1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vnode.h> 36 #include <sys/file.h> 37 #include <sys/mode.h> 38 #include <sys/kmem.h> 39 #include <sys/uio.h> 40 #include <sys/pathname.h> 41 #include <sys/cmn_err.h> 42 #include <sys/errno.h> 43 #include <sys/stat.h> 44 #include <sys/unistd.h> 45 #include <sys/random.h> 46 #include <sys/policy.h> 47 #include <sys/zfs_dir.h> 48 #include <sys/zfs_acl.h> 49 #include <sys/fs/zfs.h> 50 #include "fs/fs_subr.h" 51 #include <sys/zap.h> 52 #include <sys/dmu.h> 53 #include <sys/atomic.h> 54 #include <sys/zfs_ctldir.h> 55 #include <sys/dnlc.h> 56 57 /* 58 * Lock a directory entry. A dirlock on <dzp, name> protects that name 59 * in dzp's directory zap object. As long as you hold a dirlock, you can 60 * assume two things: (1) dzp cannot be reaped, and (2) no other thread 61 * can change the zap entry for (i.e. link or unlink) this name. 62 * 63 * Input arguments: 64 * dzp - znode for directory 65 * name - name of entry to lock 66 * flag - ZNEW: if the entry already exists, fail with EEXIST. 67 * ZEXISTS: if the entry does not exist, fail with ENOENT. 68 * ZSHARED: allow concurrent access with other ZSHARED callers. 69 * ZXATTR: we want dzp's xattr directory 70 * 71 * Output arguments: 72 * zpp - pointer to the znode for the entry (NULL if there isn't one) 73 * dlpp - pointer to the dirlock for this entry (NULL on error) 74 * 75 * Return value: 0 on success or errno on failure. 76 * 77 * NOTE: Always checks for, and rejects, '.' and '..'. 78 */ 79 int 80 zfs_dirent_lock(zfs_dirlock_t **dlpp, znode_t *dzp, char *name, znode_t **zpp, 81 int flag) 82 { 83 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 84 zfs_dirlock_t *dl; 85 uint64_t zoid; 86 int error; 87 vnode_t *vp; 88 89 *zpp = NULL; 90 *dlpp = NULL; 91 92 /* 93 * Verify that we are not trying to lock '.', '..', or '.zfs' 94 */ 95 if (name[0] == '.' && 96 (name[1] == '\0' || (name[1] == '.' && name[2] == '\0')) || 97 zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0) 98 return (EEXIST); 99 100 /* 101 * Wait until there are no locks on this name. 102 */ 103 mutex_enter(&dzp->z_lock); 104 for (;;) { 105 if (dzp->z_reap) { 106 mutex_exit(&dzp->z_lock); 107 return (ENOENT); 108 } 109 for (dl = dzp->z_dirlocks; dl != NULL; dl = dl->dl_next) 110 if (strcmp(name, dl->dl_name) == 0) 111 break; 112 if (dl == NULL) { 113 /* 114 * Allocate a new dirlock and add it to the list. 115 */ 116 dl = kmem_alloc(sizeof (zfs_dirlock_t), KM_SLEEP); 117 cv_init(&dl->dl_cv, NULL, CV_DEFAULT, NULL); 118 dl->dl_name = name; 119 dl->dl_sharecnt = 0; 120 dl->dl_namesize = 0; 121 dl->dl_dzp = dzp; 122 dl->dl_next = dzp->z_dirlocks; 123 dzp->z_dirlocks = dl; 124 break; 125 } 126 if ((flag & ZSHARED) && dl->dl_sharecnt != 0) 127 break; 128 cv_wait(&dl->dl_cv, &dzp->z_lock); 129 } 130 131 if ((flag & ZSHARED) && ++dl->dl_sharecnt > 1 && dl->dl_namesize == 0) { 132 /* 133 * We're