xref: /titanic_44/usr/src/uts/common/fs/zfs/zfs_ctldir.c (revision 32b87932f3ef0887d873b7f6d2d1943799b2afc0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * ZFS control directory (a.k.a. ".zfs")
30  *
31  * This directory provides a common location for all ZFS meta-objects.
32  * Currently, this is only the 'snapshot' directory, but this may expand in the
33  * future.  The elements are built using the GFS primitives, as the hierarchy
34  * does not actually exist on disk.
35  *
36  * For 'snapshot', we don't want to have all snapshots always mounted, because
37  * this would take up a huge amount of space in /etc/mnttab.  We have three
38  * types of objects:
39  *
40  * 	ctldir ------> snapshotdir -------> snapshot
41  *                                             |
42  *                                             |
43  *                                             V
44  *                                         mounted fs
45  *
46  * The 'snapshot' node contains just enough information to lookup '..' and act
47  * as a mountpoint for the snapshot.  Whenever we lookup a specific snapshot, we
48  * perform an automount of the underlying filesystem and return the
49  * corresponding vnode.
50  *
51  * All mounts are handled automatically by the kernel, but unmounts are
52  * (currently) handled from user land.  The main reason is that there is no
53  * reliable way to auto-unmount the filesystem when it's "no longer in use".
54  * When the user unmounts a filesystem, we call zfsctl_unmount(), which
55  * unmounts any snapshots within the snapshot directory.
56  *
57  * The '.zfs', '.zfs/snapshot', and all directories created under
58  * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and
59  * share the same vfs_t as the head filesystem (what '.zfs' lives under).
60  *
61  * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>'
62  * (ie: snapshots) are ZFS nodes and have their own unique vfs_t.
63  * However, vnodes within these mounted on file systems have their v_vfsp
64  * fields set to the head filesystem to make NFS happy (see
65  * zfsctl_snapdir_lookup()). We VFS_HOLD the head filesystem's vfs_t
66  * so that it cannot be freed until all snapshots have been unmounted.
67  */
68 
69 #include <fs/fs_subr.h>
70 #include <sys/zfs_ctldir.h>
71 #include <sys/zfs_ioctl.h>
72 #include <sys/zfs_vfsops.h>
73 #include <sys/vfs_opreg.h>
74 #include <sys/gfs.h>
75 #include <sys/stat.h>
76 #include <sys/dmu.h>
77 #include <sys/dsl_deleg.h>
78 #include <sys/mount.h>
79 #include <sys/sunddi.h>
80 
81 typedef struct zfsctl_node {
82 	gfs_dir_t	zc_gfs_private;
83 	uint64_t	zc_id;
84 	timestruc_t	zc_cmtime;	/* ctime and mtime, always the same */
85 } zfsctl_node_t;
86 
87 typedef struct zfsctl_snapdir {
88 	zfsctl_node_t	sd_node;
89 	kmutex_t	sd_lock;
90 	avl_tree_t	sd_snaps;
91 } zfsctl_snapdir_t;
92 
93 typedef struct {
94 	char		*se_name;
95 	vnode_t		*se_root;
96 	avl_node_t	se_node;
97 } zfs_snapentry_t;
98 
99 static int
100 snapentry_compare(const void *a, const void *b)
101 {
102 	const zfs_snapentry_t *sa = a;
103 	const zfs_snapentry_t *sb = b;
104 	int ret = strcmp(sa->se_name, sb->se_name);
105 
106 	if (ret < 0)
107 		return (-1);
108 	else if (ret > 0)
109 		return (1);
110 	else
111 		return (0);
112 }
113 
114 vnodeops_t *zfsctl_ops_root;
115 vnodeops_t *zfsctl_ops_snapdir;
116 vnodeops_t *zfsctl_ops_snapshot;
117 
118 static const fs_operation_def_t zfsctl_tops_root[];
119 static const fs_operation_def_t zfsctl_tops_snapdir[];
120 static const fs_operation_def_t zfsctl_tops_snapshot[];
121 
122 static vnode_t *zfsctl_mknode_snapdir(vnode_t *);
123 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset);
124 static int zfsctl_unmount_snap(zfs_snapentry_t *, int, cred_t *);
125 
126 static gfs_opsvec_t zfsctl_opsvec[] = {
127 	{ ".zfs", zfsctl_tops_root, &zfsctl_ops_root },
128 	{ ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir },
129 	{ ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot },
130 	{ NULL }
131 };
132 
133 /*
134  * Root directory elements.  We have only a single static entry, 'snapshot'.
135  */
136 static gfs_dirent_t zfsctl_root_entries[] = {
137 	{ "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE },
138 	{ NULL }
139 };
140 
141 /* include . and .. in the calculation */
142 #define	NROOT_ENTRIES	((sizeof (zfsctl_root_entries) / \
143     sizeof (gfs_dirent_t)) + 1)
144 
145 
146 /*
147  * Initialize the various GFS pieces we'll need to create and manipulate .zfs
148  * directories.  This is called from the ZFS init routine, and initializes the
149  * vnode ops vectors that we'll be using.
