1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/systm.h> 29 #include <sys/sysmacros.h> 30 #include <sys/kmem.h> 31 #include <sys/pathname.h> 32 #include <sys/vnode.h> 33 #include <sys/vfs.h> 34 #include <sys/vfs_opreg.h> 35 #include <sys/mntent.h> 36 #include <sys/mount.h> 37 #include <sys/cmn_err.h> 38 #include "fs/fs_subr.h" 39 #include <sys/zfs_znode.h> 40 #include <sys/zfs_dir.h> 41 #include <sys/zil.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/dmu.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_dataset.h> 46 #include <sys/dsl_deleg.h> 47 #include <sys/spa.h> 48 #include <sys/zap.h> 49 #include <sys/varargs.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/mkdev.h> 53 #include <sys/modctl.h> 54 #include <sys/refstr.h> 55 #include <sys/zfs_ioctl.h> 56 #include <sys/zfs_ctldir.h> 57 #include <sys/zfs_fuid.h> 58 #include <sys/bootconf.h> 59 #include <sys/sunddi.h> 60 #include <sys/dnlc.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/spa_boot.h> 63 64 int zfsfstype; 65 vfsops_t *zfs_vfsops = NULL; 66 static major_t zfs_major; 67 static minor_t zfs_minor; 68 static kmutex_t zfs_dev_mtx; 69 70 extern int sys_shutdown; 71 72 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 73 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 74 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 75 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 76 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 77 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 78 static void zfs_freevfs(vfs_t *vfsp); 79 80 static const fs_operation_def_t zfs_vfsops_template[] = { 81 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 82 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 83 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 84 VFSNAME_ROOT, { .vfs_root = zfs_root }, 85 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 86 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 87 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 88 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 89 NULL, NULL 90 }; 91 92 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 93 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 94 NULL, NULL 95 }; 96 97 /* 98 * We need to keep a count of active fs's. 99 * This is necessary to prevent our module 100 * from being unloaded after a umount -f 101 */ 102 static uint32_t zfs_active_fs_count = 0; 103 104 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 105 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 106 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 107 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 108 109 /* 110 * MO_DEFAULT is not used since the default value is determined 111 * by the equivalent property. 112 */ 113 static mntopt_t mntopts[] = { 114 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 115 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 116 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 117 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 118 }; 119 120 static mntopts_t zfs_mntopts = { 121 sizeof (mntopts) / sizeof (mntopt_t), 122 mntopts 123 }; 124 125 /*ARGSUSED*/ 126 int 127 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 128 { 129 /* 130 * Data integrity is job one. We don't want a compromised kernel 131 * writing to the storage pool, so we never sync during panic. 132 */ 133 if (panicstr) 134 return (0); 135 136 /* 137 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 138 * to sync metadata, which they would otherwise cache indefinitely. 139 * Semantically, the only requirement is that the sync be initiated. 140 * The DMU syncs out txgs frequently, so there's nothing to do. 141 */ 142 if (flag & SYNC_ATTR) 143 return (0); 144 145 if (vfsp != NULL) { 146 /* 147 * Sync a specific filesystem. 148 */ 149 zfsvfs_t *zfsvfs = vfsp->vfs_data; 150 dsl_pool_t *dp; 151 152 ZFS_ENTER(zfsvfs); 153 dp = dmu_objset_pool(zfsvfs->z_os); 154 155 /* 156 * If the system is shutting down, then skip any 157 * filesystems which may exist on a suspended pool. 158 */ 159 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 160 ZFS_EXIT(zfsvfs); 161 return (0); 162 } 163 164 if (zfsvfs->z_log != NULL) 165 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 166 else 167 txg_wait_synced(dp, 0); 168 ZFS_EXIT(zfsvfs); 169 } else { 170 /* 171 * Sync all ZFS filesystems. This is what happens when you 172 * run sync(1M). Unlike other filesystems, ZFS honors the 173 * request by waiting for all pools to commit all dirty data. 174 */ 175 spa_sync_allpools(); 176 } 177 178 return (0); 179 } 180 181 static int 182 zfs_create_unique_device(dev_t *dev) 183 { 184 major_t new_major; 185 186 do { 187 ASSERT3U(zfs_minor, <=, MAXMIN32); 188 minor_t start = zfs_minor; 189 do { 190 mutex_enter(&zfs_dev_mtx); 191 if (zfs_minor >= MAXMIN32) { 192 /* 193 * If we're still using the real major 194 * keep out of /dev/zfs and /dev/zvol minor 195 * number space. If we're using a getudev()'ed 196 * major number, we can use all of its minors. 197 */ 198 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 199 zfs_minor = ZFS_MIN_MINOR; 200 else 201 zfs_minor = 0; 202 } else { 203 zfs_minor++; 204 } 205 *dev = makedevice(zfs_major, zfs_minor); 206 mutex_exit(&zfs_dev_mtx); 207 } while (vfs_devismounted(*dev) && zfs_minor != start); 208 if (zfs_minor == start) { 209 /* 210 * We are using all ~262,000 minor numbers for the 211 * current major number. Create a new major number. 212 */ 213 if ((new_major = getudev()) == (major_t)-1) { 214 cmn_err(CE_WARN, 215 "zfs_mount: Can't get unique major " 216 "device number."); 217 return (-1); 218 } 219 mutex_enter(&zfs_dev_mtx); 220 zfs_major = new_major; 221 zfs_minor = 0; 222 223 mutex_exit(&zfs_dev_mtx); 224 } else { 225 break; 226 } 227 /* CONSTANTCONDITION */ 228 } while (1); 229 230 return (0); 231 } 232 233 static void 234 atime_changed_cb(void *arg, uint64_t newval) 235 { 236 zfsvfs_t *zfsvfs = arg; 237 238 if (newval == TRUE) { 239 zfsvfs->z_atime = TRUE; 240 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 241 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 242 } else { 243 zfsvfs->z_atime = FALSE; 244 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 245 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 246 } 247 } 248 249 static void 250 xattr_changed_cb(void *arg, uint64_t newval) 251 { 252 zfsvfs_t *zfsvfs = arg; 253 254 if (newval == TRUE) { 255 /* XXX locking on vfs_flag? */ 256 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 257 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 258 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 259 } else { 260 /* XXX locking on vfs_flag? */ 261 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 262 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 263 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 264 } 265 } 266 267 static void 268 blksz_changed_cb(void *arg, uint64_t newval) 269 { 270 zfsvfs_t *zfsvfs = arg; 271 272 if (newval < SPA_MINBLOCKSIZE || 273 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 274 newval = SPA_MAXBLOCKSIZE; 275 276 zfsvfs->z_max_blksz = newval; 