the second shared reference to dl. Make a copy of 134 * dl_name in case the first thread goes away before we do. 135 * Note that we initialize the new name before storing its 136 * pointer into dl_name, because the first thread may load 137 * dl->dl_name at any time. He'll either see the old value, 138 * which is his, or the new shared copy; either is OK. 139 */ 140 dl->dl_namesize = strlen(dl->dl_name) + 1; 141 name = kmem_alloc(dl->dl_namesize, KM_SLEEP); 142 bcopy(dl->dl_name, name, dl->dl_namesize); 143 dl->dl_name = name; 144 } 145 146 mutex_exit(&dzp->z_lock); 147 148 /* 149 * We have a dirlock on the name. (Note that it is the dirlock, 150 * not the dzp's z_lock, that protects the name in the zap object.) 151 * See if there's an object by this name; if so, put a hold on it. 152 */ 153 if (flag & ZXATTR) { 154 zoid = dzp->z_phys->zp_xattr; 155 error = (zoid == 0 ? ENOENT : 0); 156 } else { 157 vp = dnlc_lookup(ZTOV(dzp), name); 158 if (vp == DNLC_NO_VNODE) { 159 VN_RELE(vp); 160 error = ENOENT; 161 } else if (vp) { 162 if (flag & ZNEW) { 163 zfs_dirent_unlock(dl); 164 VN_RELE(vp); 165 return (EEXIST); 166 } 167 *dlpp = dl; 168 *zpp = VTOZ(vp); 169 return (0); 170 } else { 171 error = zap_lookup(zfsvfs->z_os, dzp->z_id, name, 172 8, 1, &zoid); 173 if (error == ENOENT) 174 dnlc_update(ZTOV(dzp), name, DNLC_NO_VNODE); 175 } 176 } 177 if (error) { 178 if (error != ENOENT || (flag & ZEXISTS)) { 179 zfs_dirent_unlock(dl); 180 return (error); 181 } 182 } else { 183 if (flag & ZNEW) { 184 zfs_dirent_unlock(dl); 185 return (EEXIST); 186 } 187 error = zfs_zget(zfsvfs, zoid, zpp); 188 if (error) { 189 zfs_dirent_unlock(dl); 190 return (error); 191 } 192 if (!(flag & ZXATTR)) 193 dnlc_update(ZTOV(dzp), name, ZTOV(*zpp)); 194 } 195 196 *dlpp = dl; 197 198 return (0); 199 } 200 201 /* 202 * Unlock this directory entry and wake anyone who was waiting for it. 203 */ 204 void 205 zfs_dirent_unlock(zfs_dirlock_t *dl) 206 { 207 znode_t *dzp = dl->dl_dzp; 208 zfs_dirlock_t **prev_dl, *cur_dl; 209 210 mutex_enter(&dzp->z_lock); 211 if (dl->dl_sharecnt > 1) { 212 dl->dl_sharecnt--; 213 mutex_exit(&dzp->z_lock); 214 return; 215 } 216 prev_dl = &dzp->z_dirlocks; 217 while ((cur_dl = *prev_dl) != dl) 218 prev_dl = &cur_dl->dl_next; 219 *prev_dl = dl->dl_next; 220 cv_broadcast(&dl->dl_cv); 221 mutex_exit(&dzp->z_lock); 222 223 if (dl->dl_namesize != 0) 224 kmem_free(dl->dl_name, dl->dl_namesize); 225 cv_destroy(&dl->dl_cv); 226 kmem_free(dl, sizeof (*dl)); 227 } 228 229 /* 230 * Look up an entry in a directory. 231 * 232 * NOTE: '.' and '..' are handled as special cases because 233 * no directory entries are actually stored for them. If this is 234 * the root of a filesystem, then '.zfs' is also treated as a 235 * special pseudo-directory. 