150  */
151 void
152 zfsctl_init(void)
153 {
154 	VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0);
155 }
156 
157 void
158 zfsctl_fini(void)
159 {
160 	/*
161 	 * Remove vfsctl vnode ops
162 	 */
163 	if (zfsctl_ops_root)
164 		vn_freevnodeops(zfsctl_ops_root);
165 	if (zfsctl_ops_snapdir)
166 		vn_freevnodeops(zfsctl_ops_snapdir);
167 	if (zfsctl_ops_snapshot)
168 		vn_freevnodeops(zfsctl_ops_snapshot);
169 
170 	zfsctl_ops_root = NULL;
171 	zfsctl_ops_snapdir = NULL;
172 	zfsctl_ops_snapshot = NULL;
173 }
174 
175 /*
176  * Return the inode number associated with the 'snapshot' directory.
177  */
178 /* ARGSUSED */
179 static ino64_t
180 zfsctl_root_inode_cb(vnode_t *vp, int index)
181 {
182 	ASSERT(index == 0);
183 	return (ZFSCTL_INO_SNAPDIR);
184 }
185 
186 /*
187  * Create the '.zfs' directory.  This directory is cached as part of the VFS
188  * structure.  This results in a hold on the vfs_t.  The code in zfs_umount()
189  * therefore checks against a vfs_count of 2 instead of 1.  This reference
190  * is removed when the ctldir is destroyed in the unmount.
191  */
192 void
193 zfsctl_create(zfsvfs_t *zfsvfs)
194 {
195 	vnode_t *vp, *rvp;
196 	zfsctl_node_t *zcp;
197 
198 	ASSERT(zfsvfs->z_ctldir == NULL);
199 
200 	vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs,
201 	    zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries,
202 	    zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL);
203 	zcp = vp->v_data;
204 	zcp->zc_id = ZFSCTL_INO_ROOT;
205 
206 	VERIFY(VFS_ROOT(zfsvfs->z_vfs, &rvp) == 0);
207 	ZFS_TIME_DECODE(&zcp->zc_cmtime, VTOZ(rvp)->z_phys->zp_crtime);
208 	VN_RELE(rvp);
209 
210 	/*
211 	 * We're only faking the fact that we have a root of a filesystem for
212 	 * the sake of the GFS interfaces.  Undo the flag manipulation it did
213 	 * for us.
214 	 */
215 	vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT);
216 
217 	zfsvfs->z_ctldir = vp;
218 }
219 
220 /*
221  * Destroy the '.zfs' directory.  Only called when the filesystem is unmounted.
222  * There might still be more references if we were force unmounted, but only
223  * new zfs_inactive() calls can occur and they don't reference .zfs
224  */
225 void
226 zfsctl_destroy(zfsvfs_t *zfsvfs)
227 {
228 	VN_RELE(zfsvfs->z_ctldir);
229 	zfsvfs->z_ctldir = NULL;
230 }
231 
232 /*
233  * Given a root znode, retrieve the associated .zfs directory.
234  * Add a hold to the vnode and return it.
235  */
236 vnode_t *
237 zfsctl_root(znode_t *zp)
238 {
239 	ASSERT(zfs_has_ctldir(zp));
240 	VN_HOLD(zp->z_zfsvfs->z_ctldir);
241 	return (zp->z_zfsvfs->z_ctldir);
242 }
243 
244 /*
245  * Common open routine.  Disallow any write access.
246  */
247 /* ARGSUSED */
248 static int
249 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr, caller_context_t *ct)
250 {
251 	if (flags & FWRITE)
252 		return (EACCES);
253 
254 	return (0);
255 }
256 
257 /*
258  * Common close routine.  Nothing to do here.
259  */
260 /* ARGSUSED */
261 static int
262 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off,
263     cred_t *cr, caller_context_t *ct)
264 {
265 	return (0);
266 }
267 
268 /*
269  * Common access routine.  Disallow writes.
270  */
271 /* ARGSUSED */
272 static int
273 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr,
274     caller_context_t *ct)
275 {
276 	if (mode & VWRITE)
277 		return (EACCES);
278 
279 	return (0);
280 }
281 
282 /*
283  * Common getattr function.  Fill in basic information.
284  */
285 static void
286 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap)
287 {
288 	zfsctl_node_t	*zcp = vp->v_data;
289 	timestruc_t	now;
290 
291 	vap->va_uid = 0;
292 	vap->va_gid = 0;
293 	vap->va_rdev = 0;
294 	/*
295 	 * We are a purly virtual object, so we have no
296 	 * blocksize or allocated blocks.
297 	 */
298 	vap->va_blksize = 0;
299 	vap->va_nblocks = 0;
300 	vap->va_seq = 0;
301 	vap->va_fsid = vp->v_vfsp->vfs_dev;
302 	vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP |
303 	    S_IROTH | S_IXOTH;
304 	vap->va_type = VDIR;
305 	/*
306 	 * We live in the now (for atime).