277 zfsvfs->z_vfs->vfs_bsize = newval; 278 } 279 280 static void 281 readonly_changed_cb(void *arg, uint64_t newval) 282 { 283 zfsvfs_t *zfsvfs = arg; 284 285 if (newval) { 286 /* XXX locking on vfs_flag? */ 287 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 288 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 289 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 290 } else { 291 /* XXX locking on vfs_flag? */ 292 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 293 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 294 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 295 } 296 } 297 298 static void 299 devices_changed_cb(void *arg, uint64_t newval) 300 { 301 zfsvfs_t *zfsvfs = arg; 302 303 if (newval == FALSE) { 304 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 305 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 306 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 307 } else { 308 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 311 } 312 } 313 314 static void 315 setuid_changed_cb(void *arg, uint64_t newval) 316 { 317 zfsvfs_t *zfsvfs = arg; 318 319 if (newval == FALSE) { 320 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 321 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 322 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 323 } else { 324 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 327 } 328 } 329 330 static void 331 exec_changed_cb(void *arg, uint64_t newval) 332 { 333 zfsvfs_t *zfsvfs = arg; 334 335 if (newval == FALSE) { 336 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 337 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 338 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 339 } else { 340 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 343 } 344 } 345 346 /* 347 * The nbmand mount option can be changed at mount time. 348 * We can't allow it to be toggled on live file systems or incorrect 349 * behavior may be seen from cifs clients 350 * 351 * This property isn't registered via dsl_prop_register(), but this callback 352 * will be called when a file system is first mounted 353 */ 354 static void 355 nbmand_changed_cb(void *arg, uint64_t newval) 356 { 357 zfsvfs_t *zfsvfs = arg; 358 if (newval == FALSE) { 359 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 360 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 361 } else { 362 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 363 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 364 } 365 } 366 367 static void 368 snapdir_changed_cb(void *arg, uint64_t newval) 369 { 370 zfsvfs_t *zfsvfs = arg; 371 372 zfsvfs->z_show_ctldir = newval; 373 } 374 375 static void 376 vscan_changed_cb(void *arg, uint64_t newval) 377 { 378 zfsvfs_t *zfsvfs = arg; 379 380 zfsvfs->z_vscan = newval; 381 } 382 383 static void 384 acl_mode_changed_cb(void *arg, uint64_t newval) 385 { 386 zfsvfs_t *zfsvfs = arg; 387 388 zfsvfs->z_acl_mode = newval; 389 } 390 391 static void 392 acl_inherit_changed_cb(void *arg, uint64_t newval) 393 { 394 zfsvfs_t *zfsvfs = arg; 395 396 zfsvfs->z_acl_inherit = newval; 397 } 398 399 static int 400 zfs_register_callbacks(vfs_t *vfsp) 401 { 402 struct dsl_dataset *ds = NULL; 403 objset_t *os = NULL; 404 zfsvfs_t *zfsvfs = NULL; 405 uint64_t nbmand; 406 int readonly, do_readonly = B_FALSE; 407 int setuid, do_setuid = B_FALSE; 408 int exec, do_exec = B_FALSE; 409 int devices, do_devices = B_FALSE; 410 int xattr, do_xattr = B_FALSE; 411 int atime, do_atime = B_FALSE; 412 int error = 0; 413 414 ASSERT(vfsp); 415 zfsvfs = vfsp->vfs_data; 416 ASSERT(zfsvfs); 417 os = zfsvfs->z_os; 418 419 /* 420 * The act of registering our callbacks will destroy any mount 421 * options we may have. In order to enable temporary overrides 422 * of mount options, we stash away the current values and 423 * restore them after we register the callbacks. 424 */ 425 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 426 readonly = B_TRUE; 427 do_readonly = B_TRUE; 428 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 429 readonly = B_FALSE; 430 do_readonly = B_TRUE; 431 } 432 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 433 devices = B_FALSE; 434 setuid = B_FALSE; 435 do_devices = B_TRUE; 436 do_setuid = B_TRUE; 437 } else { 438 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 439 devices = B_FALSE; 440 do_devices = B_TRUE; 441 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 442 devices = B_TRUE; 443 do_devices = B_TRUE; 444 } 445 446 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 447 setuid = B_FALSE; 448 do_setuid = B_TRUE; 449 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 450 setuid = B_TRUE; 451 do_setuid = B_TRUE; 452 } 453 } 454 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 455 exec = B_FALSE; 456 do_exec = B_TRUE; 457 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 458 exec = B_TRUE; 459 do_exec = B_TRUE; 460 } 461 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 462 xattr = B_FALSE; 463 do_xattr = B_TRUE; 464 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 465 xattr = B_TRUE; 466 do_xattr = B_TRUE; 467 } 468 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 469 atime = B_FALSE; 470 do_atime = B_TRUE; 471 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 472 atime = B_TRUE; 473 do_atime = B_TRUE; 474 } 475 476 /* 477 * nbmand is a special property. It can only be changed at 478 * mount time. 479 * 480 * This is weird, but it is documented to only be changeable 481 * at mount time. 482 */ 483 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 484 nbmand = B_FALSE; 485 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 486 nbmand = B_TRUE; 487 } else { 488 char osname[MAXNAMELEN]; 489 490 dmu_objset_name(os, osname); 491 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 492 NULL)) { 493 return (error); 494 } 495 } 496 497 /* 498 * Register property callbacks. 499 * 500 * It would probably be fine to just check for i/o error from 501 * the first prop_register(), but I guess I like to go 502 * overboard... 503 */ 504 ds = dmu_objset_ds(os); 505 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 "xattr", xattr_changed_cb, zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 "recordsize", blksz_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 "readonly", readonly_changed_cb, zfsvfs); 512 error = error ? error : dsl_prop_register(ds, 513 "devices", devices_changed_cb, zfsvfs); 514 error = error ? error : dsl_prop_register(ds, 515 "setuid", setuid_changed_cb, zfsvfs); 516 error = error ? error : dsl_prop_register(ds, 517 "exec", exec_changed_cb, zfsvfs); 518 error = error ? error : dsl_prop_register(ds, 519 "snapdir", snapdir_changed_cb, zfsvfs); 520 error = error ? error : dsl_prop_register(ds, 521 "aclmode", acl_mode_changed_cb, zfsvfs); 522 error = error ? error : dsl_prop_register(ds, 523 "aclinherit", acl_inherit_changed_cb, zfsvfs); 524 error = error ? error : dsl_prop_register(ds, 525 "vscan", vscan_changed_cb, zfsvfs); 526 if (error) 527 goto unregister; 528 529 /* 530 * Invoke our callbacks to restore temporary mount options. 