1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vnode.h> 36 #include <sys/file.h> 37 #include <sys/stat.h> 38 #include <sys/kmem.h> 39 #include <sys/taskq.h> 40 #include <sys/uio.h> 41 #include <sys/vmsystm.h> 42 #include <sys/atomic.h> 43 #include <vm/seg_vn.h> 44 #include <vm/pvn.h> 45 #include <vm/as.h> 46 #include <sys/mman.h> 47 #include <sys/pathname.h> 48 #include <sys/cmn_err.h> 49 #include <sys/errno.h> 50 #include <sys/unistd.h> 51 #include <sys/zfs_vfsops.h> 52 #include <sys/zfs_dir.h> 53 #include <sys/zfs_acl.h> 54 #include <sys/zfs_ioctl.h> 55 #include <sys/fs/zfs.h> 56 #include <sys/dmu.h> 57 #include <sys/spa.h> 58 #include <sys/txg.h> 59 #include <sys/dbuf.h> 60 #include <sys/zap.h> 61 #include <sys/dirent.h> 62 #include <sys/policy.h> 63 #include <sys/sunddi.h> 64 #include <sys/filio.h> 65 #include "fs/fs_subr.h" 66 #include <sys/zfs_ctldir.h> 67 #include <sys/dnlc.h> 68 #include <sys/zfs_rlock.h> 69 70 /* 71 * Programming rules. 72 * 73 * Each vnode op performs some logical unit of work. To do this, the ZPL must 74 * properly lock its in-core state, create a DMU transaction, do the work, 75 * record this work in the intent log (ZIL), commit the DMU transaction, 76 * and wait the the intent log to commit if it's is a synchronous operation. 77 * Morover, the vnode ops must work in both normal and log replay context. 78 * The ordering of events is important to avoid deadlocks and references 79 * to freed memory. The example below illustrates the following Big Rules: 80 * 81 * (1) A check must be made in each zfs thread for a mounted file system. 82 * This is done avoiding races using ZFS_ENTER(zfsvfs). 83 * A ZFS_EXIT(zfsvfs) is needed before all returns. 84 * 85 * (2) VN_RELE() should always be the last thing except for zil_commit() 86 * and ZFS_EXIT(). This is for 3 reasons: 87 * First, if it's the last reference, the vnode/znode 88 * can be freed, so the zp may point to freed memory. Second, the last 89 * reference will call zfs_zinactive(), which may induce a lot of work -- 90 * pushing cached pages (which acquires range locks) and syncing out 91 * cached atime changes. Third, zfs_zinactive() may require a new tx, 92 * which could deadlock the system if you were already holding one. 93 * 94 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 95 * as they can span dmu_tx_assign() calls. 96 * 97 * (4) Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign(). 98 * In normal operation, this will be TXG_NOWAIT. During ZIL replay, 99 * it will be a specific txg. Either way, dmu_tx_assign() never blocks. 100 * This is critical because we don't want to block while holding locks. 101 * Note, in particular, that if a lock is sometimes acquired before 102 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 103 * use a non-blocking assign can deadlock the system. The scenario: 104 * 105 * Thread A has grabbed a lock before calling dmu_tx_assign(). 106 * Thread B is in an already-assigned tx, and blocks for this lock. 107 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 108 * forever, because the previous txg can't quiesce until B's tx commits. 109 * 110 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 111 * then drop all locks, call dmu_tx_wait(), and try again. 112 * 113 * (5) If the operation succeeded, generate the intent log entry for it 114 * before dropping locks. This ensures that the ordering of events 115 * in the intent log matches the order in which they actually occurred. 116 * 117 * (6) At the end of each vnode op, the DMU tx must always commit, 118 * regardless of whether there were any errors. 119 * 120 * (7) After dropping all locks, invoke zil_commit(zilog, seq, ioflag) 121 * to ensure that synchronous semantics are provided when necessary. 122 * 123 * In general, this is how things should be ordered in each vnode op: 124 * 125 * ZFS_ENTER(zfsvfs); // exit if unmounted 126 * top: 127 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 128 * rw_enter(...); // grab any other locks you need 129 * tx = dmu_tx_create(...); // get DMU tx 130 * dmu_tx_hold_*(); // hold each object you might modify 131 * error = dmu_tx_assign(tx, zfsvfs->z_assign); // try to assign 132 * if (error) { 133 * rw_exit(...); // drop locks 134 * zfs_dirent_unlock(dl); // unlock directory entry 135 * VN_RELE(...); // release held vnodes 136 * if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 137 * dmu_tx_wait(tx); 138 * dmu_tx_abort(tx); 139 * goto top; 140 * } 141 * dmu_tx_abort(tx); // abort DMU tx 142 * ZFS_EXIT(zfsvfs); // finished in zfs 143 * return (error); // really out of space 144 * } 145 * error = do_real_work(); // do whatever this VOP does 146 * if (error == 0) 147 * seq = zfs_log_*(...); // on success, make ZIL entry 148 * dmu_tx_commit(tx); // commit DMU tx -- error or not 149 * rw_exit(...); // drop locks 150 * zfs_dirent_unlock(dl); // unlock directory entry 151 * VN_RELE(...); // release held vnodes 152 * zil_commit(zilog, seq, ioflag); // synchronous when necessary 153 * ZFS_EXIT(zfsvfs); // finished in zfs 154 * return (error); // done, report error 155 */ 156 157 /* ARGSUSED */ 158 static int 159 zfs_open(vnode_t **vpp, int flag, cred_t *cr) 160 { 161 return (0); 162 } 163 164 /* ARGSUSED */ 165 static int 166 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr) 167 { 168 /* 169 * Clean up any locks held by this process on the vp. 170 */ 171 cleanlocks(vp, ddi_get_pid(), 0); 172 cleanshares(vp, ddi_get_pid()); 173 174 return (0); 175 } 176 177 /* 178 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 179 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 180 */ 181 static int 182 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 183 { 184 znode_t *zp = VTOZ(vp); 185 uint64_t noff = (uint64_t)*off; /* new offset */ 186 uint64_t file_sz; 187 int error; 188 boolean_t hole; 189 190 file_sz = zp->z_phys->zp_size; 191 if (noff >= file_sz) { 192 return (ENXIO); 193 } 194 195 if (cmd == _FIO_SEEK_HOLE) 196 hole = B_TRUE; 197 else 198 hole = B_FALSE; 199 200 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 201 202 /* end of file? */ 203 if ((error == ESRCH) || (noff > file_sz)) { 204 /* 205 * Handle the virtual hole at the end of file. 206 */ 207 if (hole) { 208 *off = file_sz; 209 return (0); 210 } 211 return (ENXIO); 212 } 213 214 if (noff < *off) 215 return (error); 216 *off = noff; 217 return (error); 218 } 219 220 /* ARGSUSED */ 221 static int 222 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 223 int *rvalp) 224 { 225 offset_t off; 226 int error; 227 zfsvfs_t *zfsvfs; 228 229 switch (com) { 230 case _FIOFFS: 231 return (zfs_sync(vp->v_vfsp, 0, cred)); 232 233 /* 234 * The following two ioctls are used by bfu. Faking out, 235 * necessary to avoid bfu errors. 236 */ 237 case _FIOGDIO: 238 case _FIOSDIO: 239 return (0); 240 241 case _FIO_SEEK_DATA: 242 case _FIO_SEEK_HOLE: 243 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 244 return (EFAULT); 245 246 zfsvfs = VTOZ(vp)->z_zfsvfs; 247 ZFS_ENTER(zfsvfs); 248 249 /* offset parameter is in/out */ 250 error = zfs_holey(vp, com, &off); 251 ZFS_EXIT(zfsvfs); 252 if (error) 253 return (error); 254 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 255 return (EFAULT); 256 return (0); 257 } 258 return (ENOTTY); 259 } 260 261 /* 262 * When a file is memory mapped, we must keep the IO data synchronized 263 * between the DMU cache and the memory mapped pages. What this means: 264 * 265 * On Write: If we find a memory mapped page, we write to *both* 266 * the page and the dmu buffer. 267 * 268 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 269 * the file is memory mapped. 270 */ 271 static int 272 mappedwrite(vnode_t *vp, uint64_t woff, int nbytes, uio_t *uio, dmu_tx_t *tx) 273 { 274 znode_t *zp = VTOZ(vp); 275 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 276 int64_t start, off; 277 int len = nbytes; 278 int error = 0; 279 280 start = uio->uio_loffset; 281 off = start & PAGEOFFSET; 282 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 283 page_t *pp; 284 uint64_t bytes = MIN(PAGESIZE - off, len); 285 286 /* 287 * We don't want a new page to "appear" in the middle of 288 * the file update (because it may not get the write 289 * update data), so we grab a lock to block 290 * zfs_getpage(). 291 */ 292 rw_enter(&zp->z_map_lock, RW_WRITER); 293 if (pp = page_lookup(vp, start, SE_SHARED)) { 294 caddr_t va; 295 296 rw_exit(&zp->z_map_lock); 297 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 298 error = uiomove(va+off, bytes, UIO_WRITE, uio); 299 if (error == 0) { 300 dmu_write(zfsvfs->z_os, zp->z_id, 301 woff, bytes, va+off, tx); 302 } 303 ppmapout(va); 304 page_unlock(pp); 305 } else { 306 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 307 woff, bytes, uio, tx); 308 rw_exit(&zp->z_map_lock); 309 } 310 len -= bytes; 311 woff += bytes; 312 off = 0; 313 if (error) 314 break; 315 } 316 return (error); 317 } 318 319 /* 320 * When a file is memory mapped, we must keep the IO data synchronized 321 * between the DMU cache and the memory mapped pages. What this means: 322 * 323 * On Read: We "read" preferentially from memory mapped pages, 324 * else we default from the dmu buffer. 325 * 326 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 327 * the file is memory mapped. 328 */ 329 static int 330 mappedread(vnode_t *vp, char *addr, int nbytes, uio_t *uio) 331 { 332 int64_t start, off, bytes; 333 int len = nbytes; 334 int error = 0; 335 336 start = uio->uio_loffset; 337 off = start & PAGEOFFSET; 338 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 339 page_t *pp; 340 341 bytes = MIN(PAGESIZE - off, len); 342 if (pp = page_lookup(vp, start, SE_SHARED)) { 343 caddr_t va; 344 345 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 346 error = uiomove(va + off, bytes, UIO_READ, uio); 347 ppmapout(va); 348 page_unlock(pp); 349 } else { 350 /* XXX use dmu_read here? */ 351 error = uiomove(addr, bytes, UIO_READ, uio); 352 } 353 len -= bytes; 354 addr += bytes; 355 off = 0; 356 if (error) 357 break; 358 } 359 return (error); 360 } 361 362 uint_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 363 364 /* 365 * Read bytes from specified file into supplied buffer. 366 * 367 * IN: vp - vnode of file to be read from. 368 * uio - structure supplying read location, range info, 369 * and return buffer. 370 * ioflag - SYNC flags; used to provide FRSYNC semantics. 371 * cr - credentials of caller. 372 * 373 * OUT: uio - updated offset and range, buffer filled. 374 * 375 * RETURN: 0 if success 376 * error code if failure 377 * 378 * Side Effects: 379 * vp - atime updated if byte count > 0 380 */ 381 /* ARGSUSED */ 382 static int 383 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 384 { 385 znode_t *zp = VTOZ(vp); 386 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 387 uint64_t delta; 388 ssize_t n, size, cnt, ndone; 389 int error, i, numbufs; 390 dmu_buf_t *dbp, **dbpp; 391 rl_t *rl; 392 393 ZFS_ENTER(zfsvfs); 394 395 /* 396 * Validate file offset 397 */ 398 if (uio->uio_loffset < (offset_t)0) { 399 ZFS_EXIT(zfsvfs); 400 return (EINVAL); 401 } 402 403 /* 404 * Fasttrack empty reads 405 */ 406 if (uio->uio_resid == 0) { 407 ZFS_EXIT(zfsvfs); 408 return (0); 409 } 410 411 /* 412 * Check for mandatory locks 413 */ 414 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 415 if (error = chklock(vp, FREAD, 416 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 417 ZFS_EXIT(zfsvfs); 418 return (error); 419 } 420 } 421 422 /* 423 * If we're in FRSYNC mode, sync out this znode before reading it. 424 */ 425 zil_commit(zfsvfs->z_log, zp->z_last_itx, ioflag & FRSYNC); 426 427 /* 428 * Lock the range against changes. 429 */ 430 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 431 432 /* 433 * If we are reading past end-of-file we can skip 434 * to the end; but we might still need to set atime. 435 */ 436 if (uio->uio_loffset >= zp->z_phys->zp_size) { 437 cnt = 0; 438 error = 0; 439 goto out; 440 } 441 442 cnt = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 443 444 for (ndone = 0; ndone < cnt; ndone += zfs_read_chunk_size) { 445 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 446 n = MIN(zfs_read_chunk_size, 447 zp->z_phys->zp_size - uio->uio_loffset); 448 n = MIN(n, cnt); 449 error = dmu_buf_hold_array_by_bonus(zp->z_dbuf, 450 uio->uio_loffset, n, TRUE, FTAG, &numbufs, &dbpp); 451 if (error) 452 goto out; 453 /* 454 * Compute the adjustment to align the dmu buffers 455 * with the uio buffer. 