236 */ 237 int 238 zfs_dirlook(znode_t *dzp, char *name, vnode_t **vpp) 239 { 240 zfs_dirlock_t *dl; 241 znode_t *zp; 242 int error = 0; 243 244 if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) { 245 *vpp = ZTOV(dzp); 246 VN_HOLD(*vpp); 247 } else if (name[0] == '.' && name[1] == '.' && name[2] == 0) { 248 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 249 /* 250 * If we are a snapshot mounted under .zfs, return 251 * the vp for the snapshot directory. 252 */ 253 if (zfsvfs->z_parent != zfsvfs) { 254 error = zfsctl_root_lookup(zfsvfs->z_parent->z_ctldir, 255 "snapshot", vpp, NULL, 0, NULL, kcred); 256 return (error); 257 } 258 rw_enter(&dzp->z_parent_lock, RW_READER); 259 error = zfs_zget(zfsvfs, dzp->z_phys->zp_parent, &zp); 260 if (error == 0) 261 *vpp = ZTOV(zp); 262 rw_exit(&dzp->z_parent_lock); 263 } else if (zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0) { 264 *vpp = zfsctl_root(dzp); 265 } else { 266 error = zfs_dirent_lock(&dl, dzp, name, &zp, ZEXISTS | ZSHARED); 267 if (error == 0) { 268 *vpp = ZTOV(zp); 269 zfs_dirent_unlock(dl); 270 dzp->z_zn_prefetch = B_TRUE; /* enable prefetching */ 271 } 272 } 273 274 return (error); 275 } 276 277 static char * 278 zfs_dq_hexname(char namebuf[17], uint64_t x) 279 { 280 char *name = &namebuf[16]; 281 const char digits[16] = "0123456789abcdef"; 282 283 *name = '\0'; 284 do { 285 *--name = digits[x & 0xf]; 286 x >>= 4; 287 } while (x != 0); 288 289 return (name); 290 } 291 292 void 293 zfs_dq_add(znode_t *zp, dmu_tx_t *tx) 294 { 295 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 296 char obj_name[17]; 297 int error; 298 299 ASSERT(zp->z_reap); 300 ASSERT3U(zp->z_phys->zp_links, ==, 0); 301 302 error = zap_add(zfsvfs->z_os, zfsvfs->z_dqueue, 303 zfs_dq_hexname(obj_name, zp->z_id), 8, 1, &zp->z_id, tx); 304 ASSERT3U(error, ==, 0); 305 } 306 307 /* 308 * Delete the entire contents of a directory. Return a count 309 * of the number of entries that could not be deleted. 310 * 311 * NOTE: this function assumes that the directory is inactive, 312 * so there is no need to lock its entries before deletion. 313 * Also, it assumes the directory contents is *only* regular 314 * files. 315 */ 316 static int 317 zfs_purgedir(znode_t *dzp) 318 { 319 zap_cursor_t zc; 320 zap_attribute_t zap; 321 znode_t *xzp; 322 dmu_tx_t *tx; 323 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 324 zfs_dirlock_t dl; 325 int skipped = 0; 326 int error; 327 328 ASSERT(dzp->z_active == 0); 329 330 for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id); 331 (error = zap_cursor_retrieve(&zc, &zap)) == 0; 332 zap_cursor_advance(&zc)) { 333 error = zfs_zget(zfsvfs, zap.za_first_integer, &xzp); 334 ASSERT3U(error, ==, 0); 335 336 ASSERT((ZTOV(xzp)->v_type == VREG) || 337 (ZTOV(xzp)->v_type == VLNK)); 338 339 tx = dmu_tx_create(zfsvfs->z_os); 340 dmu_tx_hold_bonus(tx, dzp->z_id); 341 dmu_tx_hold_zap(tx, dzp->z_id, -1); 342 dmu_tx_hold_bonus(tx, xzp->z_id); 343 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, 1); 344 error = dmu_tx_assign(tx, TXG_WAIT); 345 if (error) { 346 dmu_tx_abort(tx); 347 VN_RELE(ZTOV(xzp)); 348 skipped += 1; 349 continue; 350 } 351 bzero(&dl, sizeof (dl)); 352 dl.dl_dzp = dzp; 353 dl.dl_name = zap.za_name; 354 355 error = zfs_link_destroy(&dl, xzp, tx, 0, NULL); 356 ASSERT3U(error, ==, 0); 357 dmu_tx_commit(tx); 358 359 VN_RELE(ZTOV(xzp)); 360 } 361 zap_cursor_fini(&zc); 362 ASSERT(error == ENOENT); 363 return (skipped); 364 } 365 366 /* 367 * Special function to requeue the znodes for deletion that were 368 * in progress when we either crashed or umounted the file system. 369 */ 370 static void 371 zfs_drain_dq(zfsvfs_t *zfsvfs) 372 { 373 zap_cursor_t zc; 374 zap_attribute_t zap; 375 dmu_object_info_t doi; 376 znode_t *zp; 377 int error; 378 379 /* 380 * Interate over the contents of the delete queue. 381 */ 382 for (zap_cursor_init(&zc, zfsvfs->z_os, zfsvfs->z_dqueue); 383 zap_cursor_retrieve(&zc, &zap) == 0; 384 zap_cursor_advance(&zc)) { 385 386 /* 387 * Need some helpers? 388 */ 389 if (zfs_delete_thread_target(zfsvfs, -1) != 0) 390 return; 391 392 /* 393 * See what kind of object we have in queue 394 */ 395 396 error = dmu_object_info(zfsvfs->z_os, 397 zap.za_first_integer, &doi); 398 if (error != 0) 399 continue; 400 401 ASSERT((doi.doi_type == DMU_OT_PLAIN_FILE_CONTENTS) || 402 (doi.doi_type == DMU_OT_DIRECTORY_CONTENTS)); 403 /* 404 * We need to re-mark these queue entries for reaping, 405 * so we pull them back into core and set zp->z_reap. 406 */ 407 error = zfs_zget(zfsvfs, zap.za_first_integer, &zp); 408 409 /* 410 * We may pick up znodes that are already marked for reaping. 411 * This could happen during the purge of an extended attribute 412 * directory. All we need to do is skip over them, since they 413 * are already in the system to be processed by the taskq. 414 */ 415 if (error != 0) { 416 continue; 417 } 418 zp->z_reap = 1; 419 VN_RELE(ZTOV(zp)); 420 break; 421 } 422 zap_cursor_fini(&zc); 423 } 424 425 void 426 zfs_delete_thread(void *arg) 427 { 428 zfsvfs_t *zfsvfs = arg; 429 zfs_delete_t *zd = &zfsvfs->z_delete_head; 430 znode_t *zp; 431 callb_cpr_t cprinfo; 432 433 CALLB_CPR_INIT(&cprinfo, &zd->z_mutex, callb_generic_cpr, "zfs_delete"); 434 435 mutex_enter(&zd->z_mutex); 436 437 if (!zd->z_drained && !zd->z_draining) { 438 zd->z_draining = B_TRUE; 439 mutex_exit(&zd->z_mutex); 440 zfs_drain_dq(zfsvfs); 441 mutex_enter(&zd->z_mutex); 442 zd->z_draining = B_FALSE; 443 zd->z_drained = B_TRUE; 444 cv_broadcast(&zd->z_quiesce_cv); 445 } 446 447 while (zd->z_thread_count <= zd->z_thread_target) { 448 zp = list_head(&zd->z_znodes); 449 if (zp == NULL) { 450 ASSERT(zd->z_znode_count == 0); 451 CALLB_CPR_SAFE_BEGIN(&cprinfo); 452 cv_wait(&zd->z_cv, &zd->z_mutex); 453 CALLB_CPR_SAFE_END(&cprinfo, &zd->z_mutex); 454 continue; 455 } 456 ASSERT(zd->z_znode_count != 0); 457 list_remove(&zd->z_znodes, zp); 458 if (--zd->z_znode_count == 0) 459 