021 if (error) { 4022 ZFS_EXIT(zfsvfs); 4023 return (error); 4024 } 4025 4026 tx = dmu_tx_create(zfsvfs->z_os); 4027 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4028 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4029 zfs_sa_upgrade_txholds(tx, szp); 4030 zfs_sa_upgrade_txholds(tx, dzp); 4031 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 4032 if (error) { 4033 zfs_dirent_unlock(dl); 4034 if (error == ERESTART) { 4035 waited = B_TRUE; 4036 dmu_tx_wait(tx); 4037 dmu_tx_abort(tx); 4038 goto top; 4039 } 4040 dmu_tx_abort(tx); 4041 ZFS_EXIT(zfsvfs); 4042 return (error); 4043 } 4044 4045 error = zfs_link_create(dl, szp, tx, 0); 4046 4047 if (error == 0) { 4048 uint64_t txtype = TX_LINK; 4049 if (flags & FIGNORECASE) 4050 txtype |= TX_CI; 4051 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4052 } 4053 4054 dmu_tx_commit(tx); 4055 4056 zfs_dirent_unlock(dl); 4057 4058 if (error == 0) { 4059 vnevent_link(svp, ct); 4060 } 4061 4062 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4063 zil_commit(zilog, 0); 4064 4065 ZFS_EXIT(zfsvfs); 4066 return (error); 4067 } 4068 4069 /* 4070 * zfs_null_putapage() is used when the file system has been force 4071 * unmounted. It just drops the pages. 4072 */ 4073 /* ARGSUSED */ 4074 static int 4075 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4076 size_t *lenp, int flags, cred_t *cr) 4077 { 4078 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4079 return (0); 4080 } 4081 4082 /* 4083 * Push a page out to disk, klustering if possible. 4084 * 4085 * IN: vp - file to push page to. 4086 * pp - page to push. 4087 * flags - additional flags. 4088 * cr - credentials of caller. 4089 * 4090 * OUT: offp - start of range pushed. 4091 * lenp - len of range pushed. 4092 * 4093 * RETURN: 0 on success, error code on failure. 4094 * 4095 * NOTE: callers must have locked the page to be pushed. On 4096 * exit, the page (and all other pages in the kluster) must be 4097 * unlocked. 4098 */ 4099 /* ARGSUSED */ 4100 static int 4101 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4102 size_t *lenp, int flags, cred_t *cr) 4103 { 4104 znode_t *zp = VTOZ(vp); 4105 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4106 dmu_tx_t *tx; 4107 u_offset_t off, koff; 4108 size_t len, klen; 4109 int err; 4110 4111 off = pp->p_offset; 4112 len = PAGESIZE; 4113 /* 4114 * If our blocksize is bigger than the page size, try to kluster 4115 * multiple pages so that we write a full block (thus avoiding 4116 * a read-modify-write). 4117 */ 4118 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4119 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4120 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4121 ASSERT(koff <= zp->z_size); 4122 if (koff + klen > zp->z_size) 4123 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4124 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4125 } 4126 ASSERT3U(btop(len), ==, btopr(len)); 4127 4128 /* 4129 * Can't push pages past end-of-file. 4130 */ 4131 if (off >= zp->z_size) { 4132 /* ignore all pages */ 4133 err = 0; 4134 goto out; 4135 } else if (off + len > zp->z_size) { 4136 int npages = btopr(zp->z_size - off); 4137 page_t *trunc; 4138 4139 page_list_break(&pp, &trunc, npages); 4140 /* ignore pages past end of file */ 4141 if (trunc) 4142 pvn_write_done(trunc, flags); 4143 len = zp->z_size - off; 4144 } 4145 4146 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4147 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4148 err = SET_ERROR(EDQUOT); 4149 goto out; 4150 } 4151 tx = dmu_tx_create(zfsvfs->z_os); 4152 dmu_tx_hold_write(tx, zp->z_id, off, len); 4153 4154 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4155 zfs_sa_upgrade_txholds(tx, zp); 4156 err = dmu_tx_assign(tx, TXG_WAIT); 4157 if (err != 0) { 4158 dmu_tx_abort(tx); 4159 goto out; 4160 } 4161 4162 if (zp->z_blksz <= PAGESIZE) { 4163 caddr_t va = zfs_map_page(pp, S_READ); 4164 ASSERT3U(len, <=, PAGESIZE); 4165 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4166 zfs_unmap_page(pp, va); 4167 } else { 4168 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4169 } 4170 4171 if (err == 0) { 4172 uint64_t mtime[2], ctime[2]; 4173 sa_bulk_attr_t bulk[3]; 4174 int count = 0; 4175 4176 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4177 &mtime, 16); 4178 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4179 &ctime, 16); 4180 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4181 &zp->z_pflags, 8); 4182 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4183 B_TRUE); 4184 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4185 } 4186 dmu_tx_commit(tx); 4187 4188 out: 4189 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4190 if (offp) 4191 *offp = off; 4192 if (lenp) 4193 *lenp = len; 4194 4195 return (err); 4196 } 4197 4198 /* 4199 * Copy the portion of the file indicated from pages into the file. 4200 * The pages are stored in a page list attached to the files vnode. 