xref: /titanic_44/usr/src/uts/common/fs/zfs/vdev_label.c (revision b695575577bae0337af339d76949713bfe1c9013)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Virtual Device Labels
28  * ---------------------
29  *
30  * The vdev label serves several distinct purposes:
31  *
32  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
33  *	   identity within the pool.
34  *
35  * 	2. Verify that all the devices given in a configuration are present
36  *         within the pool.
37  *
38  * 	3. Determine the uberblock for the pool.
39  *
40  * 	4. In case of an import operation, determine the configuration of the
41  *         toplevel vdev of which it is a part.
42  *
43  * 	5. If an import operation cannot find all the devices in the pool,
44  *         provide enough information to the administrator to determine which
45  *         devices are missing.
46  *
47  * It is important to note that while the kernel is responsible for writing the
48  * label, it only consumes the information in the first three cases.  The
49  * latter information is only consumed in userland when determining the
50  * configuration to import a pool.
51  *
52  *
53  * Label Organization
54  * ------------------
55  *
56  * Before describing the contents of the label, it's important to understand how
57  * the labels are written and updated with respect to the uberblock.
58  *
59  * When the pool configuration is altered, either because it was newly created
60  * or a device was added, we want to update all the labels such that we can deal
61  * with fatal failure at any point.  To this end, each disk has two labels which
62  * are updated before and after the uberblock is synced.  Assuming we have
63  * labels and an uberblock with the following transaction groups:
64  *
65  *              L1          UB          L2
66  *           +------+    +------+    +------+
67  *           |      |    |      |    |      |
68  *           | t10  |    | t10  |    | t10  |
69  *           |      |    |      |    |      |
70  *           +------+    +------+    +------+
71  *
72  * In this stable state, the labels and the uberblock were all updated within
73  * the same transaction group (10).  Each label is mirrored and checksummed, so
74  * that we can detect when we fail partway through writing the label.
75  *
76  * In order to identify which labels are valid, the labels are written in the
77  * following manner:
78  *
79  * 	1. For each vdev, update 'L1' to the new label
80  * 	2. Update the uberblock
81  * 	3. For each vdev, update 'L2' to the new label
82  *
83  * Given arbitrary failure, we can determine the correct label to use based on
84  * the transaction group.  If we fail after updating L1 but before updating the
85  * UB, we will notice that L1's transaction group is greater than the uberblock,
86  * so L2 must be valid.  If we fail after writing the uberblock but before
87  * writing L2, we will notice that L2's transaction group is less than L1, and
88  * therefore L1 is valid.
89  *
90  * Another added complexity is that not every label is updated when the config
91  * is synced.  If we add a single device, we do not want to have to re-write
92  * every label for every device in the pool.  This means that both L1 and L2 may
93  * be older than the pool uberblock, because the necessary information is stored
94  * on another vdev.
95  *
96  *
97  * On-disk Format
98  * --------------
99  *
100  * The vdev label consists of two distinct parts, and is wrapped within the
101  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
102  * VTOC disk labels, but is otherwise ignored.
103  *
104  * The first half of the label is a packed nvlist which contains pool wide
105  * properties, per-vdev properties, and configuration information.  It is
106  * described in more detail below.
107  *
108  * The latter half of the label consists of a redundant array of uberblocks.
109  * These uberblocks are updated whenever a transaction group is committed,
110  * or when the configuration is updated.  When a pool is loaded, we scan each
111  * vdev for the 'best' uberblock.
112  *
113  *
114  * Configuration Information
115  * -------------------------
116  *
117  * The nvlist describing the pool and vdev contains the following elements:
118  *
119  * 	version		ZFS on-disk version
120  * 	name		Pool name
121  * 	state		Pool state
122  * 	txg		Transaction group in which this label was written
123  * 	pool_guid	Unique identifier for this pool
124  * 	vdev_tree	An nvlist describing vdev tree.
125  *
126  * Each leaf device label also contains the following:
127  *
128  * 	top_guid	Unique ID for top-level vdev in which this is contained
129  * 	guid		Unique ID for the leaf vdev
130  *
131  * The 'vs' configuration follows the format described in 'spa_config.c'.