456 */ 457 delta = uio->uio_loffset - dbpp[0]->db_offset; 458 459 for (i = 0; i < numbufs; i++) { 460 if (n < 0) 461 break; 462 dbp = dbpp[i]; 463 size = dbp->db_size - delta; 464 /* 465 * XXX -- this is correct, but may be suboptimal. 466 * If the pages are all clean, we don't need to 467 * go through mappedread(). Maybe the VMODSORT 468 * stuff can help us here. 469 */ 470 if (vn_has_cached_data(vp)) { 471 error = mappedread(vp, (caddr_t)dbp->db_data + 472 delta, (n < size ? n : size), uio); 473 } else { 474 error = uiomove((caddr_t)dbp->db_data + delta, 475 (n < size ? n : size), UIO_READ, uio); 476 } 477 if (error) { 478 dmu_buf_rele_array(dbpp, numbufs, FTAG); 479 goto out; 480 } 481 n -= dbp->db_size; 482 if (delta) { 483 n += delta; 484 delta = 0; 485 } 486 } 487 dmu_buf_rele_array(dbpp, numbufs, FTAG); 488 } 489 out: 490 zfs_range_unlock(rl); 491 492 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 493 ZFS_EXIT(zfsvfs); 494 return (error); 495 } 496 497 /* 498 * Fault in the pages of the first n bytes specified by the uio structure. 499 * 1 byte in each page is touched and the uio struct is unmodified. 500 * Any error will exit this routine as this is only a best 501 * attempt to get the pages resident. This is a copy of ufs_trans_touch(). 502 */ 503 static void 504 zfs_prefault_write(ssize_t n, struct uio *uio) 505 { 506 struct iovec *iov; 507 ulong_t cnt, incr; 508 caddr_t p; 509 uint8_t tmp; 510 511 iov = uio->uio_iov; 512 513 while (n) { 514 cnt = MIN(iov->iov_len, n); 515 if (cnt == 0) { 516 /* empty iov entry */ 517 iov++; 518 continue; 519 } 520 n -= cnt; 521 /* 522 * touch each page in this segment. 523 */ 524 p = iov->iov_base; 525 while (cnt) { 526 switch (uio->uio_segflg) { 527 case UIO_USERSPACE: 528 case UIO_USERISPACE: 529 if (fuword8(p, &tmp)) 530 return; 531 break; 532 case UIO_SYSSPACE: 533 if (kcopy(p, &tmp, 1)) 534 return; 535 break; 536 } 537 incr = MIN(cnt, PAGESIZE); 538 p += incr; 539 cnt -= incr; 540 } 541 /* 542 * touch the last byte in case it straddles a page. 543 */ 544 p--; 545 switch (uio->uio_segflg) { 546 case UIO_USERSPACE: 547 case UIO_USERISPACE: 548 if (fuword8(p, &tmp)) 549 return; 550 break; 551 case UIO_SYSSPACE: 552 if (kcopy(p, &tmp, 1)) 553 return; 554 break; 555 } 556 iov++; 557 } 558 } 559 560 /* 561 * Write the bytes to a file. 562 * 563 * IN: vp - vnode of file to be written to. 564 * uio - structure supplying write location, range info, 565 * and data buffer. 566 * ioflag - FAPPEND flag set if in append mode. 567 * cr - credentials of caller. 568 * 569 * OUT: uio - updated offset and range. 570 * 571 * RETURN: 0 if success 572 * error code if failure 573 * 574 * Timestamps: 575 * vp - ctime|mtime updated if byte count > 0 576 */ 577 /* ARGSUSED */ 578 static int 579 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 580 { 581 znode_t *zp = VTOZ(vp); 582 rlim64_t limit = uio->uio_llimit; 583 ssize_t start_resid = uio->uio_resid; 584 ssize_t tx_bytes; 585 uint64_t end_size; 586 dmu_tx_t *tx; 587 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 588 zilog_t *zilog = zfsvfs->z_log; 589 uint64_t seq = 0; 590 offset_t woff; 591 ssize_t n, nbytes; 592 rl_t *rl; 593 int max_blksz = zfsvfs->z_max_blksz; 594 int error; 595 596 /* 597 * Fasttrack empty write 598 */ 599 n = start_resid; 600 if (n == 0) 601 return (0); 602 603 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 604 limit = MAXOFFSET_T; 605 606 ZFS_ENTER(zfsvfs); 607 608 /* 609 * Pre-fault the pages to ensure slow (eg NFS) pages 610 * don't hold up txg. 611 */ 612 zfs_prefault_write(n, uio); 613 614 /* 615 * If in append mode, set the io offset pointer to eof. 616 */ 617 if (ioflag & FAPPEND) { 618 /* 619 * Range lock for a file append: 620 * The value for the start of range will be determined by 621 * zfs_range_lock() (to guarantee append semantics). 622 * If this write will cause the block size to increase, 623 * zfs_range_lock() will lock the entire file, so we must 624 * later reduce the range after we grow the block size. 625 */ 626 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 627 if (rl->r_len == UINT64_MAX) { 628 /* overlocked, zp_size can't change */ 629 woff = uio->uio_loffset = zp->z_phys->zp_size; 630 } else { 631 woff = uio->uio_loffset = rl->r_off; 632 } 633 } else { 634 woff = uio->uio_loffset; 635 /* 636 * Validate file offset 637 */ 638 if (woff < 0) { 639 ZFS_EXIT(zfsvfs); 640 return (EINVAL); 641 } 642 643 /* 644 * If we need to grow the block size then zfs_range_lock() 645 * will lock a wider range than we request here. 646 * Later after growing the block size we reduce the range. 647 */ 648 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 649 } 650 651 if (woff >= limit) { 652 error = EFBIG; 653 goto no_tx_done; 654 } 655 656 if ((woff + n) > limit || woff > (limit - n)) 657 n = limit - woff; 658 659 /* 660 * Check for mandatory locks 661 */ 662 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 663 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) 664 goto no_tx_done; 665 end_size = MAX(zp->z_phys->zp_size, woff + n); 666 top: 667 tx = dmu_tx_create(zfsvfs->z_os); 668 dmu_tx_hold_bonus(tx, zp->z_id); 669 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 670 error = dmu_tx_assign(tx, zfsvfs->z_assign); 671 if (error) { 672 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 673 dmu_tx_wait(tx); 674 dmu_tx_abort(tx); 675 goto top; 676 } 677 dmu_tx_abort(tx); 678 goto no_tx_done; 679 } 680 681 /* 682 * If zfs_range_lock() over-locked we grow the blocksize 683 * and then reduce the lock range. 684 */ 685 if (rl->r_len == UINT64_MAX) { 686 uint64_t new_blksz; 687 688 if (zp->z_blksz > max_blksz) { 689 ASSERT(!ISP2(zp->z_blksz)); 690 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 691 } else { 692 new_blksz = MIN(end_size, max_blksz); 693 } 694 zfs_grow_blocksize(zp, new_blksz, tx); 695 zfs_range_reduce(rl, woff, n); 696 } 697 698 /* 699 * The file data does not fit in the znode "cache", so we 700 * will be writing to the file block data buffers. 701 * Each buffer will be written in a separate transaction; 702 * this keeps the intent log records small and allows us 703 * to do more fine-grained space accounting. 704 */ 705 while (n > 0) { 706 /* 707 * XXX - should we really limit each write to z_max_blksz? 708 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 709 */ 710 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 711 rw_enter(&zp->z_map_lock, RW_READER); 712 713 tx_bytes = uio->uio_resid; 714 if (vn_has_cached_data(vp)) { 715 rw_exit(&zp->z_map_lock); 716 error = mappedwrite(vp, woff, nbytes, uio, tx); 717 } else { 718 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 719 woff, nbytes, uio, tx); 720 rw_exit(&zp->z_map_lock); 721 } 722 tx_bytes -= uio->uio_resid; 723 724 if (error) { 725 /* XXX - do we need to "clean up" the dmu buffer? */ 726 break; 727 } 728 729 ASSERT(tx_bytes == nbytes); 730 731 /* 732 * Clear Set-UID/Set-GID bits on successful write if not 733 * privileged and at least one of the excute bits is set. 734 * 735 * It would be nice to to this after all writes have 736 * been done, but that would still expose the ISUID/ISGID 737 * to another app after the partial write is committed. 738 */ 739 740 mutex_enter(&zp->z_acl_lock); 741 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 742 (S_IXUSR >> 6))) != 0 && 743 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 744 secpolicy_vnode_setid_retain(cr, 745 (zp->z_phys->zp_mode & S_ISUID) != 0 && 746 zp->z_phys->zp_uid == 0) != 0) { 747 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 748 } 749 mutex_exit(&zp->z_acl_lock); 750 751 n -= nbytes; 752 if (n <= 0) 753 break; 754 755 /* 756 * We have more work ahead of us, so wrap up this transaction 757 * and start another. Exact same logic as tx_done below. 758 */ 759 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) { 760 dmu_buf_will_dirty(zp->z_dbuf, tx); 761 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 762 uio->uio_loffset); 763 } 764 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 765 seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, 766 ioflag, uio); 767 dmu_tx_commit(tx); 768 769 /* 770 * Start another transaction. 771 */ 772 woff = uio->uio_loffset; 773 tx = dmu_tx_create(zfsvfs->z_os); 774 dmu_tx_hold_bonus(tx, zp->z_id); 775 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 776 error = dmu_tx_assign(tx, zfsvfs->z_assign); 777 if (error) { 778 if (error == ERESTART && 779 zfsvfs->z_assign == TXG_NOWAIT) { 780 dmu_tx_wait(tx); 781 dmu_tx_abort(tx); 782 goto top; 783 } 784 dmu_tx_abort(tx); 785 goto no_tx_done; 786 } 787 } 788 789 tx_done: 790 791 if (tx_bytes != 0) { 792 /* 793 * Update the file size if it has changed; account 794 * for possible concurrent updates. 795 */ 796 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) { 797 dmu_buf_will_dirty(zp->z_dbuf, tx); 798 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 799 uio->uio_loffset); 800 } 801 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 802 seq = zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, 803 ioflag, uio); 804 } 805 dmu_tx_commit(tx); 806 807 808 no_tx_done: 809 810 zfs_range_unlock(rl); 811 812 /* 813 * If we're in replay mode, or we made no progress, return error. 814 * Otherwise, it's at least a partial write, so it's successful. 815 */ 816 if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) { 817 ZFS_EXIT(zfsvfs); 818 return (error); 819 } 820 821 zil_commit(zilog, seq, ioflag & (FSYNC | FDSYNC)); 822 823 ZFS_EXIT(zfsvfs); 824 return (0); 825 } 826 827 void 828 zfs_get_done(dmu_buf_t *db, void *vrl) 829 { 830 rl_t *rl = (rl_t *)vrl; 831 vnode_t *vp = ZTOV(rl->r_zp); 832 833 dmu_buf_rele(db, rl); 834 zfs_range_unlock(rl); 835 VN_RELE(vp); 836 } 837 838 /* 839 * Get data to generate a TX_WRITE intent log record. 840 */ 841 int 842 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 843 { 844 zfsvfs_t *zfsvfs = arg; 845 objset_t *os = zfsvfs->z_os; 846 znode_t *zp; 847 uint64_t off = lr->lr_offset; 848 dmu_buf_t *db; 849 rl_t *rl; 850 int dlen = lr->lr_length; /* length of user data */ 851 int error = 0; 852 853 ASSERT(dlen != 0); 854 855 /* 856 * Nothing to do if the file has been removed 857 */ 858 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 859 return (ENOENT); 860 if (zp->z_reap) { 861 VN_RELE(ZTOV(zp)); 862 return (ENOENT); 863 } 864 865 /* 866 * Write records come in two flavors: immediate and indirect. 867 * For small writes it's cheaper to store the data with the 868 * log record (immediate); for large writes it's cheaper to 869 * sync the data and get a pointer to it (indirect) so that 870 * we don't have to write the data twice. 871 */ 872 if (buf != NULL) { /* immediate write */ 873 rl = zfs_range_lock(zp, off, dlen, RL_READER); 874 /* test for truncation needs to be done while range locked */ 875 if (off >= zp->z_phys->zp_size) { 876 error = ENOENT; 877 goto out; 878 } 879 VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf)); 880 } else { /* indirect write */ 881 uint64_t boff; /* block starting offset */ 882 883 ASSERT3U(dlen, <=, zp->z_blksz); 884 /* 885 * Have to lock the whole block to ensure when it's 886 * written out and it's checksum is being calculated 887 * that no one can change the data. We need to re-check 888 * blocksize after we get the lock in case it's changed! 889 */ 890 for (;;) { 891 if (ISP2(zp->z_blksz)) { 892 boff = P2ALIGN_TYPED(off, zp->z_blksz, 893 uint64_t); 894 } else { 895 boff = 0; 896 } 897 dlen = zp->z_blksz; 898 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 899 if (zp->z_blksz == dlen) 900 break; 901 zfs_range_unlock(rl); 902 } 903 /* test for truncation needs to be done while range locked */ 904 if (off >= zp->z_phys->zp_size) { 905 error = ENOENT; 906 goto out; 907 } 908 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, rl, &db)); 909 ASSERT(boff == db->db_offset); 910 lr->lr_blkoff = off - boff; 911 error = dmu_sync(zio, db, &lr->lr_blkptr, 912 lr->lr_common.lrc_txg, zio ? zfs_get_done : NULL, rl); 913 /* 914 * If we get EINPROGRESS, then we need to wait for a 915 * write IO initiated by dmu_sync() to complete before 916 * we can release this dbuf. We will finish everthing 917 * up in the zfs_get_done() callback. 