1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/sysmacros.h> 32 #include <sys/kmem.h> 33 #include <sys/pathname.h> 34 #include <sys/acl.h> 35 #include <sys/vnode.h> 36 #include <sys/vfs.h> 37 #include <sys/mntent.h> 38 #include <sys/mount.h> 39 #include <sys/cmn_err.h> 40 #include "fs/fs_subr.h" 41 #include <sys/zfs_znode.h> 42 #include <sys/zil.h> 43 #include <sys/fs/zfs.h> 44 #include <sys/dmu.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/spa.h> 47 #include <sys/zap.h> 48 #include <sys/varargs.h> 49 #include <sys/policy.h> 50 #include <sys/atomic.h> 51 #include <sys/mkdev.h> 52 #include <sys/modctl.h> 53 #include <sys/zfs_ioctl.h> 54 #include <sys/zfs_ctldir.h> 55 #include <sys/bootconf.h> 56 #include <sys/sunddi.h> 57 #include <sys/dnlc.h> 58 59 int zfsfstype; 60 vfsops_t *zfs_vfsops = NULL; 61 static major_t zfs_major; 62 static minor_t zfs_minor; 63 static kmutex_t zfs_dev_mtx; 64 65 extern char zfs_bootpath[BO_MAXOBJNAME]; 66 67 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 68 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 69 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 70 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 71 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 72 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 73 static void zfs_freevfs(vfs_t *vfsp); 74 static void zfs_objset_close(zfsvfs_t *zfsvfs); 75 76 static const fs_operation_def_t zfs_vfsops_template[] = { 77 VFSNAME_MOUNT, zfs_mount, 78 VFSNAME_MOUNTROOT, zfs_mountroot, 79 VFSNAME_UNMOUNT, zfs_umount, 80 VFSNAME_ROOT, zfs_root, 81 VFSNAME_STATVFS, zfs_statvfs, 82 VFSNAME_SYNC, (fs_generic_func_p) zfs_sync, 83 VFSNAME_VGET, zfs_vget, 84 VFSNAME_FREEVFS, (fs_generic_func_p) zfs_freevfs, 85 NULL, NULL 86 }; 87 88 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 89 VFSNAME_FREEVFS, (fs_generic_func_p) zfs_freevfs, 90 NULL, NULL 91 }; 92 93 /* 94 * We need to keep a count of active fs's. 95 * This is necessary to prevent our module 96 * from being unloaded after a umount -f 97 */ 98 static uint32_t zfs_active_fs_count = 0; 99 100 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 101 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 102 103 static mntopt_t mntopts[] = { 104 { MNTOPT_XATTR, NULL, NULL, MO_NODISPLAY|MO_DEFAULT, NULL }, 105 { MNTOPT_NOATIME, noatime_cancel, NULL, MO_DEFAULT, NULL }, 106 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 107 }; 108 109 static mntopts_t zfs_mntopts = { 110 sizeof (mntopts) / sizeof (mntopt_t), 111 mntopts 112 }; 113 114 /*ARGSUSED*/ 115 int 116 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 117 { 118 /* 119 * Data integrity is job one. We don't want a compromised kernel 120 * writing to the storage pool, so we never sync during panic. 121 */ 122 if (panicstr) 123 return (0); 124 125 /* 126 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 127 * to sync metadata, which they would otherwise cache indefinitely. 128 * Semantically, the only requirement is that the sync be initiated. 129 * The DMU syncs out txgs frequently, so there's nothing to do. 130 */ 131 if (flag & SYNC_ATTR) 132 return (0); 133 134 if (vfsp != NULL) { 135 /* 136 * Sync a specific filesystem. 137 */ 138 zfsvfs_t *zfsvfs = vfsp->vfs_data; 139 140 ZFS_ENTER(zfsvfs); 141 if (zfsvfs->z_log != NULL) 142 zil_commit(zfsvfs->z_log, UINT64_MAX, FSYNC); 143 else 144 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 145 ZFS_EXIT(zfsvfs); 146 } else { 147 /* 148 * Sync all ZFS filesystems. This is what happens when you 149 * run sync(1M). Unlike other filesystems, ZFS honors the 150 * request by waiting for all pools to commit all dirty data. 151 */ 152 spa_sync_allpools(); 153 } 154 155 return (0); 156 } 157 158 static int 159 zfs_create_unique_device(dev_t *dev) 160 { 161 major_t new_major; 162 163 do { 164 ASSERT3U(zfs_minor, <=, MAXMIN32); 165 minor_t start = zfs_minor; 166 do { 167 mutex_enter(&zfs_dev_mtx); 168 if (zfs_minor >= MAXMIN32) { 169 /* 170 * If we're still using the real major 171 * keep out of /dev/zfs and /dev/zvol minor 172 * number space. If we're using a getudev()'ed 173 * major number, we can use all of its minors. 