132  */
133 
134 #include <sys/zfs_context.h>
135 #include <sys/spa.h>
136 #include <sys/spa_impl.h>
137 #include <sys/dmu.h>
138 #include <sys/zap.h>
139 #include <sys/vdev.h>
140 #include <sys/vdev_impl.h>
141 #include <sys/uberblock_impl.h>
142 #include <sys/metaslab.h>
143 #include <sys/zio.h>
144 #include <sys/fs/zfs.h>
145 
146 /*
147  * Basic routines to read and write from a vdev label.
148  * Used throughout the rest of this file.
149  */
150 uint64_t
151 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
152 {
153 	ASSERT(offset < sizeof (vdev_label_t));
154 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
155 
156 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
157 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
158 }
159 
160 /*
161  * Returns back the vdev label associated with the passed in offset.
162  */
163 int
164 vdev_label_number(uint64_t psize, uint64_t offset)
165 {
166 	int l;
167 
168 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
169 		offset -= psize - VDEV_LABEL_END_SIZE;
170 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
171 	}
172 	l = offset / sizeof (vdev_label_t);
173 	return (l < VDEV_LABELS ? l : -1);
174 }
175 
176 static void
177 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
178 	uint64_t size, zio_done_func_t *done, void *private, int flags)
179 {
180 	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
181 	    SCL_STATE_ALL);
182 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
183 
184 	zio_nowait(zio_read_phys(zio, vd,
185 	    vdev_label_offset(vd->vdev_psize, l, offset),
186 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
187 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
188 }
189 
190 static void
191 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
192 	uint64_t size, zio_done_func_t *done, void *private, int flags)
193 {
194 	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
195 	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
196 	    (SCL_CONFIG | SCL_STATE) &&
197 	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
198 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
199 
200 	zio_nowait(zio_write_phys(zio, vd,
201 	    vdev_label_offset(vd->vdev_psize, l, offset),
202 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
203 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
204 }
205 
206 /*
207  * Generate the nvlist representing this vdev's config.
208  */
209 nvlist_t *
210 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
211     boolean_t isspare, boolean_t isl2cache)
212 {
213 	nvlist_t *nv = NULL;
214 
215 	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
216 
217 	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
218 	    vd->vdev_ops->vdev_op_type) == 0);
219 	if (!isspare && !isl2cache)
220 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
221 		    == 0);
222 	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
223 
224 	if (vd->vdev_path != NULL)
225 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
226 		    vd->vdev_path) == 0);
227 
228 	if (vd->vdev_devid != NULL)
229 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
230 		    vd->vdev_devid) == 0);
231 
232 	if (vd->vdev_physpath != NULL)
233 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
234 		    vd->vdev_physpath) == 0);
235 
236 	if (vd->vdev_fru != NULL)
237 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU,
238 		    vd->vdev_fru) == 0);
239 
240 	if (vd->vdev_nparity != 0) {
241 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
242 		    VDEV_TYPE_RAIDZ) == 0);
243 
244 		/*
245 		 * Make sure someone hasn't managed to sneak a fancy new vdev
246 		 * into a crufty old storage pool.
247 		 */
248 		ASSERT(vd->vdev_nparity == 1 ||
249 		    (vd->vdev_nparity == 2 &&
250 		    spa_version(spa) >= SPA_VERSION_RAID6));
251 
252 		/*
253 		 * Note that we'll add the nparity tag even on storage pools
254 		 * that only support a single parity device -- older software
255 		 * will just ignore it.