4201 * 4202 * IN: vp - vnode of file to push page data to. 4203 * off - position in file to put data. 4204 * len - amount of data to write. 4205 * flags - flags to control the operation. 4206 * cr - credentials of caller. 4207 * ct - caller context. 4208 * 4209 * RETURN: 0 on success, error code on failure. 4210 * 4211 * Timestamps: 4212 * vp - ctime|mtime updated 4213 */ 4214 /*ARGSUSED*/ 4215 static int 4216 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4217 caller_context_t *ct) 4218 { 4219 znode_t *zp = VTOZ(vp); 4220 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4221 page_t *pp; 4222 size_t io_len; 4223 u_offset_t io_off; 4224 uint_t blksz; 4225 rl_t *rl; 4226 int error = 0; 4227 4228 ZFS_ENTER(zfsvfs); 4229 ZFS_VERIFY_ZP(zp); 4230 4231 /* 4232 * There's nothing to do if no data is cached. 4233 */ 4234 if (!vn_has_cached_data(vp)) { 4235 ZFS_EXIT(zfsvfs); 4236 return (0); 4237 } 4238 4239 /* 4240 * Align this request to the file block size in case we kluster. 4241 * XXX - this can result in pretty aggresive locking, which can 4242 * impact simultanious read/write access. One option might be 4243 * to break up long requests (len == 0) into block-by-block 4244 * operations to get narrower locking. 4245 */ 4246 blksz = zp->z_blksz; 4247 if (ISP2(blksz)) 4248 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4249 else 4250 io_off = 0; 4251 if (len > 0 && ISP2(blksz)) 4252 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4253 else 4254 io_len = 0; 4255 4256 if (io_len == 0) { 4257 /* 4258 * Search the entire vp list for pages >= io_off. 4259 */ 4260 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4261 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4262 goto out; 4263 } 4264 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4265 4266 if (off > zp->z_size) { 4267 /* past end of file */ 4268 zfs_range_unlock(rl); 4269 ZFS_EXIT(zfsvfs); 4270 return (0); 4271 } 4272 4273 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4274 4275 for (off = io_off; io_off < off + len; io_off += io_len) { 4276 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4277 pp = page_lookup(vp, io_off, 4278 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4279 } else { 4280 pp = page_lookup_nowait(vp, io_off, 4281 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4282 } 4283 4284 if (pp != NULL && pvn_getdirty(pp, flags)) { 4285 int err; 4286 4287 /* 4288 * Found a dirty page to push 4289 */ 4290 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4291 if (err) 4292 error = err; 4293 } else { 4294 io_len = PAGESIZE; 4295 } 4296 } 4297 out: 4298 zfs_range_unlock(rl); 4299 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4300 zil_commit(zfsvfs->z_log, zp->z_id); 4301 ZFS_EXIT(zfsvfs); 4302 return (error); 4303 } 4304 4305 /*ARGSUSED*/ 4306 void 4307 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4308 { 4309 znode_t *zp = VTOZ(vp); 4310 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4311 int error; 4312 4313 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4314 if (zp->z_sa_hdl == NULL) { 4315 /* 4316 * The fs has been unmounted, or we did a 4317 * suspend/resume and this file no longer exists. 4318 */ 4319 if (vn_has_cached_data(vp)) { 4320 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4321 B_INVAL, cr); 4322 } 4323 4324 mutex_enter(&zp->z_lock); 4325 mutex_enter(&vp->v_lock); 4326 ASSERT(vp->v_count == 1); 4327 vp->v_count = 0; 4328 mutex_exit(&vp->v_lock); 4329 mutex_exit(&zp->z_lock); 4330 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4331 zfs_znode_free(zp); 4332 return; 4333 } 4334 4335 /* 4336 * Attempt to push any data in the page cache. If this fails 4337 * we will get kicked out later in zfs_zinactive(). 4338 */ 4339 if (vn_has_cached_data(vp)) { 4340 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4341 cr); 4342 } 4343 4344 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4345 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4346 4347 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4348 zfs_sa_upgrade_txholds(tx, zp); 4349 error = dmu_tx_assign(tx, TXG_WAIT); 4350 if (error) { 4351 dmu_tx_abort(tx); 4352 } else { 4353 mutex_enter(&zp->z_lock); 4354 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4355 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4356 zp->z_atime_dirty = 0; 4357 mutex_exit(&zp->z_lock); 4358 dmu_tx_commit(tx); 4359 } 4360 } 4361 4362 zfs_zinactive(zp); 4363 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4364 } 4365 4366 /* 4367 * Bounds-check the seek operation. 