1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2013 by Delphix. All rights reserved. 25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* 29 * Virtual Device Labels 30 * --------------------- 31 * 32 * The vdev label serves several distinct purposes: 33 * 34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 35 * identity within the pool. 36 * 37 * 2. Verify that all the devices given in a configuration are present 38 * within the pool. 39 * 40 * 3. Determine the uberblock for the pool. 41 * 42 * 4. In case of an import operation, determine the configuration of the 43 * toplevel vdev of which it is a part. 44 * 45 * 5. If an import operation cannot find all the devices in the pool, 46 * provide enough information to the administrator to determine which 47 * devices are missing. 48 * 49 * It is important to note that while the kernel is responsible for writing the 50 * label, it only consumes the information in the first three cases. The 51 * latter information is only consumed in userland when determining the 52 * configuration to import a pool. 53 * 54 * 55 * Label Organization 56 * ------------------ 57 * 58 * Before describing the contents of the label, it's important to understand how 59 * the labels are written and updated with respect to the uberblock. 60 * 61 * When the pool configuration is altered, either because it was newly created 62 * or a device was added, we want to update all the labels such that we can deal 63 * with fatal failure at any point. To this end, each disk has two labels which 64 * are updated before and after the uberblock is synced. Assuming we have 65 * labels and an uberblock with the following transaction groups: 66 * 67 * L1 UB L2 68 * +------+ +------+ +------+ 69 * | | | | | | 70 * | t10 | | t10 | | t10 | 71 * | | | | | | 72 * +------+ +------+ +------+ 73 * 74 * In this stable state, the labels and the uberblock were all updated within 75 * the same transaction group (10). Each label is mirrored and checksummed, so 76 * that we can detect when we fail partway through writing the label. 77 * 78 * In order to identify which labels are valid, the labels are written in the 79 * following manner: 80 * 81 * 1. For each vdev, update 'L1' to the new label 82 * 2. Update the uberblock 83 * 3. For each vdev, update 'L2' to the new label 84 * 85 * Given arbitrary failure, we can determine the correct label to use based on 86 * the transaction group. If we fail after updating L1 but before updating the 87 * UB, we will notice that L1's transaction group is greater than the uberblock, 88 * so L2 must be valid. If we fail after writing the uberblock but before 89 * writing L2, we will notice that L2's transaction group is less than L1, and 90 * therefore L1 is valid. 91 * 92 * Another added complexity is that not every label is updated when the config 93 * is synced. If we add a single device, we do not want to have to re-write 94 * every label for every device in the pool. This means that both L1 and L2 may 95 * be older than the pool uberblock, because the necessary information is stored 96 * on another vdev. 97 * 98 * 99 * On-disk Format 100 * -------------- 101 * 102 * The vdev label consists of two distinct parts, and is wrapped within the 103 * vdev_label_t structure. The label includes 8k of padding to permit legacy 104 * VTOC disk labels, but is otherwise ignored. 105 * 106 * The first half of the label is a packed nvlist which contains pool wide 107 * properties, per-vdev properties, and configuration information. It is 108 * described in more detail below. 109 * 110 * The latter half of the label consists of a redundant array of uberblocks. 111 * These uberblocks are updated whenever a transaction group is committed, 112 * or when the configuration is updated. When a pool is loaded, we scan each 113 * vdev for the 'best' uberblock. 114 * 115 * 116 * Configuration Information 117 * ------------------------- 118 * 119 * The nvlist describing the pool and vdev contains the following elements: 120 * 121 * version ZFS on-disk version 122 * name Pool name 123 * state Pool state 124 * txg Transaction group in which this label was written 125 * pool_guid Unique identifier for this pool 126 * vdev_tree An nvlist describing vdev tree. 127 * features_for_read 128 * An nvlist of the features necessary for reading the MOS. 129 * 130 * Each leaf device label also contains the following: 131 * 132 * top_guid Unique ID for top-level vdev in which this is contained 133 * guid Unique ID for the leaf vdev 134 * 135 * The 'vs' configuration follows the format described in 'spa_config.c'. 136 */ 137 138 #include <sys/zfs_context.h> 139 #include <sys/spa.h> 140 #include <sys/spa_impl.h> 141 #include <sys/dmu.h> 142 #include <sys/zap.h> 143 #include <sys/vdev.h> 144 #include <sys/vdev_impl.h> 145 #include <sys/uberblock_impl.h> 146 #include <sys/metaslab.h> 147 #include <sys/zio.h> 148 #include <sys/dsl_scan.h> 149 #include <sys/fs/zfs.h> 150 151 /* 152 * Basic routines to read and write from a vdev label. 