1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/sysmacros.h> 32 #include <sys/kmem.h> 33 #include <sys/pathname.h> 34 #include <sys/acl.h> 35 #include <sys/vnode.h> 36 #include <sys/vfs.h> 37 #include <sys/mntent.h> 38 #include <sys/mount.h> 39 #include <sys/cmn_err.h> 40 #include "fs/fs_subr.h" 41 #include <sys/zfs_znode.h> 42 #include <sys/zfs_dir.h> 43 #include <sys/zil.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/dmu.h> 46 #include <sys/dsl_prop.h> 47 #include <sys/spa.h> 48 #include <sys/zap.h> 49 #include <sys/varargs.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/mkdev.h> 53 #include <sys/modctl.h> 54 #include <sys/zfs_ioctl.h> 55 #include <sys/zfs_ctldir.h> 56 #include <sys/bootconf.h> 57 #include <sys/sunddi.h> 58 #include <sys/dnlc.h> 59 60 int zfsfstype; 61 vfsops_t *zfs_vfsops = NULL; 62 static major_t zfs_major; 63 static minor_t zfs_minor; 64 static kmutex_t zfs_dev_mtx; 65 66 extern char zfs_bootpath[BO_MAXOBJNAME]; 67 68 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 69 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 70 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 71 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 72 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 73 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 74 static void zfs_freevfs(vfs_t *vfsp); 75 static void zfs_objset_close(zfsvfs_t *zfsvfs); 76 77 static const fs_operation_def_t zfs_vfsops_template[] = { 78 VFSNAME_MOUNT, zfs_mount, 79 VFSNAME_MOUNTROOT, zfs_mountroot, 80 VFSNAME_UNMOUNT, zfs_umount, 81 VFSNAME_ROOT, zfs_root, 82 VFSNAME_STATVFS, zfs_statvfs, 83 VFSNAME_SYNC, (fs_generic_func_p) zfs_sync, 84 VFSNAME_VGET, zfs_vget, 85 VFSNAME_FREEVFS, (fs_generic_func_p) zfs_freevfs, 86 NULL, NULL 87 }; 88 89 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 90 VFSNAME_FREEVFS, (fs_generic_func_p) zfs_freevfs, 91 NULL, NULL 92 }; 93 94 /* 95 * We need to keep a count of active fs's. 96 * This is necessary to prevent our module 97 * from being unloaded after a umount -f 98 */ 99 static uint32_t zfs_active_fs_count = 0; 100 101 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 102 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 103 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 104 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 105 106 /* 107 * MNTOPT_DEFAULT was removed from MNTOPT_XATTR, since the 108 * default value is now determined by the xattr property. 109 */ 110 static mntopt_t mntopts[] = { 111 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 112 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 113 { MNTOPT_NOATIME, noatime_cancel, NULL, MO_DEFAULT, NULL }, 114 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 115 }; 116 117 static mntopts_t zfs_mntopts = { 118 sizeof (mntopts) / sizeof (mntopt_t), 119 mntopts 120 }; 121 122 /*ARGSUSED*/ 123 int 124 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 125 { 126 /* 127 * Data integrity is job one. We don't want a compromised kernel 128 * writing to the storage pool, so we never sync during panic. 129 */ 130 if (panicstr) 131 return (0); 132 133 /* 134 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 135 * to sync metadata, which they would otherwise cache indefinitely. 136 * Semantically, the only requirement is that the sync be initiated. 137 * The DMU syncs out txgs frequently, so there's nothing to do. 138 */ 139 if (flag & SYNC_ATTR) 140 return (0); 141 142 if (vfsp != NULL) { 143 /* 144 * Sync a specific filesystem. 145 */ 146 zfsvfs_t *zfsvfs = vfsp->vfs_data; 147 148 ZFS_ENTER(zfsvfs); 149 if (zfsvfs->z_log != NULL) 150 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 151 else 152 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 153 ZFS_EXIT(zfsvfs); 154 } else { 155 /* 156 * Sync all ZFS filesystems. This is what happens when you 157 * run sync(1M). Unlike other filesystems, ZFS honors the 158 * request by waiting for all pools to commit all dirty data. 159 */ 160 spa_sync_allpools(); 161 } 162 163 return (0); 164 } 165 166 static int 167 zfs_create_unique_device(dev_t *dev) 168 { 169 major_t new_major; 170 171 do { 172 ASSERT3U(zfs_minor, <=, MAXMIN32); 173 minor_t start = zfs_minor; 174 do { 175 mutex_enter(&zfs_dev_mtx); 176 if (zfs_minor >= MAXMIN32) { 177 /* 178 * If we're still using the real major 179 * keep out of /dev/zfs and /dev/zvol minor 180 * number space. If we're using a getudev()'ed 181 * major number, we can use all of its minors. 