256 		 */
257 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
258 		    vd->vdev_nparity) == 0);
259 	}
260 
261 	if (vd->vdev_wholedisk != -1ULL)
262 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
263 		    vd->vdev_wholedisk) == 0);
264 
265 	if (vd->vdev_not_present)
266 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
267 
268 	if (vd->vdev_isspare)
269 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
270 
271 	if (!isspare && !isl2cache && vd == vd->vdev_top) {
272 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
273 		    vd->vdev_ms_array) == 0);
274 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
275 		    vd->vdev_ms_shift) == 0);
276 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
277 		    vd->vdev_ashift) == 0);
278 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
279 		    vd->vdev_asize) == 0);
280 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
281 		    vd->vdev_islog) == 0);
282 	}
283 
284 	if (vd->vdev_dtl_smo.smo_object != 0)
285 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
286 		    vd->vdev_dtl_smo.smo_object) == 0);
287 
288 	if (getstats) {
289 		vdev_stat_t vs;
290 		vdev_get_stats(vd, &vs);
291 		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS,
292 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
293 	}
294 
295 	if (!vd->vdev_ops->vdev_op_leaf) {
296 		nvlist_t **child;
297 		int c;
298 
299 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
300 		    KM_SLEEP);
301 
302 		for (c = 0; c < vd->vdev_children; c++)
303 			child[c] = vdev_config_generate(spa, vd->vdev_child[c],
304 			    getstats, isspare, isl2cache);
305 
306 		VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
307 		    child, vd->vdev_children) == 0);
308 
309 		for (c = 0; c < vd->vdev_children; c++)
310 			nvlist_free(child[c]);
311 
312 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
313 
314 	} else {
315 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
316 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
317 			    B_TRUE) == 0);
318 		if (vd->vdev_faulted)
319 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
320 			    B_TRUE) == 0);
321 		if (vd->vdev_degraded)
322 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
323 			    B_TRUE) == 0);
324 		if (vd->vdev_removed)
325 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
326 			    B_TRUE) == 0);
327 		if (vd->vdev_unspare)
328 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
329 			    B_TRUE) == 0);
330 	}
331 
332 	return (nv);
333 }
334 
335 nvlist_t *
336 vdev_label_read_config(vdev_t *vd)
337 {
338 	spa_t *spa = vd->vdev_spa;
339 	nvlist_t *config = NULL;
340 	vdev_phys_t *vp;
341 	zio_t *zio;
342 	int flags =
343 	    ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
344 
345 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
346 
347 	if (!vdev_readable(vd))
348 		return (NULL);
349 
350 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
351 
352 	for (int l = 0; l < VDEV_LABELS; l++) {
353 
354 		zio = zio_root(spa, NULL, NULL, flags);
355 
356 		vdev_label_read(zio, vd, l, vp,
357 		    offsetof(vdev_label_t, vl_vdev_phys),
358 		    sizeof (vdev_phys_t), NULL, NULL, flags);
359 
360 		if (zio_wait(zio) == 0 &&
361 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
362 		    &config, 0) == 0)
363 			break;
364 
365 		if (config != NULL) {
366 			nvlist_free(config);
367 			config = NULL;
368 		}
369 	}
370 
371 	zio_buf_free(vp, sizeof (vdev_phys_t));
372 
373 	return (config);
374 }
375 
376 /*
377  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
378  * in with the device guid if this spare is active elsewhere on the system.
379  */
380 static boolean_t
381 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
382     uint64_t *spare_guid, uint64_t *l2cache_guid)
383 {
384 	spa_t *spa = vd->vdev_spa;
385 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
386 	uint64_t vdtxg = 0;
387 	nvlist_t *label;
388 
389 	if (spare_guid)
390 		*spare_guid = 0ULL;
391 	if (l2cache_guid)
392 		*l2cache_guid = 0ULL;
393 
394 	/*
395 	 * Read the label, if any, and perform some basic sanity checks.
396 	 */
397 	if ((label = vdev_label_read_config(vd)) == NULL)
398 		return (B_FALSE);
399 
400 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
401 	    &vdtxg);
402 
403 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
404 	    &state) != 0 ||
405 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
406 	    &device_guid) != 0) {
407 		nvlist_free(label);
408 		return (B_FALSE);
409 	}
410 
411 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
412 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
413 	    &pool_guid) != 0 ||
414 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
415 	    &txg) != 0)) {
416 		nvlist_free(label);
417 		return (B_FALSE);
418 	}
419 
420 	nvlist_free(label);
421 
422 	/*
423 	 * Check to see if this device indeed belongs to the pool it claims to
424 	 * be a part of.  The only way this is allowed is if the device is a hot
425 	 * spare (which we check for later on).
426 	 */
427 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
428 	    !spa_guid_exists(pool_guid, device_guid) &&
429 	    !spa_spare_exists(device_guid, NULL, NULL) &&
430 	    !spa_l2cache_exists(device_guid, NULL))
431 		return (B_FALSE);
432 
433 	/*
434 	 * If the transaction group is zero, then this an initialized (but
435 	 * unused) label.  This is only an error if the create transaction
436 	 * on-disk is the same as the one we're using now, in which case the
437 	 * user has attempted to add the same vdev multiple times in the same
438 	 * transaction.