cv_broadcast(&zd->z_quiesce_cv); 460 mutex_exit(&zd->z_mutex); 461 zfs_rmnode(zp); 462 (void) zfs_delete_thread_target(zfsvfs, -1); 463 mutex_enter(&zd->z_mutex); 464 } 465 466 ASSERT(zd->z_thread_count != 0); 467 if (--zd->z_thread_count == 0) 468 cv_broadcast(&zd->z_cv); 469 470 CALLB_CPR_EXIT(&cprinfo); /* NB: drops z_mutex */ 471 thread_exit(); 472 } 473 474 static int zfs_work_per_thread_shift = 11; /* 2048 (2^11) per thread */ 475 476 /* 477 * Set the target number of delete threads to 'nthreads'. 478 * If nthreads == -1, choose a number based on current workload. 479 * If nthreads == 0, don't return until the threads have exited. 480 */ 481 int 482 zfs_delete_thread_target(zfsvfs_t *zfsvfs, int nthreads) 483 { 484 zfs_delete_t *zd = &zfsvfs->z_delete_head; 485 486 mutex_enter(&zd->z_mutex); 487 488 if (nthreads == -1) { 489 if (zd->z_thread_target == 0) { 490 mutex_exit(&zd->z_mutex); 491 return (EBUSY); 492 } 493 nthreads = zd->z_znode_count >> zfs_work_per_thread_shift; 494 nthreads = MIN(nthreads, ncpus << 1); 495 nthreads = MAX(nthreads, 1); 496 nthreads += !!zd->z_draining; 497 } 498 499 zd->z_thread_target = nthreads; 500 501 while (zd->z_thread_count < zd->z_thread_target) { 502 (void) thread_create(NULL, 0, zfs_delete_thread, zfsvfs, 503 0, &p0, TS_RUN, minclsyspri); 504 zd->z_thread_count++; 505 } 506 507 while (zd->z_thread_count > zd->z_thread_target && nthreads == 0) { 508 cv_broadcast(&zd->z_cv); 509 cv_wait(&zd->z_cv, &zd->z_mutex); 510 } 511 512 mutex_exit(&zd->z_mutex); 513 514 return (0); 515 } 516 517 /* 518 * Wait until everything that's been queued has been deleted. 519 */ 520 void 521 zfs_delete_wait_empty(zfsvfs_t *zfsvfs) 522 { 523 zfs_delete_t *zd = &zfsvfs->z_delete_head; 524 525 mutex_enter(&zd->z_mutex); 526 ASSERT(zd->z_thread_target != 0); 527 while (!zd->z_drained || zd->z_znode_count != 0) { 528 ASSERT(zd->z_thread_target != 0); 529 cv_wait(&zd->z_quiesce_cv, &zd->z_mutex); 530 } 531 mutex_exit(&zd->z_mutex); 532 } 533 534 void 535 zfs_rmnode(znode_t *zp) 536 { 537 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 538 objset_t *os = zfsvfs->z_os; 539 znode_t *xzp = NULL; 540 char obj_name[17]; 541 dmu_tx_t *tx; 542 uint64_t acl_obj; 543 int error; 544 545 ASSERT(zp->z_active == 0); 546 ASSERT(ZTOV(zp)->v_count == 0); 547 ASSERT(zp->z_phys->zp_links == 0); 548 549 /* 550 * If this is an attribute directory, purge its contents. 551 */ 552 if (ZTOV(zp)->v_type == VDIR && (zp->z_phys->zp_flags & ZFS_XATTR)) 553 if (zfs_purgedir(zp) != 0) { 554 zfs_delete_t *delq = &zfsvfs->z_delete_head; 555 /* 556 * Add this back to the delete list to be retried later. 557 * 558 * XXX - this could just busy loop on us... 559 */ 560 mutex_enter(&delq->z_mutex); 561 list_insert_tail(&delq->z_znodes, zp); 562 delq->z_znode_count++; 563 mutex_exit(&delq->z_mutex); 564 return; 565 } 566 567 /* 568 * If the file has extended attributes, unlink the xattr dir. 569 */ 570 if (zp->z_phys->zp_xattr) { 571 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 572 ASSERT(error == 0); 573 } 574 575 acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj; 576 577 /* 578 * Set up the transaction. 