182 */ 183 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 184 zfs_minor = ZFS_MIN_MINOR; 185 else 186 zfs_minor = 0; 187 } else { 188 zfs_minor++; 189 } 190 *dev = makedevice(zfs_major, zfs_minor); 191 mutex_exit(&zfs_dev_mtx); 192 } while (vfs_devismounted(*dev) && zfs_minor != start); 193 if (zfs_minor == start) { 194 /* 195 * We are using all ~262,000 minor numbers for the 196 * current major number. Create a new major number. 197 */ 198 if ((new_major = getudev()) == (major_t)-1) { 199 cmn_err(CE_WARN, 200 "zfs_mount: Can't get unique major " 201 "device number."); 202 return (-1); 203 } 204 mutex_enter(&zfs_dev_mtx); 205 zfs_major = new_major; 206 zfs_minor = 0; 207 208 mutex_exit(&zfs_dev_mtx); 209 } else { 210 break; 211 } 212 /* CONSTANTCONDITION */ 213 } while (1); 214 215 return (0); 216 } 217 218 static void 219 atime_changed_cb(void *arg, uint64_t newval) 220 { 221 zfsvfs_t *zfsvfs = arg; 222 223 if (newval == TRUE) { 224 zfsvfs->z_atime = TRUE; 225 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 226 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 227 } else { 228 zfsvfs->z_atime = FALSE; 229 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 230 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 231 } 232 } 233 234 static void 235 xattr_changed_cb(void *arg, uint64_t newval) 236 { 237 zfsvfs_t *zfsvfs = arg; 238 239 if (newval == TRUE) { 240 /* XXX locking on vfs_flag? */ 241 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 242 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 243 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 244 } else { 245 /* XXX locking on vfs_flag? */ 246 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 247 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 248 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 249 } 250 } 251 252 static void 253 blksz_changed_cb(void *arg, uint64_t newval) 254 { 255 zfsvfs_t *zfsvfs = arg; 256 257 if (newval < SPA_MINBLOCKSIZE || 258 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 259 newval = SPA_MAXBLOCKSIZE; 260 261 zfsvfs->z_max_blksz = newval; 262 zfsvfs->z_vfs->vfs_bsize = newval; 263 } 264 265 static void 266 readonly_changed_cb(void *arg, uint64_t newval) 267 { 268 zfsvfs_t *zfsvfs = arg; 269 270 if (newval) { 271 /* XXX locking on vfs_flag? */ 272 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 273 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 274 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 275 } else { 276 /* XXX locking on vfs_flag? */ 277 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 278 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 279 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 280 } 281 } 282 283 static void 284 devices_changed_cb(void *arg, uint64_t newval) 285 { 286 zfsvfs_t *zfsvfs = arg; 287 288 if (newval == FALSE) { 289 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 290 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 291 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 292 } else { 293 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 294 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 295 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 296 } 297 } 298 299 static void 300 setuid_changed_cb(void *arg, uint64_t newval) 301 { 302 zfsvfs_t *zfsvfs = arg; 303 304 if (newval == FALSE) { 305 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 306 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 307 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 308 } else { 309 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 310 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 311 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 312 } 313 } 314 315 static void 316 exec_changed_cb(void *arg, uint64_t newval) 317 { 318 zfsvfs_t *zfsvfs = arg; 319 320 if (newval == FALSE) { 321 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 322 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 323 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 324 } else { 325 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 326 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 