174 */ 175 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 176 zfs_minor = ZFS_MIN_MINOR; 177 else 178 zfs_minor = 0; 179 } else { 180 zfs_minor++; 181 } 182 *dev = makedevice(zfs_major, zfs_minor); 183 mutex_exit(&zfs_dev_mtx); 184 } while (vfs_devismounted(*dev) && zfs_minor != start); 185 if (zfs_minor == start) { 186 /* 187 * We are using all ~262,000 minor numbers for the 188 * current major number. Create a new major number. 189 */ 190 if ((new_major = getudev()) == (major_t)-1) { 191 cmn_err(CE_WARN, 192 "zfs_mount: Can't get unique major " 193 "device number."); 194 return (-1); 195 } 196 mutex_enter(&zfs_dev_mtx); 197 zfs_major = new_major; 198 zfs_minor = 0; 199 200 mutex_exit(&zfs_dev_mtx); 201 } else { 202 break; 203 } 204 /* CONSTANTCONDITION */ 205 } while (1); 206 207 return (0); 208 } 209 210 static void 211 atime_changed_cb(void *arg, uint64_t newval) 212 { 213 zfsvfs_t *zfsvfs = arg; 214 215 if (newval == TRUE) { 216 zfsvfs->z_atime = TRUE; 217 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 218 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 219 } else { 220 zfsvfs->z_atime = FALSE; 221 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 222 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 223 } 224 } 225 226 static void 227 blksz_changed_cb(void *arg, uint64_t newval) 228 { 229 zfsvfs_t *zfsvfs = arg; 230 231 if (newval < SPA_MINBLOCKSIZE || 232 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 233 newval = SPA_MAXBLOCKSIZE; 234 235 zfsvfs->z_max_blksz = newval; 236 zfsvfs->z_vfs->vfs_bsize = newval; 237 } 238 239 static void 240 readonly_changed_cb(void *arg, uint64_t newval) 241 { 242 zfsvfs_t *zfsvfs = arg; 243 244 if (newval) { 245 /* XXX locking on vfs_flag? */ 246 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 247 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 248 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 249 (void) zfs_delete_thread_target(zfsvfs, 0); 250 } else { 251 /* XXX locking on vfs_flag? */ 252 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 253 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 254 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 255 (void) zfs_delete_thread_target(zfsvfs, 1); 256 } 257 } 258 259 static void 260 devices_changed_cb(void *arg, uint64_t newval) 261 { 262 zfsvfs_t *zfsvfs = arg; 263 264 if (newval == FALSE) { 265 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 266 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 267 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 268 } else { 269 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 270 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 271 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 272 } 273 } 274 275 static void 276 setuid_changed_cb(void *arg, uint64_t newval) 277 { 278 zfsvfs_t *zfsvfs = arg; 279 280 if (newval == FALSE) { 281 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 282 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 283 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 284 } else { 285 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 286 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 287 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 288 } 289 } 290 291 static void 292 exec_changed_cb(void *arg, uint64_t newval) 293 { 294 zfsvfs_t *zfsvfs = arg; 295 296 if (newval == FALSE) { 297 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 298 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 299 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 300 } else { 301 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 302 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 303 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 304 } 305 } 306 307 static void 308 snapdir_changed_cb(void *arg, uint64_t newval) 309 { 310 zfsvfs_t *zfsvfs = arg; 311 312 zfsvfs->z_show_ctldir = newval; 313 } 314 315 static void 316 acl_mode_changed_cb(void *arg, uint64_t newval) 317 { 318 zfsvfs_t *zfsvfs = arg; 319 320 zfsvfs->z_acl_mode = newval; 321 } 322 323 static void 324 acl_inherit_changed_cb(void *arg, uint64_t newval) 325 { 326 zfsvfs_t *zfsvfs = arg; 327 328 zfsvfs->z_acl_inherit = newval; 329 } 330 331 static int 332 zfs_refresh_properties(vfs_t *vfsp) 333 { 334 zfsvfs_t *zfsvfs = vfsp->vfs_data; 335 336 /* 337 * Remount operations default to "rw" unless "ro" is explicitly 338 * specified. 