531 */ 532 if (do_readonly) 533 readonly_changed_cb(zfsvfs, readonly); 534 if (do_setuid) 535 setuid_changed_cb(zfsvfs, setuid); 536 if (do_exec) 537 exec_changed_cb(zfsvfs, exec); 538 if (do_devices) 539 devices_changed_cb(zfsvfs, devices); 540 if (do_xattr) 541 xattr_changed_cb(zfsvfs, xattr); 542 if (do_atime) 543 atime_changed_cb(zfsvfs, atime); 544 545 nbmand_changed_cb(zfsvfs, nbmand); 546 547 return (0); 548 549 unregister: 550 /* 551 * We may attempt to unregister some callbacks that are not 552 * registered, but this is OK; it will simply return ENOMSG, 553 * which we will ignore. 554 */ 555 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 556 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 557 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 558 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 559 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 560 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 561 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 562 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 563 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 564 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 565 zfsvfs); 566 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 567 return (error); 568 569 } 570 571 static void 572 uidacct(objset_t *os, boolean_t isgroup, uint64_t fuid, 573 int64_t delta, dmu_tx_t *tx) 574 { 575 uint64_t used = 0; 576 char buf[32]; 577 int err; 578 uint64_t obj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 579 580 if (delta == 0) 581 return; 582 583 (void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)fuid); 584 err = zap_lookup(os, obj, buf, 8, 1, &used); 585 ASSERT(err == 0 || err == ENOENT); 586 /* no underflow/overflow */ 587 ASSERT(delta > 0 || used >= -delta); 588 ASSERT(delta < 0 || used + delta > used); 589 used += delta; 590 if (used == 0) 591 err = zap_remove(os, obj, buf, tx); 592 else 593 err = zap_update(os, obj, buf, 8, 1, &used, tx); 594 ASSERT(err == 0); 595 } 596 597 static void 598 zfs_space_delta_cb(objset_t *os, dmu_object_type_t bonustype, 599 void *oldbonus, void *newbonus, 600 uint64_t oldused, uint64_t newused, dmu_tx_t *tx) 601 { 602 znode_phys_t *oldznp = oldbonus; 603 znode_phys_t *newznp = newbonus; 604 605 if (bonustype != DMU_OT_ZNODE) 606 return; 607 608 /* We charge 512 for the dnode (if it's allocated). */ 609 if (oldznp->zp_gen != 0) 610 oldused += DNODE_SIZE; 611 if (newznp->zp_gen != 0) 612 newused += DNODE_SIZE; 613 614 if (oldznp->zp_uid == newznp->zp_uid) { 615 uidacct(os, B_FALSE, oldznp->zp_uid, newused-oldused, tx); 616 } else { 617 uidacct(os, B_FALSE, oldznp->zp_uid, -oldused, tx); 618 uidacct(os, B_FALSE, newznp->zp_uid, newused, tx); 619 } 620 621 if (oldznp->zp_gid == newznp->zp_gid) { 622 uidacct(os, B_TRUE, oldznp->zp_gid, newused-oldused, tx); 623 } else { 624 uidacct(os, B_TRUE, oldznp->zp_gid, -oldused, tx); 625 uidacct(os, B_TRUE, newznp->zp_gid, newused, tx); 626 } 627 } 628 629 static void 630 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 631 char *domainbuf, int buflen, uid_t *ridp) 632 { 633 uint64_t fuid; 634 const char *domain; 635 636 fuid = strtonum(fuidstr, NULL); 637 638 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 639 if (domain) 640 (void) strlcpy(domainbuf, domain, buflen); 641 else 642 domainbuf[0] = '\0'; 643 *ridp = FUID_RID(fuid); 644 } 645 646 static uint64_t 647 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 648 { 649 switch (type) { 650 case ZFS_PROP_USERUSED: 651 return (DMU_USERUSED_OBJECT); 652 case ZFS_PROP_GROUPUSED: 653 return (DMU_GROUPUSED_OBJECT); 654 case ZFS_PROP_USERQUOTA: 655 return (zfsvfs->z_userquota_obj); 656 case ZFS_PROP_GROUPQUOTA: 657 return (zfsvfs->z_groupquota_obj); 658 } 659 return (0); 660 } 661 662 int 663 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 664 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 665 { 666 int error; 667 zap_cursor_t zc; 668 zap_attribute_t za; 669 zfs_useracct_t *buf = vbuf; 670 uint64_t obj; 671 672 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 673 return (ENOTSUP); 674 675 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 676 if (obj == 0) { 677 *bufsizep = 0; 678 return (0); 679 } 680 681 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 682 (error = zap_cursor_retrieve(&zc, &za)) == 0; 683 zap_cursor_advance(&zc)) { 684 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 685 *bufsizep) 686 break; 687 688 fuidstr_to_sid(zfsvfs, za.za_name, 689 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 690 691 buf->zu_space = za.za_first_integer; 692 buf++; 693 } 694 if (error == ENOENT) 695 error = 0; 696 697 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 698 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 699 *cookiep = zap_cursor_serialize(&zc); 700 zap_cursor_fini(&zc); 701 return (error); 702 } 703 704 /* 705 * buf must be big enough (eg, 32 bytes) 706 */ 707 static int 708 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 709 char *buf, boolean_t addok) 710 { 711 uint64_t fuid; 712 int domainid = 0; 713 714 if (domain && domain[0]) { 715 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 716 if (domainid == -1) 717 return (ENOENT); 718 } 719 fuid = FUID_ENCODE(domainid, rid); 720 (void) sprintf(buf, "%llx", (longlong_t)fuid); 721 return (0); 722 } 723 724 int 725 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 726 const char *domain, uint64_t rid, uint64_t *valp) 727 { 728 char buf[32]; 729 int err; 730 uint64_t obj; 731 732 *valp = 0; 733 734 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 735 return (ENOTSUP); 736 737 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 738 if (obj == 0) 739 return (0); 740 741 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 742 if (err) 743 return (err); 744 745 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 746 if (err == ENOENT) 747 err = 0; 748 return (err); 749 } 750 751 int 752 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 753 const char *domain, uint64_t rid, uint64_t quota) 754 { 755 char buf[32]; 756 int err; 757 dmu_tx_t *tx; 758 uint64_t *objp; 759 boolean_t fuid_dirtied; 760 761 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 762 return (EINVAL); 763 764 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 765 return (ENOTSUP); 766 767 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 768 &zfsvfs->z_groupquota_obj; 769 770 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 771 if (err) 772 return (err); 773 fuid_dirtied = zfsvfs->z_fuid_dirty; 774 775 tx = dmu_tx_create(zfsvfs->z_os); 776 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 777 if (*objp == 0) { 778 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 779 zfs_userquota_prop_prefixes[type]); 780 } 781 if (fuid_dirtied) 782 zfs_fuid_txhold(zfsvfs, tx); 783 err = dmu_tx_assign(tx, TXG_WAIT); 784 if (err) { 785 dmu_tx_abort(tx); 786 return (err); 787 } 788 789 mutex_enter(&zfsvfs->z_lock); 790 if (*objp == 0) { 791 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 792 DMU_OT_NONE, 0, tx); 793 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 794 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 