918 */ 919 if (error == EINPROGRESS) 920 return (0); 921 dmu_buf_rele(db, rl); 922 } 923 out: 924 zfs_range_unlock(rl); 925 VN_RELE(ZTOV(zp)); 926 return (error); 927 } 928 929 /*ARGSUSED*/ 930 static int 931 zfs_access(vnode_t *vp, int mode, int flags, cred_t *cr) 932 { 933 znode_t *zp = VTOZ(vp); 934 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 935 int error; 936 937 ZFS_ENTER(zfsvfs); 938 error = zfs_zaccess_rwx(zp, mode, cr); 939 ZFS_EXIT(zfsvfs); 940 return (error); 941 } 942 943 /* 944 * Lookup an entry in a directory, or an extended attribute directory. 945 * If it exists, return a held vnode reference for it. 946 * 947 * IN: dvp - vnode of directory to search. 948 * nm - name of entry to lookup. 949 * pnp - full pathname to lookup [UNUSED]. 950 * flags - LOOKUP_XATTR set if looking for an attribute. 951 * rdir - root directory vnode [UNUSED]. 952 * cr - credentials of caller. 953 * 954 * OUT: vpp - vnode of located entry, NULL if not found. 955 * 956 * RETURN: 0 if success 957 * error code if failure 958 * 959 * Timestamps: 960 * NA 961 */ 962 /* ARGSUSED */ 963 static int 964 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 965 int flags, vnode_t *rdir, cred_t *cr) 966 { 967 968 znode_t *zdp = VTOZ(dvp); 969 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 970 int error; 971 972 ZFS_ENTER(zfsvfs); 973 974 *vpp = NULL; 975 976 if (flags & LOOKUP_XATTR) { 977 /* 978 * We don't allow recursive attributes.. 979 * Maybe someday we will. 980 */ 981 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 982 ZFS_EXIT(zfsvfs); 983 return (EINVAL); 984 } 985 986 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr)) { 987 ZFS_EXIT(zfsvfs); 988 return (error); 989 } 990 991 /* 992 * Do we have permission to get into attribute directory? 993 */ 994 995 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, cr)) { 996 VN_RELE(*vpp); 997 } 998 999 ZFS_EXIT(zfsvfs); 1000 return (error); 1001 } 1002 1003 if (dvp->v_type != VDIR) { 1004 ZFS_EXIT(zfsvfs); 1005 return (ENOTDIR); 1006 } 1007 1008 /* 1009 * Check accessibility of directory. 1010 */ 1011 1012 if (error = zfs_zaccess(zdp, ACE_EXECUTE, cr)) { 1013 ZFS_EXIT(zfsvfs); 1014 return (error); 1015 } 1016 1017 if ((error = zfs_dirlook(zdp, nm, vpp)) == 0) { 1018 1019 /* 1020 * Convert device special files 1021 */ 1022 if (IS_DEVVP(*vpp)) { 1023 vnode_t *svp; 1024 1025 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1026 VN_RELE(*vpp); 1027 if (svp == NULL) 1028 error = ENOSYS; 1029 else 1030 *vpp = svp; 1031 } 1032 } 1033 1034 ZFS_EXIT(zfsvfs); 1035 return (error); 1036 } 1037 1038 /* 1039 * Attempt to create a new entry in a directory. If the entry 1040 * already exists, truncate the file if permissible, else return 1041 * an error. Return the vp of the created or trunc'd file. 1042 * 1043 * IN: dvp - vnode of directory to put new file entry in. 1044 * name - name of new file entry. 1045 * vap - attributes of new file. 1046 * excl - flag indicating exclusive or non-exclusive mode. 1047 * mode - mode to open file with. 1048 * cr - credentials of caller. 1049 * flag - large file flag [UNUSED]. 1050 * 1051 * OUT: vpp - vnode of created or trunc'd entry. 1052 * 1053 * RETURN: 0 if success 1054 * error code if failure 1055 * 1056 * Timestamps: 1057 * dvp - ctime|mtime updated if new entry created 1058 * vp - ctime|mtime always, atime if new 1059 */ 1060 /* ARGSUSED */ 1061 static int 1062 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1063 int mode, vnode_t **vpp, cred_t *cr, int flag) 1064 { 1065 znode_t *zp, *dzp = VTOZ(dvp); 1066 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1067 zilog_t *zilog = zfsvfs->z_log; 1068 uint64_t seq = 0; 1069 objset_t *os = zfsvfs->z_os; 1070 zfs_dirlock_t *dl; 1071 dmu_tx_t *tx; 1072 int error; 1073 uint64_t zoid; 1074 1075 ZFS_ENTER(zfsvfs); 1076 1077 top: 1078 *vpp = NULL; 1079 1080 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1081 vap->va_mode &= ~VSVTX; 1082 1083 if (*name == '\0') { 1084 /* 1085 * Null component name refers to the directory itself. 1086 */ 1087 VN_HOLD(dvp); 1088 zp = dzp; 1089 dl = NULL; 1090 error = 0; 1091 } else { 1092 /* possible VN_HOLD(zp) */ 1093 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, 0)) { 1094 if (strcmp(name, "..") == 0) 1095 error = EISDIR; 1096 ZFS_EXIT(zfsvfs); 1097 return (error); 1098 } 1099 } 1100 1101 zoid = zp ? zp->z_id : -1ULL; 1102 1103 if (zp == NULL) { 1104 /* 1105 * Create a new file object and update the directory 1106 * to reference it. 1107 */ 1108 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 1109 goto out; 1110 } 1111 1112 /* 1113 * We only support the creation of regular files in 1114 * extended attribute directories. 1115 */ 1116 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1117 (vap->va_type != VREG)) { 1118 error = EINVAL; 1119 goto out; 1120 } 1121 1122 tx = dmu_tx_create(os); 1123 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1124 dmu_tx_hold_bonus(tx, dzp->z_id); 1125 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1126 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1127 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1128 0, SPA_MAXBLOCKSIZE); 1129 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1130 if (error) { 1131 zfs_dirent_unlock(dl); 1132 if (error == ERESTART && 1133 zfsvfs->z_assign == TXG_NOWAIT) { 1134 dmu_tx_wait(tx); 1135 dmu_tx_abort(tx); 1136 goto top; 1137 } 1138 dmu_tx_abort(tx); 1139 ZFS_EXIT(zfsvfs); 1140 return (error); 1141 } 1142 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1143 ASSERT(zp->z_id == zoid); 1144 (void) zfs_link_create(dl, zp, tx, ZNEW); 1145 seq = zfs_log_create(zilog, tx, TX_CREATE, dzp, zp, name); 1146 dmu_tx_commit(tx); 1147 } else { 1148 /* 1149 * A directory entry already exists for this name. 1150 */ 1151 /* 1152 * Can't truncate an existing file if in exclusive mode. 1153 */ 1154 if (excl == EXCL) { 1155 error = EEXIST; 1156 goto out; 1157 } 1158 /* 1159 * Can't open a directory for writing. 1160 */ 1161 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1162 error = EISDIR; 1163 goto out; 1164 } 1165 /* 1166 * Verify requested access to file. 1167 */ 1168 if (mode && (error = zfs_zaccess_rwx(zp, mode, cr))) { 1169 goto out; 1170 } 1171 1172 mutex_enter(&dzp->z_lock); 1173 dzp->z_seq++; 1174 mutex_exit(&dzp->z_lock); 1175 1176 /* 1177 * Truncate regular files if requested. 1178 */ 1179 if ((ZTOV(zp)->v_type == VREG) && 1180 (zp->z_phys->zp_size != 0) && 1181 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1182 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1183 if (error == ERESTART && 1184 zfsvfs->z_assign == TXG_NOWAIT) { 1185 /* NB: we already did dmu_tx_wait() */ 1186 zfs_dirent_unlock(dl); 1187 VN_RELE(ZTOV(zp)); 1188 goto top; 1189 } 1190 } 1191 } 1192 out: 1193 1194 if (dl) 1195 zfs_dirent_unlock(dl); 1196 1197 if (error) { 1198 if (zp) 1199 VN_RELE(ZTOV(zp)); 1200 } else { 1201 *vpp = ZTOV(zp); 1202 /* 1203 * If vnode is for a device return a specfs vnode instead. 1204 */ 1205 if (IS_DEVVP(*vpp)) { 1206 struct vnode *svp; 1207 1208 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1209 VN_RELE(*vpp); 1210 if (svp == NULL) { 1211 error = ENOSYS; 1212 } 1213 *vpp = svp; 1214 } 1215 } 1216 1217 zil_commit(zilog, seq, 0); 1218 1219 ZFS_EXIT(zfsvfs); 1220 return (error); 1221 } 1222 1223 /* 1224 * Remove an entry from a directory. 1225 * 1226 * IN: dvp - vnode of directory to remove entry from. 1227 * name - name of entry to remove. 1228 * cr - credentials of caller. 1229 * 1230 * RETURN: 0 if success 1231 * error code if failure 1232 * 1233 * Timestamps: 1234 * dvp - ctime|mtime 1235 * vp - ctime (if nlink > 0) 1236 */ 1237 static int 1238 zfs_remove(vnode_t *dvp, char *name, cred_t *cr) 1239 { 1240 znode_t *zp, *dzp = VTOZ(dvp); 1241 znode_t *xzp = NULL; 1242 vnode_t *vp; 1243 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1244 zilog_t *zilog = zfsvfs->z_log; 1245 uint64_t seq = 0; 1246 uint64_t acl_obj, xattr_obj; 1247 zfs_dirlock_t *dl; 1248 dmu_tx_t *tx; 1249 int may_delete_now, delete_now = FALSE; 1250 int reaped; 1251 int error; 1252 1253 ZFS_ENTER(zfsvfs); 1254 1255 top: 1256 /* 1257 * Attempt to lock directory; fail if entry doesn't exist. 1258 */ 1259 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1260 ZFS_EXIT(zfsvfs); 1261 return (error); 1262 } 1263 1264 vp = ZTOV(zp); 1265 1266 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1267 goto out; 1268 } 1269 1270 /* 1271 * Need to use rmdir for removing directories. 1272 */ 1273 if (vp->v_type == VDIR) { 1274 error = EPERM; 1275 goto out; 1276 } 1277 1278 vnevent_remove(vp); 1279 1280 dnlc_remove(dvp, name); 1281 1282 mutex_enter(&vp->v_lock); 1283 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1284 mutex_exit(&vp->v_lock); 1285 1286 /* 1287 * We may delete the znode now, or we may put it on the delete queue; 1288 * it depends on whether we're the last link, and on whether there are 1289 * other holds on the vnode. So we dmu_tx_hold() the right things to 1290 * allow for either case. 1291 */ 1292 tx = dmu_tx_create(zfsvfs->z_os); 1293 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1294 dmu_tx_hold_bonus(tx, zp->z_id); 1295 if (may_delete_now) 1296 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 1297 1298 /* are there any extended attributes? */ 1299 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1300 /* 1301 * XXX - There is a possibility that the delete 1302 * of the parent file could succeed, but then we get 1303 * an ENOSPC when we try to delete the xattrs... 1304 * so we would need to re-try the deletes periodically 1305 */ 1306 /* XXX - do we need this if we are deleting? */ 1307 dmu_tx_hold_bonus(tx, xattr_obj); 1308 } 1309 1310 /* are there any additional acls */ 1311 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1312 may_delete_now) 1313 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1314 1315 /* charge as an update -- would be nice not to charge at all */ 1316 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL); 1317 1318 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1319 if (error) { 1320 zfs_dirent_unlock(dl); 1321 VN_RELE(vp); 1322 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1323 dmu_tx_wait(tx); 1324 dmu_tx_abort(tx); 1325 goto top; 1326 } 1327 dmu_tx_abort(tx); 1328 ZFS_EXIT(zfsvfs); 1329 return (error); 1330 } 1331 1332 /* 1333 * Remove the directory entry. 1334 */ 1335 error = zfs_link_destroy(dl, zp, tx, 0, &reaped); 1336 1337 if (error) { 1338 dmu_tx_commit(tx); 1339 goto out; 1340 } 1341 1342 if (reaped) { 1343 mutex_enter(&vp->v_lock); 1344 delete_now = may_delete_now && 1345 vp->v_count == 1 && !vn_has_cached_data(vp) && 1346 zp->z_phys->zp_xattr == xattr_obj && 1347 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1348 mutex_exit(&vp->v_lock); 1349 } 1350 1351 if (delete_now) { 1352 if (zp->z_phys->zp_xattr) { 1353 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1354 ASSERT3U(error, ==, 0); 1355 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1356 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1357 mutex_enter(&xzp->z_lock); 1358 xzp->z_reap = 1; 1359 xzp->z_phys->zp_links = 0; 1360 mutex_exit(&xzp->z_lock); 1361 zfs_dq_add(xzp, tx); 1362 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1363 } 1364 mutex_enter(&zp->z_lock); 1365 mutex_enter(&vp->v_lock); 1366 vp->v_count--; 1367 ASSERT3U(vp->v_count, ==, 0); 1368 mutex_exit(&vp->v_lock); 1369 mutex_exit(&zp->z_lock); 1370 zfs_znode_delete(zp, tx); 1371 VFS_RELE(zfsvfs->z_vfs); 1372 } else if (reaped) { 1373 zfs_dq_add(zp, tx); 1374 } 1375 1376 seq = zfs_log_remove(zilog, tx, TX_REMOVE, dzp, name); 1377 1378 dmu_tx_commit(tx); 1379 out: 1380 zfs_dirent_unlock(dl); 1381 1382 if (!delete_now) { 1383 VN_RELE(vp); 1384 } else if (xzp) { 1385 /* this rele delayed to prevent nesting transactions */ 1386 VN_RELE(ZTOV(xzp)); 1387 } 1388 1389 zil_commit(zilog, seq, 0); 1390 1391 ZFS_EXIT(zfsvfs); 1392 return (error); 1393 } 1394 1395 /* 1396 * Create a new directory and insert it into dvp using the name 1397 * provided. Return a pointer to the inserted directory. 1398 * 1399 * IN: dvp - vnode of directory to add subdir to. 1400 * dirname - name of new directory. 1401 * vap - attributes of new directory. 1402 * cr - credentials of caller. 1403 * 1404 * OUT: vpp - vnode of created directory. 