327 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 328 } 329 } 330 331 static void 332 snapdir_changed_cb(void *arg, uint64_t newval) 333 { 334 zfsvfs_t *zfsvfs = arg; 335 336 zfsvfs->z_show_ctldir = newval; 337 } 338 339 static void 340 acl_mode_changed_cb(void *arg, uint64_t newval) 341 { 342 zfsvfs_t *zfsvfs = arg; 343 344 zfsvfs->z_acl_mode = newval; 345 } 346 347 static void 348 acl_inherit_changed_cb(void *arg, uint64_t newval) 349 { 350 zfsvfs_t *zfsvfs = arg; 351 352 zfsvfs->z_acl_inherit = newval; 353 } 354 355 static int 356 zfs_refresh_properties(vfs_t *vfsp) 357 { 358 zfsvfs_t *zfsvfs = vfsp->vfs_data; 359 360 /* 361 * Remount operations default to "rw" unless "ro" is explicitly 362 * specified. 363 */ 364 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 365 readonly_changed_cb(zfsvfs, B_TRUE); 366 } else { 367 if (!dmu_objset_is_snapshot(zfsvfs->z_os)) 368 readonly_changed_cb(zfsvfs, B_FALSE); 369 else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) 370 return (EROFS); 371 } 372 373 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 374 devices_changed_cb(zfsvfs, B_FALSE); 375 setuid_changed_cb(zfsvfs, B_FALSE); 376 } else { 377 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 378 devices_changed_cb(zfsvfs, B_FALSE); 379 else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) 380 devices_changed_cb(zfsvfs, B_TRUE); 381 382 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 383 setuid_changed_cb(zfsvfs, B_FALSE); 384 else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) 385 setuid_changed_cb(zfsvfs, B_TRUE); 386 } 387 388 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 389 exec_changed_cb(zfsvfs, B_FALSE); 390 else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) 391 exec_changed_cb(zfsvfs, B_TRUE); 392 393 if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) 394 atime_changed_cb(zfsvfs, B_TRUE); 395 else if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) 396 atime_changed_cb(zfsvfs, B_FALSE); 397 398 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 399 xattr_changed_cb(zfsvfs, B_TRUE); 400 else if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) 401 xattr_changed_cb(zfsvfs, B_FALSE); 402 403 return (0); 404 } 405 406 static int 407 zfs_register_callbacks(vfs_t *vfsp) 408 { 409 struct dsl_dataset *ds = NULL; 410 objset_t *os = NULL; 411 zfsvfs_t *zfsvfs = NULL; 412 int readonly, do_readonly = FALSE; 413 int setuid, do_setuid = FALSE; 414 int exec, do_exec = FALSE; 415 int devices, do_devices = FALSE; 416 int xattr, do_xattr = FALSE; 417 int error = 0; 418 419 ASSERT(vfsp); 420 zfsvfs = vfsp->vfs_data; 421 ASSERT(zfsvfs); 422 os = zfsvfs->z_os; 423 424 /* 425 * The act of registering our callbacks will destroy any mount 426 * options we may have. In order to enable temporary overrides 427 * of mount options, we stash away the current values and 428 * restore them after we register the callbacks. 429 */ 430 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 431 readonly = B_TRUE; 432 do_readonly = B_TRUE; 433 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 434 readonly = B_FALSE; 435 do_readonly = B_TRUE; 436 } 437 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 438 devices = B_FALSE; 439 setuid = B_FALSE; 440 do_devices = B_TRUE; 441 do_setuid = B_TRUE; 442 } else { 443 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 444 devices = B_FALSE; 445 do_devices = B_TRUE; 446 } else if (vfs_optionisset(vfsp, 447 MNTOPT_DEVICES, NULL)) { 448 devices = B_TRUE; 449 do_devices = B_TRUE; 450 } 451 452 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 453 setuid = B_FALSE; 454 do_setuid = B_TRUE; 455 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 456 setuid = B_TRUE; 457 do_setuid = B_TRUE; 458 } 459 } 460 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 461 exec = B_FALSE; 462 do_exec = B_TRUE; 463 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 464 exec = B_TRUE; 465 do_exec = B_TRUE; 466 } 467 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 468 xattr = B_FALSE; 469 do_xattr = B_TRUE; 470 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 471 xattr = B_TRUE; 472 do_xattr = B_TRUE; 473 } 474 475 /* 476 * Register property callbacks. 477 * 478 * It would probably be fine to just check for i/o error from 479 * the first prop_register(), but I guess I like to go 480 * overboard... 