339 */ 340 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 341 readonly_changed_cb(zfsvfs, B_TRUE); 342 } else { 343 if (!dmu_objset_is_snapshot(zfsvfs->z_os)) 344 readonly_changed_cb(zfsvfs, B_FALSE); 345 else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) 346 return (EROFS); 347 } 348 349 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 350 devices_changed_cb(zfsvfs, B_FALSE); 351 setuid_changed_cb(zfsvfs, B_FALSE); 352 } else { 353 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 354 devices_changed_cb(zfsvfs, B_FALSE); 355 else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) 356 devices_changed_cb(zfsvfs, B_TRUE); 357 358 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 359 setuid_changed_cb(zfsvfs, B_FALSE); 360 else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) 361 setuid_changed_cb(zfsvfs, B_TRUE); 362 } 363 364 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 365 exec_changed_cb(zfsvfs, B_FALSE); 366 else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) 367 exec_changed_cb(zfsvfs, B_TRUE); 368 369 if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) 370 atime_changed_cb(zfsvfs, B_TRUE); 371 else if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) 372 atime_changed_cb(zfsvfs, B_FALSE); 373 374 return (0); 375 } 376 377 static int 378 zfs_register_callbacks(vfs_t *vfsp) 379 { 380 struct dsl_dataset *ds = NULL; 381 objset_t *os = NULL; 382 zfsvfs_t *zfsvfs = NULL; 383 int do_readonly = FALSE, readonly; 384 int do_setuid = FALSE, setuid; 385 int do_exec = FALSE, exec; 386 int do_devices = FALSE, devices; 387 int error = 0; 388 389 ASSERT(vfsp); 390 zfsvfs = vfsp->vfs_data; 391 ASSERT(zfsvfs); 392 os = zfsvfs->z_os; 393 394 /* 395 * The act of registering our callbacks will destroy any mount 396 * options we may have. In order to enable temporary overrides 397 * of mount options, we stash away the current values and restore 398 * restore them after we register the callbacks. 399 */ 400 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 401 readonly = B_TRUE; 402 do_readonly = B_TRUE; 403 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 404 readonly = B_FALSE; 405 do_readonly = B_TRUE; 406 } 407 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 408 devices = B_FALSE; 409 setuid = B_FALSE; 410 do_devices = B_TRUE; 411 do_setuid = B_TRUE; 412 } else { 413 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 414 devices = B_FALSE; 415 do_devices = B_TRUE; 416 } else if (vfs_optionisset(vfsp, 417 MNTOPT_DEVICES, NULL)) { 418 devices = B_TRUE; 419 do_devices = B_TRUE; 420 } 421 422 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 423 setuid = B_FALSE; 424 do_setuid = B_TRUE; 425 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 426 setuid = B_TRUE; 427 do_setuid = B_TRUE; 428 } 429 } 430 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 431 exec = B_FALSE; 432 do_exec = B_TRUE; 433 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 434 exec = B_TRUE; 435 do_exec = B_TRUE; 436 } 437 438 /* 439 * Register property callbacks. 440 * 441 * It would probably be fine to just check for i/o error from 442 * the first prop_register(), but I guess I like to go 443 * overboard... 444 */ 445 ds = dmu_objset_ds(os); 446 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 447 error = error ? error : dsl_prop_register(ds, 448 "recordsize", blksz_changed_cb, zfsvfs); 449 error = error ? error : dsl_prop_register(ds, 450 "readonly", readonly_changed_cb, zfsvfs); 451 error = error ? error : dsl_prop_register(ds, 452 "devices", devices_changed_cb, zfsvfs); 453 error = error ? error : dsl_prop_register(ds, 454 "setuid", setuid_changed_cb, zfsvfs); 455 error = error ? error : dsl_prop_register(ds, 456 "exec", exec_changed_cb, zfsvfs); 457 error = error ? error : dsl_prop_register(ds, 458 "snapdir", snapdir_changed_cb, zfsvfs); 459 error = error ? error : dsl_prop_register(ds, 460 "aclmode", acl_mode_changed_cb, zfsvfs); 461 error = error ? error : dsl_prop_register(ds, 462 "aclinherit", acl_inherit_changed_cb, zfsvfs); 463 if (error) 464 goto unregister; 465 466 /* 467 * Invoke our callbacks to restore temporary mount options. 