xref: /titanic_44/usr/src/uts/common/fs/zfs/zfs_fuid.c (revision 1f6eb0216cb17ca5fdff9563329f1dda47c8b801)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/sunddi.h>
28 #include <sys/dmu.h>
29 #include <sys/avl.h>
30 #include <sys/zap.h>
31 #include <sys/refcount.h>
32 #include <sys/nvpair.h>
33 #ifdef _KERNEL
34 #include <sys/kidmap.h>
35 #include <sys/sid.h>
36 #include <sys/zfs_vfsops.h>
37 #include <sys/zfs_znode.h>
38 #endif
39 #include <sys/zfs_fuid.h>
40 
41 /*
42  * FUID Domain table(s).
43  *
44  * The FUID table is stored as a packed nvlist of an array
45  * of nvlists which contain an index, domain string and offset
46  *
47  * During file system initialization the nvlist(s) are read and
48  * two AVL trees are created.  One tree is keyed by the index number
49  * and the other by the domain string.  Nodes are never removed from
50  * trees, but new entries may be added.  If a new entry is added then the
51  * on-disk packed nvlist will also be updated.
52  */
53 
54 #define	FUID_IDX	"fuid_idx"
55 #define	FUID_DOMAIN	"fuid_domain"
56 #define	FUID_OFFSET	"fuid_offset"
57 #define	FUID_NVP_ARRAY	"fuid_nvlist"
58 
59 typedef struct fuid_domain {
60 	avl_node_t	f_domnode;
61 	avl_node_t	f_idxnode;
62 	ksiddomain_t	*f_ksid;
63 	uint64_t	f_idx;
64 } fuid_domain_t;
65 
66 static char *nulldomain = "";
67 
68 /*
69  * Compare two indexes.
70  */
71 static int
72 idx_compare(const void *arg1, const void *arg2)
73 {
74 	const fuid_domain_t *node1 = arg1;
75 	const fuid_domain_t *node2 = arg2;
76 
77 	if (node1->f_idx < node2->f_idx)
78 		return (-1);
79 	else if (node1->f_idx > node2->f_idx)
80 		return (1);
81 	return (0);
82 }
83 
84 /*
85  * Compare two domain strings.
86  */
87 static int
88 domain_compare(const void *arg1, const void *arg2)
89 {
90 	const fuid_domain_t *node1 = arg1;
91 	const fuid_domain_t *node2 = arg2;
92 	int val;
93 
94 	val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
95 	if (val == 0)
96 		return (0);
97 	return (val > 0 ? 1 : -1);
98 }
99 
100 /*
101  * load initial fuid domain and idx trees.  This function is used by
102  * both the kernel and zdb.
103  */
104 uint64_t
105 zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
106     avl_tree_t *domain_tree)
107 {
108 	dmu_buf_t *db;
109 	uint64_t fuid_size;
110 
111 	avl_create(idx_tree, idx_compare,
112 	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
113 	avl_create(domain_tree, domain_compare,
114 	    sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
115 
116 	VERIFY(0 == dmu_bonus_hold(os, fuid_obj, FTAG, &db));
117 	fuid_size = *(uint64_t *)db->db_data;
118 	dmu_buf_rele(db, FTAG);
119 
120 	if (fuid_size)  {
121 		nvlist_t **fuidnvp;
122 		nvlist_t *nvp = NULL;
123 		uint_t count;
124 		char *packed;
125 		int i;
126 
127 		packed = kmem_alloc(fuid_size, KM_SLEEP);
128 		VERIFY(dmu_read(os, fuid_obj, 0, fuid_size, packed) == 0);
129 		VERIFY(nvlist_unpack(packed, fuid_size,
130 		    &nvp, 0) == 0);
131 		VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
132 		    &fuidnvp, &count) == 0);
133 
134 		for (i = 0; i != count; i++) {
135 			fuid_domain_t *domnode;
136 			char *domain;
137 			uint64_t idx;
138 
139 			VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
140 			    &domain) == 0);
141 			VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
142 			    &idx) == 0);
143 
144 			domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
145 
146 			domnode->f_idx = idx;
147 			domnode->f_ksid = ksid_lookupdomain(domain);
148 			avl_add(idx_tree, domnode);
149 			avl_add(domain_tree, domnode);
150 		}
151 		nvlist_free(nvp);
152 		kmem_free(packed, fuid_size);
153 	}
154 	return (fuid_size);
155 }
156 
157 void
158 zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
159 {
160 	fuid_domain_t *domnode;
161 	void *cookie;
162 
163 	cookie = NULL;
164 	while (domnode = avl_destroy_nodes(domain_tree, &cookie))
165 		ksiddomain_rele(domnode->f_ksid);
166 
167 	avl_destroy(domain_tree);
168 	cookie = NULL;
169 	while (domnode = avl_destroy_nodes(idx_tree, &cookie))
170 		kmem_free(domnode, sizeof (fuid_domain_t));
171 	avl_destroy(idx_tree);
172 }
173 
174 char *
175 zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
176 {
177 	fuid_domain_t searchnode, *findnode;
178 	avl_index_t loc;
179 
180 	searchnode.f_idx = idx;
181 
182 	findnode = avl_find(idx_tree, &searchnode, &loc);
183 
184 	return (findnode ? findnode->f_ksid->kd_name : nulldomain);
185 }
186 
187 #ifdef _KERNEL
188 /*
189  * Load the fuid table(s) into memory.
