1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/types.h> 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/kmem.h> 34 #include <sys/pathname.h> 35 #include <sys/acl.h> 36 #include <sys/vnode.h> 37 #include <sys/vfs.h> 38 #include <sys/mntent.h> 39 #include <sys/mount.h> 40 #include <sys/cmn_err.h> 41 #include "fs/fs_subr.h" 42 #include <sys/zfs_znode.h> 43 #include <sys/zil.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/dmu.h> 46 #include <sys/dsl_prop.h> 47 #include <sys/spa.h> 48 #include <sys/zap.h> 49 #include <sys/varargs.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/mkdev.h> 53 #include <sys/modctl.h> 54 #include <sys/zfs_ioctl.h> 55 #include <sys/zfs_ctldir.h> 56 57 int zfsfstype; 58 vfsops_t *zfs_vfsops = NULL; 59 static major_t zfs_major; 60 static minor_t zfs_minor; 61 static kmutex_t zfs_dev_mtx; 62 63 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 64 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 65 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 66 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 67 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 68 static void zfs_freevfs(vfs_t *vfsp); 69 static void zfs_objset_close(zfsvfs_t *zfsvfs); 70 71 static const fs_operation_def_t zfs_vfsops_template[] = { 72 VFSNAME_MOUNT, zfs_mount, 73 VFSNAME_UNMOUNT, zfs_umount, 74 VFSNAME_ROOT, zfs_root, 75 VFSNAME_STATVFS, zfs_statvfs, 76 VFSNAME_SYNC, (fs_generic_func_p) zfs_sync, 77 VFSNAME_VGET, zfs_vget, 78 VFSNAME_FREEVFS, (fs_generic_func_p) zfs_freevfs, 79 NULL, NULL 80 }; 81 82 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 83 VFSNAME_FREEVFS, (fs_generic_func_p) zfs_freevfs, 84 NULL, NULL 85 }; 86 87 /* 88 * We need to keep a count of active fs's. 89 * This is necessary to prevent our module 90 * from being unloaded after a umount -f 91 */ 92 static uint32_t zfs_active_fs_count = 0; 93 94 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 95 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 96 97 static mntopt_t mntopts[] = { 98 { MNTOPT_XATTR, NULL, NULL, MO_NODISPLAY|MO_DEFAULT, NULL }, 99 { MNTOPT_NOATIME, noatime_cancel, NULL, MO_DEFAULT, NULL }, 100 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 101 }; 102 103 static mntopts_t zfs_mntopts = { 104 sizeof (mntopts) / sizeof (mntopt_t), 105 mntopts 106 }; 107 108 /*ARGSUSED*/ 109 int 110 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 111 { 112 /* 113 * Data integrity is job one. We don't want a compromised kernel 114 * writing to the storage pool, so we never sync during panic. 115 */ 116 if (panicstr) 117 return (0); 118 119 /* 120 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 121 * to sync metadata, which they would otherwise cache indefinitely. 122 * Semantically, the only requirement is that the sync be initiated. 123 * The DMU syncs out txgs frequently, so there's nothing to do. 124 */ 125 if (flag & SYNC_ATTR) 126 return (0); 127 128 if (vfsp != NULL) { 129 /* 130 * Sync a specific filesystem. 131 */ 132 zfsvfs_t *zfsvfs = vfsp->vfs_data; 133 134 ZFS_ENTER(zfsvfs); 135 if (zfsvfs->z_log != NULL) 136 zil_commit(zfsvfs->z_log, UINT64_MAX, FSYNC); 137 else 138 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 139 ZFS_EXIT(zfsvfs); 140 } else { 141 /* 142 * Sync all ZFS filesystems. This is what happens when you 143 * run sync(1M). Unlike other filesystems, ZFS honors the 144 * request by waiting for all pools to commit all dirty data. 145 */ 146 spa_sync_allpools(); 147 } 148 149 return (0); 150 } 151 152 static void 153 atime_changed_cb(void *arg, uint64_t newval) 