468 */ 469 if (do_readonly) 470 readonly_changed_cb(zfsvfs, readonly); 471 if (do_setuid) 472 setuid_changed_cb(zfsvfs, setuid); 473 if (do_exec) 474 exec_changed_cb(zfsvfs, exec); 475 if (do_devices) 476 devices_changed_cb(zfsvfs, devices); 477 478 return (0); 479 480 unregister: 481 /* 482 * We may attempt to unregister some callbacks that are not 483 * registered, but this is OK; it will simply return ENOMSG, 484 * which we will ignore. 485 */ 486 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 487 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 488 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 489 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 490 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 491 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 492 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 493 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 494 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 495 zfsvfs); 496 return (error); 497 498 } 499 500 static int 501 zfs_domount(vfs_t *vfsp, char *osname, cred_t *cr) 502 { 503 dev_t mount_dev; 504 uint64_t recordsize, readonly; 505 int error = 0; 506 int mode; 507 zfsvfs_t *zfsvfs; 508 znode_t *zp = NULL; 509 510 ASSERT(vfsp); 511 ASSERT(osname); 512 513 /* 514 * Initialize the zfs-specific filesystem structure. 515 * Should probably make this a kmem cache, shuffle fields, 516 * and just bzero up to z_hold_mtx[]. 517 */ 518 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 519 zfsvfs->z_vfs = vfsp; 520 zfsvfs->z_parent = zfsvfs; 521 zfsvfs->z_assign = TXG_NOWAIT; 522 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 523 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 524 525 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 526 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 527 offsetof(znode_t, z_link_node)); 528 rw_init(&zfsvfs->z_um_lock, NULL, RW_DEFAULT, NULL); 529 530 /* Initialize the generic filesystem structure. */ 531 vfsp->vfs_bcount = 0; 532 vfsp->vfs_data = NULL; 533 534 if (zfs_create_unique_device(&mount_dev) == -1) { 535 error = ENODEV; 536 goto out; 537 } 538 ASSERT(vfs_devismounted(mount_dev) == 0); 539 540 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 541 NULL)) 542 goto out; 543 544 vfsp->vfs_dev = mount_dev; 545 vfsp->vfs_fstype = zfsfstype; 546 vfsp->vfs_bsize = recordsize; 547 vfsp->vfs_flag |= VFS_NOTRUNC; 548 vfsp->vfs_data = zfsvfs; 549 550 if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) 551 goto out; 552 553 if (readonly) 554 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 555 else 556 mode = DS_MODE_PRIMARY; 557 558 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 559 if (error == EROFS) { 560 mode = DS_MODE_PRIMARY | DS_MODE_READONLY; 561 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 562 &zfsvfs->z_os); 563 } 564 565 if (error) 566 goto out; 567 568 if (error = zfs_init_fs(zfsvfs, &zp, cr)) 569 goto out; 570 571 /* The call to zfs_init_fs leaves the vnode held, release it here. */ 572 VN_RELE(ZTOV(zp)); 573 574 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 575 ASSERT(mode & DS_MODE_READONLY); 576 atime_changed_cb(zfsvfs, B_FALSE); 577 readonly_changed_cb(zfsvfs, B_TRUE); 578 zfsvfs->z_issnap = B_TRUE; 579 } else { 580 error = zfs_register_callbacks(vfsp); 581 if (error) 582 goto out; 583 584 /* 585 * Start a delete thread running. 586 */ 587 (void) zfs_delete_thread_target(zfsvfs, 1); 588 589 /* 590 * Parse and replay the intent log. 591 */ 592 zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign, 593 zfs_replay_vector, (void (*)(void *))zfs_delete_wait_empty); 594 595 if (!zil_disable) 596 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 597 } 598 599 if (!zfsvfs->z_issnap) 600 zfsctl_create(zfsvfs); 601 out: 602 if (error) { 603 if (zfsvfs->z_os) 604 dmu_objset_close(zfsvfs->z_os); 605 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 606 } else { 607 atomic_add_32(&zfs_active_fs_count, 1); 608 } 609 610 return (error); 611 612 } 613 614 void 615 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 616 { 617 objset_t *os = zfsvfs->z_os; 618 struct dsl_dataset *ds; 619 620 /* 621 * Unregister properties. 