153 * Used throughout the rest of this file. 154 */ 155 uint64_t 156 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 157 { 158 ASSERT(offset < sizeof (vdev_label_t)); 159 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 160 161 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 162 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 163 } 164 165 /* 166 * Returns back the vdev label associated with the passed in offset. 167 */ 168 int 169 vdev_label_number(uint64_t psize, uint64_t offset) 170 { 171 int l; 172 173 if (offset >= psize - VDEV_LABEL_END_SIZE) { 174 offset -= psize - VDEV_LABEL_END_SIZE; 175 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 176 } 177 l = offset / sizeof (vdev_label_t); 178 return (l < VDEV_LABELS ? l : -1); 179 } 180 181 static void 182 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 183 uint64_t size, zio_done_func_t *done, void *private, int flags) 184 { 185 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == 186 SCL_STATE_ALL); 187 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 188 189 zio_nowait(zio_read_phys(zio, vd, 190 vdev_label_offset(vd->vdev_psize, l, offset), 191 size, buf, ZIO_CHECKSUM_LABEL, done, private, 192 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 193 } 194 195 static void 196 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 197 uint64_t size, zio_done_func_t *done, void *private, int flags) 198 { 199 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || 200 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == 201 (SCL_CONFIG | SCL_STATE) && 202 dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); 203 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 204 205 zio_nowait(zio_write_phys(zio, vd, 206 vdev_label_offset(vd->vdev_psize, l, offset), 207 size, buf, ZIO_CHECKSUM_LABEL, done, private, 208 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 209 } 210 211 /* 212 * Generate the nvlist representing this vdev's config. 213 */ 214 nvlist_t * 215 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 216 vdev_config_flag_t flags) 217 { 218 nvlist_t *nv = NULL; 219 220 nv = fnvlist_alloc(); 221 222 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type); 223 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 224 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id); 225 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid); 226 227 if (vd->vdev_path != NULL) 228 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path); 229 230 if (vd->vdev_devid != NULL) 231 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid); 232 233 if (vd->vdev_physpath != NULL) 234 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 235 vd->vdev_physpath); 236 237 if (vd->vdev_fru != NULL) 238 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru); 239 240 if (vd->vdev_nparity != 0) { 241 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 242 VDEV_TYPE_RAIDZ) == 0); 243 244 /* 245 * Make sure someone hasn't managed to sneak a fancy new vdev 246 * into a crufty old storage pool. 247 */ 248 ASSERT(vd->vdev_nparity == 1 || 249 (vd->vdev_nparity <= 2 && 250 spa_version(spa) >= SPA_VERSION_RAIDZ2) || 251 (vd->vdev_nparity <= 3 && 252 spa_version(spa) >= SPA_VERSION_RAIDZ3)); 253 254 /* 255 * Note that we'll add the nparity tag even on storage pools 256 * that only support a single parity device -- older software 257 * will just ignore it. 258 */ 259 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity); 260 } 261 262 if (vd->vdev_wholedisk != -1ULL) 263 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 264 vd->vdev_wholedisk); 265 266 if (vd->vdev_not_present) 267 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1); 268 269 if (vd->vdev_isspare) 270 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1); 271 272 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 273 vd == vd->vdev_top) { 274 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 275 vd->vdev_ms_array); 276 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 277 vd->vdev_ms_shift); 278 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift); 279 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 280 vd->vdev_asize); 281 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog); 282 if (vd->vdev_removing) 283 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 284 vd->vdev_removing); 285 } 286 287 if (flags & VDEV_CONFIG_L2CACHE) 288 /* indicate that we support L2ARC persistency */ 289 VERIFY(nvlist_add_boolean_value(nv, 290 ZPOOL_CONFIG_L2CACHE_PERSISTENT, B_TRUE) == 0); 291 292 if (vd->vdev_dtl_sm != NULL) { 293 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 294 space_map_object(vd->vdev_dtl_sm)); 295 } 296 297 if (vd->vdev_crtxg) 298 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg); 299 300 if (getstats) { 301 