307 	 */
308 	gethrestime(&now);
309 	vap->va_atime = now;
310 	vap->va_mtime = vap->va_ctime = zcp->zc_cmtime;
311 }
312 
313 /*ARGSUSED*/
314 static int
315 zfsctl_common_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
316 {
317 	zfsvfs_t	*zfsvfs = vp->v_vfsp->vfs_data;
318 	zfsctl_node_t	*zcp = vp->v_data;
319 	uint64_t	object = zcp->zc_id;
320 	zfid_short_t	*zfid;
321 	int		i;
322 
323 	ZFS_ENTER(zfsvfs);
324 
325 	if (fidp->fid_len < SHORT_FID_LEN) {
326 		fidp->fid_len = SHORT_FID_LEN;
327 		ZFS_EXIT(zfsvfs);
328 		return (ENOSPC);
329 	}
330 
331 	zfid = (zfid_short_t *)fidp;
332 
333 	zfid->zf_len = SHORT_FID_LEN;
334 
335 	for (i = 0; i < sizeof (zfid->zf_object); i++)
336 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
337 
338 	/* .zfs znodes always have a generation number of 0 */
339 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
340 		zfid->zf_gen[i] = 0;
341 
342 	ZFS_EXIT(zfsvfs);
343 	return (0);
344 }
345 
346 /*
347  * .zfs inode namespace
348  *
349  * We need to generate unique inode numbers for all files and directories
350  * within the .zfs pseudo-filesystem.  We use the following scheme:
351  *
352  * 	ENTRY			ZFSCTL_INODE
353  * 	.zfs			1
354  * 	.zfs/snapshot		2
355  * 	.zfs/snapshot/<snap>	objectid(snap)
356  */
357 
358 #define	ZFSCTL_INO_SNAP(id)	(id)
359 
360 /*
361  * Get root directory attributes.
362  */
363 /* ARGSUSED */
364 static int
365 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
366     caller_context_t *ct)
367 {
368 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
369 
370 	ZFS_ENTER(zfsvfs);
371 	vap->va_nodeid = ZFSCTL_INO_ROOT;
372 	vap->va_nlink = vap->va_size = NROOT_ENTRIES;
373 
374 	zfsctl_common_getattr(vp, vap);
375 	ZFS_EXIT(zfsvfs);
376 
377 	return (0);
378 }
379 
380 /*
381  * Special case the handling of "..".
382  */
383 /* ARGSUSED */
384 int
385 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
386     int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
387     int *direntflags, pathname_t *realpnp)
388 {
389 	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
390 	int err;
391 
392 	/*
393 	 * No extended attributes allowed under .zfs
394 	 */
395 	if (flags & LOOKUP_XATTR)
396 		return (EINVAL);
397 
398 	ZFS_ENTER(zfsvfs);
399 
400 	if (strcmp(nm, "..") == 0) {
401 		err = VFS_ROOT(dvp->v_vfsp, vpp);
402 	} else {
403 		err = gfs_vop_lookup(dvp, nm, vpp, pnp, flags, rdir,
404 		    cr, ct, direntflags, realpnp);
405 	}
406 
407 	ZFS_EXIT(zfsvfs);
408 
409 	return (err);
410 }
411 
412 static const fs_operation_def_t zfsctl_tops_root[] = {
413 	{ VOPNAME_OPEN,		{ .vop_open = zfsctl_common_open }	},
414 	{ VOPNAME_CLOSE,	{ .vop_close = zfsctl_common_close }	},
415 	{ VOPNAME_IOCTL,	{ .error = fs_inval }			},
416 	{ VOPNAME_GETATTR,	{ .vop_getattr = zfsctl_root_getattr }	},
417 	{ VOPNAME_ACCESS,	{ .vop_access = zfsctl_common_access }	},
418 	{ VOPNAME_READDIR,	{ .vop_readdir = gfs_vop_readdir } 	},
419 	{ VOPNAME_LOOKUP,	{ .vop_lookup = zfsctl_root_lookup }	},
420 	{ VOPNAME_SEEK,		{ .vop_seek = fs_seek }			},
421 	{ VOPNAME_INACTIVE,	{ .vop_inactive = gfs_vop_inactive }	},
422 	{ VOPNAME_FID,		{ .vop_fid = zfsctl_common_fid	}	},
423 	{ NULL }
424 };
425 
426 static int
427 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname)
428 {
429 	objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os;
430 
431 	dmu_objset_name(os, zname);
432 	if (strlen(zname) + 1 + strlen(name) >= len)
433 		return (ENAMETOOLONG);
434 	(void) strcat(zname, "@");
435 	(void) strcat(zname, name);
436 	return (0);
437 }
438 
439 static int
440 zfsctl_unmount_snap(zfs_snapentry_t *sep, int fflags, cred_t *cr)
441 {
442 	vnode_t *svp = sep->se_root;
443 	int error;
444 
445 	ASSERT(vn_ismntpt(svp));
446 
447 	/* this will be dropped by dounmount() */
448 	if ((error = vn_vfswlock(svp)) != 0)
449 		return (error);
450 
451 	VN_HOLD(svp);
452 	error = dounmount(vn_mountedvfs(svp), fflags, cr);
453 	if (error) {
454 		VN_RELE(svp);
455 		return (error);
456 	}
457 	VFS_RELE(svp->v_vfsp);
458 	/*
459 	 * We can't use VN_RELE(), as that will try to invoke
460 	 * zfsctl_snapdir_inactive(), which would cause us to destroy
461 	 * the sd_lock mutex held by our caller.