622 */ 623 if (!dmu_objset_is_snapshot(os)) { 624 ds = dmu_objset_ds(os); 625 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 626 zfsvfs) == 0); 627 628 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 629 zfsvfs) == 0); 630 631 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 632 zfsvfs) == 0); 633 634 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 635 zfsvfs) == 0); 636 637 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 638 zfsvfs) == 0); 639 640 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 641 zfsvfs) == 0); 642 643 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 644 zfsvfs) == 0); 645 646 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 647 zfsvfs) == 0); 648 649 VERIFY(dsl_prop_unregister(ds, "aclinherit", 650 acl_inherit_changed_cb, zfsvfs) == 0); 651 } 652 } 653 654 static int 655 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 656 { 657 int error = 0; 658 int ret = 0; 659 static int zfsrootdone = 0; 660 zfsvfs_t *zfsvfs = NULL; 661 znode_t *zp = NULL; 662 vnode_t *vp = NULL; 663 664 ASSERT(vfsp); 665 666 /* 667 * The filesystem that we mount as root is defined in 668 * /etc/system using the zfsroot variable. The value defined 669 * there is copied early in startup code to zfs_bootpath 670 * (defined in modsysfile.c). 671 */ 672 if (why == ROOT_INIT) { 673 if (zfsrootdone++) 674 return (EBUSY); 675 676 /* 677 * This needs to be done here, so that when we return from 678 * mountroot, the vfs resource name will be set correctly. 679 */ 680 if (snprintf(rootfs.bo_name, BO_MAXOBJNAME, "%s", zfs_bootpath) 681 >= BO_MAXOBJNAME) 682 return (ENAMETOOLONG); 683 684 if (error = vfs_lock(vfsp)) 685 return (error); 686 687 if (error = zfs_domount(vfsp, zfs_bootpath, CRED())) 688 goto out; 689 690 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 691 ASSERT(zfsvfs); 692 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) 693 goto out; 694 695 vp = ZTOV(zp); 696 mutex_enter(&vp->v_lock); 697 vp->v_flag |= VROOT; 698 mutex_exit(&vp->v_lock); 699 rootvp = vp; 700 701 /* 702 * The zfs_zget call above returns with a hold on vp, we release 703 * it here. 704 */ 705 VN_RELE(vp); 706 707 /* 708 * Mount root as readonly initially, it will be remouted 709 * read/write by /lib/svc/method/fs-usr. 710 */ 711 readonly_changed_cb(vfsp->vfs_data, B_TRUE); 712 vfs_add((struct vnode *)0, vfsp, 713 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 714 out: 715 vfs_unlock(vfsp); 716 ret = (error) ? error : 0; 717 return (ret); 718 719 } else if (why == ROOT_REMOUNT) { 720 721 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 722 vfsp->vfs_flag |= VFS_REMOUNT; 723 return (zfs_refresh_properties(vfsp)); 724 725 } else if (why == ROOT_UNMOUNT) { 726 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 727 (void) zfs_sync(vfsp, 0, 0); 728 return (0); 729 } 730 731 /* 732 * if "why" is equal to anything else other than ROOT_INIT, 733 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 734 */ 735 return (ENOTSUP); 736 } 737 738 /*ARGSUSED*/ 739 static int 740 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 741 { 742 char *osname; 743 pathname_t spn; 744 int error = 0; 745 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 746 UIO_SYSSPACE : UIO_USERSPACE; 747 int canwrite; 748 749 if (mvp->v_type != VDIR) 750 return (ENOTDIR); 751 752 mutex_enter(&mvp->v_lock); 753 if ((uap->flags & MS_REMOUNT) == 0 && 754 (uap->flags & MS_OVERLAY) == 0 && 755 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 756 mutex_exit(&mvp->v_lock); 757 return (EBUSY); 758 } 759 mutex_exit(&mvp->v_lock); 760 761 /* 762 * ZFS does not support passing unparsed data in via MS_DATA. 763 * Users should use the MS_OPTIONSTR interface; this means 764 * that all option parsing is already done and the options struct 765 * can be interrogated. 766 */ 767 if ((uap->flags & MS_DATA) && uap->datalen > 0) 768 return (EINVAL); 769 770 /* 771 * When doing a remount, we simply refresh our temporary properties 772 * according to those options set in the current VFS options. 773 */ 774 if (uap->flags & MS_REMOUNT) { 775 return (zfs_refresh_properties(vfsp)); 776 } 777 778 /* 779 * Get the objset name (the "special" mount argument). 