481 */ 482 ds = dmu_objset_ds(os); 483 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 484 error = error ? error : dsl_prop_register(ds, 485 "xattr", xattr_changed_cb, zfsvfs); 486 error = error ? error : dsl_prop_register(ds, 487 "recordsize", blksz_changed_cb, zfsvfs); 488 error = error ? error : dsl_prop_register(ds, 489 "readonly", readonly_changed_cb, zfsvfs); 490 error = error ? error : dsl_prop_register(ds, 491 "devices", devices_changed_cb, zfsvfs); 492 error = error ? error : dsl_prop_register(ds, 493 "setuid", setuid_changed_cb, zfsvfs); 494 error = error ? error : dsl_prop_register(ds, 495 "exec", exec_changed_cb, zfsvfs); 496 error = error ? error : dsl_prop_register(ds, 497 "snapdir", snapdir_changed_cb, zfsvfs); 498 error = error ? error : dsl_prop_register(ds, 499 "aclmode", acl_mode_changed_cb, zfsvfs); 500 error = error ? error : dsl_prop_register(ds, 501 "aclinherit", acl_inherit_changed_cb, zfsvfs); 502 if (error) 503 goto unregister; 504 505 /* 506 * Invoke our callbacks to restore temporary mount options. 507 */ 508 if (do_readonly) 509 readonly_changed_cb(zfsvfs, readonly); 510 if (do_setuid) 511 setuid_changed_cb(zfsvfs, setuid); 512 if (do_exec) 513 exec_changed_cb(zfsvfs, exec); 514 if (do_devices) 515 devices_changed_cb(zfsvfs, devices); 516 if (do_xattr) 517 xattr_changed_cb(zfsvfs, xattr); 518 519 return (0); 520 521 unregister: 522 /* 523 * We may attempt to unregister some callbacks that are not 524 * registered, but this is OK; it will simply return ENOMSG, 525 * which we will ignore. 526 */ 527 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 528 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 529 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 530 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 531 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 532 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 533 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 534 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 535 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 536 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 537 zfsvfs); 538 return (error); 539 540 } 541 542 static int 543 zfs_domount(vfs_t *vfsp, char *osname, cred_t *cr) 544 { 545 dev_t mount_dev; 546 uint64_t recordsize, readonly; 547 int error = 0; 548 int mode; 549 zfsvfs_t *zfsvfs; 550 znode_t *zp = NULL; 551 552 ASSERT(vfsp); 553 ASSERT(osname); 554 555 /* 556 * Initialize the zfs-specific filesystem structure. 557 * Should probably make this a kmem cache, shuffle fields, 558 * and just bzero up to z_hold_mtx[]. 559 */ 560 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 561 zfsvfs->z_vfs = vfsp; 562 zfsvfs->z_parent = zfsvfs; 563 zfsvfs->z_assign = TXG_NOWAIT; 564 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 565 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 566 567 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 568 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 569 offsetof(znode_t, z_link_node)); 570 rw_init(&zfsvfs->z_um_lock, NULL, RW_DEFAULT, NULL); 571 572 /* Initialize the generic filesystem structure. */ 573 vfsp->vfs_bcount = 0; 574 vfsp->vfs_data = NULL; 575 576 if (zfs_create_unique_device(&mount_dev) == -1) { 577 error = ENODEV; 578 goto out; 579 } 580 ASSERT(vfs_devismounted(mount_dev) == 0); 581 582 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 583 NULL)) 584 goto out; 585 586 vfsp->vfs_dev = mount_dev; 587 vfsp->vfs_fstype = zfsfstype; 588 vfsp->vfs_bsize = recordsize; 589 vfsp->vfs_flag |= VFS_NOTRUNC; 590 vfsp->vfs_data = zfsvfs; 591 592 if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) 593 goto out; 594 595 if (readonly) 596 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 597 else 598 mode = DS_MODE_PRIMARY; 599 600 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 601 if (error == EROFS) { 602 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 603 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 604 &zfsvfs->z_os); 605 } 606 607 if (error) 608 goto out; 609 610 if (error = zfs_init_fs(zfsvfs, &zp, cr)) 611 goto out; 612 613 /* The call to zfs_init_fs leaves the vnode held, release it here. */ 614 VN_RELE(ZTOV(zp)); 615 616 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 