190  */
191 static void
192 zfs_fuid_init(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
193 {
194 	int error = 0;
195 
196 	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
197 
198 	if (zfsvfs->z_fuid_loaded) {
199 		rw_exit(&zfsvfs->z_fuid_lock);
200 		return;
201 	}
202 
203 	if (zfsvfs->z_fuid_obj == 0) {
204 
205 		/* first make sure we need to allocate object */
206 
207 		error = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
208 		    ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
209 		if (error == ENOENT && tx != NULL) {
210 			zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
211 			    DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
212 			    sizeof (uint64_t), tx);
213 			VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
214 			    ZFS_FUID_TABLES, sizeof (uint64_t), 1,
215 			    &zfsvfs->z_fuid_obj, tx) == 0);
216 		}
217 	}
218 
219 	if (zfsvfs->z_fuid_obj != 0) {
220 		zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os,
221 		    zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx,
222 		    &zfsvfs->z_fuid_domain);
223 		zfsvfs->z_fuid_loaded = B_TRUE;
224 	}
225 
226 	rw_exit(&zfsvfs->z_fuid_lock);
227 }
228 
229 /*
230  * Query domain table for a given domain.
231  *
232  * If domain isn't found it is added to AVL trees and
233  * the results are pushed out to disk.
234  */
235 int
236 zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain, char **retdomain,
237     dmu_tx_t *tx)
238 {
239 	fuid_domain_t searchnode, *findnode;
240 	avl_index_t loc;
241 	krw_t rw = RW_READER;
242 
243 	/*
244 	 * If the dummy "nobody" domain then return an index of 0
245 	 * to cause the created FUID to be a standard POSIX id
246 	 * for the user nobody.
247 	 */
248 	if (domain[0] == '\0') {
249 		*retdomain = nulldomain;
250 		return (0);
251 	}
252 
253 	searchnode.f_ksid = ksid_lookupdomain(domain);
254 	if (retdomain) {
255 		*retdomain = searchnode.f_ksid->kd_name;
256 	}
257 	if (!zfsvfs->z_fuid_loaded)
258 		zfs_fuid_init(zfsvfs, tx);
259 
260 retry:
261 	rw_enter(&zfsvfs->z_fuid_lock, rw);
262 	findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);
263 
264 	if (findnode) {
265 		rw_exit(&zfsvfs->z_fuid_lock);
266 		ksiddomain_rele(searchnode.f_ksid);
267 		return (findnode->f_idx);
268 	} else {
269 		fuid_domain_t *domnode;
270 		nvlist_t *nvp;
271 		nvlist_t **fuids;
272 		uint64_t retidx;
273 		size_t nvsize = 0;
274 		char *packed;
275 		dmu_buf_t *db;
276 		int i = 0;
277 
278 		if (rw == RW_READER && !rw_tryupgrade(&zfsvfs->z_fuid_lock)) {
279 			rw_exit(&zfsvfs->z_fuid_lock);
280 			rw = RW_WRITER;
281 			goto retry;
282 		}
283 
284 		domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
285 		domnode->f_ksid = searchnode.f_ksid;
286 
287 		retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1;
288 
289 		avl_add(&zfsvfs->z_fuid_domain, domnode);
290 		avl_add(&zfsvfs->z_fuid_idx, domnode);
291 		/*
292 		 * Now resync the on-disk nvlist.