780 */ 781 if (error = pn_get(uap->spec, fromspace, &spn)) 782 return (error); 783 784 osname = spn.pn_path; 785 786 if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0) 787 goto out; 788 789 /* 790 * Refuse to mount a filesystem if we are in a local zone and the 791 * dataset is not visible. 792 */ 793 if (!INGLOBALZONE(curproc) && 794 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 795 error = EPERM; 796 goto out; 797 } 798 799 error = zfs_domount(vfsp, osname, cr); 800 801 out: 802 pn_free(&spn); 803 return (error); 804 } 805 806 static int 807 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 808 { 809 zfsvfs_t *zfsvfs = vfsp->vfs_data; 810 dmu_objset_stats_t dstats; 811 dev32_t d32; 812 813 ZFS_ENTER(zfsvfs); 814 815 dmu_objset_stats(zfsvfs->z_os, &dstats); 816 817 /* 818 * The underlying storage pool actually uses multiple block sizes. 819 * We report the fragsize as the smallest block size we support, 820 * and we report our blocksize as the filesystem's maximum blocksize. 821 */ 822 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 823 statp->f_bsize = zfsvfs->z_max_blksz; 824 825 /* 826 * The following report "total" blocks of various kinds in the 827 * file system, but reported in terms of f_frsize - the 828 * "fragment" size. 829 */ 830 831 statp->f_blocks = 832 (dstats.dds_space_refd + dstats.dds_available) >> SPA_MINBLOCKSHIFT; 833 statp->f_bfree = dstats.dds_available >> SPA_MINBLOCKSHIFT; 834 statp->f_bavail = statp->f_bfree; /* no root reservation */ 835 836 /* 837 * statvfs() should really be called statufs(), because it assumes 838 * static metadata. ZFS doesn't preallocate files, so the best 839 * we can do is report the max that could possibly fit in f_files, 840 * and that minus the number actually used in f_ffree. 841 * For f_ffree, report the smaller of the number of object available 842 * and the number of blocks (each object will take at least a block). 843 */ 844 statp->f_ffree = MIN(dstats.dds_objects_avail, statp->f_bfree); 845 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 846 statp->f_files = statp->f_ffree + dstats.dds_objects_used; 847 848 (void) cmpldev(&d32, vfsp->vfs_dev); 849 statp->f_fsid = d32; 850 851 /* 852 * We're a zfs filesystem. 853 */ 854 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 855 856 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 857 858 statp->f_namemax = ZFS_MAXNAMELEN; 859 860 /* 861 * We have all of 32 characters to stuff a string here. 862 * Is there anything useful we could/should provide? 863 */ 864 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 865 866 ZFS_EXIT(zfsvfs); 867 return (0); 868 } 869 870 static int 871 zfs_root(vfs_t *vfsp, vnode_t **vpp) 872 { 873 zfsvfs_t *zfsvfs = vfsp->vfs_data; 874 znode_t *rootzp; 875 int error; 876 877 ZFS_ENTER(zfsvfs); 878 879 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 880 if (error == 0) 881 *vpp = ZTOV(rootzp); 882 883 ZFS_EXIT(zfsvfs); 884 return (error); 885 } 886 887 /*ARGSUSED*/ 888 static int 889 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 890 { 891 zfsvfs_t *zfsvfs = vfsp->vfs_data; 892 int ret; 893 894 if ((ret = secpolicy_fs_unmount(cr, vfsp)) != 0) 895 return (ret); 896 897 898 (void) dnlc_purge_vfsp(vfsp, 0); 899 900 /* 901 * Unmount any snapshots mounted under .zfs before unmounting the 902 * dataset itself. 903 */ 904 if (zfsvfs->z_ctldir != NULL && 905 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) 906 return (ret); 907 908 if (fflag & MS_FORCE) { 909 vfsp->vfs_flag |= VFS_UNMOUNTED; 910 zfsvfs->z_unmounted1 = B_TRUE; 911 912 /* 913 * Wait for all zfs threads to leave zfs. 914 * Grabbing a rwlock as reader in all vops and 915 * as writer here doesn't work because it too easy to get 916 * multiple reader enters as zfs can re-enter itself. 917 * This can lead to deadlock if there is an intervening 918 * rw_enter as writer. 919 * So a file system threads ref count (z_op_cnt) is used. 920 * A polling loop on z_op_cnt may seem inefficient, but 921 * - this saves all threads on exit from having to grab a 922 * mutex in order to cv_signal 923 * - only occurs on forced unmount in the rare case when 924 * there are outstanding threads within the file system. 