4368 * 4369 * IN: vp - vnode seeking within 4370 * ooff - old file offset 4371 * noffp - pointer to new file offset 4372 * ct - caller context 4373 * 4374 * RETURN: 0 on success, EINVAL if new offset invalid. 4375 */ 4376 /* ARGSUSED */ 4377 static int 4378 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4379 caller_context_t *ct) 4380 { 4381 if (vp->v_type == VDIR) 4382 return (0); 4383 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4384 } 4385 4386 /* 4387 * Pre-filter the generic locking function to trap attempts to place 4388 * a mandatory lock on a memory mapped file. 4389 */ 4390 static int 4391 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4392 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4393 { 4394 znode_t *zp = VTOZ(vp); 4395 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4396 4397 ZFS_ENTER(zfsvfs); 4398 ZFS_VERIFY_ZP(zp); 4399 4400 /* 4401 * We are following the UFS semantics with respect to mapcnt 4402 * here: If we see that the file is mapped already, then we will 4403 * return an error, but we don't worry about races between this 4404 * function and zfs_map(). 4405 */ 4406 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4407 ZFS_EXIT(zfsvfs); 4408 return (SET_ERROR(EAGAIN)); 4409 } 4410 ZFS_EXIT(zfsvfs); 4411 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4412 } 4413 4414 /* 4415 * If we can't find a page in the cache, we will create a new page 4416 * and fill it with file data. For efficiency, we may try to fill 4417 * multiple pages at once (klustering) to fill up the supplied page 4418 * list. Note that the pages to be filled are held with an exclusive 4419 * lock to prevent access by other threads while they are being filled. 4420 */ 4421 static int 4422 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4423 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4424 { 4425 znode_t *zp = VTOZ(vp); 4426 page_t *pp, *cur_pp; 4427 objset_t *os = zp->z_zfsvfs->z_os; 4428 u_offset_t io_off, total; 4429 size_t io_len; 4430 int err; 4431 4432 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4433 /* 4434 * We only have a single page, don't bother klustering 4435 */ 4436 io_off = off; 4437 io_len = PAGESIZE; 4438 pp = page_create_va(vp, io_off, io_len, 4439 PG_EXCL | PG_WAIT, seg, addr); 4440 } else { 4441 /* 4442 * Try to find enough pages to fill the page list 4443 */ 4444 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4445 &io_len, off, plsz, 0); 4446 } 4447 if (pp == NULL) { 4448 /* 4449 * The page already exists, nothing to do here. 4450 */ 4451 *pl = NULL; 4452 return (0); 4453 } 4454 4455 /* 4456 * Fill the pages in the kluster. 4457 */ 4458 cur_pp = pp; 4459 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4460 caddr_t va; 4461 4462 ASSERT3U(io_off, ==, cur_pp->p_offset); 4463 va = zfs_map_page(cur_pp, S_WRITE); 4464 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4465 DMU_READ_PREFETCH); 4466 zfs_unmap_page(cur_pp, va); 4467 if (err) { 4468 /* On error, toss the entire kluster */ 4469 pvn_read_done(pp, B_ERROR); 4470 /* convert checksum errors into IO errors */ 4471 if (err == ECKSUM) 4472 err = SET_ERROR(EIO); 4473 return (err); 4474 } 4475 cur_pp = cur_pp->p_next; 4476 } 4477 4478 /* 4479 * Fill in the page list array from the kluster starting 4480 * from the desired offset `off'. 4481 * NOTE: the page list will always be null terminated. 4482 */ 4483 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4484 ASSERT(pl == NULL || (*pl)->p_offset == off); 4485 4486 return (0); 4487 } 4488 4489 /* 4490 * Return pointers to the pages for the file region [off, off + len] 4491 * in the pl array. If plsz is greater than len, this function may 4492 * also return page pointers from after the specified region 4493 * (i.e. the region [off, off + plsz]). These additional pages are 4494 * only returned if they are already in the cache, or were created as 4495 * part of a klustered read. 4496 * 4497 * IN: vp - vnode of file to get data from. 4498 * off - position in file to get data from. 4499 * len - amount of data to retrieve. 4500 * plsz - length of provided page list. 4501 * seg - segment to obtain pages for. 4502 * addr - virtual address of fault. 4503 * rw - mode of created pages. 4504 * cr - credentials of caller. 4505 * ct - caller context. 4506 * 4507 * OUT: protp - protection mode of created pages. 4508 * pl - list of pages created. 4509 * 4510 * RETURN: 0 on success, error code on failure. 