617 uint64_t xattr; 618 619 ASSERT(mode & DS_MODE_READONLY); 620 atime_changed_cb(zfsvfs, B_FALSE); 621 readonly_changed_cb(zfsvfs, B_TRUE); 622 if (error = dsl_prop_get_integer(osname, "xattr", &xattr, NULL)) 623 goto out; 624 xattr_changed_cb(zfsvfs, xattr); 625 zfsvfs->z_issnap = B_TRUE; 626 } else { 627 error = zfs_register_callbacks(vfsp); 628 if (error) 629 goto out; 630 631 zfs_unlinked_drain(zfsvfs); 632 633 /* 634 * Parse and replay the intent log. 635 */ 636 zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign, 637 zfs_replay_vector); 638 639 if (!zil_disable) 640 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 641 } 642 643 if (!zfsvfs->z_issnap) 644 zfsctl_create(zfsvfs); 645 out: 646 if (error) { 647 if (zfsvfs->z_os) 648 dmu_objset_close(zfsvfs->z_os); 649 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 650 } else { 651 atomic_add_32(&zfs_active_fs_count, 1); 652 } 653 654 return (error); 655 656 } 657 658 void 659 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 660 { 661 objset_t *os = zfsvfs->z_os; 662 struct dsl_dataset *ds; 663 664 /* 665 * Unregister properties. 666 */ 667 if (!dmu_objset_is_snapshot(os)) { 668 ds = dmu_objset_ds(os); 669 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 670 zfsvfs) == 0); 671 672 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 673 zfsvfs) == 0); 674 675 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 676 zfsvfs) == 0); 677 678 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 679 zfsvfs) == 0); 680 681 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 682 zfsvfs) == 0); 683 684 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 685 zfsvfs) == 0); 686 687 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 688 zfsvfs) == 0); 689 690 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 691 zfsvfs) == 0); 692 693 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 694 zfsvfs) == 0); 695 696 VERIFY(dsl_prop_unregister(ds, "aclinherit", 697 acl_inherit_changed_cb, zfsvfs) == 0); 698 } 699 } 700 701 static int 702 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 703 { 704 int error = 0; 705 int ret = 0; 706 static int zfsrootdone = 0; 707 zfsvfs_t *zfsvfs = NULL; 708 znode_t *zp = NULL; 709 vnode_t *vp = NULL; 710 711 ASSERT(vfsp); 712 713 /* 714 * The filesystem that we mount as root is defined in 715 * /etc/system using the zfsroot variable. The value defined 716 * there is copied early in startup code to zfs_bootpath 717 * (defined in modsysfile.c). 718 */ 719 if (why == ROOT_INIT) { 720 if (zfsrootdone++) 721 return (EBUSY); 722 723 /* 724 * This needs to be done here, so that when we return from 725 * mountroot, the vfs resource name will be set correctly. 726 */ 727 if (snprintf(rootfs.bo_name, BO_MAXOBJNAME, "%s", zfs_bootpath) 728 >= BO_MAXOBJNAME) 729 return (ENAMETOOLONG); 730 731 if (error = vfs_lock(vfsp)) 732 return (error); 733 734 if (error = zfs_domount(vfsp, zfs_bootpath, CRED())) 735 goto out; 736 737 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 738 ASSERT(zfsvfs); 739 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) 740 goto out; 741 742 vp = ZTOV(zp); 743 mutex_enter(&vp->v_lock); 744 vp->v_flag |= VROOT; 745 mutex_exit(&vp->v_lock); 746 rootvp = vp; 747 748 /* 749 * The zfs_zget call above returns with a hold on vp, we release 750 * it here. 751 */ 752 VN_RELE(vp); 753 754 /* 755 * Mount root as readonly initially, it will be remouted 756 * read/write by /lib/svc/method/fs-usr. 757 */ 758 readonly_changed_cb(vfsp->vfs_data, B_TRUE); 759 vfs_add((struct vnode *)0, vfsp, 760 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 761 out: 762 vfs_unlock(vfsp); 763 ret = (error) ? error : 0; 764 return (ret); 765 766 } else if (why == ROOT_REMOUNT) { 767 768 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 769 vfsp->vfs_flag |= VFS_REMOUNT; 770 return (zfs_refresh_properties(vfsp)); 771 772 } else if (why == ROOT_UNMOUNT) { 773 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 774 (void) zfs_sync(vfsp, 0, 0); 775 return (0); 776 } 777 778 /* 779 * if "why" is equal to anything else other than ROOT_INIT, 780 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 781 */ 782 return (ENOTSUP); 783 } 784 785 /*ARGSUSED*/ 786 static int 787 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 788 { 789 