439 	 */
440 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
441 	    txg == 0 && vdtxg == crtxg)
442 		return (B_TRUE);
443 
444 	/*
445 	 * Check to see if this is a spare device.  We do an explicit check for
446 	 * spa_has_spare() here because it may be on our pending list of spares
447 	 * to add.  We also check if it is an l2cache device.
448 	 */
449 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
450 	    spa_has_spare(spa, device_guid)) {
451 		if (spare_guid)
452 			*spare_guid = device_guid;
453 
454 		switch (reason) {
455 		case VDEV_LABEL_CREATE:
456 		case VDEV_LABEL_L2CACHE:
457 			return (B_TRUE);
458 
459 		case VDEV_LABEL_REPLACE:
460 			return (!spa_has_spare(spa, device_guid) ||
461 			    spare_pool != 0ULL);
462 
463 		case VDEV_LABEL_SPARE:
464 			return (spa_has_spare(spa, device_guid));
465 		}
466 	}
467 
468 	/*
469 	 * Check to see if this is an l2cache device.
470 	 */
471 	if (spa_l2cache_exists(device_guid, NULL))
472 		return (B_TRUE);
473 
474 	/*
475 	 * If the device is marked ACTIVE, then this device is in use by another
476 	 * pool on the system.
477 	 */
478 	return (state == POOL_STATE_ACTIVE);
479 }
480 
481 /*
482  * Initialize a vdev label.  We check to make sure each leaf device is not in
483  * use, and writable.  We put down an initial label which we will later
484  * overwrite with a complete label.  Note that it's important to do this
485  * sequentially, not in parallel, so that we catch cases of multiple use of the
486  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
487  * itself.
488  */
489 int
490 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
491 {
492 	spa_t *spa = vd->vdev_spa;
493 	nvlist_t *label;
494 	vdev_phys_t *vp;
495 	char *pad2;
496 	uberblock_t *ub;
497 	zio_t *zio;
498 	char *buf;
499 	size_t buflen;
500 	int error;
501 	uint64_t spare_guid, l2cache_guid;
502 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
503 
504 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
505 
506 	for (int c = 0; c < vd->vdev_children; c++)
507 		if ((error = vdev_label_init(vd->vdev_child[c],
508 		    crtxg, reason)) != 0)
509 			return (error);
510 
511 	if (!vd->vdev_ops->vdev_op_leaf)
512 		return (0);
513 
514 	/*
515 	 * Dead vdevs cannot be initialized.
516 	 */
517 	if (vdev_is_dead(vd))
518 		return (EIO);
519 
520 	/*
521 	 * Determine if the vdev is in use.
522 	 */
523 	if (reason != VDEV_LABEL_REMOVE &&
524 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
525 		return (EBUSY);
526 
527 	/*
528 	 * If this is a request to add or replace a spare or l2cache device
529 	 * that is in use elsewhere on the system, then we must update the
530 	 * guid (which was initialized to a random value) to reflect the
531 	 * actual GUID (which is shared between multiple pools).
532 	 */
533 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
534 	    spare_guid != 0ULL) {
535 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
536 
537 		vd->vdev_guid += guid_delta;
538 
539 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
540 			pvd->vdev_guid_sum += guid_delta;
541 
542 		/*
543 		 * If this is a replacement, then we want to fallthrough to the
544 		 * rest of the code.  If we're adding a spare, then it's already
545 		 * labeled appropriately and we can just return.
546 		 */
547 		if (reason == VDEV_LABEL_SPARE)
548 			return (0);
549 		ASSERT(reason == VDEV_LABEL_REPLACE);
550 	}
551 
552 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
553 	    l2cache_guid != 0ULL) {
554 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
555 
556 		vd->vdev_guid += guid_delta;
557 
558 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
559 			pvd->vdev_guid_sum += guid_delta;
560 
561 		/*
562 		 * If this is a replacement, then we want to fallthrough to the
563 		 * rest of the code.  If we're adding an l2cache, then it's
564 		 * already labeled appropriately and we can just return.
