1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012 by Delphix. All rights reserved. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/vdev_impl.h> 32 #include <sys/spa_impl.h> 33 #include <sys/zio.h> 34 #include <sys/avl.h> 35 36 /* 37 * These tunables are for performance analysis. 38 */ 39 40 /* The maximum number of I/Os concurrently pending to each device. */ 41 int zfs_vdev_max_pending = 10; 42 43 /* 44 * The initial number of I/Os pending to each device, before it starts ramping 45 * up to zfs_vdev_max_pending. 46 */ 47 int zfs_vdev_min_pending = 4; 48 49 /* 50 * The deadlines are grouped into buckets based on zfs_vdev_time_shift: 51 * deadline = pri + gethrtime() >> time_shift) 52 */ 53 int zfs_vdev_time_shift = 29; /* each bucket is 0.537 seconds */ 54 55 /* exponential I/O issue ramp-up rate */ 56 int zfs_vdev_ramp_rate = 2; 57 58 /* 59 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O. 60 * For read I/Os, we also aggregate across small adjacency gaps; for writes 61 * we include spans of optional I/Os to aid aggregation at the disk even when 62 * they aren't able to help us aggregate at this level. 63 */ 64 int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE; 65 int zfs_vdev_read_gap_limit = 32 << 10; 66 int zfs_vdev_write_gap_limit = 4 << 10; 67 68 /* 69 * Virtual device vector for disk I/O scheduling. 70 */ 71 int 72 vdev_queue_deadline_compare(const void *x1, const void *x2) 73 { 74 const zio_t *z1 = x1; 75 const zio_t *z2 = x2; 76 77 if (z1->io_deadline < z2->io_deadline) 78 return (-1); 79 if (z1->io_deadline > z2->io_deadline) 80 return (1); 81 82 if (z1->io_offset < z2->io_offset) 83 return (-1); 84 if (z1->io_offset > z2->io_offset) 85 return (1); 86 87 if (z1 < z2) 88 return (-1); 89 if (z1 > z2) 90 return (1); 91 92 return (0); 93 } 94 95 int 96 vdev_queue_offset_compare(const void *x1, const void *x2) 97 { 98 const zio_t *z1 = x1; 99 const zio_t *z2 = x2; 100 101 if (z1->io_offset < z2->io_offset) 102 return (-1); 103 if (z1->io_offset > z2->io_offset) 104 return (1); 105 106 if (z1 < z2) 107 return (-1); 108 if (z1 > z2) 109 return (1); 110 111 return (0); 112 } 113 114 void 115 vdev_queue_init(vdev_t *vd) 116 { 117 vdev_queue_t *vq = &vd->vdev_queue; 118 119 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL); 120 121 avl_create(&vq->vq_deadline_tree, vdev_queue_deadline_compare, 122 sizeof (zio_t), offsetof(struct zio, io_deadline_node)); 123 124 avl_create(&vq->vq_read_tree, vdev_queue_offset_compare, 125 sizeof (zio_t), offsetof(struct zio, io_offset_node)); 126 127 avl_create(&vq->vq_write_tree, vdev_queue_offset_compare, 128 sizeof (zio_t), offsetof(struct zio, io_offset_node)); 129 130 avl_create(&vq->vq_pending_tree, vdev_queue_offset_compare, 131 sizeof (zio_t), offsetof(struct zio, io_offset_node)); 132 } 133 134 void 135 vdev_queue_fini(vdev_t *vd) 136 { 137 vdev_queue_t *vq = &vd->vdev_queue; 138 139 avl_destroy(&vq->vq_deadline_tree); 140 avl_destroy(&vq->vq_read_tree); 141 avl_destroy(&vq->vq_write_tree); 142 avl_destroy(&vq->vq_pending_tree); 143 144 mutex_destroy(&vq->vq_lock); 145 } 146 147 static void 148 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio) 149 { 150 spa_t *spa = zio->io_spa; 151 avl_add(&vq->vq_deadline_tree, zio); 152 avl_add(zio->io_vdev_tree, zio); 153 154 if (spa->spa_iokstat != NULL) { 155 mutex_enter(&spa->spa_iokstat_lock); 156 kstat_waitq_enter(spa->spa_iokstat->ks_data); 157 mutex_exit(&spa->spa_iokstat_lock); 158 } 159 } 160 161 static void 162 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio) 163 { 164 spa_t *spa = zio->io_spa; 165 avl_remove(&vq->vq_deadline_tree, zio); 166 avl_remove(zio->io_vdev_tree, zio); 167 168 if (spa->spa_iokstat != NULL) { 169 mutex_enter(&spa->spa_iokstat_lock); 170 kstat_waitq_exit(spa->spa_iokstat->ks_data); 171 mutex_exit(&spa->spa_iokstat_lock); 172 } 173 } 174 175 static void 176 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio) 177 { 178 spa_t *spa = zio->io_spa; 179 avl_add(&vq->vq_pending_tree, zio); 180 if (spa->spa_iokstat != NULL) { 181 