462 	 */
463 	ASSERT(svp->v_count == 1);
464 	gfs_vop_inactive(svp, cr, NULL);
465 
466 	kmem_free(sep->se_name, strlen(sep->se_name) + 1);
467 	kmem_free(sep, sizeof (zfs_snapentry_t));
468 
469 	return (0);
470 }
471 
472 static void
473 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm)
474 {
475 	avl_index_t where;
476 	vfs_t *vfsp;
477 	refstr_t *pathref;
478 	char newpath[MAXNAMELEN];
479 	char *tail;
480 
481 	ASSERT(MUTEX_HELD(&sdp->sd_lock));
482 	ASSERT(sep != NULL);
483 
484 	vfsp = vn_mountedvfs(sep->se_root);
485 	ASSERT(vfsp != NULL);
486 
487 	vfs_lock_wait(vfsp);
488 
489 	/*
490 	 * Change the name in the AVL tree.
491 	 */
492 	avl_remove(&sdp->sd_snaps, sep);
493 	kmem_free(sep->se_name, strlen(sep->se_name) + 1);
494 	sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP);
495 	(void) strcpy(sep->se_name, nm);
496 	VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL);
497 	avl_insert(&sdp->sd_snaps, sep, where);
498 
499 	/*
500 	 * Change the current mountpoint info:
501 	 * 	- update the tail of the mntpoint path
502 	 *	- update the tail of the resource path
503 	 */
504 	pathref = vfs_getmntpoint(vfsp);
505 	(void) strncpy(newpath, refstr_value(pathref), sizeof (newpath));
506 	VERIFY((tail = strrchr(newpath, '/')) != NULL);
507 	*(tail+1) = '\0';
508 	ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath));
509 	(void) strcat(newpath, nm);
510 	refstr_rele(pathref);
511 	vfs_setmntpoint(vfsp, newpath);
512 
513 	pathref = vfs_getresource(vfsp);
514 	(void) strncpy(newpath, refstr_value(pathref), sizeof (newpath));
515 	VERIFY((tail = strrchr(newpath, '@')) != NULL);
516 	*(tail+1) = '\0';
517 	ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath));
518 	(void) strcat(newpath, nm);
519 	refstr_rele(pathref);
520 	vfs_setresource(vfsp, newpath);
521 
522 	vfs_unlock(vfsp);
523 }
524 
525 /*ARGSUSED*/
526 static int
527 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm,
528     cred_t *cr, caller_context_t *ct, int flags)
529 {
530 	zfsctl_snapdir_t *sdp = sdvp->v_data;
531 	zfs_snapentry_t search, *sep;
532 	zfsvfs_t *zfsvfs;
533 	avl_index_t where;
534 	char from[MAXNAMELEN], to[MAXNAMELEN];
535 	char real[MAXNAMELEN];
536 	int err;
537 
538 	zfsvfs = sdvp->v_vfsp->vfs_data;
539 	ZFS_ENTER(zfsvfs);
540 
541 	if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
542 		err = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
543 		    MAXNAMELEN, NULL);
544 		if (err == 0) {
545 			snm = real;
546 		} else if (err != ENOTSUP) {
547 			ZFS_EXIT(zfsvfs);
548 			return (err);
549 		}
550 	}
551 
552 	ZFS_EXIT(zfsvfs);
553 
554 	err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from);
555 	if (!err)
556 		err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to);
557 	if (!err)
558 		err = zfs_secpolicy_rename_perms(from, to, cr);
559 	if (err)
560 		return (err);
561 
562 	/*
563 	 * Cannot move snapshots out of the snapdir.