4511 * 4512 * Timestamps: 4513 * vp - atime updated 4514 */ 4515 /* ARGSUSED */ 4516 static int 4517 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4518 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4519 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4520 { 4521 znode_t *zp = VTOZ(vp); 4522 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4523 page_t **pl0 = pl; 4524 int err = 0; 4525 4526 /* we do our own caching, faultahead is unnecessary */ 4527 if (pl == NULL) 4528 return (0); 4529 else if (len > plsz) 4530 len = plsz; 4531 else 4532 len = P2ROUNDUP(len, PAGESIZE); 4533 ASSERT(plsz >= len); 4534 4535 ZFS_ENTER(zfsvfs); 4536 ZFS_VERIFY_ZP(zp); 4537 4538 if (protp) 4539 *protp = PROT_ALL; 4540 4541 /* 4542 * Loop through the requested range [off, off + len) looking 4543 * for pages. If we don't find a page, we will need to create 4544 * a new page and fill it with data from the file. 4545 */ 4546 while (len > 0) { 4547 if (*pl = page_lookup(vp, off, SE_SHARED)) 4548 *(pl+1) = NULL; 4549 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4550 goto out; 4551 while (*pl) { 4552 ASSERT3U((*pl)->p_offset, ==, off); 4553 off += PAGESIZE; 4554 addr += PAGESIZE; 4555 if (len > 0) { 4556 ASSERT3U(len, >=, PAGESIZE); 4557 len -= PAGESIZE; 4558 } 4559 ASSERT3U(plsz, >=, PAGESIZE); 4560 plsz -= PAGESIZE; 4561 pl++; 4562 } 4563 } 4564 4565 /* 4566 * Fill out the page array with any pages already in the cache. 4567 */ 4568 while (plsz > 0 && 4569 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4570 off += PAGESIZE; 4571 plsz -= PAGESIZE; 4572 } 4573 out: 4574 if (err) { 4575 /* 4576 * Release any pages we have previously locked. 4577 */ 4578 while (pl > pl0) 4579 page_unlock(*--pl); 4580 } else { 4581 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4582 } 4583 4584 *pl = NULL; 4585 4586 ZFS_EXIT(zfsvfs); 4587 return (err); 4588 } 4589 4590 /* 4591 * Request a memory map for a section of a file. This code interacts 4592 * with common code and the VM system as follows: 4593 * 4594 * - common code calls mmap(), which ends up in smmap_common() 4595 * - this calls VOP_MAP(), which takes you into (say) zfs 4596 * - zfs_map() calls as_map(), passing segvn_create() as the callback 4597 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 4598 * - zfs_addmap() updates z_mapcnt 4599 */ 4600 /*ARGSUSED*/ 4601 static int 4602 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4603 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4604 caller_context_t *ct) 4605 { 4606 znode_t *zp = VTOZ(vp); 4607 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4608 segvn_crargs_t vn_a; 4609 int error; 4610 4611 ZFS_ENTER(zfsvfs); 4612 ZFS_VERIFY_ZP(zp); 4613 4614 if ((prot & PROT_WRITE) && (zp->z_pflags & 4615 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4616 ZFS_EXIT(zfsvfs); 4617 return (SET_ERROR(EPERM)); 4618 } 4619 4620 if ((prot & (PROT_READ | PROT_EXEC)) && 4621 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4622 ZFS_EXIT(zfsvfs); 4623 return (SET_ERROR(EACCES)); 4624 } 4625 4626 if (vp->v_flag & VNOMAP) { 4627 ZFS_EXIT(zfsvfs); 4628 return (SET_ERROR(ENOSYS)); 4629 } 4630 4631 if (off < 0 || len > MAXOFFSET_T - off) { 4632 ZFS_EXIT(zfsvfs); 4633 return (SET_ERROR(ENXIO)); 4634 } 4635 4636 if (vp->v_type != VREG) { 4637 ZFS_EXIT(zfsvfs); 4638 return (SET_ERROR(ENODEV)); 4639 } 4640 4641 /* 4642 * If file is locked, disallow mapping. 4643 */ 4644 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4645 ZFS_EXIT(zfsvfs); 4646 return (SET_ERROR(EAGAIN)); 4647 } 4648 4649 as_rangelock(as); 4650 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4651 if (error != 0) { 4652 as_rangeunlock(as); 4653 ZFS_EXIT(zfsvfs); 4654 return (error); 4655 } 4656 4657 vn_a.vp = vp; 4658 vn_a.offset = (u_offset_t)off; 4659 vn_a.type = flags & MAP_TYPE; 4660 vn_a.prot = prot; 4661 vn_a.maxprot = maxprot; 4662 vn_a.cred = cr; 4663 vn_a.amp = NULL; 4664 vn_a.flags = flags & ~MAP_TYPE; 4665 vn_a.szc = 0; 4666 vn_a.lgrp_mem_policy_flags = 0; 4667 4668 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4669 4670 as_rangeunlock(as); 4671 ZFS_EXIT(zfsvfs); 4672 return (error); 4673 } 4674 4675 /* ARGSUSED */ 4676 static int 4677 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4678 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4679 caller_context_t *ct) 4680 { 4681 uint64_t pages = btopr(len); 4682 4683 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4684 return (0); 4685 } 4686 4687 /* 4688 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4689 * more accurate mtime for the associated file. Since we don't have a way of 4690 * detecting when the data was actually modified, we have to resort to 4691 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4692 * last page is pushed. The problem occurs when the