mutex_enter(&spa->spa_iokstat_lock); 182 kstat_runq_enter(spa->spa_iokstat->ks_data); 183 mutex_exit(&spa->spa_iokstat_lock); 184 } 185 } 186 187 static void 188 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) 189 { 190 spa_t *spa = zio->io_spa; 191 avl_remove(&vq->vq_pending_tree, zio); 192 if (spa->spa_iokstat != NULL) { 193 kstat_io_t *ksio = spa->spa_iokstat->ks_data; 194 195 mutex_enter(&spa->spa_iokstat_lock); 196 kstat_runq_exit(spa->spa_iokstat->ks_data); 197 if (zio->io_type == ZIO_TYPE_READ) { 198 ksio->reads++; 199 ksio->nread += zio->io_size; 200 } else if (zio->io_type == ZIO_TYPE_WRITE) { 201 ksio->writes++; 202 ksio->nwritten += zio->io_size; 203 } 204 mutex_exit(&spa->spa_iokstat_lock); 205 } 206 } 207 208 static void 209 vdev_queue_agg_io_done(zio_t *aio) 210 { 211 zio_t *pio; 212 213 while ((pio = zio_walk_parents(aio)) != NULL) 214 if (aio->io_type == ZIO_TYPE_READ) 215 bcopy((char *)aio->io_data + (pio->io_offset - 216 aio->io_offset), pio->io_data, pio->io_size); 217 218 zio_buf_free(aio->io_data, aio->io_size); 219 } 220 221 /* 222 * Compute the range spanned by two i/os, which is the endpoint of the last 223 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset). 224 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio); 225 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0. 226 */ 227 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset) 228 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) 229 230 static zio_t * 231 vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit) 232 { 233 zio_t *fio, *lio, *aio, *dio, *nio, *mio; 234 avl_tree_t *t; 235 int flags; 236 uint64_t maxspan = zfs_vdev_aggregation_limit; 237 uint64_t maxgap; 238 int stretch; 239 240 again: 241 ASSERT(MUTEX_HELD(&vq->vq_lock)); 242 243 if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit || 244 avl_numnodes(&vq->vq_deadline_tree) == 0) 245 return (NULL); 246 247 fio = lio = avl_first(&vq->vq_deadline_tree); 248 249 t = fio->io_vdev_tree; 250 flags = fio->io_flags & ZIO_FLAG_AGG_INHERIT; 251 maxgap = (t == &vq->vq_read_tree) ? zfs_vdev_read_gap_limit : 0; 252 253 if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) { 254 /* 255 * We can aggregate I/Os that are sufficiently adjacent and of 256 * the same flavor, as expressed by the AGG_INHERIT flags. 257 * The latter requirement is necessary so that certain 258 * attributes of the I/O, such as whether it's a normal I/O 259 * or a scrub/resilver, can be preserved in the aggregate. 260 * We can include optional I/Os, but don't allow them 261 * to begin a range as they add no benefit in that situation. 262 */ 263 264 /* 265 * We keep track of the last non-optional I/O. 266 */ 267 mio = (fio->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : fio; 268 269 /* 270 * Walk backwards through sufficiently contiguous I/Os 271 * recording the last non-option I/O. 272 */ 273 while ((dio = AVL_PREV(t, fio)) != NULL && 274 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 275 IO_SPAN(dio, lio) <= maxspan && 276 IO_GAP(dio, fio) <= maxgap) { 277 fio = dio; 278 if (mio == NULL && !(fio->io_flags & ZIO_FLAG_OPTIONAL)) 279 mio = fio; 280 } 281 282 /* 283 * Skip any initial optional I/Os. 284 */ 285 while ((fio->io_flags & ZIO_FLAG_OPTIONAL) && fio != lio) { 286 fio = AVL_NEXT(t, fio); 287 ASSERT(fio != NULL); 288 } 289 290 /* 291 * Walk forward through sufficiently contiguous I/Os. 292 */ 293 while ((dio = AVL_NEXT(t, lio)) != NULL && 294 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 295 IO_SPAN(fio, dio) <= maxspan && 296 IO_GAP(lio, dio) <= maxgap) { 297 lio = dio; 298 if (!(lio->io_flags & ZIO_FLAG_OPTIONAL)) 299 mio = lio; 300 } 301 302 /* 303 * Now that we've established the range of the I/O aggregation 304 * we must decide what to do with trailing optional I/Os. 305 * For reads, there's nothing to do. While we are unable to 306 * aggregate further, it's possible that a trailing optional 307 * I/O would allow the underlying device to aggregate with 308 * subsequent I/Os. We must therefore determine if the next 309 * non-optional I/O is close enough to make aggregation 310 * worthwhile. 