564 	 */
565 	if (sdvp != tdvp)
566 		return (EINVAL);
567 
568 	if (strcmp(snm, tnm) == 0)
569 		return (0);
570 
571 	mutex_enter(&sdp->sd_lock);
572 
573 	search.se_name = (char *)snm;
574 	if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) {
575 		mutex_exit(&sdp->sd_lock);
576 		return (ENOENT);
577 	}
578 
579 	err = dmu_objset_rename(from, to, B_FALSE);
580 	if (err == 0)
581 		zfsctl_rename_snap(sdp, sep, tnm);
582 
583 	mutex_exit(&sdp->sd_lock);
584 
585 	return (err);
586 }
587 
588 /* ARGSUSED */
589 static int
590 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
591     caller_context_t *ct, int flags)
592 {
593 	zfsctl_snapdir_t *sdp = dvp->v_data;
594 	zfs_snapentry_t *sep;
595 	zfs_snapentry_t search;
596 	zfsvfs_t *zfsvfs;
597 	char snapname[MAXNAMELEN];
598 	char real[MAXNAMELEN];
599 	int err;
600 
601 	zfsvfs = dvp->v_vfsp->vfs_data;
602 	ZFS_ENTER(zfsvfs);
603 
604 	if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
605 
606 		err = dmu_snapshot_realname(zfsvfs->z_os, name, real,
607 		    MAXNAMELEN, NULL);
608 		if (err == 0) {
609 			name = real;
610 		} else if (err != ENOTSUP) {
611 			ZFS_EXIT(zfsvfs);
612 			return (err);
613 		}
614 	}
615 
616 	ZFS_EXIT(zfsvfs);
617 
618 	err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname);
619 	if (!err)
620 		err = zfs_secpolicy_destroy_perms(snapname, cr);
621 	if (err)
622 		return (err);
623 
624 	mutex_enter(&sdp->sd_lock);
625 
626 	search.se_name = name;
627 	sep = avl_find(&sdp->sd_snaps, &search, NULL);
628 	if (sep) {
629 		avl_remove(&sdp->sd_snaps, sep);
630 		err = zfsctl_unmount_snap(sep, MS_FORCE, cr);
631 		if (err)
632 			avl_add(&sdp->sd_snaps, sep);
633 		else
634 			err = dmu_objset_destroy(snapname);
635 	} else {
636 		err = ENOENT;
637 	}
638 
639 	mutex_exit(&sdp->sd_lock);
640 
641 	return (err);
642 }
643 
644 /*
645  * This creates a snapshot under '.zfs/snapshot'.
646  */
647 /* ARGSUSED */
648 static int
649 zfsctl_snapdir_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t  **vpp,
650     cred_t *cr, caller_context_t *cc, int flags, vsecattr_t *vsecp)
651 {
652 	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
653 	char name[MAXNAMELEN];
654 	int err;
655 	static enum symfollow follow = NO_FOLLOW;
656 	static enum uio_seg seg = UIO_SYSSPACE;
657 
658 	dmu_objset_name(zfsvfs->z_os, name);
659 
660 	*vpp = NULL;
661 
662 	err = zfs_secpolicy_snapshot_perms(name, cr);
663 	if (err)
664 		return (err);
665 
666 	if (err == 0) {
667 		err = dmu_objset_snapshot(name, dirname, B_FALSE);
668 		if (err)
669 			return (err);
670 		err = lookupnameat(dirname, seg, follow, NULL, vpp, dvp);
671 	}
672 
673 	return (err);
674 }
675 
676 /*
677  * Lookup entry point for the 'snapshot' directory.  Try to open the
678  * snapshot if it exist, creating the pseudo filesystem vnode as necessary.
679  * Perform a mount of the associated dataset on top of the vnode.
680  */
681 /* ARGSUSED */
682 static int
683 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
684     int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
685     int *direntflags, pathname_t *realpnp)
686 {
687 	zfsctl_snapdir_t *sdp = dvp->v_data;
688 	objset_t *snap;
689 	char snapname[MAXNAMELEN];
690 	char real[MAXNAMELEN];
691 	char *mountpoint;
692 	zfs_snapentry_t *sep, search;
693 	struct mounta margs;
694 	vfs_t *vfsp;
695 	size_t mountpoint_len;
696 	avl_index_t where;
697 	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
698 	int err;
699 
700 	/*
701 	 * No extended attributes allowed under .zfs
702 	 */
703 	if (flags & LOOKUP_XATTR)
704 		return (EINVAL);
705 
706 	ASSERT(dvp->v_type == VDIR);
707 
708 	if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0)
709 		return (0);
710 
711 	/*
712 	 * If we get a recursive call, that means we got called
713 	 * from the domount() code while it was trying to look up the
714 	 * spec (which looks like a local path for zfs).  We need to
715 	 * add some flag to domount() to tell it not to do this lookup.
716 	 */
717 	if (MUTEX_HELD(&sdp->sd_lock))
718 		return (ENOENT);
719 
720 	ZFS_ENTER(zfsvfs);
721 
722 	if (flags & FIGNORECASE) {
723 		boolean_t conflict = B_FALSE;
724 
725 		err = dmu_snapshot_realname(zfsvfs->z_os, nm, real,
726 		    MAXNAMELEN, &conflict);
727 		if (err == 0) {
728 			nm = real;
729 		} else if (err != ENOTSUP) {
730 			ZFS_EXIT(zfsvfs);
731 			return (err);
732 		}
733 		if (realpnp)
734 			(void) strlcpy(realpnp->pn_buf, nm,
735 			    realpnp->pn_bufsize);
736 		if (conflict && direntflags)
737 			*direntflags = ED_CASE_CONFLICT;
738 	}
739 
740 	mutex_enter(&sdp->sd_lock);
741 	search.se_name = (char *)nm;
742 	if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) {
743 		*vpp = sep->se_root;
744 		VN_HOLD(*vpp);
745 		err = traverse(vpp);
746 		if (err) {
747 			VN_RELE(*vpp);
748 			*vpp = NULL;
749 		} else if (*vpp == sep->se_root) {
750 			/*
751 			 * The snapshot was unmounted behind our backs,
752 			 * try to remount it.