char *osname; 790 pathname_t spn; 791 int error = 0; 792 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 793 UIO_SYSSPACE : UIO_USERSPACE; 794 int canwrite; 795 796 if (mvp->v_type != VDIR) 797 return (ENOTDIR); 798 799 mutex_enter(&mvp->v_lock); 800 if ((uap->flags & MS_REMOUNT) == 0 && 801 (uap->flags & MS_OVERLAY) == 0 && 802 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 803 mutex_exit(&mvp->v_lock); 804 return (EBUSY); 805 } 806 mutex_exit(&mvp->v_lock); 807 808 /* 809 * ZFS does not support passing unparsed data in via MS_DATA. 810 * Users should use the MS_OPTIONSTR interface; this means 811 * that all option parsing is already done and the options struct 812 * can be interrogated. 813 */ 814 if ((uap->flags & MS_DATA) && uap->datalen > 0) 815 return (EINVAL); 816 817 /* 818 * When doing a remount, we simply refresh our temporary properties 819 * according to those options set in the current VFS options. 820 */ 821 if (uap->flags & MS_REMOUNT) { 822 return (zfs_refresh_properties(vfsp)); 823 } 824 825 /* 826 * Get the objset name (the "special" mount argument). 827 */ 828 if (error = pn_get(uap->spec, fromspace, &spn)) 829 return (error); 830 831 osname = spn.pn_path; 832 833 if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0) 834 goto out; 835 836 /* 837 * Refuse to mount a filesystem if we are in a local zone and the 838 * dataset is not visible. 839 */ 840 if (!INGLOBALZONE(curproc) && 841 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 842 error = EPERM; 843 goto out; 844 } 845 846 error = zfs_domount(vfsp, osname, cr); 847 848 out: 849 pn_free(&spn); 850 return (error); 851 } 852 853 static int 854 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 855 { 856 zfsvfs_t *zfsvfs = vfsp->vfs_data; 857 dev32_t d32; 858 uint64_t refdbytes, availbytes, usedobjs, availobjs; 859 860 ZFS_ENTER(zfsvfs); 861 862 dmu_objset_space(zfsvfs->z_os, 863 &refdbytes, &availbytes, &usedobjs, &availobjs); 864 865 /* 866 * The underlying storage pool actually uses multiple block sizes. 867 * We report the fragsize as the smallest block size we support, 868 * and we report our blocksize as the filesystem's maximum blocksize. 869 */ 870 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 871 statp->f_bsize = zfsvfs->z_max_blksz; 872 873 /* 874 * The following report "total" blocks of various kinds in the 875 * file system, but reported in terms of f_frsize - the 876 * "fragment" size. 877 */ 878 879 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 880 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 881 statp->f_bavail = statp->f_bfree; /* no root reservation */ 882 883 /* 884 * statvfs() should really be called statufs(), because it assumes 885 * static metadata. ZFS doesn't preallocate files, so the best 886 * we can do is report the max that could possibly fit in f_files, 887 * and that minus the number actually used in f_ffree. 888 * For f_ffree, report the smaller of the number of object available 889 * and the number of blocks (each object will take at least a block). 890 */ 891 statp->f_ffree = MIN(availobjs, statp->f_bfree); 892 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 893 statp->f_files = statp->f_ffree + usedobjs; 894 895 (void) cmpldev(&d32, vfsp->vfs_dev); 896 statp->f_fsid = d32; 897 898 /* 899 * We're a zfs filesystem. 900 */ 901 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 902 903 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 904 905 statp->f_namemax = ZFS_MAXNAMELEN; 906 907 /* 908 * We have all of 32 characters to stuff a string here. 909 * Is there anything useful we could/should provide? 910 */ 911 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 912 913 ZFS_EXIT(zfsvfs); 914 return (0); 915 } 916 917 static int 918 zfs_root(vfs_t *vfsp, vnode_t **vpp) 919 { 920 zfsvfs_t *zfsvfs = vfsp->vfs_data; 921 znode_t *rootzp; 922 int error; 923 924 ZFS_ENTER(zfsvfs); 925 926 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 927 if (error == 0) 928 *vpp = ZTOV(rootzp); 929 930 ZFS_EXIT(zfsvfs); 931 return (error); 932 } 933 934 /*ARGSUSED*/ 935 static int 936 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 937 { 938 zfsvfs_t *zfsvfs = vfsp->vfs_data; 939 int ret; 940 941 if ((ret = secpolicy_fs_unmount(cr, vfsp)) != 0) 942 return (ret); 943 944 945 (void) dnlc_purge_vfsp(vfsp, 0); 946 947 /* 948 * Unmount any snapshots mounted under .zfs before unmounting the 949 * dataset itself. 