795 } 796 mutex_exit(&zfsvfs->z_lock); 797 798 if (quota == 0) { 799 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 800 if (err == ENOENT) 801 err = 0; 802 } else { 803 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 804 } 805 ASSERT(err == 0); 806 if (fuid_dirtied) 807 zfs_fuid_sync(zfsvfs, tx); 808 dmu_tx_commit(tx); 809 return (err); 810 } 811 812 boolean_t 813 zfs_usergroup_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 814 { 815 char buf[32]; 816 uint64_t used, quota, usedobj, quotaobj; 817 int err; 818 819 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 820 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 821 822 if (quotaobj == 0 || zfsvfs->z_replay) 823 return (B_FALSE); 824 825 (void) sprintf(buf, "%llx", (longlong_t)fuid); 826 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 827 if (err != 0) 828 return (B_FALSE); 829 830 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 831 if (err != 0) 832 return (B_FALSE); 833 return (used >= quota); 834 } 835 836 int 837 zfsvfs_create(const char *osname, zfsvfs_t **zvp) 838 { 839 objset_t *os; 840 zfsvfs_t *zfsvfs; 841 uint64_t zval; 842 int i, error; 843 844 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 845 846 /* 847 * We claim to always be readonly so we can open snapshots; 848 * other ZPL code will prevent us from writing to snapshots. 849 */ 850 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 851 if (error) { 852 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 853 return (error); 854 } 855 856 /* 857 * Initialize the zfs-specific filesystem structure. 858 * Should probably make this a kmem cache, shuffle fields, 859 * and just bzero up to z_hold_mtx[]. 860 */ 861 zfsvfs->z_vfs = NULL; 862 zfsvfs->z_parent = zfsvfs; 863 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 864 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 865 zfsvfs->z_os = os; 866 867 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 868 if (error) { 869 goto out; 870 } else if (zfsvfs->z_version > ZPL_VERSION) { 871 (void) printf("Mismatched versions: File system " 872 "is version %llu on-disk format, which is " 873 "incompatible with this software version %lld!", 874 (u_longlong_t)zfsvfs->z_version, ZPL_VERSION); 875 error = ENOTSUP; 876 goto out; 877 } 878 879 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 880 goto out; 881 zfsvfs->z_norm = (int)zval; 882 883 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 884 goto out; 885 zfsvfs->z_utf8 = (zval != 0); 886 887 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 888 goto out; 889 zfsvfs->z_case = (uint_t)zval; 890 891 /* 892 * Fold case on file systems that are always or sometimes case 893 * insensitive. 894 */ 895 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 896 zfsvfs->z_case == ZFS_CASE_MIXED) 897 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 898 899 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 900 901 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 902 &zfsvfs->z_root); 903 if (error) 904 goto out; 905 ASSERT(zfsvfs->z_root != 0); 906 907 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 908 &zfsvfs->z_unlinkedobj); 909 if (error) 910 goto out; 911 912 error = zap_lookup(os, MASTER_NODE_OBJ, 913 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 914 8, 1, &zfsvfs->z_userquota_obj); 915 if (error && error != ENOENT) 916 goto out; 917 918 error = zap_lookup(os, MASTER_NODE_OBJ, 919 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 920 8, 1, &zfsvfs->z_groupquota_obj); 921 if (error && error != ENOENT) 922 goto out; 923 924 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 925 &zfsvfs->z_fuid_obj); 926 if (error && error != ENOENT) 927 goto out; 928 929 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 930 &zfsvfs->z_shares_dir); 931 if (error && error != ENOENT) 932 goto out; 933 934 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 935 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 936 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 937 offsetof(znode_t, z_link_node)); 938 rrw_init(&zfsvfs->z_teardown_lock); 939 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 940 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 941 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 942 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 943 944 *zvp = zfsvfs; 945 return (0); 946 947 out: 948 dmu_objset_disown(os, zfsvfs); 949 *zvp = NULL; 950 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 951 return (error); 952 } 953 954 static int 955 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 956 { 957 int error; 958 959 error = zfs_register_callbacks(zfsvfs->z_vfs); 960 if (error) 961 return (error); 962 963 /* 964 * Set the objset user_ptr to track its zfsvfs. 965 */ 966 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 967 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 968 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 969 970 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 971 if (zil_disable) { 972 zil_destroy(zfsvfs->z_log, 0); 973 zfsvfs->z_log = NULL; 974 } 975 976 /* 977 * If we are not mounting (ie: online recv), then we don't 978 * have to worry about replaying the log as we blocked all 979 * operations out since we closed the ZIL. 980 */ 981 if (mounting) { 982 boolean_t readonly; 983 984 /* 985 * During replay we remove the read only flag to 986 * allow replays to succeed. 987 */ 988 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 989 if (readonly != 0) 990 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 991 else 992 zfs_unlinked_drain(zfsvfs); 993 994 if (zfsvfs->z_log) { 995 /* 996 * Parse and replay the intent log. 997 * 998 * Because of ziltest, this must be done after 999 * zfs_unlinked_drain(). (Further note: ziltest 1000 * doesn't use readonly mounts, where 1001 * zfs_unlinked_drain() isn't called.) This is because 1002 * ziltest causes spa_sync() to think it's committed, 1003 * but actually it is not, so the intent log contains 1004 * many txg's worth of changes. 1005 * 1006 * In particular, if object N is in the unlinked set in 1007 * the last txg to actually sync, then it could be 1008 * actually freed in a later txg and then reallocated 1009 * in a yet later txg. This would write a "create 1010 * object N" record to the intent log. Normally, this 1011 * would be fine because the spa_sync() would have 1012 * written out the fact that object N is free, before 1013 * we could write the "create object N" intent log 1014 * record. 1015 * 1016 * But when we are in ziltest mode, we advance the "open 1017 * txg" without actually spa_sync()-ing the changes to 1018 * disk. So we would see that object N is still 1019 * allocated and in the unlinked set, and there is an 1020 * intent log record saying to allocate it. 1021 */ 1022 zfsvfs->z_replay = B_TRUE; 1023 zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); 1024 zfsvfs->z_replay = B_FALSE; 1025 } 1026 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1027 } 1028 1029 return (0); 1030 } 1031 1032 void 1033 zfsvfs_free(zfsvfs_t *zfsvfs) 1034 { 1035 int i; 1036 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1037 1038 /* 1039 * This is a barrier to prevent the filesystem from going away in 1040 * zfs_znode_move() until we can safely ensure that the filesystem is 1041 * not unmounted. We consider the filesystem valid before the barrier 1042 * and invalid after the barrier. 