579 */ 580 tx = dmu_tx_create(os); 581 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 582 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, -1); 583 if (xzp) { 584 dmu_tx_hold_bonus(tx, xzp->z_id); 585 dmu_tx_hold_zap(tx, zfsvfs->z_dqueue, 1); 586 } 587 if (acl_obj) 588 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 589 error = dmu_tx_assign(tx, TXG_WAIT); 590 if (error) { 591 zfs_delete_t *delq = &zfsvfs->z_delete_head; 592 593 dmu_tx_abort(tx); 594 /* 595 * Add this back to the delete list to be retried later. 596 * 597 * XXX - this could just busy loop on us... 598 */ 599 mutex_enter(&delq->z_mutex); 600 list_insert_tail(&delq->z_znodes, zp); 601 delq->z_znode_count++; 602 mutex_exit(&delq->z_mutex); 603 return; 604 } 605 606 if (xzp) { 607 dmu_buf_will_dirty(xzp->z_dbuf, tx); 608 mutex_enter(&xzp->z_lock); 609 xzp->z_reap = 1; /* mark xzp for deletion */ 610 xzp->z_phys->zp_links = 0; /* no more links to it */ 611 mutex_exit(&xzp->z_lock); 612 zfs_dq_add(xzp, tx); /* add xzp to delete queue */ 613 } 614 615 /* 616 * Remove this znode from delete queue 617 */ 618 error = zap_remove(os, zfsvfs->z_dqueue, 619 zfs_dq_hexname(obj_name, zp->z_id), tx); 620 ASSERT3U(error, ==, 0); 621 622 zfs_znode_delete(zp, tx); 623 624 dmu_tx_commit(tx); 625 626 if (xzp) 627 VN_RELE(ZTOV(xzp)); 628 } 629 630 /* 631 * Link zp into dl. Can only fail if zp has been reaped. 632 */ 633 int 634 zfs_link_create(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag) 635 { 636 znode_t *dzp = dl->dl_dzp; 637 vnode_t *vp = ZTOV(zp); 638 int zp_is_dir = (vp->v_type == VDIR); 639 int error; 640 641 dmu_buf_will_dirty(zp->z_dbuf, tx); 642 mutex_enter(&zp->z_lock); 643 644 if (!(flag & ZRENAMING)) { 645 if (zp->z_reap) { /* no new links to reaped zp */ 646 ASSERT(!(flag & (ZNEW | ZEXISTS))); 647 mutex_exit(&zp->z_lock); 648 return (ENOENT); 649 } 650 zp->z_phys->zp_links++; 651 } 652 zp->z_phys->zp_parent = dzp->z_id; /* dzp is now zp's parent */ 653 654 if (!(flag & ZNEW)) 655 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 656 mutex_exit(&zp->z_lock); 657 658 dmu_buf_will_dirty(dzp->z_dbuf, tx); 659 mutex_enter(&dzp->z_lock); 660 dzp->z_phys->zp_size++; /* one dirent added */ 661 dzp->z_phys->zp_links += zp_is_dir; /* ".." link from zp */ 662 zfs_time_stamper_locked(dzp, CONTENT_MODIFIED, tx); 663 mutex_exit(&dzp->z_lock); 664 665 error = zap_add(zp->z_zfsvfs->z_os, dzp->z_id, dl->dl_name, 666 8, 1, &zp->z_id, tx); 667 ASSERT(error == 0); 668 669 dnlc_update(ZTOV(dzp), dl->dl_name, vp); 670 671 return (0); 672 } 673 674 /* 675 * Unlink zp from dl, and mark zp for reaping if this was the last link. 676 * Can fail if zp is a mount point (EBUSY) or a non-empty directory (EEXIST). 