293 		 */
294 		VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
295 
296 		domnode = avl_first(&zfsvfs->z_fuid_domain);
297 		fuids = kmem_alloc(retidx * sizeof (void *), KM_SLEEP);
298 		while (domnode) {
299 			VERIFY(nvlist_alloc(&fuids[i],
300 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
301 			VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
302 			    domnode->f_idx) == 0);
303 			VERIFY(nvlist_add_uint64(fuids[i],
304 			    FUID_OFFSET, 0) == 0);
305 			VERIFY(nvlist_add_string(fuids[i++], FUID_DOMAIN,
306 			    domnode->f_ksid->kd_name) == 0);
307 			domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode);
308 		}
309 		VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
310 		    fuids, retidx) == 0);
311 		for (i = 0; i != retidx; i++)
312 			nvlist_free(fuids[i]);
313 		kmem_free(fuids, retidx * sizeof (void *));
314 		VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
315 		packed = kmem_alloc(nvsize, KM_SLEEP);
316 		VERIFY(nvlist_pack(nvp, &packed, &nvsize,
317 		    NV_ENCODE_XDR, KM_SLEEP) == 0);
318 		nvlist_free(nvp);
319 		zfsvfs->z_fuid_size = nvsize;
320 		dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
321 		    zfsvfs->z_fuid_size, packed, tx);
322 		kmem_free(packed, zfsvfs->z_fuid_size);
323 		VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
324 		    FTAG, &db));
325 		dmu_buf_will_dirty(db, tx);
326 		*(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
327 		dmu_buf_rele(db, FTAG);
328 
329 		rw_exit(&zfsvfs->z_fuid_lock);
330 		return (retidx);
331 	}
332 }
333 
334 /*
335  * Query domain table by index, returning domain string
336  *
337  * Returns a pointer from an avl node of the domain string.
338  *
339  */
340 static char *
341 zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx)
342 {
343 	char *domain;
344 
345 	if (idx == 0 || !zfsvfs->z_use_fuids)
346 		return (NULL);
347 
348 	if (!zfsvfs->z_fuid_loaded)
349 		zfs_fuid_init(zfsvfs, NULL);
350 
351 	rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
352 
353 	if (zfsvfs->z_fuid_obj)
354 		domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx);
355 	else
356 		domain = nulldomain;
357 	rw_exit(&zfsvfs->z_fuid_lock);
358 
359 	ASSERT(domain);
360 	return (domain);
361 }
362 
363 void
364 zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
365 {
366 	*uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_uid,
367 	    cr, ZFS_OWNER);
368 	*gidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_gid,
369 	    cr, ZFS_GROUP);
370 }
371 
372 uid_t
373 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
374     cred_t *cr, zfs_fuid_type_t type)
375 {
376 	uint32_t index = FUID_INDEX(fuid);
377 	char *domain;
378 	uid_t id;
379 
380 	if (index == 0)
381 		return (fuid);
382 
383 	domain = zfs_fuid_find_by_idx(zfsvfs, index);
384 	ASSERT(domain != NULL);
385 
386 	if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
387 		(void) kidmap_getuidbysid(crgetzone(cr), domain,
388 		    FUID_RID(fuid), &id);
389 	} else {
390 		(void) kidmap_getgidbysid(crgetzone(cr), domain,
391 		    FUID_RID(fuid), &id);
392 	}
393 	return (id);
394 }
395 
396 /*
397  * Add a FUID node to the list of fuid's being created for this
398  * ACL
399  *
400  * If ACL has multiple domains, then keep only one copy of each unique
401  * domain.
402  */
403 static void
404 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
405     uint64_t idx, uint64_t id, zfs_fuid_type_t type)
406 {
407 	zfs_fuid_t *fuid;
408 	zfs_fuid_domain_t *fuid_domain;
409 	zfs_fuid_info_t *fuidp;
410 	uint64_t fuididx;
411 	boolean_t found = B_FALSE;
412 
413 	if (*fuidpp == NULL)
414 		*fuidpp = zfs_fuid_info_alloc();
415 
416 	fuidp = *fuidpp;
417 	/*
418 	 * First find fuid domain index in linked list
419 	 *
420 	 * If one isn't found then create an entry.