154 { 155 zfsvfs_t *zfsvfs = arg; 156 157 if (newval == TRUE) { 158 zfsvfs->z_atime = TRUE; 159 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 160 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 161 } else { 162 zfsvfs->z_atime = FALSE; 163 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 164 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 165 } 166 } 167 168 static void 169 blksz_changed_cb(void *arg, uint64_t newval) 170 { 171 zfsvfs_t *zfsvfs = arg; 172 173 if (newval < SPA_MINBLOCKSIZE || 174 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 175 newval = SPA_MAXBLOCKSIZE; 176 177 zfsvfs->z_max_blksz = newval; 178 zfsvfs->z_vfs->vfs_bsize = newval; 179 } 180 181 static void 182 readonly_changed_cb(void *arg, uint64_t newval) 183 { 184 zfsvfs_t *zfsvfs = arg; 185 186 if (newval) { 187 /* XXX locking on vfs_flag? */ 188 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 189 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 190 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 191 (void) zfs_delete_thread_target(zfsvfs, 0); 192 } else { 193 /* XXX locking on vfs_flag? */ 194 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 195 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 196 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 197 (void) zfs_delete_thread_target(zfsvfs, 1); 198 } 199 } 200 201 static void 202 devices_changed_cb(void *arg, uint64_t newval) 203 { 204 zfsvfs_t *zfsvfs = arg; 205 206 if (newval == FALSE) { 207 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 208 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 209 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 210 } else { 211 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 212 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 213 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 214 } 215 } 216 217 static void 218 setuid_changed_cb(void *arg, uint64_t newval) 219 { 220 zfsvfs_t *zfsvfs = arg; 221 222 if (newval == FALSE) { 223 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 224 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 225 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 226 } else { 227 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 228 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 229 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 230 } 231 } 232 233 static void 234 exec_changed_cb(void *arg, uint64_t newval) 235 { 236 zfsvfs_t *zfsvfs = arg; 237 238 if (newval == FALSE) { 239 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 240 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 241 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 242 } else { 243 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 244 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 245 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 246 } 247 } 248 249 static void 250 snapdir_changed_cb(void *arg, uint64_t newval) 251 { 252 zfsvfs_t *zfsvfs = arg; 253 254 zfsvfs->z_show_ctldir = newval; 255 } 256 257 static void 258 acl_mode_changed_cb(void *arg, uint64_t newval) 259 { 260 zfsvfs_t *zfsvfs = arg; 261 262 zfsvfs->z_acl_mode = newval; 263 } 264 265 static void 266 acl_inherit_changed_cb(void *arg, uint64_t newval) 267 { 268 zfsvfs_t *zfsvfs = arg; 269 270 zfsvfs->z_acl_inherit = newval; 271 } 272 273 /*ARGSUSED*/ 274 static int 275 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 276 { 277 zfsvfs_t *zfsvfs = NULL; 278 znode_t *zp = NULL; 279 vnode_t *vp = NULL; 280 objset_t *os = NULL; 281 struct dsl_dataset *ds; 282 char *osname; 