677 * If 'reaped_ptr' is NULL, we put reaped znodes on the delete queue. 678 * If it's non-NULL, we use it to indicate whether the znode needs reaping, 679 * and it's the caller's job to do it. 680 */ 681 int 682 zfs_link_destroy(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag, 683 int *reaped_ptr) 684 { 685 znode_t *dzp = dl->dl_dzp; 686 vnode_t *vp = ZTOV(zp); 687 int zp_is_dir = (vp->v_type == VDIR); 688 int reaped = 0; 689 int error; 690 691 dnlc_remove(ZTOV(dzp), dl->dl_name); 692 693 if (!(flag & ZRENAMING)) { 694 dmu_buf_will_dirty(zp->z_dbuf, tx); 695 696 if (vn_vfswlock(vp)) /* prevent new mounts on zp */ 697 return (EBUSY); 698 699 if (vn_ismntpt(vp)) { /* don't remove mount point */ 700 vn_vfsunlock(vp); 701 return (EBUSY); 702 } 703 704 mutex_enter(&zp->z_lock); 705 if (zp_is_dir && !zfs_dirempty(zp)) { /* dir not empty */ 706 mutex_exit(&zp->z_lock); 707 vn_vfsunlock(vp); 708 return (EEXIST); 709 } 710 ASSERT(zp->z_phys->zp_links > zp_is_dir); 711 if (--zp->z_phys->zp_links == zp_is_dir) { 712 zp->z_reap = 1; 713 zp->z_phys->zp_links = 0; 714 reaped = 1; 715 } else { 716 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 717 } 718 mutex_exit(&zp->z_lock); 719 vn_vfsunlock(vp); 720 } 721 722 dmu_buf_will_dirty(dzp->z_dbuf, tx); 723 mutex_enter(&dzp->z_lock); 724 dzp->z_phys->zp_size--; /* one dirent removed */ 725 dzp->z_phys->zp_links -= zp_is_dir; /* ".." link from zp */ 726 zfs_time_stamper_locked(dzp, CONTENT_MODIFIED, tx); 727 mutex_exit(&dzp->z_lock); 728 729 error = zap_remove(zp->z_zfsvfs->z_os, dzp->z_id, dl->dl_name, tx); 730 ASSERT(error == 0); 731 732 if (reaped_ptr != NULL) 733 *reaped_ptr = reaped; 734 else if (reaped) 735 zfs_dq_add(zp, tx); 736 737 return (0); 738 } 739 740 /* 741 * Indicate whether the directory is empty. Works with or without z_lock 742 * held, but can only be consider a hint in the latter case. Returns true 743 * if only "." and ".." remain and there's no work in progress. 744 */ 745 boolean_t 746 zfs_dirempty(znode_t *dzp) 747 { 748 return (dzp->z_phys->zp_size == 2 && dzp->z_dirlocks == 0); 749 } 750 751 int 752 zfs_make_xattrdir(znode_t *zp, vattr_t *vap, vnode_t **xvpp, cred_t *cr) 753 { 754 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 755 znode_t *xzp; 756 dmu_tx_t *tx; 757 uint64_t xoid; 758 int error; 759 760 *xvpp = NULL; 761 762 if (error = zfs_zaccess(zp, ACE_WRITE_NAMED_ATTRS, cr)) 763 return (error); 764 765 tx = dmu_tx_create(zfsvfs->z_os); 766 dmu_tx_hold_bonus(tx, zp->z_id); 767 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, 0); 768 error = dmu_tx_assign(tx, zfsvfs->z_assign); 769 if (error) { 770 dmu_tx_abort(tx); 771 return (error); 772 } 773 zfs_mknode(zp, vap, &xoid, tx, cr, IS_XATTR, &xzp, 0); 774 ASSERT(xzp->z_id == xoid); 775 ASSERT(xzp->z_phys->zp_parent == zp->z_id); 776 