421 	 */
422 
423 	for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
424 	    fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
425 	    fuid_domain), fuididx++) {
426 		if (idx == fuid_domain->z_domidx) {
427 			found = B_TRUE;
428 			break;
429 		}
430 	}
431 
432 	if (!found) {
433 		fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
434 		fuid_domain->z_domain = domain;
435 		fuid_domain->z_domidx = idx;
436 		list_insert_tail(&fuidp->z_domains, fuid_domain);
437 		fuidp->z_domain_str_sz += strlen(domain) + 1;
438 		fuidp->z_domain_cnt++;
439 	}
440 
441 	if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
442 		/*
443 		 * Now allocate fuid entry and add it on the end of the list
444 		 */
445 
446 		fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
447 		fuid->z_id = id;
448 		fuid->z_domidx = idx;
449 		fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
450 
451 		list_insert_tail(&fuidp->z_fuids, fuid);
452 		fuidp->z_fuid_cnt++;
453 	} else {
454 		if (type == ZFS_OWNER)
455 			fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
456 		else
457 			fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
458 	}
459 }
460 
461 /*
462  * Create a file system FUID, based on information in the users cred
463  */
464 uint64_t
465 zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type,
466     dmu_tx_t *tx, cred_t *cr, zfs_fuid_info_t **fuidp)
467 {
468 	uint64_t	idx;
469 	ksid_t		*ksid;
470 	uint32_t	rid;
471 	char 		*kdomain;
472 	const char	*domain;
473 	uid_t		id;
474 
475 	VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
476 
477 	ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
478 	if (ksid) {
479 		id = ksid_getid(ksid);
480 	} else {
481 		if (type == ZFS_OWNER)
482 			id = crgetuid(cr);
483 		else
484 			id = crgetgid(cr);
485 	}
486 
487 	if (!zfsvfs->z_use_fuids || (!IS_EPHEMERAL(id)))
488 		return ((uint64_t)id);
489 
490 	rid = ksid_getrid(ksid);
491 	domain = ksid_getdomain(ksid);
492 
493 	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, tx);
494 
495 	zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
496 
497 	return (FUID_ENCODE(idx, rid));
498 }
499 
500 /*
501  * Create a file system FUID for an ACL ace
502  * or a chown/chgrp of the file.
503  * This is similar to zfs_fuid_create_cred, except that
504  * we can't find the domain + rid information in the
505  * cred.  Instead we have to query Winchester for the
506  * domain and rid.
507  *
508  * During replay operations the domain+rid information is
509  * found in the zfs_fuid_info_t that the replay code has
510  * attached to the zfsvfs of the file system.
511  */
512 uint64_t
513 zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
514     zfs_fuid_type_t type, dmu_tx_t *tx, zfs_fuid_info_t **fuidpp)
515 {
516 	const char *domain;
517 	char *kdomain;
518 	uint32_t fuid_idx = FUID_INDEX(id);
519 	uint32_t rid;
520 	idmap_stat status;
521 	uint64_t idx;
522 	boolean_t is_replay = (zfsvfs->z_assign >= TXG_INITIAL);
523 	zfs_fuid_t *zfuid = NULL;
524 	zfs_fuid_info_t *fuidp;
525 
526 	/*
527 	 * If POSIX ID, or entry is already a FUID then
528 	 * just return the id
529 	 *
530 	 * We may also be handed an already FUID'ized id via
531 	 * chmod.
532 	 */
533 
534 	if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
535 		return (id);
536 
537 	if (is_replay) {
538 		fuidp = zfsvfs->z_fuid_replay;
539 
540 		/*
541 		 * If we are passed an ephemeral id, but no
542 		 * fuid_info was logged then return NOBODY.
543 		 * This is most likely a result of idmap service
544 		 * not being available.
545 		 */
546 		if (fuidp == NULL)
547 			return (UID_NOBODY);
548 
549 		switch (type) {
550 		case ZFS_ACE_USER:
551 		case ZFS_ACE_GROUP:
552 			zfuid = list_head(&fuidp->z_fuids);
553 			rid = FUID_RID(zfuid->z_logfuid);
554 			idx = FUID_INDEX(zfuid->z_logfuid);
555 			break;
556 		case ZFS_OWNER:
557 			rid = FUID_RID(fuidp->z_fuid_owner);
558 			idx = FUID_INDEX(fuidp->z_fuid_owner);
559 			break;
560 		case ZFS_GROUP:
561 			rid = FUID_RID(fuidp->z_fuid_group);
562 			idx = FUID_INDEX(fuidp->z_fuid_group);
563 			break;
564 		};
565 		domain = fuidp->z_domain_table[idx -1];
566 	} else {
567 		if (type == ZFS_OWNER || type == ZFS_ACE_USER)
568 			status = kidmap_getsidbyuid(crgetzone(cr), id,
569 			    &domain, &rid);
570 		else
571 			status = kidmap_getsidbygid(crgetzone(cr), id,
572 			    &domain, &rid);
573 
574 		if (status != 0) {
575 			/*
576 			 * When returning nobody we will need to
577 			 * make a dummy fuid table entry for logging
578 			 * purposes.