283 uint64_t readonly, recordsize; 284 pathname_t spn; 285 dev_t mount_dev; 286 major_t new_major; 287 int mode; 288 int error = 0; 289 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 290 UIO_SYSSPACE : UIO_USERSPACE; 291 int canwrite; 292 293 if (mvp->v_type != VDIR) 294 return (ENOTDIR); 295 296 mutex_enter(&mvp->v_lock); 297 if ((uap->flags & MS_REMOUNT) == 0 && 298 (uap->flags & MS_OVERLAY) == 0 && 299 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 300 mutex_exit(&mvp->v_lock); 301 return (EBUSY); 302 } 303 mutex_exit(&mvp->v_lock); 304 305 /* 306 * ZFS does not support passing unparsed data in via MS_DATA. 307 * Users should use the MS_OPTIONSTR interface; this means 308 * that all option parsing is already done and the options struct 309 * can be interrogated. 310 */ 311 if ((uap->flags & MS_DATA) && uap->datalen > 0) 312 return (EINVAL); 313 314 /* 315 * When doing a remount, we simply refresh our temporary properties 316 * according to those options set in the current VFS options. 317 */ 318 if (uap->flags & MS_REMOUNT) { 319 zfsvfs = vfsp->vfs_data; 320 321 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 322 readonly_changed_cb(zfsvfs, B_TRUE); 323 else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 324 if (dmu_objset_is_snapshot(zfsvfs->z_os)) 325 return (EROFS); 326 readonly_changed_cb(zfsvfs, B_FALSE); 327 } 328 329 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 330 devices_changed_cb(zfsvfs, B_FALSE); 331 setuid_changed_cb(zfsvfs, B_FALSE); 332 } else { 333 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 334 devices_changed_cb(zfsvfs, B_FALSE); 335 else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) 336 devices_changed_cb(zfsvfs, B_TRUE); 337 338 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 339 setuid_changed_cb(zfsvfs, B_FALSE); 340 else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) 341 setuid_changed_cb(zfsvfs, B_TRUE); 342 } 343 344 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 345 exec_changed_cb(zfsvfs, B_FALSE); 346 else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) 347 exec_changed_cb(zfsvfs, B_TRUE); 348 349 return (0); 350 } 351 352 /* 353 * Get the objset name (the "special" mount argument). 354 */ 355 if (error = pn_get(uap->spec, fromspace, &spn)) 356 return (error); 357 358 osname = spn.pn_path; 359 360 if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0) 361 goto out; 362 363 /* 364 * Refuse to mount a filesystem if we are in a local zone and the 365 * dataset is not visible. 366 */ 367 if (!INGLOBALZONE(curproc) && 368 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 369 error = EPERM; 370 goto out; 371 } 372 373 /* 374 * Initialize the zfs-specific filesystem structure. 375 * Should probably make this a kmem cache, shuffle fields, 376 * and just bzero upto z_hold_mtx[]. 377 */ 378 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 379 zfsvfs->z_vfs = vfsp; 380 zfsvfs->z_parent = zfsvfs; 381 zfsvfs->z_assign = TXG_NOWAIT; 382 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 383 zfsvfs->z_show_ctldir = VISIBLE; 384 385 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 386 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 387 offsetof(znode_t, z_link_node)); 388 rw_init(&zfsvfs->z_um_lock, NULL, RW_DEFAULT, NULL); 389 390 /* 391 * Initialize the generic filesystem structure. 392 */ 393 vfsp->vfs_bcount = 0; 394 vfsp->vfs_data = NULL; 395 396 /* 397 * Create a unique device for the mount. 