msync() call is omitted, 4693 * which by far the most common case: 4694 * 4695 * open() 4696 * mmap() 4697 * <modify memory> 4698 * munmap() 4699 * close() 4700 * <time lapse> 4701 * putpage() via fsflush 4702 * 4703 * If we wait until fsflush to come along, we can have a modification time that 4704 * is some arbitrary point in the future. In order to prevent this in the 4705 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4706 * torn down. 4707 */ 4708 /* ARGSUSED */ 4709 static int 4710 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4711 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4712 caller_context_t *ct) 4713 { 4714 uint64_t pages = btopr(len); 4715 4716 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4717 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4718 4719 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4720 vn_has_cached_data(vp)) 4721 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4722 4723 return (0); 4724 } 4725 4726 /* 4727 * Free or allocate space in a file. Currently, this function only 4728 * supports the `F_FREESP' command. However, this command is somewhat 4729 * misnamed, as its functionality includes the ability to allocate as 4730 * well as free space. 4731 * 4732 * IN: vp - vnode of file to free data in. 4733 * cmd - action to take (only F_FREESP supported). 4734 * bfp - section of file to free/alloc. 4735 * flag - current file open mode flags. 4736 * offset - current file offset. 4737 * cr - credentials of caller [UNUSED]. 4738 * ct - caller context. 4739 * 4740 * RETURN: 0 on success, error code on failure. 4741 * 4742 * Timestamps: 4743 * vp - ctime|mtime updated 4744 */ 4745 /* ARGSUSED */ 4746 static int 4747 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4748 offset_t offset, cred_t *cr, caller_context_t *ct) 4749 { 4750 znode_t *zp = VTOZ(vp); 4751 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4752 uint64_t off, len; 4753 int error; 4754 4755 ZFS_ENTER(zfsvfs); 4756 ZFS_VERIFY_ZP(zp); 4757 4758 if (cmd != F_FREESP) { 4759 ZFS_EXIT(zfsvfs); 4760 return (SET_ERROR(EINVAL)); 4761 } 4762 4763 /* 4764 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 4765 * callers might not be able to detect properly that we are read-only, 4766 * so check it explicitly here. 4767 */ 4768 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 4769 ZFS_EXIT(zfsvfs); 4770 return (SET_ERROR(EROFS)); 4771 } 4772 4773 if (error = convoff(vp, bfp, 0, offset)) { 4774 ZFS_EXIT(zfsvfs); 4775 return (error); 4776 } 4777 4778 if (bfp->l_len < 0) { 4779 ZFS_EXIT(zfsvfs); 4780 return (SET_ERROR(EINVAL)); 4781 } 4782 4783 off = bfp->l_start; 4784 len = bfp->l_len; /* 0 means from off to end of file */ 4785 4786 error = zfs_freesp(zp, off, len, flag, TRUE); 4787 4788 if (error == 0 && off == 0 && len == 0) 4789 vnevent_truncate(ZTOV(zp), ct); 4790 4791 ZFS_EXIT(zfsvfs); 4792 return (error); 4793 } 4794 4795 /*ARGSUSED*/ 4796 static int 4797 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4798 { 4799 znode_t *zp = VTOZ(vp); 4800 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4801 uint32_t gen; 4802 uint64_t gen64; 4803 uint64_t object = zp->z_id; 4804 zfid_short_t *zfid; 4805 int size, i, error; 4806 4807 ZFS_ENTER(zfsvfs); 4808 ZFS_VERIFY_ZP(zp); 4809 4810 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4811 &gen64, sizeof (uint64_t))) != 0) { 4812 ZFS_EXIT(zfsvfs); 4813 return (error); 4814 } 4815 4816 gen = (uint32_t)gen64; 4817 4818 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4819 if (fidp->fid_len < size) { 4820 fidp->fid_len = size; 4821 ZFS_EXIT(zfsvfs); 4822 return (SET_ERROR(ENOSPC)); 4823 } 4824 4825 zfid = (zfid_short_t *)fidp; 4826 4827 zfid->zf_len = size; 4828 4829 for (i = 0; i < sizeof (zfid->zf_object); i++) 4830 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4831 4832 /* Must have a non-zero generation number to distinguish from .zfs */ 4833 if (gen == 0) 4834 gen = 1; 4835 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4836 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4837 4838 if (size == LONG_FID_LEN) { 4839 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4840 zfid_long_t *zlfid; 4841 4842 zlfid = (zfid_long_t *)fidp; 4843 4844 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4845 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4846 4847 /* XXX - this should be the generation number for the objset */ 4848 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4849 zlfid->zf_setgen[i] = 0; 4850 } 4851 4852 ZFS_EXIT(zfsvfs); 4853 return (0); 4854 } 4855 4856 static int 4857 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4858 caller_context_t *ct) 4859 { 4860 znode_t *zp, *xzp; 