565 		 */
566 		if (reason == VDEV_LABEL_L2CACHE)
567 			return (0);
568 		ASSERT(reason == VDEV_LABEL_REPLACE);
569 	}
570 
571 	/*
572 	 * Initialize its label.
573 	 */
574 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
575 	bzero(vp, sizeof (vdev_phys_t));
576 
577 	/*
578 	 * Generate a label describing the pool and our top-level vdev.
579 	 * We mark it as being from txg 0 to indicate that it's not
580 	 * really part of an active pool just yet.  The labels will
581 	 * be written again with a meaningful txg by spa_sync().
582 	 */
583 	if (reason == VDEV_LABEL_SPARE ||
584 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
585 		/*
586 		 * For inactive hot spares, we generate a special label that
587 		 * identifies as a mutually shared hot spare.  We write the
588 		 * label if we are adding a hot spare, or if we are removing an
589 		 * active hot spare (in which case we want to revert the
590 		 * labels).
591 		 */
592 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
593 
594 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
595 		    spa_version(spa)) == 0);
596 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
597 		    POOL_STATE_SPARE) == 0);
598 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
599 		    vd->vdev_guid) == 0);
600 	} else if (reason == VDEV_LABEL_L2CACHE ||
601 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
602 		/*
603 		 * For level 2 ARC devices, add a special label.
604 		 */
605 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
606 
607 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
608 		    spa_version(spa)) == 0);
609 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
610 		    POOL_STATE_L2CACHE) == 0);
611 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
612 		    vd->vdev_guid) == 0);
613 	} else {
614 		label = spa_config_generate(spa, vd, 0ULL, B_FALSE);
615 
616 		/*
617 		 * Add our creation time.  This allows us to detect multiple
618 		 * vdev uses as described above, and automatically expires if we
619 		 * fail.
620 		 */
621 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
622 		    crtxg) == 0);
623 	}
624 
625 	buf = vp->vp_nvlist;
626 	buflen = sizeof (vp->vp_nvlist);
627 
628 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
629 	if (error != 0) {
630 		nvlist_free(label);
631 		zio_buf_free(vp, sizeof (vdev_phys_t));
632 		/* EFAULT means nvlist_pack ran out of room */
633 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
634 	}
635 
636 	/*
637 	 * Initialize uberblock template.
638 	 */
639 	ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
640 	bzero(ub, VDEV_UBERBLOCK_SIZE(vd));
641 	*ub = spa->spa_uberblock;
642 	ub->ub_txg = 0;
643 
644 	/* Initialize the 2nd padding area. */
645 	pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
646 	bzero(pad2, VDEV_PAD_SIZE);
647 
648 	/*
649 	 * Write everything in parallel.
650 	 */
651 	zio = zio_root(spa, NULL, NULL, flags);
652 
653 	for (int l = 0; l < VDEV_LABELS; l++) {
654 
655 		vdev_label_write(zio, vd, l, vp,
656 		    offsetof(vdev_label_t, vl_vdev_phys),
657 		    sizeof (vdev_phys_t), NULL, NULL, flags);
658 
659 		/*
660 		 * Skip the 1st padding area.
661 		 * Zero out the 2nd padding area where it might have
662 		 * left over data from previous filesystem format.
663 		 */
664 		vdev_label_write(zio, vd, l, pad2,
665 		    offsetof(vdev_label_t, vl_pad2),
666 		    VDEV_PAD_SIZE, NULL, NULL, flags);
667 
668 		for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
669 			vdev_label_write(zio, vd, l, ub,
670 			    VDEV_UBERBLOCK_OFFSET(vd, n),
671 			    VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, flags);
672 		}
673 	}
674 
675 	error = zio_wait(zio);
676 
677 	nvlist_free(label);
678 	zio_buf_free(pad2, VDEV_PAD_SIZE);
679 	zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd));
680 	zio_buf_free(vp, sizeof (vdev_phys_t));
681 
682 	/*
683 	 * If this vdev hasn't been previously identified as a spare, then we
684 	 * mark it as such only if a) we are labeling it as a spare, or b) it
685 	 * exists as a spare elsewhere in the system.  Do the same for
686 	 * level 2 ARC devices.