950 */ 951 if (zfsvfs->z_ctldir != NULL && 952 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) 953 return (ret); 954 955 if (fflag & MS_FORCE) { 956 vfsp->vfs_flag |= VFS_UNMOUNTED; 957 zfsvfs->z_unmounted1 = B_TRUE; 958 959 /* 960 * Wait for all zfs threads to leave zfs. 961 * Grabbing a rwlock as reader in all vops and 962 * as writer here doesn't work because it too easy to get 963 * multiple reader enters as zfs can re-enter itself. 964 * This can lead to deadlock if there is an intervening 965 * rw_enter as writer. 966 * So a file system threads ref count (z_op_cnt) is used. 967 * A polling loop on z_op_cnt may seem inefficient, but 968 * - this saves all threads on exit from having to grab a 969 * mutex in order to cv_signal 970 * - only occurs on forced unmount in the rare case when 971 * there are outstanding threads within the file system. 972 */ 973 while (zfsvfs->z_op_cnt) { 974 delay(1); 975 } 976 977 zfs_objset_close(zfsvfs); 978 979 return (0); 980 } 981 /* 982 * Check the number of active vnodes in the file system. 983 * Our count is maintained in the vfs structure, but the number 984 * is off by 1 to indicate a hold on the vfs structure itself. 985 * 986 * The '.zfs' directory maintains a reference of its own, and any active 987 * references underneath are reflected in the vnode count. 988 */ 989 if (zfsvfs->z_ctldir == NULL) { 990 if (vfsp->vfs_count > 1) 991 return (EBUSY); 992 } else { 993 if (vfsp->vfs_count > 2 || 994 (zfsvfs->z_ctldir->v_count > 1 && !(fflag & MS_FORCE))) { 995 return (EBUSY); 996 } 997 } 998 999 vfsp->vfs_flag |= VFS_UNMOUNTED; 1000 zfs_objset_close(zfsvfs); 1001 1002 return (0); 1003 } 1004 1005 static int 1006 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1007 { 1008 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1009 znode_t *zp; 1010 uint64_t object = 0; 1011 uint64_t fid_gen = 0; 1012 uint64_t gen_mask; 1013 uint64_t zp_gen; 1014 int i, err; 1015 1016 *vpp = NULL; 1017 1018 ZFS_ENTER(zfsvfs); 1019 1020 if (fidp->fid_len == LONG_FID_LEN) { 1021 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1022 uint64_t objsetid = 0; 1023 uint64_t setgen = 0; 1024 1025 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1026 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1027 1028 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1029 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1030 1031 ZFS_EXIT(zfsvfs); 1032 1033 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1034 if (err) 1035 return (EINVAL); 1036 ZFS_ENTER(zfsvfs); 1037 } 1038 1039 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1040 zfid_short_t *zfid = (zfid_short_t *)fidp; 1041 1042 for (i = 0; i < sizeof (zfid->zf_object); i++) 1043 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1044 1045 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1046 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1047 } else { 1048 ZFS_EXIT(zfsvfs); 1049 return (EINVAL); 1050 } 1051 1052 /* A zero fid_gen means we are in the .zfs control directories */ 1053 if (fid_gen == 0 && 1054 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1055 *vpp = zfsvfs->z_ctldir; 1056 ASSERT(*vpp != NULL); 1057 if (object == ZFSCTL_INO_SNAPDIR) { 1058 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1059 0, NULL, NULL) == 0); 1060 } else { 1061 VN_HOLD(*vpp); 1062 } 1063 ZFS_EXIT(zfsvfs); 1064 return (0); 1065 } 1066 1067 gen_mask = -1ULL >> (64 - 8 * i); 1068 1069 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1070 if (err = zfs_zget(zfsvfs, object, &zp)) { 1071 ZFS_EXIT(zfsvfs); 1072 return (err); 1073 } 1074 zp_gen = zp->z_phys->zp_gen & gen_mask; 1075 if (zp_gen == 0) 1076 zp_gen = 1; 1077 if (zp->z_unlinked || zp_gen != fid_gen) { 1078 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1079 VN_RELE(ZTOV(zp)); 1080 ZFS_EXIT(zfsvfs); 1081 return (EINVAL); 1082 } 1083 1084 *vpp = ZTOV(zp); 1085 ZFS_EXIT(zfsvfs); 1086 return (0); 1087 } 1088 1089 static void 1090 zfs_objset_close(zfsvfs_t *zfsvfs) 1091 { 1092 znode_t *zp, *nextzp; 1093 objset_t *os = zfsvfs->z_os; 1094 1095 /* 1096 * For forced unmount, at this point all vops except zfs_inactive 1097 * are erroring EIO. We need to now suspend zfs_inactive threads 1098 * while we are freeing dbufs before switching zfs_inactive 1099 * to use behaviour without a objset. 