753 			 */
754 			goto domount;
755 		} else {
756 			/*
757 			 * VROOT was set during the traverse call.  We need
758 			 * to clear it since we're pretending to be part
759 			 * of our parent's vfs.
760 			 */
761 			(*vpp)->v_flag &= ~VROOT;
762 		}
763 		mutex_exit(&sdp->sd_lock);
764 		ZFS_EXIT(zfsvfs);
765 		return (err);
766 	}
767 
768 	/*
769 	 * The requested snapshot is not currently mounted, look it up.
770 	 */
771 	err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname);
772 	if (err) {
773 		mutex_exit(&sdp->sd_lock);
774 		ZFS_EXIT(zfsvfs);
775 		return (err);
776 	}
777 	if (dmu_objset_open(snapname, DMU_OST_ZFS,
778 	    DS_MODE_STANDARD | DS_MODE_READONLY, &snap) != 0) {
779 		mutex_exit(&sdp->sd_lock);
780 		ZFS_EXIT(zfsvfs);
781 		return (ENOENT);
782 	}
783 
784 	sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP);
785 	sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP);
786 	(void) strcpy(sep->se_name, nm);
787 	*vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap));
788 	avl_insert(&sdp->sd_snaps, sep, where);
789 
790 	dmu_objset_close(snap);
791 domount:
792 	mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) +
793 	    strlen("/.zfs/snapshot/") + strlen(nm) + 1;
794 	mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP);
795 	(void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s",
796 	    refstr_value(dvp->v_vfsp->vfs_mntpt), nm);
797 
798 	margs.spec = snapname;
799 	margs.dir = mountpoint;
800 	margs.flags = MS_SYSSPACE | MS_NOMNTTAB;
801 	margs.fstype = "zfs";
802 	margs.dataptr = NULL;
803 	margs.datalen = 0;
804 	margs.optptr = NULL;
805 	margs.optlen = 0;
806 
807 	err = domount("zfs", &margs, *vpp, kcred, &vfsp);
808 	kmem_free(mountpoint, mountpoint_len);
809 
810 	if (err == 0) {
811 		/*
812 		 * Return the mounted root rather than the covered mount point.
813 		 * Takes the GFS vnode at .zfs/snapshot/<snapname> and returns
814 		 * the ZFS vnode mounted on top of the GFS node.  This ZFS
815 		 * vnode is the root the newly created vfsp.
816 		 */
817 		VFS_RELE(vfsp);
818 		err = traverse(vpp);
819 	}
820 
821 	if (err == 0) {
822 		/*
823 		 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>.
824 		 *
825 		 * This is where we lie about our v_vfsp in order to
826 		 * make .zfs/snapshot/<snapname> accessible over NFS
827 		 * without requiring manual mounts of <snapname>.
828 		 */
829 		ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs);
830 		VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs;
831 		(*vpp)->v_vfsp = zfsvfs->z_vfs;
832 		(*vpp)->v_flag &= ~VROOT;
833 	}
834 	mutex_exit(&sdp->sd_lock);
835 	ZFS_EXIT(zfsvfs);
836 
837 	/*
838 	 * If we had an error, drop our hold on the vnode and
839 	 * zfsctl_snapshot_inactive() will clean up.
840 	 */
841 	if (err) {
842 		VN_RELE(*vpp);
843 		*vpp = NULL;
844 	}
845 	return (err);
846 }
847 
848 /* ARGSUSED */
849 static int
850 zfsctl_snapdir_readdir_cb(vnode_t *vp, void *dp, int *eofp,
851     offset_t *offp, offset_t *nextp, void *data, int flags)
852 {
853 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
854 	char snapname[MAXNAMELEN];
855 	uint64_t id, cookie;
856 	boolean_t case_conflict;
857 	int error;
858 
859 	ZFS_ENTER(zfsvfs);
860 
861 	cookie = *offp;
862 	error = dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id,
863 	    &cookie, &case_conflict);
864 	if (error) {
865 		ZFS_EXIT(zfsvfs);
866 		if (error == ENOENT) {
867 			*eofp = 1;
868 			return (0);
869 		}
870 		return (error);
871 	}
872 
873 	if (flags & V_RDDIR_ENTFLAGS) {
874 		edirent_t *eodp = dp;
875 
876 		(void) strcpy(eodp->ed_name, snapname);
877 		eodp->ed_ino = ZFSCTL_INO_SNAP(id);
878 		eodp->ed_eflags = case_conflict ? ED_CASE_CONFLICT : 0;
879 	} else {
880 		struct dirent64 *odp = dp;
881 
882 		(void) strcpy(odp->d_name, snapname);
883 		odp->d_ino = ZFSCTL_INO_SNAP(id);
884 	}
885 	*nextp = cookie;
886 
887 	ZFS_EXIT(zfsvfs);
888 
889 	return (0);
890 }
891 
892 /*
893  * pvp is the '.zfs' directory (zfsctl_node_t).