1043 */ 1044 rw_enter(&zfsvfs_lock, RW_READER); 1045 rw_exit(&zfsvfs_lock); 1046 1047 zfs_fuid_destroy(zfsvfs); 1048 1049 mutex_destroy(&zfsvfs->z_znodes_lock); 1050 mutex_destroy(&zfsvfs->z_lock); 1051 list_destroy(&zfsvfs->z_all_znodes); 1052 rrw_destroy(&zfsvfs->z_teardown_lock); 1053 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1054 rw_destroy(&zfsvfs->z_fuid_lock); 1055 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1056 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1057 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1058 } 1059 1060 static void 1061 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1062 { 1063 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1064 if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) { 1065 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1066 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1067 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1068 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1069 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1070 } 1071 } 1072 1073 static int 1074 zfs_domount(vfs_t *vfsp, char *osname) 1075 { 1076 dev_t mount_dev; 1077 uint64_t recordsize, fsid_guid; 1078 int error = 0; 1079 zfsvfs_t *zfsvfs; 1080 1081 ASSERT(vfsp); 1082 ASSERT(osname); 1083 1084 error = zfsvfs_create(osname, &zfsvfs); 1085 if (error) 1086 return (error); 1087 zfsvfs->z_vfs = vfsp; 1088 1089 /* Initialize the generic filesystem structure. */ 1090 vfsp->vfs_bcount = 0; 1091 vfsp->vfs_data = NULL; 1092 1093 if (zfs_create_unique_device(&mount_dev) == -1) { 1094 error = ENODEV; 1095 goto out; 1096 } 1097 ASSERT(vfs_devismounted(mount_dev) == 0); 1098 1099 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1100 NULL)) 1101 goto out; 1102 1103 vfsp->vfs_dev = mount_dev; 1104 vfsp->vfs_fstype = zfsfstype; 1105 vfsp->vfs_bsize = recordsize; 1106 vfsp->vfs_flag |= VFS_NOTRUNC; 1107 vfsp->vfs_data = zfsvfs; 1108 1109 /* 1110 * The fsid is 64 bits, composed of an 8-bit fs type, which 1111 * separates our fsid from any other filesystem types, and a 1112 * 56-bit objset unique ID. The objset unique ID is unique to 1113 * all objsets open on this system, provided by unique_create(). 1114 * The 8-bit fs type must be put in the low bits of fsid[1] 1115 * because that's where other Solaris filesystems put it. 1116 */ 1117 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1118 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1119 vfsp->vfs_fsid.val[0] = fsid_guid; 1120 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1121 zfsfstype & 0xFF; 1122 1123 /* 1124 * Set features for file system. 1125 */ 1126 zfs_set_fuid_feature(zfsvfs); 1127 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1128 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1129 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1130 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1131 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1132 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1133 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1134 } 1135 1136 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1137 uint64_t pval; 1138 1139 atime_changed_cb(zfsvfs, B_FALSE); 1140 readonly_changed_cb(zfsvfs, B_TRUE); 1141 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1142 goto out; 1143 xattr_changed_cb(zfsvfs, pval); 1144 zfsvfs->z_issnap = B_TRUE; 1145 1146 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1147 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1148 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1149 } else { 1150 error = zfsvfs_setup(zfsvfs, B_TRUE); 1151 } 1152 1153 if (!zfsvfs->z_issnap) 1154 zfsctl_create(zfsvfs); 1155 out: 1156 if (error) { 1157 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1158 zfsvfs_free(zfsvfs); 1159 } else { 1160 atomic_add_32(&zfs_active_fs_count, 1); 1161 } 1162 1163 return (error); 1164 } 1165 1166 void 1167 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1168 { 1169 objset_t *os = zfsvfs->z_os; 1170 struct dsl_dataset *ds; 1171 1172 /* 1173 * Unregister properties. 1174 */ 1175 if (!dmu_objset_is_snapshot(os)) { 1176 ds = dmu_objset_ds(os); 1177 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 1178 zfsvfs) == 0); 1179 1180 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 1181 zfsvfs) == 0); 1182 1183 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 1184 zfsvfs) == 0); 1185 1186 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 1187 zfsvfs) == 0); 1188 1189 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 1190 zfsvfs) == 0); 1191 1192 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 1193 zfsvfs) == 0); 1194 1195 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 1196 zfsvfs) == 0); 1197 1198 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 1199 zfsvfs) == 0); 1200 1201 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 1202 zfsvfs) == 0); 1203 1204 VERIFY(dsl_prop_unregister(ds, "aclinherit", 1205 acl_inherit_changed_cb, zfsvfs) == 0); 1206 1207 VERIFY(dsl_prop_unregister(ds, "vscan", 1208 vscan_changed_cb, zfsvfs) == 0); 1209 } 1210 } 1211 1212 /* 1213 * Convert a decimal digit string to a uint64_t integer. 1214 */ 1215 static int 1216 str_to_uint64(char *str, uint64_t *objnum) 1217 { 1218 uint64_t num = 0; 1219 1220 while (*str) { 1221 if (*str < '0' || *str > '9') 1222 return (EINVAL); 1223 1224 num = num*10 + *str++ - '0'; 1225 } 1226 1227 *objnum = num; 1228 return (0); 1229 } 1230 1231 /* 1232 * The boot path passed from the boot loader is in the form of 1233 * "rootpool-name/root-filesystem-object-number'. Convert this 1234 * string to a dataset name: "rootpool-name/root-filesystem-name". 1235 */ 1236 static int 1237 zfs_parse_bootfs(char *bpath, char *outpath) 1238 { 1239 char *slashp; 1240 uint64_t objnum; 1241 int error; 1242 1243 if (*bpath == 0 || *bpath == '/') 1244 return (EINVAL); 1245 1246 (void) strcpy(outpath, bpath); 1247 1248 slashp = strchr(bpath, '/'); 1249 1250 /* if no '/', just return the pool name */ 1251 if (slashp == NULL) { 1252 return (0); 1253 } 1254 1255 /* if not a number, just return the root dataset name */ 1256 if (str_to_uint64(slashp+1, &objnum)) { 1257 return (0); 1258 } 1259 1260 *slashp = '\0'; 1261 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1262 *slashp = '/'; 1263 1264 return (error); 1265 } 1266 1267 static int 1268 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1269 { 1270 int error = 0; 1271 static int zfsrootdone = 0; 1272 zfsvfs_t *zfsvfs = NULL; 1273 znode_t *zp = NULL; 1274 vnode_t *vp = NULL; 1275 char *zfs_bootfs; 1276 char *zfs_devid; 1277 1278 ASSERT(vfsp); 1279 1280 /* 1281 * The filesystem that we mount as root is defined in the 1282 * boot property "zfs-bootfs" with a format of 1283 * "poolname/root-dataset-objnum". 