vdev_stat_t vs; 302 pool_scan_stat_t ps; 303 304 vdev_get_stats(vd, &vs); 305 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 306 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)); 307 308 /* provide either current or previous scan information */ 309 if (spa_scan_get_stats(spa, &ps) == 0) { 310 fnvlist_add_uint64_array(nv, 311 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 312 sizeof (pool_scan_stat_t) / sizeof (uint64_t)); 313 } 314 } 315 316 if (!vd->vdev_ops->vdev_op_leaf) { 317 nvlist_t **child; 318 int c, idx; 319 320 ASSERT(!vd->vdev_ishole); 321 322 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 323 KM_SLEEP); 324 325 for (c = 0, idx = 0; c < vd->vdev_children; c++) { 326 vdev_t *cvd = vd->vdev_child[c]; 327 328 /* 329 * If we're generating an nvlist of removing 330 * vdevs then skip over any device which is 331 * not being removed. 332 */ 333 if ((flags & VDEV_CONFIG_REMOVING) && 334 !cvd->vdev_removing) 335 continue; 336 337 child[idx++] = vdev_config_generate(spa, cvd, 338 getstats, flags); 339 } 340 341 if (idx) { 342 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 343 child, idx); 344 } 345 346 for (c = 0; c < idx; c++) 347 nvlist_free(child[c]); 348 349 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 350 351 } else { 352 const char *aux = NULL; 353 354 if (vd->vdev_offline && !vd->vdev_tmpoffline) 355 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE); 356 if (vd->vdev_resilver_txg != 0) 357 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 358 vd->vdev_resilver_txg); 359 if (vd->vdev_faulted) 360 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE); 361 if (vd->vdev_degraded) 362 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE); 363 if (vd->vdev_removed) 364 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE); 365 if (vd->vdev_unspare) 366 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE); 367 if (vd->vdev_ishole) 368 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE); 369 370 switch (vd->vdev_stat.vs_aux) { 371 case VDEV_AUX_ERR_EXCEEDED: 372 aux = "err_exceeded"; 373 break; 374 375 case VDEV_AUX_EXTERNAL: 376 aux = "external"; 377 break; 378 } 379 380 if (aux != NULL) 381 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux); 382 383 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 384 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 385 vd->vdev_orig_guid); 386 } 387 } 388 389 return (nv); 390 } 391 392 /* 393 * Generate a view of the top-level vdevs. If we currently have holes 394 * in the namespace, then generate an array which contains a list of holey 395 * vdevs. Additionally, add the number of top-level children that currently 396 * exist. 397 */ 398 void 399 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 400 { 401 vdev_t *rvd = spa->spa_root_vdev; 402 uint64_t *array; 403 uint_t c, idx; 404 405 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 406 407 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 408 vdev_t *tvd = rvd->vdev_child[c]; 409 410 if (tvd->vdev_ishole) 411 array[idx++] = c; 412 } 413 414 if (idx) { 415 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 416 array, idx) == 0); 417 } 418 419 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 420 rvd->vdev_children) == 0); 421 422 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 423 } 424 425 /* 426 * Returns the configuration from the label of the given vdev. For vdevs 427 * which don't have a txg value stored on their label (i.e. spares/cache) 428 * or have not been completely initialized (txg = 0) just return 429 * the configuration from the first valid label we find. Otherwise, 430 * find the most up-to-date label that does not exceed the specified 431 * 'txg' value. 432 */ 433 nvlist_t * 434 vdev_label_read_config(vdev_t *vd, uint64_t txg) 435 { 436 spa_t *spa = vd->vdev_spa; 437 nvlist_t *config = NULL; 438 vdev_phys_t *vp; 439 zio_t *zio; 440 uint64_t best_txg = 0; 441 int error = 0; 442 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 443 ZIO_FLAG_SPECULATIVE; 444 445 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 446 447 if (!vdev_readable(vd)) 448 return (NULL); 449 450 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 451 452 retry: 453 for (int l = 0; l < VDEV_LABELS; l++) { 454 nvlist_t *label = NULL; 455 456 zio = zio_root(spa, NULL, NULL, flags); 457 458 vdev_label_read(zio, vd, l, vp, 459 offsetof(vdev_label_t, vl_vdev_phys), 460 sizeof (vdev_phys_t), NULL, NULL, flags); 461 462 if (zio_wait(zio) == 0 && 463 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 464 &label, 0) == 0) { 465 uint64_t label_txg = 0; 466 467 /* 468 * Auxiliary vdevs won't have txg values in their 469 * labels and newly added vdevs may not have been 470 * completely initialized so just return the 471 * configuration from the first valid label we 472 * encounter. 