398 */ 399 do { 400 ASSERT3U(zfs_minor, <=, MAXMIN32); 401 int start = zfs_minor; 402 do { 403 mutex_enter(&zfs_dev_mtx); 404 zfs_minor++; 405 if (zfs_minor > MAXMIN32) 406 zfs_minor = 0; 407 mount_dev = makedevice(zfs_major, zfs_minor); 408 mutex_exit(&zfs_dev_mtx); 409 } while (vfs_devismounted(mount_dev) && zfs_minor != start); 410 if (zfs_minor == start) { 411 /* 412 * We are using all ~262,000 minor numbers 413 * for the current major number. Create a 414 * new major number. 415 */ 416 if ((new_major = getudev()) == (major_t)-1) { 417 cmn_err(CE_WARN, 418 "zfs_mount: Can't get unique" 419 " major device number."); 420 goto out; 421 } 422 mutex_enter(&zfs_dev_mtx); 423 zfs_major = new_major; 424 zfs_minor = 0; 425 mutex_exit(&zfs_dev_mtx); 426 } else { 427 break; 428 } 429 /* CONSTANTCONDITION */ 430 } while (1); 431 432 ASSERT(vfs_devismounted(mount_dev) == 0); 433 434 if (dsl_prop_get_integer(osname, "recordsize", &recordsize, NULL) != 0) 435 recordsize = SPA_MAXBLOCKSIZE; 436 437 vfsp->vfs_dev = mount_dev; 438 vfsp->vfs_fstype = zfsfstype; 439 vfsp->vfs_bsize = recordsize; 440 vfsp->vfs_flag |= VFS_NOTRUNC; 441 vfsp->vfs_data = zfsvfs; 442 443 error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL); 444 if (error) 445 goto out; 446 447 if (readonly) 448 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 449 else 450 mode = DS_MODE_PRIMARY; 451 452 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 453 if (error == EROFS) { 454 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 455 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 456 &zfsvfs->z_os); 457 } 458 os = zfsvfs->z_os; 459 460 if (error) 461 goto out; 462 463 if (error = zfs_init_fs(zfsvfs, &zp, cr)) 464 goto out; 465 466 if (dmu_objset_is_snapshot(os)) { 467 ASSERT(mode & DS_MODE_READONLY); 468 atime_changed_cb(zfsvfs, B_FALSE); 469 readonly_changed_cb(zfsvfs, B_TRUE); 470 zfsvfs->z_issnap = B_TRUE; 471 } else { 472 int do_readonly = FALSE, readonly; 473 int do_setuid = FALSE, setuid; 474 int do_exec = FALSE, exec; 475 int do_devices = FALSE, devices; 476 477 /* 478 * Start a delete thread running. 479 */ 480 (void) zfs_delete_thread_target(zfsvfs, 1); 481 482 /* 483 * Parse and replay the intent log. 484 */ 485 zil_replay(os, zfsvfs, &zfsvfs->z_assign, zfs_replay_vector, 486 (void (*)(void *))zfs_delete_wait_empty); 487 488 if (!zil_disable) 489 zfsvfs->z_log = zil_open(os, zfs_get_data); 490 491 /* 492 * The act of registering our callbacks will destroy any mount 493 * options we may have. In order to enable temporary overrides 494 * of mount options, we stash away the current values and 495 * restore them after we register the callbacks. 496 */ 497 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 498 readonly = B_TRUE; 499 do_readonly = B_TRUE; 500 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 501 readonly = B_FALSE; 502 do_readonly = B_TRUE; 503 } 504 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 505 devices = B_FALSE; 506 setuid = B_FALSE; 507 do_devices = B_TRUE; 508 do_setuid = B_TRUE; 509 } else { 510 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 511 devices = B_FALSE; 512 do_devices = B_TRUE; 513 } else if (vfs_optionisset(vfsp, 514 MNTOPT_DEVICES, NULL)) { 515 devices = B_TRUE; 516 do_devices = B_TRUE; 517 } 518 519 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 520 setuid = B_FALSE; 521 do_setuid = B_TRUE; 522 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 523 setuid = B_TRUE; 524 do_setuid = B_TRUE; 525 } 526 } 527 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 528 exec = B_FALSE; 529 do_exec = B_TRUE; 530 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 531 exec = B_TRUE; 532 do_exec = B_TRUE; 533 } 534 535 /* 536 * Register property callbacks. 