4861 zfsvfs_t *zfsvfs; 4862 zfs_dirlock_t *dl; 4863 int error; 4864 4865 switch (cmd) { 4866 case _PC_LINK_MAX: 4867 *valp = ULONG_MAX; 4868 return (0); 4869 4870 case _PC_FILESIZEBITS: 4871 *valp = 64; 4872 return (0); 4873 4874 case _PC_XATTR_EXISTS: 4875 zp = VTOZ(vp); 4876 zfsvfs = zp->z_zfsvfs; 4877 ZFS_ENTER(zfsvfs); 4878 ZFS_VERIFY_ZP(zp); 4879 *valp = 0; 4880 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4881 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4882 if (error == 0) { 4883 zfs_dirent_unlock(dl); 4884 if (!zfs_dirempty(xzp)) 4885 *valp = 1; 4886 VN_RELE(ZTOV(xzp)); 4887 } else if (error == ENOENT) { 4888 /* 4889 * If there aren't extended attributes, it's the 4890 * same as having zero of them. 4891 */ 4892 error = 0; 4893 } 4894 ZFS_EXIT(zfsvfs); 4895 return (error); 4896 4897 case _PC_SATTR_ENABLED: 4898 case _PC_SATTR_EXISTS: 4899 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4900 (vp->v_type == VREG || vp->v_type == VDIR); 4901 return (0); 4902 4903 case _PC_ACCESS_FILTERING: 4904 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4905 vp->v_type == VDIR; 4906 return (0); 4907 4908 case _PC_ACL_ENABLED: 4909 *valp = _ACL_ACE_ENABLED; 4910 return (0); 4911 4912 case _PC_MIN_HOLE_SIZE: 4913 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4914 return (0); 4915 4916 case _PC_TIMESTAMP_RESOLUTION: 4917 /* nanosecond timestamp resolution */ 4918 *valp = 1L; 4919 return (0); 4920 4921 default: 4922 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4923 } 4924 } 4925 4926 /*ARGSUSED*/ 4927 static int 4928 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4929 caller_context_t *ct) 4930 { 4931 znode_t *zp = VTOZ(vp); 4932 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4933 int error; 4934 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4935 4936 ZFS_ENTER(zfsvfs); 4937 ZFS_VERIFY_ZP(zp); 4938 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4939 ZFS_EXIT(zfsvfs); 4940 4941 return (error); 4942 } 4943 4944 /*ARGSUSED*/ 4945 static int 4946 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4947 caller_context_t *ct) 4948 { 4949 znode_t *zp = VTOZ(vp); 4950 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4951 int error; 4952 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4953 zilog_t *zilog = zfsvfs->z_log; 4954 4955 ZFS_ENTER(zfsvfs); 4956 ZFS_VERIFY_ZP(zp); 4957 4958 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4959 4960 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4961 zil_commit(zilog, 0); 4962 4963 ZFS_EXIT(zfsvfs); 4964 return (error); 4965 } 4966 4967 /* 4968 * The smallest read we may consider to loan out an arcbuf. 4969 * This must be a power of 2. 4970 */ 4971 int zcr_blksz_min = (1 << 10); /* 1K */ 4972 /* 4973 * If set to less than the file block size, allow loaning out of an 4974 * arcbuf for a partial block read. This must be a power of 2. 4975 */ 4976 int zcr_blksz_max = (1 << 17); /* 128K */ 4977 4978 /*ARGSUSED*/ 4979 static int 4980 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 4981 caller_context_t *ct) 4982 { 4983 znode_t *zp = VTOZ(vp); 4984 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4985 int max_blksz = zfsvfs->z_max_blksz; 4986 uio_t *uio = &xuio->xu_uio; 4987 ssize_t size = uio->uio_resid; 4988 offset_t offset = uio->uio_loffset; 4989 int blksz; 4990 int fullblk, i; 4991 arc_buf_t *abuf; 4992 ssize_t maxsize; 4993 int preamble, postamble; 4994 4995 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 4996 return (SET_ERROR(EINVAL)); 4997 4998 ZFS_ENTER(zfsvfs); 4999 ZFS_VERIFY_ZP(zp); 5000 switch (ioflag) { 5001 case UIO_WRITE: 5002 /* 5003 * Loan out an arc_buf for write if write size is bigger than 5004 * max_blksz, and the file's block size is also max_blksz. 5005 */ 5006 blksz = max_blksz; 5007 if (size < blksz || zp->z_blksz != blksz) { 5008 ZFS_EXIT(zfsvfs); 5009 return (SET_ERROR(EINVAL)); 5010 } 5011 /* 5012 * Caller requests buffers for write before knowing where the 5013 * write offset might be (e.g. NFS TCP write). 