1284 */ 1285 if (why == ROOT_INIT) { 1286 if (zfsrootdone++) 1287 return (EBUSY); 1288 /* 1289 * the process of doing a spa_load will require the 1290 * clock to be set before we could (for example) do 1291 * something better by looking at the timestamp on 1292 * an uberblock, so just set it to -1. 1293 */ 1294 clkset(-1); 1295 1296 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1297 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1298 "bootfs name"); 1299 return (EINVAL); 1300 } 1301 zfs_devid = spa_get_bootprop("diskdevid"); 1302 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1303 if (zfs_devid) 1304 spa_free_bootprop(zfs_devid); 1305 if (error) { 1306 spa_free_bootprop(zfs_bootfs); 1307 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1308 error); 1309 return (error); 1310 } 1311 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1312 spa_free_bootprop(zfs_bootfs); 1313 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1314 error); 1315 return (error); 1316 } 1317 1318 spa_free_bootprop(zfs_bootfs); 1319 1320 if (error = vfs_lock(vfsp)) 1321 return (error); 1322 1323 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1324 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1325 goto out; 1326 } 1327 1328 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1329 ASSERT(zfsvfs); 1330 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1331 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1332 goto out; 1333 } 1334 1335 vp = ZTOV(zp); 1336 mutex_enter(&vp->v_lock); 1337 vp->v_flag |= VROOT; 1338 mutex_exit(&vp->v_lock); 1339 rootvp = vp; 1340 1341 /* 1342 * Leave rootvp held. The root file system is never unmounted. 1343 */ 1344 1345 vfs_add((struct vnode *)0, vfsp, 1346 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1347 out: 1348 vfs_unlock(vfsp); 1349 return (error); 1350 } else if (why == ROOT_REMOUNT) { 1351 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1352 vfsp->vfs_flag |= VFS_REMOUNT; 1353 1354 /* refresh mount options */ 1355 zfs_unregister_callbacks(vfsp->vfs_data); 1356 return (zfs_register_callbacks(vfsp)); 1357 1358 } else if (why == ROOT_UNMOUNT) { 1359 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1360 (void) zfs_sync(vfsp, 0, 0); 1361 return (0); 1362 } 1363 1364 /* 1365 * if "why" is equal to anything else other than ROOT_INIT, 1366 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1367 */ 1368 return (ENOTSUP); 1369 } 1370 1371 /*ARGSUSED*/ 1372 static int 1373 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1374 { 1375 char *osname; 1376 pathname_t spn; 1377 int error = 0; 1378 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1379 UIO_SYSSPACE : UIO_USERSPACE; 1380 int canwrite; 1381 1382 if (mvp->v_type != VDIR) 1383 return (ENOTDIR); 1384 1385 mutex_enter(&mvp->v_lock); 1386 if ((uap->flags & MS_REMOUNT) == 0 && 1387 (uap->flags & MS_OVERLAY) == 0 && 1388 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1389 mutex_exit(&mvp->v_lock); 1390 return (EBUSY); 1391 } 1392 mutex_exit(&mvp->v_lock); 1393 1394 /* 1395 * ZFS does not support passing unparsed data in via MS_DATA. 1396 * Users should use the MS_OPTIONSTR interface; this means 1397 * that all option parsing is already done and the options struct 1398 * can be interrogated. 1399 */ 1400 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1401 return (EINVAL); 1402 1403 /* 1404 * Get the objset name (the "special" mount argument). 1405 */ 1406 if (error = pn_get(uap->spec, fromspace, &spn)) 1407 return (error); 1408 1409 osname = spn.pn_path; 1410 1411 /* 1412 * Check for mount privilege? 1413 * 1414 * If we don't have privilege then see if 1415 * we have local permission to allow it 1416 */ 1417 error = secpolicy_fs_mount(cr, mvp, vfsp); 1418 if (error) { 1419 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 1420 if (error == 0) { 1421 vattr_t vattr; 1422 1423 /* 1424 * Make sure user is the owner of the mount point 1425 * or has sufficient privileges. 1426 */ 1427 1428 vattr.va_mask = AT_UID; 1429 1430 if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1431 goto out; 1432 } 1433 1434 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1435 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1436 error = EPERM; 1437 goto out; 1438 } 1439 1440 secpolicy_fs_mount_clearopts(cr, vfsp); 1441 } else { 1442 goto out; 1443 } 1444 } 1445 1446 /* 1447 * Refuse to mount a filesystem if we are in a local zone and the 1448 * dataset is not visible. 1449 */ 1450 if (!INGLOBALZONE(curproc) && 1451 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1452 error = EPERM; 1453 goto out; 1454 } 1455 1456 /* 1457 * When doing a remount, we simply refresh our temporary properties 1458 * according to those options set in the current VFS options. 1459 */ 1460 if (uap->flags & MS_REMOUNT) { 1461 /* refresh mount options */ 1462 zfs_unregister_callbacks(vfsp->vfs_data); 1463 error = zfs_register_callbacks(vfsp); 1464 goto out; 1465 } 1466 1467 error = zfs_domount(vfsp, osname); 1468 1469 /* 1470 * Add an extra VFS_HOLD on our parent vfs so that it can't 1471 * disappear due to a forced unmount. 1472 */ 1473 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1474 VFS_HOLD(mvp->v_vfsp); 1475 1476 out: 1477 pn_free(&spn); 1478 return (error); 1479 } 1480 1481 static int 1482 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1483 { 1484 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1485 dev32_t d32; 1486 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1487 1488 ZFS_ENTER(zfsvfs); 1489 1490 dmu_objset_space(zfsvfs->z_os, 1491 &refdbytes, &availbytes, &usedobjs, &availobjs); 1492 1493 /* 1494 * The underlying storage pool actually uses multiple block sizes. 1495 * We report the fragsize as the smallest block size we support, 1496 * and we report our blocksize as the filesystem's maximum blocksize. 1497 */ 1498 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1499 statp->f_bsize = zfsvfs->z_max_blksz; 1500 1501 /* 1502 * The following report "total" blocks of various kinds in the 1503 * file system, but reported in terms of f_frsize - the 1504 * "fragment" size. 1505 */ 1506 1507 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1508 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1509 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1510 1511 /* 1512 * statvfs() should really be called statufs(), because it assumes 1513 * static metadata. ZFS doesn't preallocate files, so the best 1514 * we can do is report the max that could possibly fit in f_files, 1515 * and that minus the number actually used in f_ffree. 1516 * For f_ffree, report the smaller of the number of object available 1517 * and the number of blocks (each object will take at least a block). 1518 */ 1519 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1520 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1521 statp->f_files = statp->f_ffree + usedobjs; 1522 1523 (void) cmpldev(&d32, vfsp->vfs_dev); 1524 statp->f_fsid = d32; 1525 1526 /* 1527 * We're a zfs filesystem. 