537 */ 538 ds = dmu_objset_ds(os); 539 VERIFY(dsl_prop_register(ds, "atime", atime_changed_cb, 540 zfsvfs) == 0); 541 542 VERIFY(dsl_prop_register(ds, "recordsize", blksz_changed_cb, 543 zfsvfs) == 0); 544 545 VERIFY(dsl_prop_register(ds, "readonly", readonly_changed_cb, 546 zfsvfs) == 0); 547 548 VERIFY(dsl_prop_register(ds, "devices", devices_changed_cb, 549 zfsvfs) == 0); 550 551 VERIFY(dsl_prop_register(ds, "setuid", setuid_changed_cb, 552 zfsvfs) == 0); 553 554 VERIFY(dsl_prop_register(ds, "exec", exec_changed_cb, 555 zfsvfs) == 0); 556 557 VERIFY(dsl_prop_register(ds, "snapdir", snapdir_changed_cb, 558 zfsvfs) == 0); 559 560 VERIFY(dsl_prop_register(ds, "aclmode", acl_mode_changed_cb, 561 zfsvfs) == 0); 562 563 VERIFY(dsl_prop_register(ds, "aclinherit", 564 acl_inherit_changed_cb, zfsvfs) == 0); 565 566 567 /* 568 * Invoke our callbacks to restore temporary mount options. 569 */ 570 if (do_readonly) 571 readonly_changed_cb(zfsvfs, readonly); 572 if (do_setuid) 573 setuid_changed_cb(zfsvfs, setuid); 574 if (do_exec) 575 exec_changed_cb(zfsvfs, exec); 576 if (do_devices) 577 devices_changed_cb(zfsvfs, devices); 578 } 579 580 vp = ZTOV(zp); 581 if (!zfsvfs->z_issnap) 582 zfsctl_create(zfsvfs); 583 out: 584 if (error) { 585 if (zp) 586 VN_RELE(vp); 587 588 if (zfsvfs) { 589 if (os) 590 dmu_objset_close(os); 591 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 592 } 593 } else { 594 atomic_add_32(&zfs_active_fs_count, 1); 595 VN_RELE(vp); 596 } 597 598 pn_free(&spn); 599 return (error); 600 } 601 602 static int 603 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 604 { 605 zfsvfs_t *zfsvfs = vfsp->vfs_data; 606 dmu_objset_stats_t dstats; 607 dev32_t d32; 608 609 ZFS_ENTER(zfsvfs); 610 611 dmu_objset_stats(zfsvfs->z_os, &dstats); 612 613 /* 614 * The underlying storage pool actually uses multiple block sizes. 615 * We report the fragsize as the smallest block size we support, 616 * and we report our blocksize as the filesystem's maximum blocksize. 617 */ 618 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 619 statp->f_bsize = zfsvfs->z_max_blksz; 620 621 /* 622 * The following report "total" blocks of various kinds in the 623 * file system, but reported in terms of f_frsize - the 624 * "fragment" size. 625 */ 626 627 statp->f_blocks = 628 (dstats.dds_space_refd + dstats.dds_available) >> SPA_MINBLOCKSHIFT; 629 statp->f_bfree = dstats.dds_available >> SPA_MINBLOCKSHIFT; 630 statp->f_bavail = statp->f_bfree; /* no root reservation */ 631 632 /* 633 * statvfs() should really be called statufs(), because it assumes 634 * static metadata. ZFS doesn't preallocate files, so the best 635 * we can do is report the max that could possibly fit in f_files, 636 * and that minus the number actually used in f_ffree. 637 * For f_ffree, report the smaller of the number of object available 638 * and the number of blocks (each object will take at least a block). 639 */ 640 statp->f_ffree = MIN(dstats.dds_objects_avail, statp->f_bfree); 641 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 642 statp->f_files = statp->f_ffree + dstats.dds_objects_used; 643 644 (void) cmpldev(&d32, vfsp->vfs_dev); 645 statp->f_fsid = d32; 646 647 /* 648 * We're a zfs filesystem. 649 */ 650 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 651 652 statp->f_flag = 0; 653 654 statp->f_namemax = ZFS_MAXNAMELEN; 655 656 /* 657 * We have all of 32 characters to stuff a string here. 658 * Is there anything useful we could/should provide? 