894  * Creates vp, which is '.zfs/snapshot' (zfsctl_snapdir_t).
895  *
896  * This function is the callback to create a GFS vnode for '.zfs/snapshot'
897  * when a lookup is performed on .zfs for "snapshot".
898  */
899 vnode_t *
900 zfsctl_mknode_snapdir(vnode_t *pvp)
901 {
902 	vnode_t *vp;
903 	zfsctl_snapdir_t *sdp;
904 
905 	vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp,
906 	    zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN,
907 	    zfsctl_snapdir_readdir_cb, NULL);
908 	sdp = vp->v_data;
909 	sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR;
910 	sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime;
911 	mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
912 	avl_create(&sdp->sd_snaps, snapentry_compare,
913 	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node));
914 	return (vp);
915 }
916 
917 /* ARGSUSED */
918 static int
919 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
920     caller_context_t *ct)
921 {
922 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
923 	zfsctl_snapdir_t *sdp = vp->v_data;
924 
925 	ZFS_ENTER(zfsvfs);
926 	zfsctl_common_getattr(vp, vap);
927 	vap->va_nodeid = gfs_file_inode(vp);
928 	vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2;
929 	ZFS_EXIT(zfsvfs);
930 
931 	return (0);
932 }
933 
934 /* ARGSUSED */
935 static void
936 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
937 {
938 	zfsctl_snapdir_t *sdp = vp->v_data;
939 	void *private;
940 
941 	private = gfs_dir_inactive(vp);
942 	if (private != NULL) {
943 		ASSERT(avl_numnodes(&sdp->sd_snaps) == 0);
944 		mutex_destroy(&sdp->sd_lock);
945 		avl_destroy(&sdp->sd_snaps);
946 		kmem_free(private, sizeof (zfsctl_snapdir_t));
947 	}
948 }
949 
950 static const fs_operation_def_t zfsctl_tops_snapdir[] = {
951 	{ VOPNAME_OPEN,		{ .vop_open = zfsctl_common_open }	},
952 	{ VOPNAME_CLOSE,	{ .vop_close = zfsctl_common_close }	},
953 	{ VOPNAME_IOCTL,	{ .error = fs_inval }			},
954 	{ VOPNAME_GETATTR,	{ .vop_getattr = zfsctl_snapdir_getattr } },
955 	{ VOPNAME_ACCESS,	{ .vop_access = zfsctl_common_access }	},
956 	{ VOPNAME_RENAME,	{ .vop_rename = zfsctl_snapdir_rename }	},
957 	{ VOPNAME_RMDIR,	{ .vop_rmdir = zfsctl_snapdir_remove }	},
958 	{ VOPNAME_MKDIR,	{ .vop_mkdir = zfsctl_snapdir_mkdir }	},
959 	{ VOPNAME_READDIR,	{ .vop_readdir = gfs_vop_readdir }	},
960 	{ VOPNAME_LOOKUP,	{ .vop_lookup = zfsctl_snapdir_lookup }	},
961 	{ VOPNAME_SEEK,		{ .vop_seek = fs_seek }			},
962 	{ VOPNAME_INACTIVE,	{ .vop_inactive = zfsctl_snapdir_inactive } },
963 	{ VOPNAME_FID,		{ .vop_fid = zfsctl_common_fid }	},
964 	{ NULL }
965 };
966 
967 /*
968  * pvp is the GFS vnode '.zfs/snapshot'.
969  *
970  * This creates a GFS node under '.zfs/snapshot' representing each
971  * snapshot.  This newly created GFS node is what we mount snapshot
972  * vfs_t's ontop of.
973  */
974 static vnode_t *
975 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset)
976 {
977 	vnode_t *vp;
978 	zfsctl_node_t *zcp;
979 
980 	vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp,
981 	    zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL);
982 	zcp = vp->v_data;
983 	zcp->zc_id = objset;
984 	VFS_HOLD(vp->v_vfsp);
985 
986 	return (vp);
987 }
988 
989 static void
990 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
991 {
992 	zfsctl_snapdir_t *sdp;
993 	zfs_snapentry_t *sep, *next;
994 	vnode_t *dvp;
995 
996 	VERIFY(gfs_dir_lookup(vp, "..", &dvp, cr, 0, NULL, NULL) == 0);
997 	sdp = dvp->v_data;
998 
999 	mutex_enter(&sdp->sd_lock);
1000 
1001 	if (vp->v_count > 1) {
1002 		mutex_exit(&sdp->sd_lock);
1003 		return;
1004 	}
1005 	ASSERT(!vn_ismntpt(vp));
1006 
1007 	sep = avl_first(&sdp->sd_snaps);
1008 	while (sep != NULL) {
1009 		next = AVL_NEXT(&sdp->sd_snaps, sep);
1010 
1011 		if (sep->se_root == vp) {
1012 			avl_remove(&sdp->sd_snaps, sep);
1013 			kmem_free(sep->se_name, strlen(sep->se_name) + 1);
1014 			kmem_free(sep, sizeof (zfs_snapentry_t));
1015 			break;
1016 		}
1017 		sep = next;
1018 	}
1019 	ASSERT(sep != NULL);
1020 
1021 	mutex_exit(&sdp->sd_lock);
1022 	VN_RELE(dvp);
1023 	VFS_RELE(vp->v_vfsp);
1024 
1025 	/*
1026 	 * Dispose of the vnode for the snapshot mount point.