1528 */ 1529 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1530 1531 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1532 1533 statp->f_namemax = ZFS_MAXNAMELEN; 1534 1535 /* 1536 * We have all of 32 characters to stuff a string here. 1537 * Is there anything useful we could/should provide? 1538 */ 1539 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1540 1541 ZFS_EXIT(zfsvfs); 1542 return (0); 1543 } 1544 1545 static int 1546 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1547 { 1548 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1549 znode_t *rootzp; 1550 int error; 1551 1552 ZFS_ENTER(zfsvfs); 1553 1554 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1555 if (error == 0) 1556 *vpp = ZTOV(rootzp); 1557 1558 ZFS_EXIT(zfsvfs); 1559 return (error); 1560 } 1561 1562 /* 1563 * Teardown the zfsvfs::z_os. 1564 * 1565 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1566 * and 'z_teardown_inactive_lock' held. 1567 */ 1568 static int 1569 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1570 { 1571 znode_t *zp; 1572 1573 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1574 1575 if (!unmounting) { 1576 /* 1577 * We purge the parent filesystem's vfsp as the parent 1578 * filesystem and all of its snapshots have their vnode's 1579 * v_vfsp set to the parent's filesystem's vfsp. Note, 1580 * 'z_parent' is self referential for non-snapshots. 1581 */ 1582 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1583 } 1584 1585 /* 1586 * Close the zil. NB: Can't close the zil while zfs_inactive 1587 * threads are blocked as zil_close can call zfs_inactive. 1588 */ 1589 if (zfsvfs->z_log) { 1590 zil_close(zfsvfs->z_log); 1591 zfsvfs->z_log = NULL; 1592 } 1593 1594 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1595 1596 /* 1597 * If we are not unmounting (ie: online recv) and someone already 1598 * unmounted this file system while we were doing the switcheroo, 1599 * or a reopen of z_os failed then just bail out now. 1600 */ 1601 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1602 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1603 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1604 return (EIO); 1605 } 1606 1607 /* 1608 * At this point there are no vops active, and any new vops will 1609 * fail with EIO since we have z_teardown_lock for writer (only 1610 * relavent for forced unmount). 1611 * 1612 * Release all holds on dbufs. 1613 */ 1614 mutex_enter(&zfsvfs->z_znodes_lock); 1615 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1616 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1617 if (zp->z_dbuf) { 1618 ASSERT(ZTOV(zp)->v_count > 0); 1619 zfs_znode_dmu_fini(zp); 1620 } 1621 mutex_exit(&zfsvfs->z_znodes_lock); 1622 1623 /* 1624 * If we are unmounting, set the unmounted flag and let new vops 1625 * unblock. zfs_inactive will have the unmounted behavior, and all 1626 * other vops will fail with EIO. 1627 */ 1628 if (unmounting) { 1629 zfsvfs->z_unmounted = B_TRUE; 1630 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1631 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1632 } 1633 1634 /* 1635 * z_os will be NULL if there was an error in attempting to reopen 1636 * zfsvfs, so just return as the properties had already been 1637 * unregistered and cached data had been evicted before. 1638 */ 1639 if (zfsvfs->z_os == NULL) 1640 return (0); 1641 1642 /* 1643 * Unregister properties. 1644 */ 1645 zfs_unregister_callbacks(zfsvfs); 1646 1647 /* 1648 * Evict cached data 1649 */ 1650 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1651 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1652 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1653 } 1654 1655 return (0); 1656 } 1657 1658 /*ARGSUSED*/ 1659 static int 1660 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1661 { 1662 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1663 objset_t *os; 1664 int ret; 1665 1666 ret = secpolicy_fs_unmount(cr, vfsp); 1667 if (ret) { 1668 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1669 ZFS_DELEG_PERM_MOUNT, cr); 1670 if (ret) 1671 return (ret); 1672 } 1673 1674 /* 1675 * We purge the parent filesystem's vfsp as the parent filesystem 1676 * and all of its snapshots have their vnode's v_vfsp set to the 1677 * parent's filesystem's vfsp. Note, 'z_parent' is self 1678 * referential for non-snapshots. 1679 */ 1680 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1681 1682 /* 1683 * Unmount any snapshots mounted under .zfs before unmounting the 1684 * dataset itself. 1685 */ 1686 if (zfsvfs->z_ctldir != NULL && 1687 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1688 return (ret); 1689 } 1690 1691 if (!(fflag & MS_FORCE)) { 1692 /* 1693 * Check the number of active vnodes in the file system. 1694 * Our count is maintained in the vfs structure, but the 1695 * number is off by 1 to indicate a hold on the vfs 1696 * structure itself. 1697 * 1698 * The '.zfs' directory maintains a reference of its 1699 * own, and any active references underneath are 1700 * reflected in the vnode count. 1701 */ 1702 if (zfsvfs->z_ctldir == NULL) { 1703 if (vfsp->vfs_count > 1) 1704 return (EBUSY); 1705 } else { 1706 if (vfsp->vfs_count > 2 || 1707 zfsvfs->z_ctldir->v_count > 1) 1708 return (EBUSY); 1709 } 1710 } 1711 1712 vfsp->vfs_flag |= VFS_UNMOUNTED; 1713 1714 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1715 os = zfsvfs->z_os; 1716 1717 /* 1718 * z_os will be NULL if there was an error in 1719 * attempting to reopen zfsvfs. 1720 */ 1721 if (os != NULL) { 1722 /* 1723 * Unset the objset user_ptr. 1724 */ 1725 mutex_enter(&os->os_user_ptr_lock); 1726 dmu_objset_set_user(os, NULL); 1727 mutex_exit(&os->os_user_ptr_lock); 1728 1729 /* 1730 * Finally release the objset 1731 */ 1732 dmu_objset_disown(os, zfsvfs); 1733 } 1734 1735 /* 1736 * We can now safely destroy the '.zfs' directory node. 1737 */ 1738 if (zfsvfs->z_ctldir != NULL) 1739 zfsctl_destroy(zfsvfs); 1740 1741 return (0); 1742 } 1743 1744 static int 1745 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1746 { 1747 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1748 znode_t *zp; 1749 uint64_t object = 0; 1750 uint64_t fid_gen = 0; 1751 uint64_t gen_mask; 1752 uint64_t zp_gen; 1753 int i, err; 1754 1755 *vpp = NULL; 1756 1757 ZFS_ENTER(zfsvfs); 1758 1759 if (fidp->fid_len == LONG_FID_LEN) { 1760 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1761 uint64_t objsetid = 0; 1762 uint64_t setgen = 0; 1763 1764 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1765 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1766 1767 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1768 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1769 1770 ZFS_EXIT(zfsvfs); 1771 1772 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1773 if (err) 1774 return (EINVAL); 1775 ZFS_ENTER(zfsvfs); 1776 } 1777 1778 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1779 zfid_short_t *zfid = (zfid_short_t *)fidp; 1780 1781 for (i = 0; i < sizeof (zfid->zf_object); i++) 1782 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1783 1784 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1785 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1786 } else { 1787 ZFS_EXIT(zfsvfs); 1788 return (EINVAL); 1789 } 1790 1791 /* A zero fid_gen means we are in the .zfs control directories */ 1792 if (fid_gen == 0 && 1793 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1794 *vpp = zfsvfs->z_ctldir; 1795 ASSERT(*vpp != NULL); 1796 if (object == ZFSCTL_INO_SNAPDIR) { 1797 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1798 0, NULL, NULL, NULL, NULL, NULL) == 0); 1799 } else { 1800 VN_HOLD(*vpp); 1801 } 1802 ZFS_EXIT(zfsvfs); 1803 return (0); 1804 } 1805 1806 gen_mask = -1ULL >> (64 - 8 * i); 1807 1808 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1809 if (err = zfs_zget(zfsvfs, object, &zp)) { 1810 ZFS_EXIT(zfsvfs); 1811 return (err); 1812 } 1813 zp_gen = zp->z_phys->zp_gen & gen_mask; 1814 if (zp_gen == 0) 1815 zp_gen = 1; 1816 if (zp->z_unlinked || zp_gen != fid_gen) { 1817 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1818 VN_RELE(ZTOV(zp)); 1819 ZFS_EXIT(zfsvfs); 1820 return (EINVAL); 1821 } 1822 1823 *vpp = ZTOV(zp); 1824 ZFS_EXIT(zfsvfs); 1825 return (0); 1826 } 1827 1828 /* 1829 * Block out VOPs and close zfsvfs_t::z_os 1830 * 1831 * Note, if successful, then we return with the 'z_teardown_lock' and 1832 * 'z_teardown_inactive_lock' write held. 1833 */ 1834 int 1835 zfs_suspend_fs(zfsvfs_t *zfsvfs) 1836 { 1837 int error; 1838 1839 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1840 return (error); 1841 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1842 1843 return (0); 1844 } 1845 1846 /* 1847 * Reopen zfsvfs_t::z_os and release VOPs. 1848 */ 1849 int 1850 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) 1851 { 1852 int err; 1853 1854 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1855 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1856 1857 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs, 1858 &zfsvfs->z_os); 1859 if (err) { 1860 zfsvfs->z_os = NULL; 1861 } else { 1862 znode_t *zp; 1863 1864 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1865 1866 /* 1867 * Attempt to re-establish all the active znodes with 1868 * their dbufs. If a zfs_rezget() fails, then we'll let 1869 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 1870 * when they try to use their znode. 1871 */ 1872 mutex_enter(&zfsvfs->z_znodes_lock); 1873 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1874 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1875 (void) zfs_rezget(zp); 1876 } 1877 mutex_exit(&zfsvfs->z_znodes_lock); 1878 1879 } 1880 1881 /* release the VOPs */ 1882 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1883 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1884 1885 if (err) { 1886 /* 1887 * Since we couldn't reopen zfsvfs::z_os, force 1888 * unmount this file system. 1889 */ 1890 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 1891 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 1892 } 1893 return (err); 1894 } 1895 1896 static void 1897 zfs_freevfs(vfs_t *vfsp) 1898 { 1899 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1900 1901 /* 1902 * If this is a snapshot, we have an extra VFS_HOLD on our parent 1903 * from zfs_mount(). Release it here. 1904 */ 1905 if (zfsvfs->z_issnap) 1906 VFS_RELE(zfsvfs->z_parent->z_vfs); 1907 1908 zfsvfs_free(zfsvfs); 1909 1910 atomic_add_32(&zfs_active_fs_count, -1); 1911 } 1912 1913 /* 1914 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1915 * so we can't safely do any non-idempotent initialization here. 1916 * Leave that to zfs_init() and zfs_fini(), which are called 1917 * from the module's _init() and _fini() entry points. 1918 */ 1919 /*ARGSUSED*/ 1920 static int 1921 zfs_vfsinit(int fstype, char *name) 1922 { 1923 int error; 1924 1925 zfsfstype = fstype; 1926 1927 /* 1928 * Setup vfsops and vnodeops tables. 1929 */ 1930 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1931 if (error != 0) { 1932 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1933 } 1934 1935 error = zfs_create_op_tables(); 1936 if (error) { 1937 zfs_remove_op_tables(); 1938 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1939 (void) vfs_freevfsops_by_type(zfsfstype); 1940 return (error); 1941 } 1942 1943 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1944 1945 /* 1946 * Unique major number for all zfs mounts. 1947 * If we run out of 32-bit minors, we'll getudev() another major. 1948 */ 1949 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1950 zfs_minor = ZFS_MIN_MINOR; 1951 1952 return (0); 1953 } 1954 1955 void 1956 zfs_init(void) 1957 { 1958 /* 1959 * Initialize .zfs directory structures 1960 */ 1961 zfsctl_init(); 1962 1963 /* 1964 * Initialize znode cache, vnode ops, etc... 1965 */ 1966 zfs_znode_init(); 1967 1968 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 1969 } 1970 1971 void 1972 zfs_fini(void) 1973 { 1974 zfsctl_fini(); 1975 zfs_znode_fini(); 1976 } 1977 1978 int 1979 zfs_busy(void) 1980 { 1981 return (zfs_active_fs_count != 0); 1982 } 1983 1984 int 1985 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 1986 { 1987 int error; 1988 objset_t *os = zfsvfs->z_os; 1989 dmu_tx_t *tx; 1990 1991 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1992 return (EINVAL); 1993 1994 if (newvers < zfsvfs->z_version) 1995 return (EINVAL); 1996 1997 tx = dmu_tx_create(os); 1998 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 1999 error = dmu_tx_assign(tx, TXG_WAIT); 2000 if (error) { 2001 dmu_tx_abort(tx); 2002 return (error); 2003 } 2004 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2005 8, 1, &newvers, tx); 2006 2007 if (error) { 2008 dmu_tx_commit(tx); 2009 return (error); 2010 } 2011 2012 spa_history_internal_log(LOG_DS_UPGRADE, 2013 dmu_objset_spa(os), tx, CRED(), 2014 "oldver=%llu newver=%llu dataset = %llu", 2015 zfsvfs->z_version, newvers, dmu_objset_id(os)); 2016 2017 dmu_tx_commit(tx); 2018 2019 zfsvfs->z_version = newvers; 2020 2021 if (zfsvfs->z_version >= ZPL_VERSION_FUID) 2022 zfs_set_fuid_feature(zfsvfs); 2023 2024 return (0); 2025 } 2026 2027 /* 2028 * Read a property stored within the master node. 2029 */ 2030 int 2031 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2032 { 2033 const char *pname; 2034 int error = ENOENT; 2035 2036 /* 2037 * Look up the file system's value for the property. For the 2038 * version property, we look up a slightly different string. 2039 */ 2040 if (prop == ZFS_PROP_VERSION) 2041 pname = ZPL_VERSION_STR; 2042 else 2043 pname = zfs_prop_to_name(prop); 2044 2045 if (os != NULL) 2046 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2047 2048 if (error == ENOENT) { 2049 /* No value set, use the default value */ 2050 switch (prop) { 2051 case ZFS_PROP_VERSION: 2052 *value = ZPL_VERSION; 2053 break; 2054 case ZFS_PROP_NORMALIZE: 2055 case ZFS_PROP_UTF8ONLY: 2056 *value = 0; 2057 break; 2058 case ZFS_PROP_CASE: 2059 *value = ZFS_CASE_SENSITIVE; 2060 break; 2061 default: 2062 return (error); 2063 } 2064 error = 0; 2065 } 2066 return (error); 2067 } 2068 2069 static vfsdef_t vfw = { 2070 VFSDEF_VERSION, 2071 MNTTYPE_ZFS, 2072 zfs_vfsinit, 2073 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2074 VSW_XID, 2075 &zfs_mntopts 2076 }; 2077 2078 struct modlfs zfs_modlfs = { 2079 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2080 }; 2081