659 */ 660 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 661 662 ZFS_EXIT(zfsvfs); 663 return (0); 664 } 665 666 static int 667 zfs_root(vfs_t *vfsp, vnode_t **vpp) 668 { 669 zfsvfs_t *zfsvfs = vfsp->vfs_data; 670 znode_t *rootzp; 671 int error; 672 673 ZFS_ENTER(zfsvfs); 674 675 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 676 if (error == 0) 677 *vpp = ZTOV(rootzp); 678 679 ZFS_EXIT(zfsvfs); 680 return (error); 681 } 682 683 /*ARGSUSED*/ 684 static int 685 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 686 { 687 zfsvfs_t *zfsvfs = vfsp->vfs_data; 688 int ret; 689 690 if ((ret = secpolicy_fs_unmount(cr, vfsp)) != 0) 691 return (ret); 692 693 /* 694 * Unmount any snapshots mounted under .zfs before unmounting the 695 * dataset itself. 696 */ 697 if (zfsvfs->z_ctldir != NULL && 698 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) 699 return (ret); 700 701 if (fflag & MS_FORCE) { 702 vfsp->vfs_flag |= VFS_UNMOUNTED; 703 zfsvfs->z_unmounted1 = B_TRUE; 704 705 /* 706 * Wait for all zfs threads to leave zfs. 707 * Grabbing a rwlock as reader in all vops and 708 * as writer here doesn't work because it too easy to get 709 * multiple reader enters as zfs can re-enter itself. 710 * This can lead to deadlock if there is an intervening 711 * rw_enter as writer. 712 * So a file system threads ref count (z_op_cnt) is used. 713 * A polling loop on z_op_cnt may seem inefficient, but 714 * - this saves all threads on exit from having to grab a 715 * mutex in order to cv_signal 716 * - only occurs on forced unmount in the rare case when 717 * there are outstanding threads within the file system. 718 */ 719 while (zfsvfs->z_op_cnt) { 720 delay(1); 721 } 722 723 zfs_objset_close(zfsvfs); 724 725 return (0); 726 } 727 728 zfs_zcache_flush(zfsvfs); 729 730 /* 731 * Stop all delete threads. 732 */ 733 (void) zfs_delete_thread_target(zfsvfs, 0); 734 735 /* 736 * Check the number of active vnodes in the file system. 737 * Our count is maintained in the vfs structure, but the number 738 * is off by 1 to indicate a hold on the vfs structure itself. 739 * 740 * The '.zfs' directory maintains a reference of its own, and any active 741 * references underneath are reflected in the vnode count. 742 */ 743 if (zfsvfs->z_ctldir == NULL) { 744 if (vfsp->vfs_count > 1) { 745 if ((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0) 746 (void) zfs_delete_thread_target(zfsvfs, 1); 747 return (EBUSY); 748 } 749 } else { 750 if (vfsp->vfs_count > 2 || 751 (zfsvfs->z_ctldir->v_count > 1 && !(fflag & MS_FORCE))) { 752 if ((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0) 753 (void) zfs_delete_thread_target(zfsvfs, 1); 754 return (EBUSY); 755 } 756 } 757 758 vfsp->vfs_flag |= VFS_UNMOUNTED; 759 zfs_objset_close(zfsvfs); 760 761 /* 762 * We can now safely destroy the '.zfs' directory node, which will 763 * release its hold on the vfs_t. 764 */ 765 if (zfsvfs->z_ctldir != NULL) 766 zfsctl_destroy(zfsvfs); 767 768 return (0); 769 } 770 771 static int 772 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 773 { 774 zfsvfs_t *zfsvfs = vfsp->vfs_data; 775 znode_t *zp; 776 uint64_t object = 0; 777 uint64_t fid_gen = 0; 778 uint64_t gen_mask; 779 uint64_t zp_gen; 780 int i, err; 781 782 *vpp = NULL; 783 784 ZFS_ENTER(zfsvfs); 785 786 if (fidp->fid_len == LONG_FID_LEN) { 787 zfid_long_t *zlfid = (zfid_long_t *)fidp; 788 uint64_t objsetid = 0; 789 uint64_t setgen = 0; 790 791 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 792 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 793 794 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 795 