1405 * 1406 * RETURN: 0 if success 1407 * error code if failure 1408 * 1409 * Timestamps: 1410 * dvp - ctime|mtime updated 1411 * vp - ctime|mtime|atime updated 1412 */ 1413 static int 1414 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr) 1415 { 1416 znode_t *zp, *dzp = VTOZ(dvp); 1417 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1418 zilog_t *zilog = zfsvfs->z_log; 1419 uint64_t seq = 0; 1420 zfs_dirlock_t *dl; 1421 uint64_t zoid = 0; 1422 dmu_tx_t *tx; 1423 int error; 1424 1425 ASSERT(vap->va_type == VDIR); 1426 1427 ZFS_ENTER(zfsvfs); 1428 1429 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1430 ZFS_EXIT(zfsvfs); 1431 return (EINVAL); 1432 } 1433 top: 1434 *vpp = NULL; 1435 1436 /* 1437 * First make sure the new directory doesn't exist. 1438 */ 1439 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, ZNEW)) { 1440 ZFS_EXIT(zfsvfs); 1441 return (error); 1442 } 1443 1444 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, cr)) { 1445 zfs_dirent_unlock(dl); 1446 ZFS_EXIT(zfsvfs); 1447 return (error); 1448 } 1449 1450 /* 1451 * Add a new entry to the directory. 1452 */ 1453 tx = dmu_tx_create(zfsvfs->z_os); 1454 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1455 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1456 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 1457 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1458 0, SPA_MAXBLOCKSIZE); 1459 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1460 if (error) { 1461 zfs_dirent_unlock(dl); 1462 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1463 dmu_tx_wait(tx); 1464 dmu_tx_abort(tx); 1465 goto top; 1466 } 1467 dmu_tx_abort(tx); 1468 ZFS_EXIT(zfsvfs); 1469 return (error); 1470 } 1471 1472 /* 1473 * Create new node. 1474 */ 1475 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 1476 1477 /* 1478 * Now put new name in parent dir. 1479 */ 1480 (void) zfs_link_create(dl, zp, tx, ZNEW); 1481 1482 *vpp = ZTOV(zp); 1483 1484 seq = zfs_log_create(zilog, tx, TX_MKDIR, dzp, zp, dirname); 1485 dmu_tx_commit(tx); 1486 1487 zfs_dirent_unlock(dl); 1488 1489 zil_commit(zilog, seq, 0); 1490 1491 ZFS_EXIT(zfsvfs); 1492 return (0); 1493 } 1494 1495 /* 1496 * Remove a directory subdir entry. If the current working 1497 * directory is the same as the subdir to be removed, the 1498 * remove will fail. 1499 * 1500 * IN: dvp - vnode of directory to remove from. 1501 * name - name of directory to be removed. 1502 * cwd - vnode of current working directory. 1503 * cr - credentials of caller. 1504 * 1505 * RETURN: 0 if success 1506 * error code if failure 1507 * 1508 * Timestamps: 1509 * dvp - ctime|mtime updated 1510 */ 1511 static int 1512 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr) 1513 { 1514 znode_t *dzp = VTOZ(dvp); 1515 znode_t *zp; 1516 vnode_t *vp; 1517 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1518 zilog_t *zilog = zfsvfs->z_log; 1519 uint64_t seq = 0; 1520 zfs_dirlock_t *dl; 1521 dmu_tx_t *tx; 1522 int error; 1523 1524 ZFS_ENTER(zfsvfs); 1525 1526 top: 1527 zp = NULL; 1528 1529 /* 1530 * Attempt to lock directory; fail if entry doesn't exist. 1531 */ 1532 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS)) { 1533 ZFS_EXIT(zfsvfs); 1534 return (error); 1535 } 1536 1537 vp = ZTOV(zp); 1538 1539 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1540 goto out; 1541 } 1542 1543 if (vp->v_type != VDIR) { 1544 error = ENOTDIR; 1545 goto out; 1546 } 1547 1548 if (vp == cwd) { 1549 error = EINVAL; 1550 goto out; 1551 } 1552 1553 vnevent_rmdir(vp); 1554 1555 /* 1556 * Grab a lock on the parent pointer make sure we play well 1557 * with the treewalk and directory rename code. 1558 */ 1559 rw_enter(&zp->z_parent_lock, RW_WRITER); 1560 1561 tx = dmu_tx_create(zfsvfs->z_os); 1562 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1563 dmu_tx_hold_bonus(tx, zp->z_id); 1564 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL); 1565 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1566 if (error) { 1567 rw_exit(&zp->z_parent_lock); 1568 zfs_dirent_unlock(dl); 1569 VN_RELE(vp); 1570 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1571 dmu_tx_wait(tx); 1572 dmu_tx_abort(tx); 1573 goto top; 1574 } 1575 dmu_tx_abort(tx); 1576 ZFS_EXIT(zfsvfs); 1577 return (error); 1578 } 1579 1580 error = zfs_link_destroy(dl, zp, tx, 0, NULL); 1581 1582 if (error == 0) 1583 seq = zfs_log_remove(zilog, tx, TX_RMDIR, dzp, name); 1584 1585 dmu_tx_commit(tx); 1586 1587 rw_exit(&zp->z_parent_lock); 1588 out: 1589 zfs_dirent_unlock(dl); 1590 1591 VN_RELE(vp); 1592 1593 zil_commit(zilog, seq, 0); 1594 1595 ZFS_EXIT(zfsvfs); 1596 return (error); 1597 } 1598 1599 /* 1600 * Read as many directory entries as will fit into the provided 1601 * buffer from the given directory cursor position (specified in 1602 * the uio structure. 1603 * 1604 * IN: vp - vnode of directory to read. 1605 * uio - structure supplying read location, range info, 1606 * and return buffer. 1607 * cr - credentials of caller. 1608 * 1609 * OUT: uio - updated offset and range, buffer filled. 1610 * eofp - set to true if end-of-file detected. 1611 * 1612 * RETURN: 0 if success 1613 * error code if failure 1614 * 1615 * Timestamps: 1616 * vp - atime updated 1617 * 1618 * Note that the low 4 bits of the cookie returned by zap is always zero. 1619 * This allows us to use the low range for "special" directory entries: 1620 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1621 * we use the offset 2 for the '.zfs' directory. 1622 */ 1623 /* ARGSUSED */ 1624 static int 1625 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp) 1626 { 1627 znode_t *zp = VTOZ(vp); 1628 iovec_t *iovp; 1629 dirent64_t *odp; 1630 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1631 objset_t *os; 1632 caddr_t outbuf; 1633 size_t bufsize; 1634 zap_cursor_t zc; 1635 zap_attribute_t zap; 1636 uint_t bytes_wanted; 1637 ushort_t this_reclen; 1638 uint64_t offset; /* must be unsigned; checks for < 1 */ 1639 off64_t *next; 1640 int local_eof; 1641 int outcount; 1642 int error; 1643 uint8_t prefetch; 1644 1645 ZFS_ENTER(zfsvfs); 1646 1647 /* 1648 * If we are not given an eof variable, 1649 * use a local one. 1650 */ 1651 if (eofp == NULL) 1652 eofp = &local_eof; 1653 1654 /* 1655 * Check for valid iov_len. 1656 */ 1657 if (uio->uio_iov->iov_len <= 0) { 1658 ZFS_EXIT(zfsvfs); 1659 return (EINVAL); 1660 } 1661 1662 /* 1663 * Quit if directory has been removed (posix) 1664 */ 1665 if ((*eofp = zp->z_reap) != 0) { 1666 ZFS_EXIT(zfsvfs); 1667 return (0); 1668 } 1669 1670 error = 0; 1671 os = zfsvfs->z_os; 1672 offset = uio->uio_loffset; 1673 prefetch = zp->z_zn_prefetch; 1674 1675 /* 1676 * Initialize the iterator cursor. 1677 */ 1678 if (offset <= 3) { 1679 /* 1680 * Start iteration from the beginning of the directory. 1681 */ 1682 zap_cursor_init(&zc, os, zp->z_id); 1683 } else { 1684 /* 1685 * The offset is a serialized cursor. 1686 */ 1687 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1688 } 1689 1690 /* 1691 * Get space to change directory entries into fs independent format. 1692 */ 1693 iovp = uio->uio_iov; 1694 bytes_wanted = iovp->iov_len; 1695 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1696 bufsize = bytes_wanted; 1697 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1698 odp = (struct dirent64 *)outbuf; 1699 } else { 1700 bufsize = bytes_wanted; 1701 odp = (struct dirent64 *)iovp->iov_base; 1702 } 1703 1704 /* 1705 * Transform to file-system independent format 1706 */ 1707 outcount = 0; 1708 while (outcount < bytes_wanted) { 1709 /* 1710 * Special case `.', `..', and `.zfs'. 1711 */ 1712 if (offset == 0) { 1713 (void) strcpy(zap.za_name, "."); 1714 zap.za_first_integer = zp->z_id; 1715 this_reclen = DIRENT64_RECLEN(1); 1716 } else if (offset == 1) { 1717 (void) strcpy(zap.za_name, ".."); 1718 zap.za_first_integer = zp->z_phys->zp_parent; 1719 this_reclen = DIRENT64_RECLEN(2); 1720 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1721 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1722 zap.za_first_integer = ZFSCTL_INO_ROOT; 1723 this_reclen = 1724 DIRENT64_RECLEN(sizeof (ZFS_CTLDIR_NAME) - 1); 1725 } else { 1726 /* 1727 * Grab next entry. 1728 */ 1729 if (error = zap_cursor_retrieve(&zc, &zap)) { 1730 if ((*eofp = (error == ENOENT)) != 0) 1731 break; 1732 else 1733 goto update; 1734 } 1735 1736 if (zap.za_integer_length != 8 || 1737 zap.za_num_integers != 1) { 1738 cmn_err(CE_WARN, "zap_readdir: bad directory " 1739 "entry, obj = %lld, offset = %lld\n", 1740 (u_longlong_t)zp->z_id, 1741 (u_longlong_t)offset); 1742 error = ENXIO; 1743 goto update; 1744 } 1745 this_reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 1746 } 1747 1748 /* 1749 * Will this entry fit in the buffer? 1750 */ 1751 if (outcount + this_reclen > bufsize) { 1752 /* 1753 * Did we manage to fit anything in the buffer? 1754 */ 1755 if (!outcount) { 1756 error = EINVAL; 1757 goto update; 1758 } 1759 break; 1760 } 1761 /* 1762 * Add this entry: 1763 */ 1764 odp->d_ino = (ino64_t)zap.za_first_integer; 1765 odp->d_reclen = (ushort_t)this_reclen; 1766 /* NOTE: d_off is the offset for the *next* entry */ 1767 next = &(odp->d_off); 1768 (void) strncpy(odp->d_name, zap.za_name, 1769 DIRENT64_NAMELEN(this_reclen)); 1770 outcount += this_reclen; 1771 odp = (dirent64_t *)((intptr_t)odp + this_reclen); 1772 1773 ASSERT(outcount <= bufsize); 1774 1775 /* Prefetch znode */ 1776 if (prefetch) 1777 dmu_prefetch(os, zap.za_first_integer, 0, 0); 1778 1779 /* 1780 * Move to the next entry, fill in the previous offset. 1781 */ 1782 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 1783 zap_cursor_advance(&zc); 1784 offset = zap_cursor_serialize(&zc); 1785 } else { 1786 offset += 1; 1787 } 1788 *next = offset; 1789 } 1790 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 1791 1792 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 1793 iovp->iov_base += outcount; 1794 iovp->iov_len -= outcount; 1795 uio->uio_resid -= outcount; 1796 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 1797 /* 1798 * Reset the pointer. 1799 */ 1800 offset = uio->uio_loffset; 1801 } 1802 1803 update: 1804 zap_cursor_fini(&zc); 1805 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 1806 kmem_free(outbuf, bufsize); 1807 1808 if (error == ENOENT) 1809 error = 0; 1810 1811 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 1812 1813 uio->uio_loffset = offset; 1814 ZFS_EXIT(zfsvfs); 1815 return (error); 1816 } 1817 1818 static int 1819 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr) 1820 { 1821 znode_t *zp = VTOZ(vp); 1822 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1823 1824 /* 1825 * Regardless of whether this is required for standards conformance, 1826 * this is the logical behavior when fsync() is called on a file with 1827 * dirty pages. We use B_ASYNC since the ZIL transactions are already 1828 * going to be pushed out as part of the zil_commit(). 1829 */ 1830 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 1831 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 1832 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr); 1833 1834 ZFS_ENTER(zfsvfs); 1835 zil_commit(zfsvfs->z_log, zp->z_last_itx, FSYNC); 1836 ZFS_EXIT(zfsvfs); 1837 return (0); 1838 } 1839 1840 /* 1841 * Get the requested file attributes and place them in the provided 1842 * vattr structure. 1843 * 1844 * IN: vp - vnode of file. 1845 * vap - va_mask identifies requested attributes. 1846 * flags - [UNUSED] 1847 * cr - credentials of caller. 1848 * 1849 * OUT: vap - attribute values. 1850 * 1851 * RETURN: 0 (always succeeds) 1852 */ 1853 /* ARGSUSED */ 1854 static int 1855 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 1856 { 1857 znode_t *zp = VTOZ(vp); 1858 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1859 znode_phys_t *pzp = zp->z_phys; 1860 int error; 1861 1862 ZFS_ENTER(zfsvfs); 1863 1864 /* 1865 * Return all attributes. It's cheaper to provide the answer 1866 * than to determine whether we were asked the question. 1867 */ 1868 mutex_enter(&zp->z_lock); 1869 1870 vap->va_type = vp->v_type; 1871 vap->va_mode = pzp->zp_mode & MODEMASK; 1872 vap->va_uid = zp->z_phys->zp_uid; 1873 vap->va_gid = zp->z_phys->zp_gid; 1874 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 1875 vap->va_nodeid = zp->z_id; 1876 vap->va_nlink = MIN(pzp->zp_links, UINT32_MAX); /* nlink_t limit! */ 1877 vap->va_size = pzp->zp_size; 1878 vap->va_rdev = vp->v_rdev; 1879 vap->va_seq = zp->z_seq; 1880 1881 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 1882 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 1883 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 1884 1885 /* 1886 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 1887 * Also, if we are the owner don't bother, since owner should 1888 * always be allowed to read basic attributes of file. 1889 */ 1890 if (!