925 */ 926 while (zfsvfs->z_op_cnt) { 927 delay(1); 928 } 929 930 zfs_objset_close(zfsvfs); 931 932 return (0); 933 } 934 /* 935 * Stop all delete threads. 936 */ 937 (void) zfs_delete_thread_target(zfsvfs, 0); 938 939 /* 940 * Check the number of active vnodes in the file system. 941 * Our count is maintained in the vfs structure, but the number 942 * is off by 1 to indicate a hold on the vfs structure itself. 943 * 944 * The '.zfs' directory maintains a reference of its own, and any active 945 * references underneath are reflected in the vnode count. 946 */ 947 if (zfsvfs->z_ctldir == NULL) { 948 if (vfsp->vfs_count > 1) { 949 if ((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0) 950 (void) zfs_delete_thread_target(zfsvfs, 1); 951 return (EBUSY); 952 } 953 } else { 954 if (vfsp->vfs_count > 2 || 955 (zfsvfs->z_ctldir->v_count > 1 && !(fflag & MS_FORCE))) { 956 if ((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0) 957 (void) zfs_delete_thread_target(zfsvfs, 1); 958 return (EBUSY); 959 } 960 } 961 962 vfsp->vfs_flag |= VFS_UNMOUNTED; 963 zfs_objset_close(zfsvfs); 964 965 return (0); 966 } 967 968 static int 969 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 970 { 971 zfsvfs_t *zfsvfs = vfsp->vfs_data; 972 znode_t *zp; 973 uint64_t object = 0; 974 uint64_t fid_gen = 0; 975 uint64_t gen_mask; 976 uint64_t zp_gen; 977 int i, err; 978 979 *vpp = NULL; 980 981 ZFS_ENTER(zfsvfs); 982 983 if (fidp->fid_len == LONG_FID_LEN) { 984 zfid_long_t *zlfid = (zfid_long_t *)fidp; 985 uint64_t objsetid = 0; 986 uint64_t setgen = 0; 987 988 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 989 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 990 991 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 992 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 993 994 ZFS_EXIT(zfsvfs); 995 996 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 997 if (err) 998 return (EINVAL); 999 ZFS_ENTER(zfsvfs); 1000 } 1001 1002 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1003 zfid_short_t *zfid = (zfid_short_t *)fidp; 1004 1005 for (i = 0; i < sizeof (zfid->zf_object); i++) 1006 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1007 1008 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1009 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1010 } else { 1011 ZFS_EXIT(zfsvfs); 1012 return (EINVAL); 1013 } 1014 1015 /* A zero fid_gen means we are in the .zfs control directories */ 1016 if (fid_gen == 0 && 1017 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1018 *vpp = zfsvfs->z_ctldir; 1019 ASSERT(*vpp != NULL); 1020 if (object == ZFSCTL_INO_SNAPDIR) { 1021 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1022 0, NULL, NULL) == 0); 1023 } else { 1024 VN_HOLD(*vpp); 1025 } 1026 ZFS_EXIT(zfsvfs); 1027 return (0); 1028 } 1029 1030 gen_mask = -1ULL >> (64 - 8 * i); 1031 1032 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1033 if (err = zfs_zget(zfsvfs, object, &zp)) { 1034 ZFS_EXIT(zfsvfs); 1035 return (err); 1036 } 1037 zp_gen = zp->z_phys->zp_gen & gen_mask; 1038 if (zp_gen == 0) 1039 zp_gen = 1; 1040 if (zp->z_reap || zp_gen != fid_gen) { 1041 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1042 VN_RELE(ZTOV(zp)); 1043 ZFS_EXIT(zfsvfs); 1044 return (EINVAL); 1045 } 1046 1047 *vpp = ZTOV(zp); 1048 ZFS_EXIT(zfsvfs); 1049 return (0); 1050 } 1051 1052 static void 1053 zfs_objset_close(zfsvfs_t *zfsvfs) 1054 { 1055 zfs_delete_t *zd = &zfsvfs->z_delete_head; 1056 znode_t *zp, *nextzp; 1057 objset_t *os = zfsvfs->z_os; 1058 1059 /* 1060 * Stop all delete threads. 1061 */ 1062 (void) zfs_delete_thread_target(zfsvfs, 0); 1063 1064 /* 1065 * For forced unmount, at this point all vops except zfs_inactive 1066 * are erroring EIO. We need to now suspend zfs_inactive threads 1067 * while we are freeing dbufs before switching zfs_inactive 1068 * to use behaviour without a objset. 1069 */ 1070 rw_enter(&zfsvfs->z_um_lock, RW_WRITER); 1071 1072 /* 1073 * Release all delete in progress znodes 1074 * They will be processed when the file system remounts. 