473 */ 474 error = nvlist_lookup_uint64(label, 475 ZPOOL_CONFIG_POOL_TXG, &label_txg); 476 if ((error || label_txg == 0) && !config) { 477 config = label; 478 break; 479 } else if (label_txg <= txg && label_txg > best_txg) { 480 best_txg = label_txg; 481 nvlist_free(config); 482 config = fnvlist_dup(label); 483 } 484 } 485 486 if (label != NULL) { 487 nvlist_free(label); 488 label = NULL; 489 } 490 } 491 492 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 493 flags |= ZIO_FLAG_TRYHARD; 494 goto retry; 495 } 496 497 zio_buf_free(vp, sizeof (vdev_phys_t)); 498 499 return (config); 500 } 501 502 /* 503 * Determine if a device is in use. The 'spare_guid' parameter will be filled 504 * in with the device guid if this spare is active elsewhere on the system. 505 */ 506 static boolean_t 507 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 508 uint64_t *spare_guid, uint64_t *l2cache_guid) 509 { 510 spa_t *spa = vd->vdev_spa; 511 uint64_t state, pool_guid, device_guid, txg, spare_pool; 512 uint64_t vdtxg = 0; 513 nvlist_t *label; 514 515 if (spare_guid) 516 *spare_guid = 0ULL; 517 if (l2cache_guid) 518 *l2cache_guid = 0ULL; 519 520 /* 521 * Read the label, if any, and perform some basic sanity checks. 522 */ 523 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 524 return (B_FALSE); 525 526 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 527 &vdtxg); 528 529 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 530 &state) != 0 || 531 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 532 &device_guid) != 0) { 533 nvlist_free(label); 534 return (B_FALSE); 535 } 536 537 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 538 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 539 &pool_guid) != 0 || 540 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 541 &txg) != 0)) { 542 nvlist_free(label); 543 return (B_FALSE); 544 } 545 546 nvlist_free(label); 547 548 /* 549 * Check to see if this device indeed belongs to the pool it claims to 550 * be a part of. The only way this is allowed is if the device is a hot 551 * spare (which we check for later on). 552 */ 553 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 554 !spa_guid_exists(pool_guid, device_guid) && 555 !spa_spare_exists(device_guid, NULL, NULL) && 556 !spa_l2cache_exists(device_guid, NULL)) 557 return (B_FALSE); 558 559 /* 560 * If the transaction group is zero, then this an initialized (but 561 * unused) label. This is only an error if the create transaction 562 * on-disk is the same as the one we're using now, in which case the 563 * user has attempted to add the same vdev multiple times in the same 564 * transaction. 565 */ 566 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 567 txg == 0 && vdtxg == crtxg) 568 return (B_TRUE); 569 570 /* 571 * Check to see if this is a spare device. We do an explicit check for 572 * spa_has_spare() here because it may be on our pending list of spares 573 * to add. We also check if it is an l2cache device. 574 */ 575 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 576 spa_has_spare(spa, device_guid)) { 577 if (spare_guid) 578 *spare_guid = device_guid; 579 580 switch (reason) { 581 case VDEV_LABEL_CREATE: 582 case VDEV_LABEL_L2CACHE: 583 return (B_TRUE); 584 585 case VDEV_LABEL_REPLACE: 586 return (!spa_has_spare(spa, device_guid) || 587 spare_pool != 0ULL); 588 589 case VDEV_LABEL_SPARE: 590 return (spa_has_spare(spa, device_guid)); 591 } 592 } 593 594 /* 595 * Check to see if this is an l2cache device. 596 */ 597 if (spa_l2cache_exists(device_guid, NULL)) 598 return (B_TRUE); 599 600 /* 601 * We can't rely on a pool's state if it's been imported 602 * read-only. Instead we look to see if the pools is marked 603 * read-only in the namespace and set the state to active. 604 */ 605 if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL && 606 spa_mode(spa) == FREAD) 607 state = POOL_STATE_ACTIVE; 608 609 /* 610 * If the device is marked ACTIVE, then this device is in use by another 611 * pool on the system. 612 */ 613 return (state == POOL_STATE_ACTIVE); 614 } 615 616 /* 617 * Initialize a vdev label. We check to make sure each leaf device is not in 618 * use, and writable. We put down an initial label which we will later 619 * overwrite with a complete label. Note that it's important to do this 620 * sequentially, not in parallel, so that we catch cases of multiple use of the 621 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 622 * itself. 623 */ 624 int 625 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 626 { 627 spa_t *spa = vd->vdev_spa; 628 nvlist_t *label; 629 vdev_phys_t *vp; 630 char *pad2; 631 uberblock_t *ub; 632 zio_t *zio; 633 char *buf; 634 size_t buflen; 635 int error; 636 uint64_t spare_guid, l2cache_guid; 637 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 638 639 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 640 641 for (int c = 0; c < vd->vdev_children; c++) 642 if ((error = vdev_label_init(vd->vdev_child[c], 643 crtxg, reason)) != 0) 644 return (error); 645 646 /* Track the creation time for this vdev */ 647 vd->vdev_crtxg = crtxg; 648 649 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa)) 650 return (0); 651 652 /* 653 * Dead vdevs cannot be initialized. 