1027 	 * This is safe to do because once this entry has been removed
1028 	 * from the AVL tree, it can't be found again, so cannot become
1029 	 * "active".  If we lookup the same name again we will end up
1030 	 * creating a new vnode.
1031 	 */
1032 	gfs_vop_inactive(vp, cr, ct);
1033 }
1034 
1035 
1036 /*
1037  * These VP's should never see the light of day.  They should always
1038  * be covered.
1039  */
1040 static const fs_operation_def_t zfsctl_tops_snapshot[] = {
1041 	VOPNAME_INACTIVE, { .vop_inactive =  zfsctl_snapshot_inactive },
1042 	NULL, NULL
1043 };
1044 
1045 int
1046 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp)
1047 {
1048 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1049 	vnode_t *dvp, *vp;
1050 	zfsctl_snapdir_t *sdp;
1051 	zfsctl_node_t *zcp;
1052 	zfs_snapentry_t *sep;
1053 	int error;
1054 
1055 	ASSERT(zfsvfs->z_ctldir != NULL);
1056 	error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1057 	    NULL, 0, NULL, kcred, NULL, NULL, NULL);
1058 	if (error != 0)
1059 		return (error);
1060 	sdp = dvp->v_data;
1061 
1062 	mutex_enter(&sdp->sd_lock);
1063 	sep = avl_first(&sdp->sd_snaps);
1064 	while (sep != NULL) {
1065 		vp = sep->se_root;
1066 		zcp = vp->v_data;
1067 		if (zcp->zc_id == objsetid)
1068 			break;
1069 
1070 		sep = AVL_NEXT(&sdp->sd_snaps, sep);
1071 	}
1072 
1073 	if (sep != NULL) {
1074 		VN_HOLD(vp);
1075 		/*
1076 		 * Return the mounted root rather than the covered mount point.
1077 		 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid>
1078 		 * and returns the ZFS vnode mounted on top of the GFS node.
1079 		 * This ZFS vnode is the root of the vfs for objset 'objsetid'.
1080 		 */
1081 		error = traverse(&vp);
1082 		if (error == 0) {
1083 			if (vp == sep->se_root)
1084 				error = EINVAL;
1085 			else
1086 				*zfsvfsp = VTOZ(vp)->z_zfsvfs;
1087 		}
1088 		mutex_exit(&sdp->sd_lock);
1089 		VN_RELE(vp);
1090 	} else {
1091 		error = EINVAL;
1092 		mutex_exit(&sdp->sd_lock);
1093 	}
1094 
1095 	VN_RELE(dvp);
1096 
1097 	return (error);
1098 }
1099 
1100 /*
1101  * Unmount any snapshots for the given filesystem.  This is called from
1102  * zfs_umount() - if we have a ctldir, then go through and unmount all the
1103  * snapshots.
1104  */
1105 int
1106 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr)
1107 {
1108 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1109 	vnode_t *dvp;
1110 	zfsctl_snapdir_t *sdp;
1111 	zfs_snapentry_t *sep, *next;
1112 	int error;
1113 
1114 	ASSERT(zfsvfs->z_ctldir != NULL);
1115 	error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1116 	    NULL, 0, NULL, cr, NULL, NULL, NULL);
1117 	if (error != 0)
1118 		return (error);
1119 	sdp = dvp->v_data;
1120 
1121 	mutex_enter(&sdp->sd_lock);
1122 
1123 	sep = avl_first(&sdp->sd_snaps);
1124 	while (sep != NULL) {
1125 		next = AVL_NEXT(&sdp->sd_snaps, sep);
1126 
1127 		/*
1128 		 * If this snapshot is not mounted, then it must
1129 		 * have just been unmounted by somebody else, and
1130 		 * will be cleaned up by zfsctl_snapdir_inactive().
1131 		 */
1132 		if (vn_ismntpt(sep->se_root)) {
1133 			avl_remove(&sdp->sd_snaps, sep);
1134 			error = zfsctl_unmount_snap(sep, fflags, cr);
1135 			if (error) {
1136 				avl_add(&sdp->sd_snaps, sep);
1137 				break;
1138 			}
1139 		}
1140 		sep = next;
1141 	}
1142 
1143 	mutex_exit(&sdp->sd_lock);
1144 	VN_RELE(dvp);
1145 
1146 	return (error);
1147 }
1148