1075 */ 1076 mutex_enter(&zd->z_mutex); 1077 while (zp = list_head(&zd->z_znodes)) { 1078 list_remove(&zd->z_znodes, zp); 1079 zp->z_dbuf_held = 0; 1080 dmu_buf_rele(zp->z_dbuf, NULL); 1081 } 1082 mutex_exit(&zd->z_mutex); 1083 1084 /* 1085 * Release all holds on dbufs 1086 * Note, although we have stopped all other vop threads and 1087 * zfs_inactive(), the dmu can callback via znode_pageout_func() 1088 * which can zfs_znode_free() the znode. 1089 * So we lock z_all_znodes; search the list for a held 1090 * dbuf; drop the lock (we know zp can't disappear if we hold 1091 * a dbuf lock; then regrab the lock and restart. 1092 */ 1093 mutex_enter(&zfsvfs->z_znodes_lock); 1094 for (zp = list_head(&zfsvfs->z_all_znodes); zp; zp = nextzp) { 1095 nextzp = list_next(&zfsvfs->z_all_znodes, zp); 1096 if (zp->z_dbuf_held) { 1097 /* dbufs should only be held when force unmounting */ 1098 zp->z_dbuf_held = 0; 1099 mutex_exit(&zfsvfs->z_znodes_lock); 1100 dmu_buf_rele(zp->z_dbuf, NULL); 1101 /* Start again */ 1102 mutex_enter(&zfsvfs->z_znodes_lock); 1103 nextzp = list_head(&zfsvfs->z_all_znodes); 1104 } 1105 } 1106 mutex_exit(&zfsvfs->z_znodes_lock); 1107 1108 /* 1109 * Unregister properties. 1110 */ 1111 if (!dmu_objset_is_snapshot(os)) 1112 zfs_unregister_callbacks(zfsvfs); 1113 1114 /* 1115 * Switch zfs_inactive to behaviour without an objset. 1116 * It just tosses cached pages and frees the znode & vnode. 1117 * Then re-enable zfs_inactive threads in that new behaviour. 1118 */ 1119 zfsvfs->z_unmounted2 = B_TRUE; 1120 rw_exit(&zfsvfs->z_um_lock); /* re-enable any zfs_inactive threads */ 1121 1122 /* 1123 * Close the zil. Can't close the zil while zfs_inactive 1124 * threads are blocked as zil_close can call zfs_inactive. 1125 */ 1126 if (zfsvfs->z_log) { 1127 zil_close(zfsvfs->z_log); 1128 zfsvfs->z_log = NULL; 1129 } 1130 1131 /* 1132 * Evict all dbufs so that cached znodes will be freed 1133 */ 1134 if (dmu_objset_evict_dbufs(os, 1)) { 1135 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1136 (void) dmu_objset_evict_dbufs(os, 0); 1137 } 1138 1139 /* 1140 * Finally close the objset 1141 */ 1142 dmu_objset_close(os); 1143 1144 /* 1145 * We can now safely destroy the '.zfs' directory node. 1146 */ 1147 if (zfsvfs->z_ctldir != NULL) 1148 zfsctl_destroy(zfsvfs); 1149 1150 } 1151 1152 static void 1153 zfs_freevfs(vfs_t *vfsp) 1154 { 1155 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1156 1157 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1158 1159 atomic_add_32(&zfs_active_fs_count, -1); 1160 } 1161 1162 /* 1163 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1164 * so we can't safely do any non-idempotent initialization here. 1165 * Leave that to zfs_init() and zfs_fini(), which are called 1166 * from the module's _init() and _fini() entry points. 1167 */ 1168 /*ARGSUSED*/ 1169 static int 1170 zfs_vfsinit(int fstype, char *name) 1171 { 1172 int error; 1173 1174 zfsfstype = fstype; 1175 1176 /* 1177 * Setup vfsops and vnodeops tables. 1178 */ 1179 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1180 if (error != 0) { 1181 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1182 } 1183 1184 error = zfs_create_op_tables(); 1185 if (error) { 1186 zfs_remove_op_tables(); 1187 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1188 (void) vfs_freevfsops_by_type(zfsfstype); 1189 return (error); 1190 } 1191 1192 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1193 1194 /* 1195 * Unique major number for all zfs mounts. 1196 * If we run out of 32-bit minors, we'll getudev() another major. 1197 */ 1198 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1199 zfs_minor = ZFS_MIN_MINOR; 1200 1201 return (0); 1202 } 1203 1204 void 1205 zfs_init(void) 1206 { 1207 /* 1208 * Initialize .zfs directory structures 1209 */ 1210 zfsctl_init(); 1211 1212 /* 1213 * Initialize znode cache, vnode ops, etc... 1214 */ 1215 zfs_znode_init(); 1216 } 1217 1218 void 1219 zfs_fini(void) 1220 { 1221 zfsctl_fini(); 1222 zfs_znode_fini(); 1223 } 1224 1225 int 1226 zfs_busy(void) 1227 { 1228 return (zfs_active_fs_count != 0); 1229 } 1230 1231 static vfsdef_t vfw = { 1232 VFSDEF_VERSION, 1233 MNTTYPE_ZFS, 1234 zfs_vfsinit, 1235 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS, 1236 &zfs_mntopts 1237 }; 1238 1239 struct modlfs zfs_modlfs = { 1240 &mod_fsops, "ZFS filesystem version 1", &vfw 1241 }; 1242