(zp->z_phys->zp_flags & ZFS_ACL_TRIVIAL) && 1891 (zp->z_phys->zp_uid != crgetuid(cr))) { 1892 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, cr)) { 1893 mutex_exit(&zp->z_lock); 1894 ZFS_EXIT(zfsvfs); 1895 return (error); 1896 } 1897 } 1898 1899 mutex_exit(&zp->z_lock); 1900 1901 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 1902 1903 if (zp->z_blksz == 0) { 1904 /* 1905 * Block size hasn't been set; suggest maximal I/O transfers. 1906 */ 1907 vap->va_blksize = zfsvfs->z_max_blksz; 1908 } 1909 1910 ZFS_EXIT(zfsvfs); 1911 return (0); 1912 } 1913 1914 /* 1915 * Set the file attributes to the values contained in the 1916 * vattr structure. 1917 * 1918 * IN: vp - vnode of file to be modified. 1919 * vap - new attribute values. 1920 * flags - ATTR_UTIME set if non-default time values provided. 1921 * cr - credentials of caller. 1922 * 1923 * RETURN: 0 if success 1924 * error code if failure 1925 * 1926 * Timestamps: 1927 * vp - ctime updated, mtime updated if size changed. 1928 */ 1929 /* ARGSUSED */ 1930 static int 1931 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1932 caller_context_t *ct) 1933 { 1934 struct znode *zp = VTOZ(vp); 1935 znode_phys_t *pzp = zp->z_phys; 1936 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1937 zilog_t *zilog = zfsvfs->z_log; 1938 uint64_t seq = 0; 1939 dmu_tx_t *tx; 1940 vattr_t oldva; 1941 uint_t mask = vap->va_mask; 1942 uint_t saved_mask; 1943 int trim_mask = FALSE; 1944 uint64_t new_mode; 1945 znode_t *attrzp; 1946 int need_policy = FALSE; 1947 int err; 1948 1949 if (mask == 0) 1950 return (0); 1951 1952 if (mask & AT_NOSET) 1953 return (EINVAL); 1954 1955 if (mask & AT_SIZE && vp->v_type == VDIR) 1956 return (EISDIR); 1957 1958 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) 1959 return (EINVAL); 1960 1961 ZFS_ENTER(zfsvfs); 1962 1963 top: 1964 attrzp = NULL; 1965 1966 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 1967 ZFS_EXIT(zfsvfs); 1968 return (EROFS); 1969 } 1970 1971 /* 1972 * First validate permissions 1973 */ 1974 1975 if (mask & AT_SIZE) { 1976 err = zfs_zaccess(zp, ACE_WRITE_DATA, cr); 1977 if (err) { 1978 ZFS_EXIT(zfsvfs); 1979 return (err); 1980 } 1981 /* 1982 * XXX - Note, we are not providing any open 1983 * mode flags here (like FNDELAY), so we may 1984 * block if there are locks present... this 1985 * should be addressed in openat(). 1986 */ 1987 do { 1988 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 1989 /* NB: we already did dmu_tx_wait() if necessary */ 1990 } while (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 1991 if (err) { 1992 ZFS_EXIT(zfsvfs); 1993 return (err); 1994 } 1995 } 1996 1997 if (mask & (AT_ATIME|AT_MTIME)) 1998 need_policy = zfs_zaccess_v4_perm(zp, ACE_WRITE_ATTRIBUTES, cr); 1999 2000 if (mask & (AT_UID|AT_GID)) { 2001 int idmask = (mask & (AT_UID|AT_GID)); 2002 int take_owner; 2003 int take_group; 2004 2005 /* 2006 * NOTE: even if a new mode is being set, 2007 * we may clear S_ISUID/S_ISGID bits. 2008 */ 2009 2010 if (!(mask & AT_MODE)) 2011 vap->va_mode = pzp->zp_mode; 2012 2013 /* 2014 * Take ownership or chgrp to group we are a member of 2015 */ 2016 2017 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2018 take_group = (mask & AT_GID) && groupmember(vap->va_gid, cr); 2019 2020 /* 2021 * If both AT_UID and AT_GID are set then take_owner and 2022 * take_group must both be set in order to allow taking 2023 * ownership. 2024 * 2025 * Otherwise, send the check through secpolicy_vnode_setattr() 2026 * 2027 */ 2028 2029 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2030 ((idmask == AT_UID) && take_owner) || 2031 ((idmask == AT_GID) && take_group)) { 2032 if (zfs_zaccess_v4_perm(zp, ACE_WRITE_OWNER, cr) == 0) { 2033 /* 2034 * Remove setuid/setgid for non-privileged users 2035 */ 2036 secpolicy_setid_clear(vap, cr); 2037 trim_mask = TRUE; 2038 saved_mask = vap->va_mask; 2039 } else { 2040 need_policy = TRUE; 2041 } 2042 } else { 2043 need_policy = TRUE; 2044 } 2045 } 2046 2047 if (mask & AT_MODE) 2048 need_policy = TRUE; 2049 2050 if (need_policy) { 2051 mutex_enter(&zp->z_lock); 2052 oldva.va_mode = pzp->zp_mode; 2053 oldva.va_uid = zp->z_phys->zp_uid; 2054 oldva.va_gid = zp->z_phys->zp_gid; 2055 mutex_exit(&zp->z_lock); 2056 2057 /* 2058 * If trim_mask is set then take ownership 2059 * has been granted. In that case remove 2060 * UID|GID from mask so that 2061 * secpolicy_vnode_setattr() doesn't revoke it. 2062 */ 2063 if (trim_mask) 2064 vap->va_mask &= ~(AT_UID|AT_GID); 2065 2066 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2067 (int (*)(void *, int, cred_t *))zfs_zaccess_rwx, zp); 2068 if (err) { 2069 ZFS_EXIT(zfsvfs); 2070 return (err); 2071 } 2072 2073 if (trim_mask) 2074 vap->va_mask |= (saved_mask & (AT_UID|AT_GID)); 2075 } 2076 2077 /* 2078 * secpolicy_vnode_setattr, or take ownership may have 2079 * changed va_mask 2080 */ 2081 mask = vap->va_mask; 2082 2083 tx = dmu_tx_create(zfsvfs->z_os); 2084 dmu_tx_hold_bonus(tx, zp->z_id); 2085 2086 if (mask & AT_MODE) { 2087 uint64_t pmode = pzp->zp_mode; 2088 2089 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2090 2091 if (zp->z_phys->zp_acl.z_acl_extern_obj) 2092 dmu_tx_hold_write(tx, 2093 pzp->zp_acl.z_acl_extern_obj, 0, SPA_MAXBLOCKSIZE); 2094 else 2095 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2096 0, ZFS_ACL_SIZE(MAX_ACL_SIZE)); 2097 } 2098 2099 if ((mask & (AT_UID | AT_GID)) && zp->z_phys->zp_xattr != 0) { 2100 err = zfs_zget(zp->z_zfsvfs, zp->z_phys->zp_xattr, &attrzp); 2101 if (err) { 2102 dmu_tx_abort(tx); 2103 ZFS_EXIT(zfsvfs); 2104 return (err); 2105 } 2106 dmu_tx_hold_bonus(tx, attrzp->z_id); 2107 } 2108 2109 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2110 if (err) { 2111 if (attrzp) 2112 VN_RELE(ZTOV(attrzp)); 2113 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2114 dmu_tx_wait(tx); 2115 dmu_tx_abort(tx); 2116 goto top; 2117 } 2118 dmu_tx_abort(tx); 2119 ZFS_EXIT(zfsvfs); 2120 return (err); 2121 } 2122 2123 dmu_buf_will_dirty(zp->z_dbuf, tx); 2124 2125 /* 2126 * Set each attribute requested. 2127 * We group settings according to the locks they need to acquire. 2128 * 2129 * Note: you cannot set ctime directly, although it will be 2130 * updated as a side-effect of calling this function. 2131 */ 2132 2133 mutex_enter(&zp->z_lock); 2134 2135 if (mask & AT_MODE) { 2136 err = zfs_acl_chmod_setattr(zp, new_mode, tx); 2137 ASSERT3U(err, ==, 0); 2138 } 2139 2140 if (attrzp) 2141 mutex_enter(&attrzp->z_lock); 2142 2143 if (mask & AT_UID) { 2144 zp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2145 if (attrzp) { 2146 attrzp->z_phys->zp_uid = (uint64_t)vap->va_uid; 2147 } 2148 } 2149 2150 if (mask & AT_GID) { 2151 zp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2152 if (attrzp) 2153 attrzp->z_phys->zp_gid = (uint64_t)vap->va_gid; 2154 } 2155 2156 if (attrzp) 2157 mutex_exit(&attrzp->z_lock); 2158 2159 if (mask & AT_ATIME) 2160 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2161 2162 if (mask & AT_MTIME) 2163 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2164 2165 if (mask & AT_SIZE) 2166 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2167 else if (mask != 0) 2168 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2169 2170 if (mask != 0) 2171 seq = zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask); 2172 2173 mutex_exit(&zp->z_lock); 2174 2175 if (attrzp) 2176 VN_RELE(ZTOV(attrzp)); 2177 2178 dmu_tx_commit(tx); 2179 2180 zil_commit(zilog, seq, 0); 2181 2182 ZFS_EXIT(zfsvfs); 2183 return (err); 2184 } 2185 2186 /* 2187 * Search back through the directory tree, using the ".." entries. 2188 * Lock each directory in the chain to prevent concurrent renames. 2189 * Fail any attempt to move a directory into one of its own descendants. 2190 * XXX - z_parent_lock can overlap with map or grow locks 2191 */ 2192 typedef struct zfs_zlock { 2193 krwlock_t *zl_rwlock; /* lock we acquired */ 2194 znode_t *zl_znode; /* znode we held */ 2195 struct zfs_zlock *zl_next; /* next in list */ 2196 } zfs_zlock_t; 2197 2198 static int 2199 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2200 { 2201 zfs_zlock_t *zl; 2202 znode_t *zp = tdzp; 2203 uint64_t rootid = zp->z_zfsvfs->z_root; 2204 uint64_t *oidp = &zp->z_id; 2205 krwlock_t *rwlp = &szp->z_parent_lock; 2206 krw_t rw = RW_WRITER; 2207 2208 /* 2209 * First pass write-locks szp and compares to zp->z_id. 2210 * Later passes read-lock zp and compare to zp->z_parent. 2211 */ 2212 do { 2213 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2214 zl->zl_rwlock = rwlp; 2215 zl->zl_znode = NULL; 2216 zl->zl_next = *zlpp; 2217 *zlpp = zl; 2218 2219 rw_enter(rwlp, rw); 2220 2221 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2222 return (EINVAL); 2223 2224 if (*oidp == rootid) /* We've hit the top */ 2225 return (0); 2226 2227 if (rw == RW_READER) { /* i.e. not the first pass */ 2228 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2229 if (error) 2230 return (error); 2231 zl->zl_znode = zp; 2232 } 2233 oidp = &zp->z_phys->zp_parent; 2234 rwlp = &zp->z_parent_lock; 2235 rw = RW_READER; 2236 2237 } while (zp->z_id != sdzp->z_id); 2238 2239 return (0); 2240 } 2241 2242 /* 2243 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2244 */ 2245 static void 2246 zfs_rename_unlock(zfs_zlock_t **zlpp) 2247 { 2248 zfs_zlock_t *zl; 2249 2250 while ((zl = *zlpp) != NULL) { 2251 if (zl->zl_znode != NULL) 2252 VN_RELE(ZTOV(zl->zl_znode)); 2253 rw_exit(zl->zl_rwlock); 2254 *zlpp = zl->zl_next; 2255 kmem_free(zl, sizeof (*zl)); 2256 } 2257 } 2258 2259 /* 2260 * Move an entry from the provided source directory to the target 2261 * directory. Change the entry name as indicated. 2262 * 2263 * IN: sdvp - Source directory containing the "old entry". 2264 * snm - Old entry name. 2265 * tdvp - Target directory to contain the "new entry". 2266 * tnm - New entry name. 2267 * cr - credentials of caller. 2268 * 2269 * RETURN: 0 if success 2270 * error code if failure 2271 * 2272 * Timestamps: 2273 * sdvp,tdvp - ctime|mtime updated 2274 */ 2275 static int 2276 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr) 2277 { 2278 znode_t *tdzp, *szp, *tzp; 2279 znode_t *sdzp = VTOZ(sdvp); 2280 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2281 zilog_t *zilog = zfsvfs->z_log; 2282 uint64_t seq = 0; 2283 vnode_t *realvp; 2284 zfs_dirlock_t *sdl, *tdl; 2285 dmu_tx_t *tx; 2286 zfs_zlock_t *zl; 2287 int cmp, serr, terr, error; 2288 2289 ZFS_ENTER(zfsvfs); 2290 2291 /* 2292 * Make sure we have the real vp for the target directory. 2293 */ 2294 if (VOP_REALVP(tdvp, &realvp) == 0) 2295 tdvp = realvp; 2296 2297 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2298 ZFS_EXIT(zfsvfs); 2299 return (EXDEV); 2300 } 2301 2302 tdzp = VTOZ(tdvp); 2303 top: 2304 szp = NULL; 2305 tzp = NULL; 2306 zl = NULL; 2307 2308 /* 2309 * This is to prevent the creation of links into attribute space 2310 * by renaming a linked file into/outof an attribute directory. 2311 * See the comment in zfs_link() for why this is considered bad. 2312 */ 2313 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 2314 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 2315 ZFS_EXIT(zfsvfs); 2316 return (EINVAL); 2317 } 2318 2319 /* 2320 * Lock source and target directory entries. To prevent deadlock, 2321 * a lock ordering must be defined. We lock the directory with 2322 * the smallest object id first, or if it's a tie, the one with 2323 * the lexically first name. 2324 */ 2325 if (sdzp->z_id < tdzp->z_id) { 2326 cmp = -1; 2327 } else if (sdzp->z_id > tdzp->z_id) { 2328 cmp = 1; 2329 } else { 2330 cmp = strcmp(snm, tnm); 2331 if (cmp == 0) { 2332 /* 2333 * POSIX: "If the old argument and the new argument 2334 * both refer to links to the same existing file, 2335 * the rename() function shall return successfully 2336 * and perform no other action." 