654 */ 655 if (vdev_is_dead(vd)) 656 return (SET_ERROR(EIO)); 657 658 /* 659 * Determine if the vdev is in use. 660 */ 661 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 662 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 663 return (SET_ERROR(EBUSY)); 664 665 /* 666 * If this is a request to add or replace a spare or l2cache device 667 * that is in use elsewhere on the system, then we must update the 668 * guid (which was initialized to a random value) to reflect the 669 * actual GUID (which is shared between multiple pools). 670 */ 671 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 672 spare_guid != 0ULL) { 673 uint64_t guid_delta = spare_guid - vd->vdev_guid; 674 675 vd->vdev_guid += guid_delta; 676 677 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 678 pvd->vdev_guid_sum += guid_delta; 679 680 /* 681 * If this is a replacement, then we want to fallthrough to the 682 * rest of the code. If we're adding a spare, then it's already 683 * labeled appropriately and we can just return. 684 */ 685 if (reason == VDEV_LABEL_SPARE) 686 return (0); 687 ASSERT(reason == VDEV_LABEL_REPLACE || 688 reason == VDEV_LABEL_SPLIT); 689 } 690 691 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 692 l2cache_guid != 0ULL) { 693 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 694 695 vd->vdev_guid += guid_delta; 696 697 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 698 pvd->vdev_guid_sum += guid_delta; 699 700 /* 701 * If this is a replacement, then we want to fallthrough to the 702 * rest of the code. If we're adding an l2cache, then it's 703 * already labeled appropriately and we can just return. 704 */ 705 if (reason == VDEV_LABEL_L2CACHE) 706 return (0); 707 ASSERT(reason == VDEV_LABEL_REPLACE); 708 } 709 710 /* 711 * Initialize its label. 712 */ 713 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 714 bzero(vp, sizeof (vdev_phys_t)); 715 716 /* 717 * Generate a label describing the pool and our top-level vdev. 718 * We mark it as being from txg 0 to indicate that it's not 719 * really part of an active pool just yet. The labels will 720 * be written again with a meaningful txg by spa_sync(). 721 */ 722 if (reason == VDEV_LABEL_SPARE || 723 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 724 /* 725 * For inactive hot spares, we generate a special label that 726 * identifies as a mutually shared hot spare. We write the 727 * label if we are adding a hot spare, or if we are removing an 728 * active hot spare (in which case we want to revert the 729 * labels). 730 */ 731 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 732 733 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 734 spa_version(spa)) == 0); 735 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 736 POOL_STATE_SPARE) == 0); 737 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 738 vd->vdev_guid) == 0); 739 } else if (reason == VDEV_LABEL_L2CACHE || 740 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 741 /* 742 * For level 2 ARC devices, add a special label. 743 */ 744 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 745 746 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 747 spa_version(spa)) == 0); 748 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 749 POOL_STATE_L2CACHE) == 0); 750 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 751 vd->vdev_guid) == 0); 752 } else { 753 uint64_t txg = 0ULL; 754 755 if (reason == VDEV_LABEL_SPLIT) 756 txg = spa->spa_uberblock.ub_txg; 757 label = spa_config_generate(spa, vd, txg, B_FALSE); 758 759 /* 760 * Add our creation time. This allows us to detect multiple 761 * vdev uses as described above, and automatically expires if we 762 * fail. 763 */ 764 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 765 crtxg) == 0); 766 } 767 768 buf = vp->vp_nvlist; 769 buflen = sizeof (vp->vp_nvlist); 770 771 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 772 if (error != 0) { 773 nvlist_free(label); 774 zio_buf_free(vp, sizeof (vdev_phys_t)); 775 /* EFAULT means nvlist_pack ran out of room */ 776 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 777 } 778 779 /* 780 * Initialize uberblock template. 781 */ 782 ub = zio_buf_alloc(VDEV_UBERBLOCK_RING); 783 bzero(ub, VDEV_UBERBLOCK_RING); 784 *ub = spa->spa_uberblock; 785 ub->ub_txg = 0; 786 787 /* Initialize the 2nd padding area. */ 788 pad2 = zio_buf_alloc(VDEV_PAD_SIZE); 789 bzero(pad2, VDEV_PAD_SIZE); 790 791 /* 792 * Write everything in parallel. 793 */ 794 retry: 795 zio = zio_root(spa, NULL, NULL, flags); 796 797 for (int l = 0; l < VDEV_LABELS; l++) { 798 799 vdev_label_write(zio, vd, l, vp, 800 offsetof(vdev_label_t, vl_vdev_phys), 801 sizeof (vdev_phys_t), NULL, NULL, flags); 802 803 /* 804 * Skip the 1st padding area. 805 * Zero out the 2nd padding area where it might have 806 * left over data from previous filesystem format. 