311 */ 312 stretch = B_FALSE; 313 if (t != &vq->vq_read_tree && mio != NULL) { 314 nio = lio; 315 while ((dio = AVL_NEXT(t, nio)) != NULL && 316 IO_GAP(nio, dio) == 0 && 317 IO_GAP(mio, dio) <= zfs_vdev_write_gap_limit) { 318 nio = dio; 319 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { 320 stretch = B_TRUE; 321 break; 322 } 323 } 324 } 325 326 if (stretch) { 327 /* This may be a no-op. */ 328 VERIFY((dio = AVL_NEXT(t, lio)) != NULL); 329 dio->io_flags &= ~ZIO_FLAG_OPTIONAL; 330 } else { 331 while (lio != mio && lio != fio) { 332 ASSERT(lio->io_flags & ZIO_FLAG_OPTIONAL); 333 lio = AVL_PREV(t, lio); 334 ASSERT(lio != NULL); 335 } 336 } 337 } 338 339 if (fio != lio) { 340 uint64_t size = IO_SPAN(fio, lio); 341 ASSERT(size <= zfs_vdev_aggregation_limit); 342 343 aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset, 344 zio_buf_alloc(size), size, fio->io_type, ZIO_PRIORITY_AGG, 345 flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, 346 vdev_queue_agg_io_done, NULL); 347 aio->io_timestamp = fio->io_timestamp; 348 349 nio = fio; 350 do { 351 dio = nio; 352 nio = AVL_NEXT(t, dio); 353 ASSERT(dio->io_type == aio->io_type); 354 ASSERT(dio->io_vdev_tree == t); 355 356 if (dio->io_flags & ZIO_FLAG_NODATA) { 357 ASSERT(dio->io_type == ZIO_TYPE_WRITE); 358 bzero((char *)aio->io_data + (dio->io_offset - 359 aio->io_offset), dio->io_size); 360 } else if (dio->io_type == ZIO_TYPE_WRITE) { 361 bcopy(dio->io_data, (char *)aio->io_data + 362 (dio->io_offset - aio->io_offset), 363 dio->io_size); 364 } 365 366 zio_add_child(dio, aio); 367 vdev_queue_io_remove(vq, dio); 368 zio_vdev_io_bypass(dio); 369 zio_execute(dio); 370 } while (dio != lio); 371 372 vdev_queue_pending_add(vq, aio); 373 374 return (aio); 375 } 376 377 ASSERT(fio->io_vdev_tree == t); 378 vdev_queue_io_remove(vq, fio); 379 380 /* 381 * If the I/O is or was optional and therefore has no data, we need to 382 * simply discard it. We need to drop the vdev queue's lock to avoid a 383 * deadlock that we could encounter since this I/O will complete 384 * immediately. 385 */ 386 if (fio->io_flags & ZIO_FLAG_NODATA) { 387 mutex_exit(&vq->vq_lock); 388 zio_vdev_io_bypass(fio); 389 zio_execute(fio); 390 mutex_enter(&vq->vq_lock); 391 goto again; 392 } 393 394 vdev_queue_pending_add(vq, fio); 395 396 return (fio); 397 } 398 399 zio_t * 400 vdev_queue_io(zio_t *zio) 401 { 402 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 403 zio_t *nio; 404 405 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 406 407 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE) 408 return (zio); 409 410 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE; 411 412 if (zio->io_type == ZIO_TYPE_READ) 413 zio->io_vdev_tree = &vq->vq_read_tree; 414 else 415 zio->io_vdev_tree = &vq->vq_write_tree; 416 417 mutex_enter(&vq->vq_lock); 418 419 zio->io_timestamp = gethrtime(); 420 zio->io_deadline = (zio->io_timestamp >> zfs_vdev_time_shift) + 421 zio->io_priority; 422 423 vdev_queue_io_add(vq, zio); 424 425 nio = vdev_queue_io_to_issue(vq, zfs_vdev_min_pending); 426 427 mutex_exit(&vq->vq_lock); 428 429 if (nio == NULL) 430 return (NULL); 431 432 if (nio->io_done == vdev_queue_agg_io_done) { 433 zio_nowait(nio); 434 return (NULL); 435 } 436 437 return (nio); 438 } 439 440 void 441 vdev_queue_io_done(zio_t *zio) 442 { 443 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 444 445 if (zio_injection_enabled) 446 delay(SEC_TO_TICK(zio_handle_io_delay(zio))); 447 448 mutex_enter(&vq->vq_lock); 449 450 vdev_queue_pending_remove(vq, zio); 451 452 vq->vq_io_complete_ts = gethrtime(); 453 454 for (int i = 0; i < zfs_vdev_ramp_rate; i++) { 455 zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending); 456 if (nio == NULL) 457 break; 458 mutex_exit(&vq->vq_lock); 459 if (nio->io_done == vdev_queue_agg_io_done) { 460 zio_nowait(nio); 461 } else { 462 zio_vdev_io_reissue(nio); 463 zio_execute(nio); 464 } 465 mutex_enter(&vq->vq_lock); 466 } 467 468 mutex_exit(&vq->vq_lock); 469 } 470