5014 */ 5015 if (offset == -1) { 5016 preamble = 0; 5017 } else { 5018 preamble = P2PHASE(offset, blksz); 5019 if (preamble) { 5020 preamble = blksz - preamble; 5021 size -= preamble; 5022 } 5023 } 5024 5025 postamble = P2PHASE(size, blksz); 5026 size -= postamble; 5027 5028 fullblk = size / blksz; 5029 (void) dmu_xuio_init(xuio, 5030 (preamble != 0) + fullblk + (postamble != 0)); 5031 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5032 int, postamble, int, 5033 (preamble != 0) + fullblk + (postamble != 0)); 5034 5035 /* 5036 * Have to fix iov base/len for partial buffers. They 5037 * currently represent full arc_buf's. 5038 */ 5039 if (preamble) { 5040 /* data begins in the middle of the arc_buf */ 5041 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5042 blksz); 5043 ASSERT(abuf); 5044 (void) dmu_xuio_add(xuio, abuf, 5045 blksz - preamble, preamble); 5046 } 5047 5048 for (i = 0; i < fullblk; i++) { 5049 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5050 blksz); 5051 ASSERT(abuf); 5052 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5053 } 5054 5055 if (postamble) { 5056 /* data ends in the middle of the arc_buf */ 5057 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5058 blksz); 5059 ASSERT(abuf); 5060 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5061 } 5062 break; 5063 case UIO_READ: 5064 /* 5065 * Loan out an arc_buf for read if the read size is larger than 5066 * the current file block size. Block alignment is not 5067 * considered. Partial arc_buf will be loaned out for read. 5068 */ 5069 blksz = zp->z_blksz; 5070 if (blksz < zcr_blksz_min) 5071 blksz = zcr_blksz_min; 5072 if (blksz > zcr_blksz_max) 5073 blksz = zcr_blksz_max; 5074 /* avoid potential complexity of dealing with it */ 5075 if (blksz > max_blksz) { 5076 ZFS_EXIT(zfsvfs); 5077 return (SET_ERROR(EINVAL)); 5078 } 5079 5080 maxsize = zp->z_size - uio->uio_loffset; 5081 if (size > maxsize) 5082 size = maxsize; 5083 5084 if (size < blksz || vn_has_cached_data(vp)) { 5085 ZFS_EXIT(zfsvfs); 5086 return (SET_ERROR(EINVAL)); 5087 } 5088 break; 5089 default: 5090 ZFS_EXIT(zfsvfs); 5091 return (SET_ERROR(EINVAL)); 5092 } 5093 5094 uio->uio_extflg = UIO_XUIO; 5095 XUIO_XUZC_RW(xuio) = ioflag; 5096 ZFS_EXIT(zfsvfs); 5097 return (0); 5098 } 5099 5100 /*ARGSUSED*/ 5101 static int 5102 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5103 { 5104 int i; 5105 arc_buf_t *abuf; 5106 int ioflag = XUIO_XUZC_RW(xuio); 5107 5108 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5109 5110 i = dmu_xuio_cnt(xuio); 5111 while (i-- > 0) { 5112 abuf = dmu_xuio_arcbuf(xuio, i); 5113 /* 5114 * if abuf == NULL, it must be a write buffer 5115 * that has been returned in zfs_write(). 5116 */ 5117 if (abuf) 5118 dmu_return_arcbuf(abuf); 5119 ASSERT(abuf || ioflag == UIO_WRITE); 5120 } 5121 5122 dmu_xuio_fini(xuio); 5123 return (0); 5124 } 5125 5126 /* 5127 * Predeclare these here so that the compiler assumes that 5128 * this is an "old style" function declaration that does 5129 * not include arguments => we won't get type mismatch errors 5130 * in the initializations that follow. 5131 */ 5132 static int zfs_inval(); 5133 static int zfs_isdir(); 5134 5135 static int 5136 zfs_inval() 5137 { 5138 return (SET_ERROR(EINVAL)); 5139 } 5140 5141 static int 5142 zfs_isdir() 5143 { 5144 return (SET_ERROR(EISDIR)); 5145 } 5146 /* 5147 * Directory vnode operations template 5148 */ 5149 vnodeops_t *zfs_dvnodeops; 5150 const fs_operation_def_t zfs_dvnodeops_template[] = { 5151 VOPNAME_OPEN, { .vop_open = zfs_open }, 5152 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5153 VOPNAME_READ, { .error = zfs_isdir }, 5154 VOPNAME_WRITE, { .error = zfs_isdir }, 5155 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5156 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5157 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5158 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5159 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5160 VOPNAME_CREATE, { .vop_create = zfs_create }, 5161 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5162 VOPNAME_LINK, { .vop_link = zfs_link }, 5163 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5164 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5165 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5166 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5167 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5168 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5169 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5170 VOPNAME_FID, { .vop_fid = zfs_fid }, 5171 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5172 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5173 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5174 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5175 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5176 NULL, NULL 5177 }; 5178 5179 /* 5180 * Regular file vnode operations template 5181 */ 5182 vnodeops_t *zfs_fvnodeops; 5183 const fs_operation_def_t zfs_fvnodeops_template[] = { 5184 VOPNAME_OPEN, { .vop_open = zfs_open }, 5185 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5186 VOPNAME_READ, { .vop_read = zfs_read }, 5187 VOPNAME_WRITE, { .vop_write = zfs_write }, 5188 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5189 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5190 