807 */ 808 vdev_label_write(zio, vd, l, pad2, 809 offsetof(vdev_label_t, vl_pad2), 810 VDEV_PAD_SIZE, NULL, NULL, flags); 811 812 vdev_label_write(zio, vd, l, ub, 813 offsetof(vdev_label_t, vl_uberblock), 814 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 815 } 816 817 error = zio_wait(zio); 818 819 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 820 flags |= ZIO_FLAG_TRYHARD; 821 goto retry; 822 } 823 824 nvlist_free(label); 825 zio_buf_free(pad2, VDEV_PAD_SIZE); 826 zio_buf_free(ub, VDEV_UBERBLOCK_RING); 827 zio_buf_free(vp, sizeof (vdev_phys_t)); 828 829 /* 830 * If this vdev hasn't been previously identified as a spare, then we 831 * mark it as such only if a) we are labeling it as a spare, or b) it 832 * exists as a spare elsewhere in the system. Do the same for 833 * level 2 ARC devices. 834 */ 835 if (error == 0 && !vd->vdev_isspare && 836 (reason == VDEV_LABEL_SPARE || 837 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 838 spa_spare_add(vd); 839 840 if (error == 0 && !vd->vdev_isl2cache && 841 (reason == VDEV_LABEL_L2CACHE || 842 spa_l2cache_exists(vd->vdev_guid, NULL))) 843 spa_l2cache_add(vd); 844 845 return (error); 846 } 847 848 /* 849 * ========================================================================== 850 * uberblock load/sync 851 * ========================================================================== 852 */ 853 854 /* 855 * Consider the following situation: txg is safely synced to disk. We've 856 * written the first uberblock for txg + 1, and then we lose power. When we 857 * come back up, we fail to see the uberblock for txg + 1 because, say, 858 * it was on a mirrored device and the replica to which we wrote txg + 1 859 * is now offline. If we then make some changes and sync txg + 1, and then 860 * the missing replica comes back, then for a few seconds we'll have two 861 * conflicting uberblocks on disk with the same txg. The solution is simple: 862 * among uberblocks with equal txg, choose the one with the latest timestamp. 863 */ 864 static int 865 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 866 { 867 if (ub1->ub_txg < ub2->ub_txg) 868 return (-1); 869 if (ub1->ub_txg > ub2->ub_txg) 870 return (1); 871 872 if (ub1->ub_timestamp < ub2->ub_timestamp) 873 return (-1); 874 if (ub1->ub_timestamp > ub2->ub_timestamp) 875 return (1); 876 877 return (0); 878 } 879 880 struct ubl_cbdata { 881 uberblock_t *ubl_ubbest; /* Best uberblock */ 882 vdev_t *ubl_vd; /* vdev associated with the above */ 883 }; 884 885 static void 886 vdev_uberblock_load_done(zio_t *zio) 887 { 888 vdev_t *vd = zio->io_vd; 889 spa_t *spa = zio->io_spa; 890 zio_t *rio = zio->io_private; 891 uberblock_t *ub = zio->io_data; 892 struct ubl_cbdata *cbp = rio->io_private; 893 894 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 895 896 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 897 mutex_enter(&rio->io_lock); 898 if (ub->ub_txg <= spa->spa_load_max_txg && 899 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 900 /* 901 * Keep track of the vdev in which this uberblock 902 * was found. We will use this information later 903 * to obtain the config nvlist associated with 904 * this uberblock. 905 */ 906 *cbp->ubl_ubbest = *ub; 907 cbp->ubl_vd = vd; 908 } 909 mutex_exit(&rio->io_lock); 910 } 911 912 zio_buf_free(zio->io_data, zio->io_size); 913 } 914 915 static void 916 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 917 struct ubl_cbdata *cbp) 918 { 919 for (int c = 0; c < vd->vdev_children; c++) 920 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 921 922 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 923 for (int l = 0; l < VDEV_LABELS; l++) { 924 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 925 vdev_label_read(zio, vd, l, 926 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), 927 VDEV_UBERBLOCK_OFFSET(vd, n), 928 VDEV_UBERBLOCK_SIZE(vd), 929 vdev_uberblock_load_done, zio, flags); 930 } 931 } 932 } 933 } 934 935 /* 936 * Reads the 'best' uberblock from disk along with its associated 937 * configuration. First, we read the uberblock array of each label of each 938 * vdev, keeping track of the uberblock with the highest txg in each array. 939 * Then, we read the configuration from the same vdev as the best uberblock. 940 */ 941 void 942 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 943 { 944 zio_t *zio; 945 spa_t *spa = rvd->vdev_spa; 946 struct ubl_cbdata cb; 947 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 948 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 949 950 ASSERT(ub); 951 ASSERT(config); 952 953 bzero(ub, sizeof (uberblock_t)); 954 *config = NULL; 955 956 cb.ubl_ubbest = ub; 957 cb.ubl_vd = NULL; 958 959 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 960 zio = zio_root(spa, NULL, &cb, flags); 961 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 962 (void) zio_wait(zio); 963 964 /* 965 * It's possible that the best uberblock was discovered on a label 966 * that has a configuration which was written in a future txg. 967 * Search all labels on this vdev to find the configuration that 968 * matches the txg for our uberblock. 