579 			 */
580 			rid = UID_NOBODY;
581 			domain = nulldomain;
582 		}
583 	}
584 
585 	idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, tx);
586 
587 	if (!is_replay)
588 		zfs_fuid_node_add(fuidpp, kdomain, rid, idx, id, type);
589 	else if (zfuid != NULL) {
590 		list_remove(&fuidp->z_fuids, zfuid);
591 		kmem_free(zfuid, sizeof (zfs_fuid_t));
592 	}
593 	return (FUID_ENCODE(idx, rid));
594 }
595 
596 void
597 zfs_fuid_destroy(zfsvfs_t *zfsvfs)
598 {
599 	rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
600 	if (!zfsvfs->z_fuid_loaded) {
601 		rw_exit(&zfsvfs->z_fuid_lock);
602 		return;
603 	}
604 	zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
605 	rw_exit(&zfsvfs->z_fuid_lock);
606 }
607 
608 /*
609  * Allocate zfs_fuid_info for tracking FUIDs created during
610  * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
611  */
612 zfs_fuid_info_t *
613 zfs_fuid_info_alloc(void)
614 {
615 	zfs_fuid_info_t *fuidp;
616 
617 	fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
618 	list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
619 	    offsetof(zfs_fuid_domain_t, z_next));
620 	list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
621 	    offsetof(zfs_fuid_t, z_next));
622 	return (fuidp);
623 }
624 
625 /*
626  * Release all memory associated with zfs_fuid_info_t
627  */
628 void
629 zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
630 {
631 	zfs_fuid_t *zfuid;
632 	zfs_fuid_domain_t *zdomain;
633 
634 	while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
635 		list_remove(&fuidp->z_fuids, zfuid);
636 		kmem_free(zfuid, sizeof (zfs_fuid_t));
637 	}
638 
639 	if (fuidp->z_domain_table != NULL)
640 		kmem_free(fuidp->z_domain_table,
641 		    (sizeof (char **)) * fuidp->z_domain_cnt);
642 
643 	while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
644 		list_remove(&fuidp->z_domains, zdomain);
645 		kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
646 	}
647 
648 	kmem_free(fuidp, sizeof (zfs_fuid_info_t));
649 }
650 
651 /*
652  * Check to see if id is a groupmember.  If cred
653  * has ksid info then sidlist is checked first
654  * and if still not found then POSIX groups are checked
655  *
656  * Will use a straight FUID compare when possible.
657  */
658 boolean_t
659 zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
660 {
661 	ksid_t		*ksid = crgetsid(cr, KSID_GROUP);
662 	uid_t		gid;
663 
664 	if (ksid) {
665 		int 		i;
666 		ksid_t		*ksid_groups;
667 		ksidlist_t	*ksidlist = crgetsidlist(cr);
668 		uint32_t	idx = FUID_INDEX(id);
669 		uint32_t	rid = FUID_RID(id);
670 
671 		ASSERT(ksidlist);
672 		ksid_groups = ksidlist->ksl_sids;
673 
674 		for (i = 0; i != ksidlist->ksl_nsid; i++) {
675 			if (idx == 0) {
676 				if (id != IDMAP_WK_CREATOR_GROUP_GID &&
677 				    id == ksid_groups[i].ks_id) {
678 					return (B_TRUE);
679 				}
680 			} else {
681 				char *domain;
682 
683 				domain = zfs_fuid_find_by_idx(zfsvfs, idx);
684 				ASSERT(domain != NULL);
685 
686 				if (strcmp(domain,
687 				    IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
688 					return (B_FALSE);
689 
690 				if ((strcmp(domain,
691 				    ksid_groups[i].ks_domain->kd_name) == 0) &&
692 				    rid == ksid_groups[i].ks_rid)
693 					return (B_TRUE);
694 			}
695 		}
696 	}
697 
698 	/*
699 	 * Not found in ksidlist, check posix groups
700 	 */
701 	gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP);
702 	return (groupmember(gid, cr));
703 }
704 #endif
705