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5191 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5192 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5193 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5194 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5195 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5196 VOPNAME_FID, { .vop_fid = zfs_fid }, 5197 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5198 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5199 VOPNAME_SPACE, { .vop_space = zfs_space }, 5200 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5201 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5202 VOPNAME_MAP, { .vop_map = zfs_map }, 5203 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5204 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5205 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5206 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5207 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5208 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5209 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5210 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5211 NULL, NULL 5212 }; 5213 5214 /* 5215 * Symbolic link vnode operations template 5216 */ 5217 vnodeops_t *zfs_symvnodeops; 5218 const fs_operation_def_t zfs_symvnodeops_template[] = { 5219 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5220 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5221 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5222 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5223 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5224 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5225 VOPNAME_FID, { .vop_fid = zfs_fid }, 5226 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5227 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5228 NULL, NULL 5229 }; 5230 5231 /* 5232 * special share hidden files vnode operations template 5233 */ 5234 vnodeops_t *zfs_sharevnodeops; 5235 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5236 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5237 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5238 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5239 VOPNAME_FID, { .vop_fid = zfs_fid }, 5240 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5241 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5242 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5243 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5244 NULL, NULL 5245 }; 5246 5247 /* 5248 * Extended attribute directory vnode operations template 5249 * 5250 * This template is identical to the directory vnodes 5251 * operation template except for restricted operations: 5252 * VOP_MKDIR() 5253 * VOP_SYMLINK() 5254 * 5255 * Note that there are other restrictions embedded in: 5256 * zfs_create() - restrict type to VREG 5257 * zfs_link() - no links into/out of attribute space 5258 * zfs_rename() - no moves into/out of attribute space 5259 */ 5260 vnodeops_t *zfs_xdvnodeops; 5261 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5262 VOPNAME_OPEN, { .vop_open = zfs_open }, 5263 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5264 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5265 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5266 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5267 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5268 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5269 VOPNAME_CREATE, { .vop_create = zfs_create }, 5270 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5271 VOPNAME_LINK, { .vop_link = zfs_link }, 5272 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5273 VOPNAME_MKDIR, { .error = zfs_inval }, 5274 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5275 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5276 VOPNAME_SYMLINK, { .error = zfs_inval }, 5277 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5278 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5279 VOPNAME_FID, { .vop_fid = zfs_fid }, 5280 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5281 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5282 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5283 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5284 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5285 NULL, NULL 5286 }; 5287 5288 /* 5289 * Error vnode operations template 5290 */ 5291 vnodeops_t *zfs_evnodeops; 5292 const fs_operation_def_t zfs_evnodeops_template[] = { 5293 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5294 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5295 NULL, NULL 5296 }; 5297