969 */ 970 if (cb.ubl_vd != NULL) 971 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 972 spa_config_exit(spa, SCL_ALL, FTAG); 973 } 974 975 /* 976 * On success, increment root zio's count of good writes. 977 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 978 */ 979 static void 980 vdev_uberblock_sync_done(zio_t *zio) 981 { 982 uint64_t *good_writes = zio->io_private; 983 984 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 985 atomic_inc_64(good_writes); 986 } 987 988 /* 989 * Write the uberblock to all labels of all leaves of the specified vdev. 990 */ 991 static void 992 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags) 993 { 994 uberblock_t *ubbuf; 995 int n; 996 997 for (int c = 0; c < vd->vdev_children; c++) 998 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags); 999 1000 if (!vd->vdev_ops->vdev_op_leaf) 1001 return; 1002 1003 if (!vdev_writeable(vd)) 1004 return; 1005 1006 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 1007 1008 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 1009 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 1010 *ubbuf = *ub; 1011 1012 for (int l = 0; l < VDEV_LABELS; l++) 1013 vdev_label_write(zio, vd, l, ubbuf, 1014 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 1015 vdev_uberblock_sync_done, zio->io_private, 1016 flags | ZIO_FLAG_DONT_PROPAGATE); 1017 1018 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 1019 } 1020 1021 /* Sync the uberblocks to all vdevs in svd[] */ 1022 int 1023 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 1024 { 1025 spa_t *spa = svd[0]->vdev_spa; 1026 zio_t *zio; 1027 uint64_t good_writes = 0; 1028 1029 zio = zio_root(spa, NULL, &good_writes, flags); 1030 1031 for (int v = 0; v < svdcount; v++) 1032 vdev_uberblock_sync(zio, ub, svd[v], flags); 1033 1034 (void) zio_wait(zio); 1035 1036 /* 1037 * Flush the uberblocks to disk. This ensures that the odd labels 1038 * are no longer needed (because the new uberblocks and the even 1039 * labels are safely on disk), so it is safe to overwrite them. 1040 */ 1041 zio = zio_root(spa, NULL, NULL, flags); 1042 1043 for (int v = 0; v < svdcount; v++) 1044 zio_flush(zio, svd[v]); 1045 1046 (void) zio_wait(zio); 1047 1048 return (good_writes >= 1 ? 0 : EIO); 1049 } 1050 1051 /* 1052 * On success, increment the count of good writes for our top-level vdev. 1053 */ 1054 static void 1055 vdev_label_sync_done(zio_t *zio) 1056 { 1057 uint64_t *good_writes = zio->io_private; 1058 1059 if (zio->io_error == 0) 1060 atomic_inc_64(good_writes); 1061 } 1062 1063 /* 1064 * If there weren't enough good writes, indicate failure to the parent. 1065 */ 1066 static void 1067 vdev_label_sync_top_done(zio_t *zio) 1068 { 1069 uint64_t *good_writes = zio->io_private; 1070 1071 if (*good_writes == 0) 1072 zio->io_error = SET_ERROR(EIO); 1073 1074 kmem_free(good_writes, sizeof (uint64_t)); 1075 } 1076 1077 /* 1078 * We ignore errors for log and cache devices, simply free the private data. 1079 */ 1080 static void 1081 vdev_label_sync_ignore_done(zio_t *zio) 1082 { 1083 kmem_free(zio->io_private, sizeof (uint64_t)); 1084 } 1085 1086 /* 1087 * Write all even or odd labels to all leaves of the specified vdev. 1088 */ 1089 static void 1090 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags) 1091 { 1092 nvlist_t *label; 1093 vdev_phys_t *vp; 1094 char *buf; 1095 size_t buflen; 1096 1097 for (int c = 0; c < vd->vdev_children; c++) 1098 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags); 1099 1100 if (!vd->vdev_ops->vdev_op_leaf) 1101 return; 1102 1103 if (!vdev_writeable(vd)) 1104 return; 1105 1106 /* 1107 * Generate a label describing the top-level config to which we belong. 1108 */ 1109 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1110 1111 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 1112 bzero(vp, sizeof (vdev_phys_t)); 1113 1114 buf = vp->vp_nvlist; 1115 buflen = sizeof (vp->vp_nvlist); 1116 1117 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 1118 for (; l < VDEV_LABELS; l += 2) { 1119 vdev_label_write(zio, vd, l, vp, 1120 offsetof(vdev_label_t, vl_vdev_phys), 1121 sizeof (vdev_phys_t), 1122 vdev_label_sync_done, zio->io_private, 1123 flags | ZIO_FLAG_DONT_PROPAGATE); 1124 } 1125 } 1126 1127 zio_buf_free(vp, sizeof (vdev_phys_t)); 1128 nvlist_free(label); 1129 } 1130 1131 int 1132 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1133 { 1134 list_t *dl = &spa->spa_config_dirty_list; 1135 vdev_t *vd; 1136 zio_t *zio; 1137 int error; 1138 1139 /* 1140 * Write the new