2337 */ 2338 ZFS_EXIT(zfsvfs); 2339 return (0); 2340 } 2341 } 2342 if (cmp < 0) { 2343 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2344 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2345 } else { 2346 terr = zfs_dirent_lock(&tdl, tdzp, tnm, &tzp, 0); 2347 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, ZEXISTS); 2348 } 2349 2350 if (serr) { 2351 /* 2352 * Source entry invalid or not there. 2353 */ 2354 if (!terr) { 2355 zfs_dirent_unlock(tdl); 2356 if (tzp) 2357 VN_RELE(ZTOV(tzp)); 2358 } 2359 if (strcmp(snm, "..") == 0) 2360 serr = EINVAL; 2361 ZFS_EXIT(zfsvfs); 2362 return (serr); 2363 } 2364 if (terr) { 2365 zfs_dirent_unlock(sdl); 2366 VN_RELE(ZTOV(szp)); 2367 if (strcmp(tnm, "..") == 0) 2368 terr = EINVAL; 2369 ZFS_EXIT(zfsvfs); 2370 return (terr); 2371 } 2372 2373 /* 2374 * Must have write access at the source to remove the old entry 2375 * and write access at the target to create the new entry. 2376 * Note that if target and source are the same, this can be 2377 * done in a single check. 2378 */ 2379 2380 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 2381 goto out; 2382 2383 if (ZTOV(szp)->v_type == VDIR) { 2384 /* 2385 * Check to make sure rename is valid. 2386 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 2387 */ 2388 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 2389 goto out; 2390 } 2391 2392 /* 2393 * Does target exist? 2394 */ 2395 if (tzp) { 2396 /* 2397 * Source and target must be the same type. 2398 */ 2399 if (ZTOV(szp)->v_type == VDIR) { 2400 if (ZTOV(tzp)->v_type != VDIR) { 2401 error = ENOTDIR; 2402 goto out; 2403 } 2404 } else { 2405 if (ZTOV(tzp)->v_type == VDIR) { 2406 error = EISDIR; 2407 goto out; 2408 } 2409 } 2410 /* 2411 * POSIX dictates that when the source and target 2412 * entries refer to the same file object, rename 2413 * must do nothing and exit without error. 2414 */ 2415 if (szp->z_id == tzp->z_id) { 2416 error = 0; 2417 goto out; 2418 } 2419 } 2420 2421 vnevent_rename_src(ZTOV(szp)); 2422 if (tzp) 2423 vnevent_rename_dest(ZTOV(tzp)); 2424 2425 tx = dmu_tx_create(zfsvfs->z_os); 2426 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 2427 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 2428 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 2429 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 2430 if (sdzp != tdzp) 2431 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 2432 if (tzp) 2433 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 2434 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, FALSE, NULL); 2435 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2436 if (error) { 2437 if (zl != NULL) 2438 zfs_rename_unlock(&zl); 2439 zfs_dirent_unlock(sdl); 2440 zfs_dirent_unlock(tdl); 2441 VN_RELE(ZTOV(szp)); 2442 if (tzp) 2443 VN_RELE(ZTOV(tzp)); 2444 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2445 dmu_tx_wait(tx); 2446 dmu_tx_abort(tx); 2447 goto top; 2448 } 2449 dmu_tx_abort(tx); 2450 ZFS_EXIT(zfsvfs); 2451 return (error); 2452 } 2453 2454 if (tzp) /* Attempt to remove the existing target */ 2455 error = zfs_link_destroy(tdl, tzp, tx, 0, NULL); 2456 2457 if (error == 0) { 2458 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 2459 if (error == 0) { 2460 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 2461 ASSERT(error == 0); 2462 seq = zfs_log_rename(zilog, tx, TX_RENAME, 2463 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 2464 } 2465 } 2466 2467 dmu_tx_commit(tx); 2468 out: 2469 if (zl != NULL) 2470 zfs_rename_unlock(&zl); 2471 2472 zfs_dirent_unlock(sdl); 2473 zfs_dirent_unlock(tdl); 2474 2475 VN_RELE(ZTOV(szp)); 2476 if (tzp) 2477 VN_RELE(ZTOV(tzp)); 2478 2479 zil_commit(zilog, seq, 0); 2480 2481 ZFS_EXIT(zfsvfs); 2482 return (error); 2483 } 2484 2485 /* 2486 * Insert the indicated symbolic reference entry into the directory. 2487 * 2488 * IN: dvp - Directory to contain new symbolic link. 2489 * link - Name for new symlink entry. 2490 * vap - Attributes of new entry. 2491 * target - Target path of new symlink. 2492 * cr - credentials of caller. 2493 * 2494 * RETURN: 0 if success 2495 * error code if failure 2496 * 2497 * Timestamps: 2498 * dvp - ctime|mtime updated 2499 */ 2500 static int 2501 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr) 2502 { 2503 znode_t *zp, *dzp = VTOZ(dvp); 2504 zfs_dirlock_t *dl; 2505 dmu_tx_t *tx; 2506 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2507 zilog_t *zilog = zfsvfs->z_log; 2508 uint64_t seq = 0; 2509 uint64_t zoid; 2510 int len = strlen(link); 2511 int error; 2512 2513 ASSERT(vap->va_type == VLNK); 2514 2515 ZFS_ENTER(zfsvfs); 2516 top: 2517 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2518 ZFS_EXIT(zfsvfs); 2519 return (error); 2520 } 2521 2522 if (len > MAXPATHLEN) { 2523 ZFS_EXIT(zfsvfs); 2524 return (ENAMETOOLONG); 2525 } 2526 2527 /* 2528 * Attempt to lock directory; fail if entry already exists. 2529 */ 2530 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, ZNEW)) { 2531 ZFS_EXIT(zfsvfs); 2532 return (error); 2533 } 2534 2535 tx = dmu_tx_create(zfsvfs->z_os); 2536 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 2537 dmu_tx_hold_bonus(tx, dzp->z_id); 2538 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 2539 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 2540 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 2541 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2542 if (error) { 2543 zfs_dirent_unlock(dl); 2544 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2545 dmu_tx_wait(tx); 2546 dmu_tx_abort(tx); 2547 goto top; 2548 } 2549 dmu_tx_abort(tx); 2550 ZFS_EXIT(zfsvfs); 2551 return (error); 2552 } 2553 2554 dmu_buf_will_dirty(dzp->z_dbuf, tx); 2555 2556 /* 2557 * Create a new object for the symlink. 2558 * Put the link content into bonus buffer if it will fit; 2559 * otherwise, store it just like any other file data. 2560 */ 2561 zoid = 0; 2562 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 2563 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, len); 2564 if (len != 0) 2565 bcopy(link, zp->z_phys + 1, len); 2566 } else { 2567 dmu_buf_t *dbp; 2568 2569 zfs_mknode(dzp, vap, &zoid, tx, cr, 0, &zp, 0); 2570 2571 /* 2572 * Nothing can access the znode yet so no locking needed 2573 * for growing the znode's blocksize. 2574 */ 2575 zfs_grow_blocksize(zp, len, tx); 2576 2577 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, zoid, 0, FTAG, &dbp)); 2578 dmu_buf_will_dirty(dbp, tx); 2579 2580 ASSERT3U(len, <=, dbp->db_size); 2581 bcopy(link, dbp->db_data, len); 2582 dmu_buf_rele(dbp, FTAG); 2583 } 2584 zp->z_phys->zp_size = len; 2585 2586 /* 2587 * Insert the new object into the directory. 2588 */ 2589 (void) zfs_link_create(dl, zp, tx, ZNEW); 2590 out: 2591 if (error == 0) 2592 seq = zfs_log_symlink(zilog, tx, TX_SYMLINK, 2593 dzp, zp, name, link); 2594 2595 dmu_tx_commit(tx); 2596 2597 zfs_dirent_unlock(dl); 2598 2599 VN_RELE(ZTOV(zp)); 2600 2601 zil_commit(zilog, seq, 0); 2602 2603 ZFS_EXIT(zfsvfs); 2604 return (error); 2605 } 2606 2607 /* 2608 * Return, in the buffer contained in the provided uio structure, 2609 * the symbolic path referred to by vp. 2610 * 2611 * IN: vp - vnode of symbolic link. 2612 * uoip - structure to contain the link path. 2613 * cr - credentials of caller. 2614 * 2615 * OUT: uio - structure to contain the link path. 2616 * 2617 * RETURN: 0 if success 2618 * error code if failure 2619 * 2620 * Timestamps: 2621 * vp - atime updated 2622 */ 2623 /* ARGSUSED */ 2624 static int 2625 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr) 2626 { 2627 znode_t *zp = VTOZ(vp); 2628 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2629 size_t bufsz; 2630 int error; 2631 2632 ZFS_ENTER(zfsvfs); 2633 2634 bufsz = (size_t)zp->z_phys->zp_size; 2635 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 2636 error = uiomove(zp->z_phys + 1, 2637 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2638 } else { 2639 dmu_buf_t *dbp; 2640 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 2641 if (error) { 2642 ZFS_EXIT(zfsvfs); 2643 return (error); 2644 } 2645 error = uiomove(dbp->db_data, 2646 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 2647 dmu_buf_rele(dbp, FTAG); 2648 } 2649 2650 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2651 ZFS_EXIT(zfsvfs); 2652 return (error); 2653 } 2654 2655 /* 2656 * Insert a new entry into directory tdvp referencing svp. 2657 * 2658 * IN: tdvp - Directory to contain new entry. 2659 * svp - vnode of new entry. 2660 * name - name of new entry. 2661 * cr - credentials of caller. 2662 * 2663 * RETURN: 0 if success 2664 * error code if failure 2665 * 2666 * Timestamps: 2667 * tdvp - ctime|mtime updated 2668 * svp - ctime updated 2669 */ 2670 /* ARGSUSED */ 2671 static int 2672 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr) 2673 { 2674 znode_t *dzp = VTOZ(tdvp); 2675 znode_t *tzp, *szp; 2676 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2677 zilog_t *zilog = zfsvfs->z_log; 2678 uint64_t seq = 0; 2679 zfs_dirlock_t *dl; 2680 dmu_tx_t *tx; 2681 vnode_t *realvp; 2682 int error; 2683 2684 ASSERT(tdvp->v_type == VDIR); 2685 2686 ZFS_ENTER(zfsvfs); 2687 2688 if (VOP_REALVP(svp, &realvp) == 0) 2689 svp = realvp; 2690 2691 if (svp->v_vfsp != tdvp->v_vfsp) { 2692 ZFS_EXIT(zfsvfs); 2693 return (EXDEV); 2694 } 2695 2696 szp = VTOZ(svp); 2697 top: 2698 /* 2699 * We do not support links between attributes and non-attributes 2700 * because of the potential security risk of creating links 2701 * into "normal" file space in order to circumvent restrictions 2702 * imposed in attribute space. 2703 */ 2704 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 2705 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 2706 ZFS_EXIT(zfsvfs); 2707 return (EINVAL); 2708 } 2709 2710 /* 2711 * POSIX dictates that we return EPERM here. 2712 * Better choices include ENOTSUP or EISDIR. 2713 */ 2714 if (svp->v_type == VDIR) { 2715 ZFS_EXIT(zfsvfs); 2716 return (EPERM); 2717 } 2718 2719 if ((uid_t)szp->z_phys->zp_uid != crgetuid(cr) && 2720 secpolicy_basic_link(cr) != 0) { 2721 ZFS_EXIT(zfsvfs); 2722 return (EPERM); 2723 } 2724 2725 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, cr)) { 2726 ZFS_EXIT(zfsvfs); 2727 return (error); 2728 } 2729 2730 /* 2731 * Attempt to lock directory; fail if entry already exists. 2732 */ 2733 if (error = zfs_dirent_lock(&dl, dzp, name, &tzp, ZNEW)) { 2734 ZFS_EXIT(zfsvfs); 2735 return (error); 2736 } 2737 2738 tx = dmu_tx_create(zfsvfs->z_os); 2739 dmu_tx_hold_bonus(tx, szp->z_id); 2740 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 2741 error = dmu_tx_assign(tx, zfsvfs->z_assign); 2742 if (error) { 2743 zfs_dirent_unlock(dl); 2744 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2745 dmu_tx_wait(tx); 2746 dmu_tx_abort(tx); 2747 goto top; 2748 } 2749 dmu_tx_abort(tx); 2750 ZFS_EXIT(zfsvfs); 2751 return (error); 2752 } 2753 2754 error = zfs_link_create(dl, szp, tx, 0); 2755 2756 if (error == 0) 2757 seq = zfs_log_link(zilog, tx, TX_LINK, dzp, szp, name); 2758 2759 dmu_tx_commit(tx); 2760 2761 zfs_dirent_unlock(dl); 2762 2763 zil_commit(zilog, seq, 0); 2764 2765 ZFS_EXIT(zfsvfs); 2766 return (error); 2767 } 2768 2769 /* 2770 * zfs_null_putapage() is used when the file system has been force 2771 * unmounted. It just drops the pages. 2772 */ 2773 /* ARGSUSED */ 2774 static int 2775 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2776 size_t *lenp, int flags, cred_t *cr) 2777 { 2778 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 2779 return (0); 2780 } 2781 2782 /* ARGSUSED */ 2783 static int 2784 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 2785 size_t *lenp, int flags, cred_t *cr) 2786 { 2787 znode_t *zp = VTOZ(vp); 2788 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2789 zilog_t *zilog = zfsvfs->z_log; 2790 dmu_tx_t *tx; 2791 rl_t *rl; 2792 u_offset_t off; 2793 ssize_t len; 2794 caddr_t va; 2795 int err; 2796 2797 top: 2798 off = pp->p_offset; 2799 rl = zfs_range_lock(zp, off, PAGESIZE, RL_WRITER); 2800 /* 2801 * Can't push pages past end-of-file. 2802 */ 2803 if (off >= zp->z_phys->zp_size) { 2804 zfs_range_unlock(rl); 2805 return (EIO); 2806 } 2807 len = MIN(PAGESIZE, zp->z_phys->zp_size - off); 2808 2809 tx = dmu_tx_create(zfsvfs->z_os); 2810 dmu_tx_hold_write(tx, zp->z_id, off, len); 2811 dmu_tx_hold_bonus(tx, zp->z_id); 2812 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2813 if (err != 0) { 2814 zfs_range_unlock(rl); 2815 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2816 dmu_tx_wait(tx); 2817 dmu_tx_abort(tx); 2818 goto top; 2819 } 2820 dmu_tx_abort(tx); 2821 goto out; 2822 } 2823 2824 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 2825 2826 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 2827 2828 ppmapout(va); 2829 2830 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 2831 (void) zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0, NULL); 2832 dmu_tx_commit(tx); 2833 2834 zfs_range_unlock(rl); 2835 2836 pvn_write_done(pp, B_WRITE | flags); 2837 if (offp) 2838 *offp = off; 2839 if (lenp) 2840 *lenp = len; 2841 2842 out: 2843 return (err); 2844 } 2845 2846 /* 2847 * Copy the portion of the file indicated from pages into the file. 2848 * The pages are stored in a page list attached to the files vnode. 