1100 */ 1101 rw_enter(&zfsvfs->z_um_lock, RW_WRITER); 1102 1103 /* 1104 * Release all holds on dbufs 1105 * Note, although we have stopped all other vop threads and 1106 * zfs_inactive(), the dmu can callback via znode_pageout_func() 1107 * which can zfs_znode_free() the znode. 1108 * So we lock z_all_znodes; search the list for a held 1109 * dbuf; drop the lock (we know zp can't disappear if we hold 1110 * a dbuf lock; then regrab the lock and restart. 1111 */ 1112 mutex_enter(&zfsvfs->z_znodes_lock); 1113 for (zp = list_head(&zfsvfs->z_all_znodes); zp; zp = nextzp) { 1114 nextzp = list_next(&zfsvfs->z_all_znodes, zp); 1115 if (zp->z_dbuf_held) { 1116 /* dbufs should only be held when force unmounting */ 1117 zp->z_dbuf_held = 0; 1118 mutex_exit(&zfsvfs->z_znodes_lock); 1119 dmu_buf_rele(zp->z_dbuf, NULL); 1120 /* Start again */ 1121 mutex_enter(&zfsvfs->z_znodes_lock); 1122 nextzp = list_head(&zfsvfs->z_all_znodes); 1123 } 1124 } 1125 mutex_exit(&zfsvfs->z_znodes_lock); 1126 1127 /* 1128 * Unregister properties. 1129 */ 1130 if (!dmu_objset_is_snapshot(os)) 1131 zfs_unregister_callbacks(zfsvfs); 1132 1133 /* 1134 * Switch zfs_inactive to behaviour without an objset. 1135 * It just tosses cached pages and frees the znode & vnode. 1136 * Then re-enable zfs_inactive threads in that new behaviour. 1137 */ 1138 zfsvfs->z_unmounted2 = B_TRUE; 1139 rw_exit(&zfsvfs->z_um_lock); /* re-enable any zfs_inactive threads */ 1140 1141 /* 1142 * Close the zil. Can't close the zil while zfs_inactive 1143 * threads are blocked as zil_close can call zfs_inactive. 1144 */ 1145 if (zfsvfs->z_log) { 1146 zil_close(zfsvfs->z_log); 1147 zfsvfs->z_log = NULL; 1148 } 1149 1150 /* 1151 * Evict all dbufs so that cached znodes will be freed 1152 */ 1153 if (dmu_objset_evict_dbufs(os, 1)) { 1154 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1155 (void) dmu_objset_evict_dbufs(os, 0); 1156 } 1157 1158 /* 1159 * Finally close the objset 1160 */ 1161 dmu_objset_close(os); 1162 1163 /* 1164 * We can now safely destroy the '.zfs' directory node. 1165 */ 1166 if (zfsvfs->z_ctldir != NULL) 1167 zfsctl_destroy(zfsvfs); 1168 1169 } 1170 1171 static void 1172 zfs_freevfs(vfs_t *vfsp) 1173 { 1174 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1175 1176 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1177 1178 atomic_add_32(&zfs_active_fs_count, -1); 1179 } 1180 1181 /* 1182 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1183 * so we can't safely do any non-idempotent initialization here. 1184 * Leave that to zfs_init() and zfs_fini(), which are called 1185 * from the module's _init() and _fini() entry points. 1186 */ 1187 /*ARGSUSED*/ 1188 static int 1189 zfs_vfsinit(int fstype, char *name) 1190 { 1191 int error; 1192 1193 zfsfstype = fstype; 1194 1195 /* 1196 * Setup vfsops and vnodeops tables. 1197 */ 1198 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1199 if (error != 0) { 1200 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1201 } 1202 1203 error = zfs_create_op_tables(); 1204 if (error) { 1205 zfs_remove_op_tables(); 1206 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1207 (void) vfs_freevfsops_by_type(zfsfstype); 1208 return (error); 1209 } 1210 1211 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1212 1213 /* 1214 * Unique major number for all zfs mounts. 1215 * If we run out of 32-bit minors, we'll getudev() another major. 1216 */ 1217 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1218 zfs_minor = ZFS_MIN_MINOR; 1219 1220 return (0); 1221 } 1222 1223 void 1224 zfs_init(void) 1225 { 1226 /* 1227 * Initialize .zfs directory structures 1228 */ 1229 zfsctl_init(); 1230 1231 /* 1232 * Initialize znode cache, vnode ops, etc... 1233 */ 1234 zfs_znode_init(); 1235 } 1236 1237 void 1238 zfs_fini(void) 1239 { 1240 zfsctl_fini(); 1241 zfs_znode_fini(); 1242 } 1243 1244 int 1245 zfs_busy(void) 1246 { 1247 return (zfs_active_fs_count != 0); 1248 } 1249 1250 static vfsdef_t vfw = { 1251 VFSDEF_VERSION, 1252 MNTTYPE_ZFS, 1253 zfs_vfsinit, 1254 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS, 1255 &zfs_mntopts 1256 }; 1257 1258 struct modlfs zfs_modlfs = { 1259 &mod_fsops, "ZFS filesystem version " ZFS_VERSION_STRING, &vfw 1260 }; 1261