labels to disk. 1141 */ 1142 zio = zio_root(spa, NULL, NULL, flags); 1143 1144 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1145 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 1146 KM_SLEEP); 1147 1148 ASSERT(!vd->vdev_ishole); 1149 1150 zio_t *vio = zio_null(zio, spa, NULL, 1151 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1152 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1153 good_writes, flags); 1154 vdev_label_sync(vio, vd, l, txg, flags); 1155 zio_nowait(vio); 1156 } 1157 1158 error = zio_wait(zio); 1159 1160 /* 1161 * Flush the new labels to disk. 1162 */ 1163 zio = zio_root(spa, NULL, NULL, flags); 1164 1165 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1166 zio_flush(zio, vd); 1167 1168 (void) zio_wait(zio); 1169 1170 return (error); 1171 } 1172 1173 /* 1174 * Sync the uberblock and any changes to the vdev configuration. 1175 * 1176 * The order of operations is carefully crafted to ensure that 1177 * if the system panics or loses power at any time, the state on disk 1178 * is still transactionally consistent. The in-line comments below 1179 * describe the failure semantics at each stage. 1180 * 1181 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1182 * at any time, you can just call it again, and it will resume its work. 1183 */ 1184 int 1185 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard) 1186 { 1187 spa_t *spa = svd[0]->vdev_spa; 1188 uberblock_t *ub = &spa->spa_uberblock; 1189 vdev_t *vd; 1190 zio_t *zio; 1191 int error; 1192 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1193 1194 /* 1195 * Normally, we don't want to try too hard to write every label and 1196 * uberblock. If there is a flaky disk, we don't want the rest of the 1197 * sync process to block while we retry. But if we can't write a 1198 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1199 * bailing out and declaring the pool faulted. 1200 */ 1201 if (tryhard) 1202 flags |= ZIO_FLAG_TRYHARD; 1203 1204 ASSERT(ub->ub_txg <= txg); 1205 1206 /* 1207 * If this isn't a resync due to I/O errors, 1208 * and nothing changed in this transaction group, 1209 * and the vdev configuration hasn't changed, 1210 * then there's nothing to do. 1211 */ 1212 if (ub->ub_txg < txg && 1213 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && 1214 list_is_empty(&spa->spa_config_dirty_list)) 1215 return (0); 1216 1217 if (txg > spa_freeze_txg(spa)) 1218 return (0); 1219 1220 ASSERT(txg <= spa->spa_final_txg); 1221 1222 /* 1223 * Flush the write cache of every disk that's been written to 1224 * in this transaction group. This ensures that all blocks 1225 * written in this txg will be committed to stable storage 1226 * before any uberblock that references them. 1227 */ 1228 zio = zio_root(spa, NULL, NULL, flags); 1229 1230 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 1231 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1232 zio_flush(zio, vd); 1233 1234 (void) zio_wait(zio); 1235 1236 /* 1237 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1238 * system dies in the middle of this process, that's OK: all of the 1239 * even labels that made it to disk will be newer than any uberblock, 1240 * and will therefore be considered invalid. The odd labels (L1, L3), 1241 * which have not yet been touched, will still be valid. We flush 1242 * the new labels to disk to ensure that all even-label updates 1243 * are committed to stable storage before the uberblock update. 1244 */ 1245 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) 1246 return (error); 1247 1248 /* 1249 * Sync the uberblocks to all vdevs in svd[]. 1250 * If the system dies in the middle of this step, there are two cases 1251 * to consider, and the on-disk state is consistent either way: 1252 * 1253 * (1) If none of the new uberblocks made it to disk, then the 1254 * previous uberblock will be the newest, and the odd labels 1255 * (which had not yet been touched) will be valid with respect 1256 * to that uberblock. 1257 * 1258 * (2) If one or more new uberblocks made it to disk, then they 1259 * will be the newest, and the even labels (which had all 1260 * been successfully committed) will be valid with respect 1261 * to the new uberblocks. 1262 */ 1263 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) 1264 return (error); 1265 1266 /* 1267 * Sync out odd labels for every dirty vdev. If the system dies 1268 * in the middle of this process, the even labels and the new 1269 * uberblocks will suffice to open the pool. The next time 1270 * the pool is opened, the first thing we'll do -- before any 1271 * user data is modified -- is mark every vdev dirty so that 1272 * all labels will be brought up to date. We flush the new labels 1273 * to disk to ensure that all odd-label updates are committed to 1274 * stable storage before the next transaction group begins. 1275 */ 1276 return (vdev_label_sync_list(spa, 1, txg, flags)); 1277 } 1278