2849 * 2850 * IN: vp - vnode of file to push page data to. 2851 * off - position in file to put data. 2852 * len - amount of data to write. 2853 * flags - flags to control the operation. 2854 * cr - credentials of caller. 2855 * 2856 * RETURN: 0 if success 2857 * error code if failure 2858 * 2859 * Timestamps: 2860 * vp - ctime|mtime updated 2861 */ 2862 static int 2863 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr) 2864 { 2865 znode_t *zp = VTOZ(vp); 2866 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2867 page_t *pp; 2868 size_t io_len; 2869 u_offset_t io_off; 2870 uint64_t filesz; 2871 int error = 0; 2872 2873 ZFS_ENTER(zfsvfs); 2874 2875 ASSERT(zp->z_dbuf_held && zp->z_phys); 2876 2877 if (len == 0) { 2878 /* 2879 * Search the entire vp list for pages >= off. 2880 */ 2881 error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage, 2882 flags, cr); 2883 goto out; 2884 } 2885 2886 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 2887 if (off > filesz) { 2888 /* past end of file */ 2889 ZFS_EXIT(zfsvfs); 2890 return (0); 2891 } 2892 2893 len = MIN(len, filesz - off); 2894 2895 for (io_off = off; io_off < off + len; io_off += io_len) { 2896 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 2897 pp = page_lookup(vp, io_off, 2898 (flags & (B_INVAL | B_FREE)) ? 2899 SE_EXCL : SE_SHARED); 2900 } else { 2901 pp = page_lookup_nowait(vp, io_off, 2902 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 2903 } 2904 2905 if (pp != NULL && pvn_getdirty(pp, flags)) { 2906 int err; 2907 2908 /* 2909 * Found a dirty page to push 2910 */ 2911 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 2912 if (err) 2913 error = err; 2914 } else { 2915 io_len = PAGESIZE; 2916 } 2917 } 2918 out: 2919 zil_commit(zfsvfs->z_log, UINT64_MAX, (flags & B_ASYNC) ? 0 : FDSYNC); 2920 ZFS_EXIT(zfsvfs); 2921 return (error); 2922 } 2923 2924 void 2925 zfs_inactive(vnode_t *vp, cred_t *cr) 2926 { 2927 znode_t *zp = VTOZ(vp); 2928 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2929 int error; 2930 2931 rw_enter(&zfsvfs->z_um_lock, RW_READER); 2932 if (zfsvfs->z_unmounted2) { 2933 ASSERT(zp->z_dbuf_held == 0); 2934 2935 if (vn_has_cached_data(vp)) { 2936 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 2937 B_INVAL, cr); 2938 } 2939 2940 mutex_enter(&zp->z_lock); 2941 vp->v_count = 0; /* count arrives as 1 */ 2942 if (zp->z_dbuf == NULL) { 2943 mutex_exit(&zp->z_lock); 2944 zfs_znode_free(zp); 2945 } else { 2946 mutex_exit(&zp->z_lock); 2947 } 2948 rw_exit(&zfsvfs->z_um_lock); 2949 VFS_RELE(zfsvfs->z_vfs); 2950 return; 2951 } 2952 2953 /* 2954 * Attempt to push any data in the page cache. If this fails 2955 * we will get kicked out later in zfs_zinactive(). 2956 */ 2957 if (vn_has_cached_data(vp)) { 2958 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 2959 cr); 2960 } 2961 2962 if (zp->z_atime_dirty && zp->z_reap == 0) { 2963 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 2964 2965 dmu_tx_hold_bonus(tx, zp->z_id); 2966 error = dmu_tx_assign(tx, TXG_WAIT); 2967 if (error) { 2968 dmu_tx_abort(tx); 2969 } else { 2970 dmu_buf_will_dirty(zp->z_dbuf, tx); 2971 mutex_enter(&zp->z_lock); 2972 zp->z_atime_dirty = 0; 2973 mutex_exit(&zp->z_lock); 2974 dmu_tx_commit(tx); 2975 } 2976 } 2977 2978 zfs_zinactive(zp); 2979 rw_exit(&zfsvfs->z_um_lock); 2980 } 2981 2982 /* 2983 * Bounds-check the seek operation. 2984 * 2985 * IN: vp - vnode seeking within 2986 * ooff - old file offset 2987 * noffp - pointer to new file offset 2988 * 2989 * RETURN: 0 if success 2990 * EINVAL if new offset invalid 2991 */ 2992 /* ARGSUSED */ 2993 static int 2994 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp) 2995 { 2996 if (vp->v_type == VDIR) 2997 return (0); 2998 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 2999 } 3000 3001 /* 3002 * Pre-filter the generic locking function to trap attempts to place 3003 * a mandatory lock on a memory mapped file. 3004 */ 3005 static int 3006 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 3007 flk_callback_t *flk_cbp, cred_t *cr) 3008 { 3009 znode_t *zp = VTOZ(vp); 3010 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3011 int error; 3012 3013 ZFS_ENTER(zfsvfs); 3014 3015 /* 3016 * We are following the UFS semantics with respect to mapcnt 3017 * here: If we see that the file is mapped already, then we will 3018 * return an error, but we don't worry about races between this 3019 * function and zfs_map(). 3020 */ 3021 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3022 ZFS_EXIT(zfsvfs); 3023 return (EAGAIN); 3024 } 3025 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr); 3026 ZFS_EXIT(zfsvfs); 3027 return (error); 3028 } 3029 3030 /* 3031 * If we can't find a page in the cache, we will create a new page 3032 * and fill it with file data. For efficiency, we may try to fill 3033 * multiple pages at once (klustering). 3034 */ 3035 static int 3036 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3037 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3038 { 3039 znode_t *zp = VTOZ(vp); 3040 page_t *pp, *cur_pp; 3041 objset_t *os = zp->z_zfsvfs->z_os; 3042 caddr_t va; 3043 u_offset_t io_off, total; 3044 uint64_t oid = zp->z_id; 3045 size_t io_len; 3046 uint64_t filesz; 3047 int err; 3048 3049 /* 3050 * If we are only asking for a single page don't bother klustering. 3051 */ 3052 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3053 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE || off > filesz) { 3054 io_off = off; 3055 io_len = PAGESIZE; 3056 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 3057 } else { 3058 /* 3059 * Try to fill a kluster of pages (a blocks worth). 3060 */ 3061 size_t klen; 3062 u_offset_t koff; 3063 3064 if (!ISP2(zp->z_blksz)) { 3065 /* Only one block in the file. */ 3066 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3067 koff = 0; 3068 } else { 3069 klen = plsz; 3070 koff = P2ALIGN(off, (u_offset_t)klen); 3071 } 3072 ASSERT(koff <= filesz); 3073 if (koff + klen > filesz) 3074 klen = P2ROUNDUP(filesz, (uint64_t)PAGESIZE) - koff; 3075 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3076 &io_len, koff, klen, 0); 3077 } 3078 if (pp == NULL) { 3079 /* 3080 * Some other thread entered the page before us. 3081 * Return to zfs_getpage to retry the lookup. 3082 */ 3083 *pl = NULL; 3084 return (0); 3085 } 3086 3087 /* 3088 * Fill the pages in the kluster. 3089 */ 3090 cur_pp = pp; 3091 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3092 ASSERT(io_off == cur_pp->p_offset); 3093 va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 3094 err = dmu_read(os, oid, io_off, PAGESIZE, va); 3095 ppmapout(va); 3096 if (err) { 3097 /* On error, toss the entire kluster */ 3098 pvn_read_done(pp, B_ERROR); 3099 return (err); 3100 } 3101 cur_pp = cur_pp->p_next; 3102 } 3103 out: 3104 /* 3105 * Fill in the page list array from the kluster. If 3106 * there are too many pages in the kluster, return 3107 * as many pages as possible starting from the desired 3108 * offset `off'. 3109 * NOTE: the page list will always be null terminated. 3110 */ 3111 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3112 3113 return (0); 3114 } 3115 3116 /* 3117 * Return pointers to the pages for the file region [off, off + len] 3118 * in the pl array. If plsz is greater than len, this function may 3119 * also return page pointers from before or after the specified 3120 * region (i.e. some region [off', off' + plsz]). These additional 3121 * pages are only returned if they are already in the cache, or were 3122 * created as part of a klustered read. 3123 * 3124 * IN: vp - vnode of file to get data from. 3125 * off - position in file to get data from. 3126 * len - amount of data to retrieve. 3127 * plsz - length of provided page list. 3128 * seg - segment to obtain pages for. 3129 * addr - virtual address of fault. 3130 * rw - mode of created pages. 3131 * cr - credentials of caller. 3132 * 3133 * OUT: protp - protection mode of created pages. 3134 * pl - list of pages created. 3135 * 3136 * RETURN: 0 if success 3137 * error code if failure 3138 * 3139 * Timestamps: 3140 * vp - atime updated 3141 */ 3142 /* ARGSUSED */ 3143 static int 3144 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3145 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3146 enum seg_rw rw, cred_t *cr) 3147 { 3148 znode_t *zp = VTOZ(vp); 3149 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3150 page_t *pp, **pl0 = pl; 3151 rl_t *rl; 3152 int cnt = 0, need_unlock = 0, err = 0; 3153 3154 ZFS_ENTER(zfsvfs); 3155 3156 if (protp) 3157 *protp = PROT_ALL; 3158 3159 ASSERT(zp->z_dbuf_held && zp->z_phys); 3160 3161 /* no faultahead (for now) */ 3162 if (pl == NULL) { 3163 ZFS_EXIT(zfsvfs); 3164 return (0); 3165 } 3166 3167 /* 3168 * Make sure nobody restructures the file in the middle of the getpage. 3169 */ 3170 rl = zfs_range_lock(zp, off, len, RL_READER); 3171 3172 /* can't fault past EOF */ 3173 if (off >= zp->z_phys->zp_size) { 3174 zfs_range_unlock(rl); 3175 ZFS_EXIT(zfsvfs); 3176 return (EFAULT); 3177 } 3178 3179 /* 3180 * If we already own the lock, then we must be page faulting 3181 * in the middle of a write to this file (i.e., we are writing 3182 * to this file using data from a mapped region of the file). 3183 */ 3184 if (!rw_owner(&zp->z_map_lock)) { 3185 rw_enter(&zp->z_map_lock, RW_WRITER); 3186 need_unlock = TRUE; 3187 } 3188 3189 /* 3190 * Loop through the requested range [off, off + len] looking 3191 * for pages. If we don't find a page, we will need to create 3192 * a new page and fill it with data from the file. 3193 */ 3194 while (len > 0) { 3195 if (plsz < PAGESIZE) 3196 break; 3197 if (pp = page_lookup(vp, off, SE_SHARED)) { 3198 *pl++ = pp; 3199 off += PAGESIZE; 3200 addr += PAGESIZE; 3201 len -= PAGESIZE; 3202 plsz -= PAGESIZE; 3203 } else { 3204 err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw); 3205 /* 3206 * klustering may have changed our region 3207 * to be block aligned. 3208 */ 3209 if (((pp = *pl) != 0) && (off != pp->p_offset)) { 3210 int delta = off - pp->p_offset; 3211 len += delta; 3212 off -= delta; 3213 addr -= delta; 3214 } 3215 while (*pl) { 3216 pl++; 3217 cnt++; 3218 off += PAGESIZE; 3219 addr += PAGESIZE; 3220 plsz -= PAGESIZE; 3221 if (len > PAGESIZE) 3222 len -= PAGESIZE; 3223 else 3224 len = 0; 3225 } 3226 if (err) { 3227 /* 3228 * Release any pages we have locked. 3229 */ 3230 while (pl > pl0) 3231 page_unlock(*--pl); 3232 goto out; 3233 } 3234 } 3235 } 3236 3237 /* 3238 * Fill out the page array with any pages already in the cache. 3239 */ 3240 while (plsz > 0) { 3241 pp = page_lookup_nowait(vp, off, SE_SHARED); 3242 if (pp == NULL) 3243 break; 3244 *pl++ = pp; 3245 off += PAGESIZE; 3246 plsz -= PAGESIZE; 3247 } 3248 3249 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3250 out: 3251 *pl = NULL; 3252 3253 if (need_unlock) 3254 rw_exit(&zp->z_map_lock); 3255 zfs_range_unlock(rl); 3256 3257 ZFS_EXIT(zfsvfs); 3258 return (err); 3259 } 3260 3261 /* 3262 * Request a memory map for a section of a file. This code interacts 3263 * with common code and the VM system as follows: 3264 * 3265 * common code calls mmap(), which ends up in smmap_common() 3266 * 3267 * this calls VOP_MAP(), which takes you into (say) zfs 3268 * 3269 * zfs_map() calls as_map(), passing segvn_create() as the callback 3270 * 3271 * segvn_create() creates the new segment and calls VOP_ADDMAP() 3272 * 3273 * zfs_addmap() updates z_mapcnt 3274 */ 3275 static int 3276 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 3277 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3278 { 3279 znode_t *zp = VTOZ(vp); 3280 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3281 segvn_crargs_t vn_a; 3282 int error; 3283 3284 ZFS_ENTER(zfsvfs); 3285 3286 if (vp->v_flag & VNOMAP) { 3287 ZFS_EXIT(zfsvfs); 3288 return (ENOSYS); 3289 } 3290 3291 if (off < 0 || len > MAXOFFSET_T - off) { 3292 ZFS_EXIT(zfsvfs); 3293 return (ENXIO); 3294 } 3295 3296 if (vp->v_type != VREG) { 3297 ZFS_EXIT(zfsvfs); 3298 return (ENODEV); 3299 } 3300 3301 /* 3302 * If file is locked, disallow mapping. 