687 	 */
688 	if (error == 0 && !vd->vdev_isspare &&
689 	    (reason == VDEV_LABEL_SPARE ||
690 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
691 		spa_spare_add(vd);
692 
693 	if (error == 0 && !vd->vdev_isl2cache &&
694 	    (reason == VDEV_LABEL_L2CACHE ||
695 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
696 		spa_l2cache_add(vd);
697 
698 	return (error);
699 }
700 
701 /*
702  * ==========================================================================
703  * uberblock load/sync
704  * ==========================================================================
705  */
706 
707 /*
708  * For use by zdb and debugging purposes only
709  */
710 uint64_t ub_max_txg = UINT64_MAX;
711 
712 /*
713  * Consider the following situation: txg is safely synced to disk.  We've
714  * written the first uberblock for txg + 1, and then we lose power.  When we
715  * come back up, we fail to see the uberblock for txg + 1 because, say,
716  * it was on a mirrored device and the replica to which we wrote txg + 1
717  * is now offline.  If we then make some changes and sync txg + 1, and then
718  * the missing replica comes back, then for a new seconds we'll have two
719  * conflicting uberblocks on disk with the same txg.  The solution is simple:
720  * among uberblocks with equal txg, choose the one with the latest timestamp.
721  */
722 static int
723 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
724 {
725 	if (ub1->ub_txg < ub2->ub_txg)
726 		return (-1);
727 	if (ub1->ub_txg > ub2->ub_txg)
728 		return (1);
729 
730 	if (ub1->ub_timestamp < ub2->ub_timestamp)
731 		return (-1);
732 	if (ub1->ub_timestamp > ub2->ub_timestamp)
733 		return (1);
734 
735 	return (0);
736 }
737 
738 static void
739 vdev_uberblock_load_done(zio_t *zio)
740 {
741 	zio_t *rio = zio->io_private;
742 	uberblock_t *ub = zio->io_data;
743 	uberblock_t *ubbest = rio->io_private;
744 
745 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd));
746 
747 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
748 		mutex_enter(&rio->io_lock);
749 		if (ub->ub_txg <= ub_max_txg &&
750 		    vdev_uberblock_compare(ub, ubbest) > 0)
751 			*ubbest = *ub;
752 		mutex_exit(&rio->io_lock);
753 	}
754 
755 	zio_buf_free(zio->io_data, zio->io_size);
756 }
757 
758 void
759 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
760 {
761 	spa_t *spa = vd->vdev_spa;
762 	vdev_t *rvd = spa->spa_root_vdev;
763 	int flags =
764 	    ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
765 
766 	if (vd == rvd) {
767 		ASSERT(zio == NULL);
768 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
769 		zio = zio_root(spa, NULL, ubbest, flags);
770 		bzero(ubbest, sizeof (uberblock_t));
771 	}
772 
773 	ASSERT(zio != NULL);
774 
775 	for (int c = 0; c < vd->vdev_children; c++)
776 		vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
777 
778 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
779 		for (int l = 0; l < VDEV_LABELS; l++) {
780 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
781 				vdev_label_read(zio, vd, l,
782 				    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
783 				    VDEV_UBERBLOCK_OFFSET(vd, n),
784 				    VDEV_UBERBLOCK_SIZE(vd),
785 				    vdev_uberblock_load_done, zio, flags);
786 			}
787 		}
788 	}
789 
790 	if (vd == rvd) {
791 		(void) zio_wait(zio);
792 		spa_config_exit(spa, SCL_ALL, FTAG);
793 	}
794 }
795 
796 /*
797  * On success, increment root zio's count of good writes.
798  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
799  */
800 static void
801 vdev_uberblock_sync_done(zio_t *zio)
802 {
803 	uint64_t *good_writes = zio->io_private;
804 
805 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
806 		atomic_add_64(good_writes, 1);
807 }
808 
809 /*
810  * Write the uberblock to all labels of all leaves of the specified vdev.