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 796 797 ZFS_EXIT(zfsvfs); 798 799 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 800 if (err) 801 return (EINVAL); 802 ZFS_ENTER(zfsvfs); 803 } 804 805 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 806 zfid_short_t *zfid = (zfid_short_t *)fidp; 807 808 for (i = 0; i < sizeof (zfid->zf_object); i++) 809 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 810 811 for (i = 0; i < sizeof (zfid->zf_gen); i++) 812 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 813 } else { 814 ZFS_EXIT(zfsvfs); 815 return (EINVAL); 816 } 817 818 /* A zero fid_gen means we are in the .zfs control directories */ 819 if (fid_gen == 0 && 820 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 821 *vpp = zfsvfs->z_ctldir; 822 ASSERT(*vpp != NULL); 823 if (object == ZFSCTL_INO_SNAPDIR) { 824 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 825 0, NULL, NULL) == 0); 826 } else { 827 VN_HOLD(*vpp); 828 } 829 ZFS_EXIT(zfsvfs); 830 return (0); 831 } 832 833 gen_mask = -1ULL >> (64 - 8 * i); 834 835 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 836 if (err = zfs_zget(zfsvfs, object, &zp)) { 837 ZFS_EXIT(zfsvfs); 838 return (err); 839 } 840 zp_gen = zp->z_phys->zp_gen & gen_mask; 841 if (zp_gen == 0) 842 zp_gen = 1; 843 if (zp->z_reap || zp_gen != fid_gen) { 844 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 845 VN_RELE(ZTOV(zp)); 846 ZFS_EXIT(zfsvfs); 847 return (EINVAL); 848 } 849 850 *vpp = ZTOV(zp); 851 ZFS_EXIT(zfsvfs); 852 return (0); 853 } 854 855 static void 856 zfs_objset_close(zfsvfs_t *zfsvfs) 857 { 858 zfs_delete_t *zd = &zfsvfs->z_delete_head; 859 znode_t *zp, *nextzp; 860 objset_t *os = zfsvfs->z_os; 861 struct dsl_dataset *ds; 862 863 /* 864 * Stop all delete threads. 865 */ 866 (void) zfs_delete_thread_target(zfsvfs, 0); 867 868 /* 869 * For forced unmount, at this point all vops except zfs_inactive 870 * are erroring EIO. We need to now suspend zfs_inactive threads 871 * while we are freeing dbufs before switching zfs_inactive 872 * to use behaviour without a objset. 873 */ 874 rw_enter(&zfsvfs->z_um_lock, RW_WRITER); 875 876 zfs_zcache_flush(zfsvfs); 877 878 /* 879 * Release all delete in progress znodes 880 * They will be processed when the file system remounts. 881 */ 882 mutex_enter(&zd->z_mutex); 883 while (zp = list_head(&zd->z_znodes)) { 884 list_remove(&zd->z_znodes, zp); 885 zp->z_dbuf_held = 0; 886 dmu_buf_rele(zp->z_dbuf); 887 } 888 mutex_exit(&zd->z_mutex); 889 890 /* 891 * Release all holds on dbufs 892 * Note, although we have stopped all other vop threads and 893 * zfs_inactive(), the dmu can callback via znode_pageout_func() 894 * which can zfs_znode_free() the znode. 895 * So we lock z_all_znodes; search the list for a held 896 * dbuf; drop the lock (we know zp can't disappear if we hold 897 * a dbuf lock; then regrab the lock and restart. 898 */ 899 mutex_enter(&zfsvfs->z_znodes_lock); 900 for (zp = list_head(&zfsvfs->z_all_znodes); zp; zp = nextzp) { 901 nextzp = list_next(&zfsvfs->z_all_znodes, zp); 902 if (zp->z_dbuf_held) { 903 /* dbufs should only be held when force unmounting */ 904 zp->z_dbuf_held = 0; 905 mutex_exit(&zfsvfs->z_znodes_lock); 906 dmu_buf_rele(zp->z_dbuf); 907 /* Start again */ 908 mutex_enter(&zfsvfs->z_znodes_lock); 909 nextzp = list_head(&zfsvfs->z_all_znodes); 910 } 911 } 912 mutex_exit(&zfsvfs->z_znodes_lock); 913 914 /* 915 * Unregister properties. 