3303 */ 3304 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 3305 ZFS_EXIT(zfsvfs); 3306 return (EAGAIN); 3307 } 3308 3309 as_rangelock(as); 3310 if ((flags & MAP_FIXED) == 0) { 3311 map_addr(addrp, len, off, 1, flags); 3312 if (*addrp == NULL) { 3313 as_rangeunlock(as); 3314 ZFS_EXIT(zfsvfs); 3315 return (ENOMEM); 3316 } 3317 } else { 3318 /* 3319 * User specified address - blow away any previous mappings 3320 */ 3321 (void) as_unmap(as, *addrp, len); 3322 } 3323 3324 vn_a.vp = vp; 3325 vn_a.offset = (u_offset_t)off; 3326 vn_a.type = flags & MAP_TYPE; 3327 vn_a.prot = prot; 3328 vn_a.maxprot = maxprot; 3329 vn_a.cred = cr; 3330 vn_a.amp = NULL; 3331 vn_a.flags = flags & ~MAP_TYPE; 3332 vn_a.szc = 0; 3333 vn_a.lgrp_mem_policy_flags = 0; 3334 3335 error = as_map(as, *addrp, len, segvn_create, &vn_a); 3336 3337 as_rangeunlock(as); 3338 ZFS_EXIT(zfsvfs); 3339 return (error); 3340 } 3341 3342 /* ARGSUSED */ 3343 static int 3344 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3345 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr) 3346 { 3347 uint64_t pages = btopr(len); 3348 3349 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 3350 return (0); 3351 } 3352 3353 /* 3354 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 3355 * more accurate mtime for the associated file. Since we don't have a way of 3356 * detecting when the data was actually modified, we have to resort to 3357 * heuristics. If an explicit msync() is done, then we mark the mtime when the 3358 * last page is pushed. The problem occurs when the msync() call is omitted, 3359 * which by far the most common case: 3360 * 3361 * open() 3362 * mmap() 3363 * <modify memory> 3364 * munmap() 3365 * close() 3366 * <time lapse> 3367 * putpage() via fsflush 3368 * 3369 * If we wait until fsflush to come along, we can have a modification time that 3370 * is some arbitrary point in the future. In order to prevent this in the 3371 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 3372 * torn down. 3373 */ 3374 /* ARGSUSED */ 3375 static int 3376 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 3377 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr) 3378 { 3379 uint64_t pages = btopr(len); 3380 3381 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 3382 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 3383 3384 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 3385 vn_has_cached_data(vp)) 3386 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr); 3387 3388 return (0); 3389 } 3390 3391 /* 3392 * Free or allocate space in a file. Currently, this function only 3393 * supports the `F_FREESP' command. However, this command is somewhat 3394 * misnamed, as its functionality includes the ability to allocate as 3395 * well as free space. 3396 * 3397 * IN: vp - vnode of file to free data in. 3398 * cmd - action to take (only F_FREESP supported). 3399 * bfp - section of file to free/alloc. 3400 * flag - current file open mode flags. 3401 * offset - current file offset. 3402 * cr - credentials of caller [UNUSED]. 3403 * 3404 * RETURN: 0 if success 3405 * error code if failure 3406 * 3407 * Timestamps: 3408 * vp - ctime|mtime updated 3409 */ 3410 /* ARGSUSED */ 3411 static int 3412 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 3413 offset_t offset, cred_t *cr, caller_context_t *ct) 3414 { 3415 znode_t *zp = VTOZ(vp); 3416 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3417 uint64_t off, len; 3418 int error; 3419 3420 ZFS_ENTER(zfsvfs); 3421 3422 top: 3423 if (cmd != F_FREESP) { 3424 ZFS_EXIT(zfsvfs); 3425 return (EINVAL); 3426 } 3427 3428 if (error = convoff(vp, bfp, 0, offset)) { 3429 ZFS_EXIT(zfsvfs); 3430 return (error); 3431 } 3432 3433 if (bfp->l_len < 0) { 3434 ZFS_EXIT(zfsvfs); 3435 return (EINVAL); 3436 } 3437 3438 off = bfp->l_start; 3439 len = bfp->l_len; /* 0 means from off to end of file */ 3440 3441 do { 3442 error = zfs_freesp(zp, off, len, flag, TRUE); 3443 /* NB: we already did dmu_tx_wait() if necessary */ 3444 } while (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 3445 3446 ZFS_EXIT(zfsvfs); 3447 return (error); 3448 } 3449 3450 static int 3451 zfs_fid(vnode_t *vp, fid_t *fidp) 3452 { 3453 znode_t *zp = VTOZ(vp); 3454 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3455 uint32_t gen = (uint32_t)zp->z_phys->zp_gen; 3456 uint64_t object = zp->z_id; 3457 zfid_short_t *zfid; 3458 int size, i; 3459 3460 ZFS_ENTER(zfsvfs); 3461 3462 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 3463 if (fidp->fid_len < size) { 3464 fidp->fid_len = size; 3465 ZFS_EXIT(zfsvfs); 3466 return (ENOSPC); 3467 } 3468 3469 zfid = (zfid_short_t *)fidp; 3470 3471 zfid->zf_len = size; 3472 3473 for (i = 0; i < sizeof (zfid->zf_object); i++) 3474 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 3475 3476 /* Must have a non-zero generation number to distinguish from .zfs */ 3477 if (gen == 0) 3478 gen = 1; 3479 for (i = 0; i < sizeof (zfid->zf_gen); i++) 3480 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 3481 3482 if (size == LONG_FID_LEN) { 3483 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 3484 zfid_long_t *zlfid; 3485 3486 zlfid = (zfid_long_t *)fidp; 3487 3488 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 3489 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 3490 3491 /* XXX - this should be the generation number for the objset */ 3492 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 3493 zlfid->zf_setgen[i] = 0; 3494 } 3495 3496 ZFS_EXIT(zfsvfs); 3497 return (0); 3498 } 3499 3500 static int 3501 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr) 3502 { 3503 znode_t *zp, *xzp; 3504 zfsvfs_t *zfsvfs; 3505 zfs_dirlock_t *dl; 3506 int error; 3507 3508 switch (cmd) { 3509 case _PC_LINK_MAX: 3510 *valp = ULONG_MAX; 3511 return (0); 3512 3513 case _PC_FILESIZEBITS: 3514 *valp = 64; 3515 return (0); 3516 3517 case _PC_XATTR_EXISTS: 3518 zp = VTOZ(vp); 3519 zfsvfs = zp->z_zfsvfs; 3520 ZFS_ENTER(zfsvfs); 3521 *valp = 0; 3522 error = zfs_dirent_lock(&dl, zp, "", &xzp, 3523 ZXATTR | ZEXISTS | ZSHARED); 3524 if (error == 0) { 3525 zfs_dirent_unlock(dl); 3526 if (!zfs_dirempty(xzp)) 3527 *valp = 1; 3528 VN_RELE(ZTOV(xzp)); 3529 } else if (error == ENOENT) { 3530 /* 3531 * If there aren't extended attributes, it's the 3532 * same as having zero of them. 3533 */ 3534 error = 0; 3535 } 3536 ZFS_EXIT(zfsvfs); 3537 return (error); 3538 3539 case _PC_ACL_ENABLED: 3540 *valp = _ACL_ACE_ENABLED; 3541 return (0); 3542 3543 case _PC_MIN_HOLE_SIZE: 3544 *valp = (ulong_t)SPA_MINBLOCKSIZE; 3545 return (0); 3546 3547 default: 3548 return (fs_pathconf(vp, cmd, valp, cr)); 3549 } 3550 } 3551 3552 /*ARGSUSED*/ 3553 static int 3554 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3555 { 3556 znode_t *zp = VTOZ(vp); 3557 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3558 int error; 3559 3560 ZFS_ENTER(zfsvfs); 3561 error = zfs_getacl(zp, vsecp, cr); 3562 ZFS_EXIT(zfsvfs); 3563 3564 return (error); 3565 } 3566 3567 /*ARGSUSED*/ 3568 static int 3569 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr) 3570 { 3571 znode_t *zp = VTOZ(vp); 3572 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3573 int error; 3574 3575 ZFS_ENTER(zfsvfs); 3576 error = zfs_setacl(zp, vsecp, cr); 3577 ZFS_EXIT(zfsvfs); 3578 return (error); 3579 } 3580 3581 /* 3582 * Predeclare these here so that the compiler assumes that 3583 * this is an "old style" function declaration that does 3584 * not include arguments => we won't get type mismatch errors 3585 * in the initializations that follow. 3586 */ 3587 static int zfs_inval(); 3588 static int zfs_isdir(); 3589 3590 static int 3591 zfs_inval() 3592 { 3593 return (EINVAL); 3594 } 3595 3596 static int 3597 zfs_isdir() 3598 { 3599 return (EISDIR); 3600 } 3601 /* 3602 * Directory vnode operations template 3603 */ 3604 vnodeops_t *zfs_dvnodeops; 3605 const fs_operation_def_t zfs_dvnodeops_template[] = { 3606 VOPNAME_OPEN, zfs_open, 3607 VOPNAME_CLOSE, zfs_close, 3608 VOPNAME_READ, zfs_isdir, 3609 VOPNAME_WRITE, zfs_isdir, 3610 VOPNAME_IOCTL, zfs_ioctl, 3611 VOPNAME_GETATTR, zfs_getattr, 3612 VOPNAME_SETATTR, zfs_setattr, 3613 VOPNAME_ACCESS, zfs_access, 3614 VOPNAME_LOOKUP, zfs_lookup, 3615 VOPNAME_CREATE, zfs_create, 3616 VOPNAME_REMOVE, zfs_remove, 3617 VOPNAME_LINK, zfs_link, 3618 VOPNAME_RENAME, zfs_rename, 3619 VOPNAME_MKDIR, zfs_mkdir, 3620 VOPNAME_RMDIR, zfs_rmdir, 3621 VOPNAME_READDIR, zfs_readdir, 3622 VOPNAME_SYMLINK, zfs_symlink, 3623 VOPNAME_FSYNC, zfs_fsync, 3624 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3625 VOPNAME_FID, zfs_fid, 3626 VOPNAME_SEEK, zfs_seek, 3627 VOPNAME_PATHCONF, zfs_pathconf, 3628 VOPNAME_GETSECATTR, zfs_getsecattr, 3629 VOPNAME_SETSECATTR, zfs_setsecattr, 3630 NULL, NULL 3631 }; 3632 3633 /* 3634 * Regular file vnode operations template 3635 */ 3636 vnodeops_t *zfs_fvnodeops; 3637 const fs_operation_def_t zfs_fvnodeops_template[] = { 3638 VOPNAME_OPEN, zfs_open, 3639 VOPNAME_CLOSE, zfs_close, 3640 VOPNAME_READ, zfs_read, 3641 VOPNAME_WRITE, zfs_write, 3642 VOPNAME_IOCTL, zfs_ioctl, 3643 VOPNAME_GETATTR, zfs_getattr, 3644 VOPNAME_SETATTR, zfs_setattr, 3645 VOPNAME_ACCESS, zfs_access, 3646 VOPNAME_LOOKUP, zfs_lookup, 3647 VOPNAME_RENAME, zfs_rename, 3648 VOPNAME_FSYNC, zfs_fsync, 3649 VOPNAME_INACTIVE, (fs_generic_func_p)zfs_inactive, 3650 VOPNAME_FID, zfs_fid, 3651 VOPNAME_SEEK, zfs_seek, 3652 VOPNAME_FRLOCK, zfs_frlock, 3653 VOPNAME_SPACE, zfs_space, 3654 VOPNAME_GETPAGE, zfs_getpage, 3655 VOPNAME_PUTPAGE, zfs_putpage, 3656 VOPNAME_MAP, (fs_generic_func_p) zfs_map, 3657 VOPNAME_ADDMAP, (fs_generic_func_p) zfs_addmap, 3658 VOPNAME_DELMAP, zfs_delmap, 3659 VOPNAME_PATHCONF, zfs_pathconf, 3660 VOPNAME_GETSECATTR, zfs_getsecattr, 3661 VOPNAME_SETSECATTR, zfs_setsecattr, 3662 VOPNAME_VNEVENT, fs_vnevent_support, 3663 NULL, NULL 3664 }; 3665 3666 /* 3667 * Symbolic link vnode operations template 3668 */ 3669 vnodeops_t *zfs_symvnodeops; 3670 const fs_operation_def_t zfs_symvnodeops_template[] = { 3671 VOPNAME_GETATTR, zfs_getattr, 3672 VOPNAME_SETATTR, zfs_setattr, 3673 VOPNAME_ACCESS, zfs_access, 3674 VOPNAME_RENAME, zfs_rename, 3675 VOPNAME_READLINK, zfs_readlink, 3676 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3677 VOPNAME_FID, zfs_fid, 3678 VOPNAME_PATHCONF, zfs_pathconf, 3679 VOPNAME_VNEVENT, fs_vnevent_support, 3680 NULL, NULL 3681 }; 3682 3683 /* 3684 * Extended attribute directory vnode operations template 3685 * This template is identical to the directory vnodes 3686 * operation template except for restricted operations: 3687 * VOP_MKDIR() 3688 * VOP_SYMLINK() 3689 * Note that there are other restrictions embedded in: 3690 * zfs_create() - restrict type to VREG 3691 * zfs_link() - no links into/out of attribute space 3692 * zfs_rename() - no moves into/out of attribute space 3693 */ 3694 vnodeops_t *zfs_xdvnodeops; 3695 const fs_operation_def_t zfs_xdvnodeops_template[] = { 3696 VOPNAME_OPEN, zfs_open, 3697 VOPNAME_CLOSE, zfs_close, 3698 VOPNAME_IOCTL, zfs_ioctl, 3699 VOPNAME_GETATTR, zfs_getattr, 3700 VOPNAME_SETATTR, zfs_setattr, 3701 VOPNAME_ACCESS, zfs_access, 3702 VOPNAME_LOOKUP, zfs_lookup, 3703 VOPNAME_CREATE, zfs_create, 3704 VOPNAME_REMOVE, zfs_remove, 3705 VOPNAME_LINK, zfs_link, 3706 VOPNAME_RENAME, zfs_rename, 3707 VOPNAME_MKDIR, zfs_inval, 3708 VOPNAME_RMDIR, zfs_rmdir, 3709 VOPNAME_READDIR, zfs_readdir, 3710 VOPNAME_SYMLINK, zfs_inval, 3711 VOPNAME_FSYNC, zfs_fsync, 3712 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3713 VOPNAME_FID, zfs_fid, 3714 VOPNAME_SEEK, zfs_seek, 3715 VOPNAME_PATHCONF, zfs_pathconf, 3716 VOPNAME_GETSECATTR, zfs_getsecattr, 3717 VOPNAME_SETSECATTR, zfs_setsecattr, 3718 VOPNAME_VNEVENT, fs_vnevent_support, 3719 NULL, NULL 3720 }; 3721 3722 /* 3723 * Error vnode operations template 3724 */ 3725 vnodeops_t *zfs_evnodeops; 3726 const fs_operation_def_t zfs_evnodeops_template[] = { 3727 VOPNAME_INACTIVE, (fs_generic_func_p) zfs_inactive, 3728 VOPNAME_PATHCONF, zfs_pathconf, 3729 NULL, NULL 3730 }; 3731