811  */
812 static void
813 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
814 {
815 	uberblock_t *ubbuf;
816 	int n;
817 
818 	for (int c = 0; c < vd->vdev_children; c++)
819 		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
820 
821 	if (!vd->vdev_ops->vdev_op_leaf)
822 		return;
823 
824 	if (!vdev_writeable(vd))
825 		return;
826 
827 	n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
828 
829 	ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
830 	bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
831 	*ubbuf = *ub;
832 
833 	for (int l = 0; l < VDEV_LABELS; l++)
834 		vdev_label_write(zio, vd, l, ubbuf,
835 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
836 		    vdev_uberblock_sync_done, zio->io_private,
837 		    flags | ZIO_FLAG_DONT_PROPAGATE);
838 
839 	zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
840 }
841 
842 int
843 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
844 {
845 	spa_t *spa = svd[0]->vdev_spa;
846 	zio_t *zio;
847 	uint64_t good_writes = 0;
848 
849 	zio = zio_root(spa, NULL, &good_writes, flags);
850 
851 	for (int v = 0; v < svdcount; v++)
852 		vdev_uberblock_sync(zio, ub, svd[v], flags);
853 
854 	(void) zio_wait(zio);
855 
856 	/*
857 	 * Flush the uberblocks to disk.  This ensures that the odd labels
858 	 * are no longer needed (because the new uberblocks and the even
859 	 * labels are safely on disk), so it is safe to overwrite them.
860 	 */
861 	zio = zio_root(spa, NULL, NULL, flags);
862 
863 	for (int v = 0; v < svdcount; v++)
864 		zio_flush(zio, svd[v]);
865 
866 	(void) zio_wait(zio);
867 
868 	return (good_writes >= 1 ? 0 : EIO);
869 }
870 
871 /*
872  * On success, increment the count of good writes for our top-level vdev.
873  */
874 static void
875 vdev_label_sync_done(zio_t *zio)
876 {
877 	uint64_t *good_writes = zio->io_private;
878 
879 	if (zio->io_error == 0)
880 		atomic_add_64(good_writes, 1);
881 }
882 
883 /*
884  * If there weren't enough good writes, indicate failure to the parent.
885  */
886 static void
887 vdev_label_sync_top_done(zio_t *zio)
888 {
889 	uint64_t *good_writes = zio->io_private;
890 
891 	if (*good_writes == 0)
892 		zio->io_error = EIO;
893 
894 	kmem_free(good_writes, sizeof (uint64_t));
895 }
896 
897 /*
898  * We ignore errors for log and cache devices, simply free the private data.
899  */
900 static void
901 vdev_label_sync_ignore_done(zio_t *zio)
902 {
903 	kmem_free(zio->io_private, sizeof (uint64_t));
904 }
905 
906 /*
907  * Write all even or odd labels to all leaves of the specified vdev.
908  */
909 static void
910 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
911 {
912 	nvlist_t *label;
913 	vdev_phys_t *vp;
914 	char *buf;
915 	size_t buflen;
916 
917 	for (int c = 0; c < vd->vdev_children; c++)
918 		vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
919 
920 	if (!vd->vdev_ops->vdev_op_leaf)
921 		return;
922 
923 	if (!vdev_writeable(vd))
924 		return;
925 
926 	/*
927 	 * Generate a label describing the top-level config to which we belong.
928 	 */
929 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
930 
931 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
932 	bzero(vp, sizeof (vdev_phys_t));
933 
934 	buf = vp->vp_nvlist;
935 	buflen = sizeof (vp->vp_nvlist);
936 
937 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
938 		for (; l < VDEV_LABELS; l += 2) {
939 			vdev_label_write(zio, vd, l, vp,
940 			    offsetof(vdev_label_t, vl_vdev_phys),
941 			    sizeof (vdev_phys_t),
942 			    vdev_label_sync_done, zio->io_private,
943 			    flags | ZIO_FLAG_DONT_PROPAGATE);
944 		}
945 	}
946 
947 	zio_buf_free(vp, sizeof (vdev_phys_t));
948 	nvlist_free(label);
949 }
950 
951 int
952 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
953 {
954 	list_t *dl = &spa->spa_config_dirty_list;
955 	vdev_t *vd;
956 	zio_t *zio;
957 	int error;
958 
959 	/*
960 	 * Write the new labels to disk.