dmu_buf_will_dirty(zp->z_dbuf, tx); 777 zp->z_phys->zp_xattr = xoid; 778 779 (void) zfs_log_create(zfsvfs->z_log, tx, TX_MKXATTR, zp, xzp, ""); 780 dmu_tx_commit(tx); 781 782 *xvpp = ZTOV(xzp); 783 784 return (0); 785 } 786 787 /* 788 * Return a znode for the extended attribute directory for zp. 789 * ** If the directory does not already exist, it is created ** 790 * 791 * IN: zp - znode to obtain attribute directory from 792 * cr - credentials of caller 793 * 794 * OUT: xzpp - pointer to extended attribute znode 795 * 796 * RETURN: 0 on success 797 * error number on failure 798 */ 799 int 800 zfs_get_xattrdir(znode_t *zp, vnode_t **xvpp, cred_t *cr) 801 { 802 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 803 znode_t *xzp; 804 zfs_dirlock_t *dl; 805 vattr_t va; 806 int error; 807 top: 808 error = zfs_dirent_lock(&dl, zp, "", &xzp, ZXATTR); 809 if (error) 810 return (error); 811 812 if (xzp != NULL) { 813 *xvpp = ZTOV(xzp); 814 zfs_dirent_unlock(dl); 815 return (0); 816 } 817 818 ASSERT(zp->z_phys->zp_xattr == 0); 819 820 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 821 zfs_dirent_unlock(dl); 822 return (EROFS); 823 } 824 825 /* 826 * The ability to 'create' files in an attribute 827 * directory comes from the write_xattr permission on the base file. 828 * 829 * The ability to 'search' an attribute directory requires 830 * read_xattr permission on the base file. 831 * 832 * Once in a directory the ability to read/write attributes 833 * is controlled by the permissions on the attribute file. 834 */ 835 va.va_mask = AT_TYPE | AT_MODE | AT_UID | AT_GID; 836 va.va_type = VDIR; 837 va.va_mode = S_IFDIR | S_ISVTX | 0777; 838 va.va_uid = (uid_t)zp->z_phys->zp_uid; 839 va.va_gid = (gid_t)zp->z_phys->zp_gid; 840 841 error = zfs_make_xattrdir(zp, &va, xvpp, cr); 842 zfs_dirent_unlock(dl); 843 844 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 845 txg_wait_open(dmu_objset_pool(zfsvfs->z_os), 0); 846 goto top; 847 } 848 849 return (error); 850 } 851 852 /* 853 * Decide whether it is okay to remove within a sticky directory. 854 * 855 * In sticky directories, write access is not sufficient; 856 * you can remove entries from a directory only if: 857 * 858 * you own the directory, 859 * you own the entry, 860 * the entry is a plain file and you have write access, 861 * or you are privileged (checked in secpolicy...). 862 * 863 * The function returns 0 if remove access is granted. 864 */ 865 int 866 zfs_sticky_remove_access(znode_t *zdp, znode_t *zp, cred_t *cr) 867 { 868 uid_t uid; 869 870 if (zdp->z_zfsvfs->z_assign >= TXG_INITIAL) /* ZIL replay */ 871 return (0); 872 873 if ((zdp->z_phys->zp_mode & S_ISVTX) == 0 || 874 (uid = crgetuid(cr)) == zdp->z_phys->zp_uid || 875 uid == zp->z_phys->zp_uid || 876 (ZTOV(zp)->v_type == VREG && 877 zfs_zaccess(zp, ACE_WRITE_DATA, cr) == 0)) 878 return (0); 879 else 880 return (secpolicy_vnode_remove(cr)); 881 } 882