916 */ 917 if (!dmu_objset_is_snapshot(os)) { 918 ds = dmu_objset_ds(os); 919 920 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 921 zfsvfs) == 0); 922 923 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 924 zfsvfs) == 0); 925 926 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 927 zfsvfs) == 0); 928 929 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 930 zfsvfs) == 0); 931 932 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 933 zfsvfs) == 0); 934 935 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 936 zfsvfs) == 0); 937 938 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 939 zfsvfs) == 0); 940 941 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 942 zfsvfs) == 0); 943 944 VERIFY(dsl_prop_unregister(ds, "aclinherit", 945 acl_inherit_changed_cb, zfsvfs) == 0); 946 } 947 948 /* 949 * Make the dmu drop all it dbuf holds so that zfs_inactive 950 * can then safely free znode/vnodes. 951 */ 952 txg_wait_synced(dmu_objset_pool(os), 0); 953 954 /* 955 * Switch zfs_inactive to behaviour without an objset. 956 * It just tosses cached pages and frees the znode & vnode. 957 * Then re-enable zfs_inactive threads in that new behaviour. 958 */ 959 zfsvfs->z_unmounted2 = B_TRUE; 960 rw_exit(&zfsvfs->z_um_lock); /* re-enable any zfs_inactive threads */ 961 962 /* 963 * Close the zil. Can't close the zil while zfs_inactive 964 * threads are blocked as zil_close can call zfs_inactive. 965 */ 966 if (zfsvfs->z_log) { 967 zil_close(zfsvfs->z_log); 968 zfsvfs->z_log = NULL; 969 } 970 971 /* 972 * Finally close the objset 973 */ 974 dmu_objset_close(os); 975 976 } 977 978 static void 979 zfs_freevfs(vfs_t *vfsp) 980 { 981 zfsvfs_t *zfsvfs = vfsp->vfs_data; 982 983 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 984 985 atomic_add_32(&zfs_active_fs_count, -1); 986 } 987 988 /* 989 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 990 * so we can't safely do any non-idempotent initialization here. 991 * Leave that to zfs_init() and zfs_fini(), which are called 992 * from the module's _init() and _fini() entry points. 993 */ 994 /*ARGSUSED*/ 995 static int 996 zfs_vfsinit(int fstype, char *name) 997 { 998 int error; 999 1000 zfsfstype = fstype; 1001 1002 /* 1003 * Setup vfsops and vnodeops tables. 1004 */ 1005 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1006 if (error != 0) { 1007 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1008 } 1009 1010 error = zfs_create_op_tables(); 1011 if (error) { 1012 zfs_remove_op_tables(); 1013 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1014 (void) vfs_freevfsops_by_type(zfsfstype); 1015 return (error); 1016 } 1017 1018 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1019 1020 /* 1021 * unique major number for all zfs mounts 1022 */ 1023 if ((zfs_major = getudev()) == (major_t)-1) { 1024 cmn_err(CE_WARN, 1025 "zfs_vfsinit: Can't get unique device number."); 1026 zfs_remove_op_tables(); 1027 (void) vfs_freevfsops_by_type(zfsfstype); 1028 return (error); 1029 } 1030 zfs_minor = 0; 1031 1032 return (0); 1033 } 1034 1035 void 1036 zfs_init(void) 1037 { 1038 /* 1039 * Initialize .zfs directory structures 1040 */ 1041 zfsctl_init(); 1042 1043 /* 1044 * Initialize znode cache, vnode ops, etc... 1045 */ 1046 zfs_znode_init(); 1047 } 1048 1049 void 1050 zfs_fini(void) 1051 { 1052 zfsctl_fini(); 1053 zfs_znode_fini(); 1054 } 1055 1056 int 1057 zfs_busy(void) 1058 { 1059 return (zfs_active_fs_count != 0); 1060 } 1061 1062 static vfsdef_t vfw = { 1063 VFSDEF_VERSION, 1064 MNTTYPE_ZFS, 1065 zfs_vfsinit, 1066 VSW_HASPROTO | VSW_CANRWRO | VSW_CANREMOUNT | VSW_VOLATILEDEV, 1067 &zfs_mntopts 1068 }; 1069 1070 struct modlfs zfs_modlfs = { 1071 &mod_fsops, "ZFS filesystem version 1", &vfw 1072 }; 1073