961 	 */
962 	zio = zio_root(spa, NULL, NULL, flags);
963 
964 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
965 		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
966 		    KM_SLEEP);
967 		zio_t *vio = zio_null(zio, spa, NULL,
968 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
969 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
970 		    good_writes, flags);
971 		vdev_label_sync(vio, vd, l, txg, flags);
972 		zio_nowait(vio);
973 	}
974 
975 	error = zio_wait(zio);
976 
977 	/*
978 	 * Flush the new labels to disk.
979 	 */
980 	zio = zio_root(spa, NULL, NULL, flags);
981 
982 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
983 		zio_flush(zio, vd);
984 
985 	(void) zio_wait(zio);
986 
987 	return (error);
988 }
989 
990 /*
991  * Sync the uberblock and any changes to the vdev configuration.
992  *
993  * The order of operations is carefully crafted to ensure that
994  * if the system panics or loses power at any time, the state on disk
995  * is still transactionally consistent.  The in-line comments below
996  * describe the failure semantics at each stage.
997  *
998  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
999  * at any time, you can just call it again, and it will resume its work.
1000  */
1001 int
1002 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1003 {
1004 	spa_t *spa = svd[0]->vdev_spa;
1005 	uberblock_t *ub = &spa->spa_uberblock;
1006 	vdev_t *vd;
1007 	zio_t *zio;
1008 	int error;
1009 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1010 
1011 	ASSERT(ub->ub_txg <= txg);
1012 
1013 	/*
1014 	 * If this isn't a resync due to I/O errors,
1015 	 * and nothing changed in this transaction group,
1016 	 * and the vdev configuration hasn't changed,
1017 	 * then there's nothing to do.
1018 	 */
1019 	if (ub->ub_txg < txg &&
1020 	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1021 	    list_is_empty(&spa->spa_config_dirty_list))
1022 		return (0);
1023 
1024 	if (txg > spa_freeze_txg(spa))
1025 		return (0);
1026 
1027 	ASSERT(txg <= spa->spa_final_txg);
1028 
1029 	/*
1030 	 * Flush the write cache of every disk that's been written to
1031 	 * in this transaction group.  This ensures that all blocks
1032 	 * written in this txg will be committed to stable storage
1033 	 * before any uberblock that references them.
1034 	 */
1035 	zio = zio_root(spa, NULL, NULL, flags);
1036 
1037 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1038 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1039 		zio_flush(zio, vd);
1040 
1041 	(void) zio_wait(zio);
1042 
1043 	/*
1044 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1045 	 * system dies in the middle of this process, that's OK: all of the
1046 	 * even labels that made it to disk will be newer than any uberblock,
1047 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1048 	 * which have not yet been touched, will still be valid.  We flush
1049 	 * the new labels to disk to ensure that all even-label updates
1050 	 * are committed to stable storage before the uberblock update.
1051 	 */
1052 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1053 		return (error);
1054 
1055 	/*
1056 	 * Sync the uberblocks to all vdevs in svd[].
1057 	 * If the system dies in the middle of this step, there are two cases
1058 	 * to consider, and the on-disk state is consistent either way:
1059 	 *
1060 	 * (1)	If none of the new uberblocks made it to disk, then the
1061 	 *	previous uberblock will be the newest, and the odd labels
1062 	 *	(which had not yet been touched) will be valid with respect
1063 	 *	to that uberblock.
1064 	 *
1065 	 * (2)	If one or more new uberblocks made it to disk, then they
1066 	 *	will be the newest, and the even labels (which had all
1067 	 *	been successfully committed) will be valid with respect
1068 	 *	to the new uberblocks.
1069 	 */
1070 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1071 		return (error);
1072 
1073 	/*
1074 	 * Sync out odd labels for every dirty vdev.  If the system dies
1075 	 * in the middle of this process, the even labels and the new
1076 	 * uberblocks will suffice to open the pool.  The next time
1077 	 * the pool is opened, the first thing we'll do -- before any
1078 	 * user data is modified -- is mark every vdev dirty so that
1079 	 * all labels will be brought up to date.  We flush the new labels
1080 	 * to disk to ensure that all odd-label updates are committed to
1081 	 * stable storage before the next transaction group begins.
1082 	 */
1083 	return (vdev_label_sync_list(spa, 1, txg, flags));
1084 }
1085