1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Virtual Device Labels 30 * --------------------- 31 * 32 * The vdev label serves several distinct purposes: 33 * 34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 35 * identity within the pool. 36 * 37 * 2. Verify that all the devices given in a configuration are present 38 * within the pool. 39 * 40 * 3. Determine the uberblock for the pool. 41 * 42 * 4. In case of an import operation, determine the configuration of the 43 * toplevel vdev of which it is a part. 44 * 45 * 5. If an import operation cannot find all the devices in the pool, 46 * provide enough information to the administrator to determine which 47 * devices are missing. 48 * 49 * It is important to note that while the kernel is responsible for writing the 50 * label, it only consumes the information in the first three cases. The 51 * latter information is only consumed in userland when determining the 52 * configuration to import a pool. 53 * 54 * 55 * Label Organization 56 * ------------------ 57 * 58 * Before describing the contents of the label, it's important to understand how 59 * the labels are written and updated with respect to the uberblock. 60 * 61 * When the pool configuration is altered, either because it was newly created 62 * or a device was added, we want to update all the labels such that we can deal 63 * with fatal failure at any point. To this end, each disk has two labels which 64 * are updated before and after the uberblock is synced. Assuming we have 65 * labels and an uberblock with the following transacation groups: 66 * 67 * L1 UB L2 68 * +------+ +------+ +------+ 69 * | | | | | | 70 * | t10 | | t10 | | t10 | 71 * | | | | | | 72 * +------+ +------+ +------+ 73 * 74 * In this stable state, the labels and the uberblock were all updated within 75 * the same transaction group (10). Each label is mirrored and checksummed, so 76 * that we can detect when we fail partway through writing the label. 77 * 78 * In order to identify which labels are valid, the labels are written in the 79 * following manner: 80 * 81 * 1. For each vdev, update 'L1' to the new label 82 * 2. Update the uberblock 83 * 3. For each vdev, update 'L2' to the new label 84 * 85 * Given arbitrary failure, we can determine the correct label to use based on 86 * the transaction group. If we fail after updating L1 but before updating the 87 * UB, we will notice that L1's transaction group is greater than the uberblock, 88 * so L2 must be valid. If we fail after writing the uberblock but before 89 * writing L2, we will notice that L2's transaction group is less than L1, and 90 * therefore L1 is valid. 91 * 92 * Another added complexity is that not every label is updated when the config 93 * is synced. If we add a single device, we do not want to have to re-write 94 * every label for every device in the pool. This means that both L1 and L2 may 95 * be older than the pool uberblock, because the necessary information is stored 96 * on another vdev. 97 * 98 * 99 * On-disk Format 100 * -------------- 101 * 102 * The vdev label consists of two distinct parts, and is wrapped within the 103 * vdev_label_t structure. The label includes 8k of padding to permit legacy 104 * VTOC disk labels, but is otherwise ignored. 105 * 106 * The first half of the label is a packed nvlist which contains pool wide 107 * properties, per-vdev properties, and configuration information. It is 108 * described in more detail below. 109 * 110 * The latter half of the label consists of a redundant array of uberblocks. 111 * These uberblocks are updated whenever a transaction group is committed, 112 * or when the configuration is updated. When a pool is loaded, we scan each 113 * vdev for the 'best' uberblock. 114 * 115 * 116 * Configuration Information 117 * ------------------------- 118 * 119 * The nvlist describing the pool and vdev contains the following elements: 120 * 121 * version ZFS on-disk version 122 * name Pool name 123 * state Pool state 124 * txg Transaction group in which this label was written 125 * pool_guid Unique identifier for this pool 126 * vdev_tree An nvlist describing vdev tree. 127 * 128 * Each leaf device label also contains the following: 129 * 130 * top_guid Unique ID for top-level vdev in which this is contained 131 * guid Unique ID for the leaf vdev 132 * 133 * The 'vs' configuration follows the format described in 'spa_config.c'. 134 */ 135 136 #include <sys/zfs_context.h> 137 #include <sys/spa.h> 138 #include <sys/spa_impl.h> 139 #include <sys/dmu.h> 140 #include <sys/zap.h> 141 #include <sys/vdev.h> 142 #include <sys/vdev_impl.h> 143 #include <sys/uberblock_impl.h> 144 #include <sys/metaslab.h> 145 #include <sys/zio.h> 146 #include <sys/fs/zfs.h> 147 148 /* 149 * Basic routines to read and write from a vdev label. 150 * Used throughout the rest of this file. 151 */ 152 uint64_t 153 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 154 { 155 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 156 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 157 } 158 159 static void 160 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 161 uint64_t size, zio_done_func_t *done, void *private) 162 { 163 ASSERT(vd->vdev_children == 0); 164 165 zio_nowait(zio_read_phys(zio, vd, 166 vdev_label_offset(vd->vdev_psize, l, offset), 167 size, buf, ZIO_CHECKSUM_LABEL, done, private, 168 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_SPECULATIVE | 169 ZIO_FLAG_CANFAIL | ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_DONT_RETRY)); 170 } 171 172 static void 173 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 174 uint64_t size, zio_done_func_t *done, void *private) 175 { 176 ASSERT(vd->vdev_children == 0); 177 178 zio_nowait(zio_write_phys(zio, vd, 179 vdev_label_offset(vd->vdev_psize, l, offset), 180 size, buf, ZIO_CHECKSUM_LABEL, done, private, 181 ZIO_PRIORITY_SYNC_WRITE, 182 ZIO_FLAG_CANFAIL | ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_DONT_RETRY)); 183 } 184 185 /* 186 * Generate the nvlist representing this vdev's config. 187 */ 188 nvlist_t * 189 vdev_config_generate(vdev_t *vd, int getstats) 190 { 191 nvlist_t *nv = NULL; 192 193 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, 0) == 0); 194 195 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 196 vd->vdev_ops->vdev_op_type) == 0); 197 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) == 0); 198 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); 199 200 if (vd->vdev_path != NULL) 201 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, 202 vd->vdev_path) == 0); 203 204 if (vd->vdev_devid != NULL) 205 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, 206 vd->vdev_devid) == 0); 207 208 if (vd->vdev_wholedisk != -1ULL) 209 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 210 vd->vdev_wholedisk) == 0); 211 212 if (vd == vd->vdev_top) { 213 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 214 vd->vdev_ms_array) == 0); 215 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 216 vd->vdev_ms_shift) == 0); 217 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, 218 vd->vdev_ashift) == 0); 219 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 220 vd->vdev_asize) == 0); 221 } 222 223 if (vd->vdev_dtl.smo_object != 0) 224 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 225 vd->vdev_dtl.smo_object) == 0); 226 227 if (getstats) { 228 vdev_stat_t vs; 229 vdev_get_stats(vd, &vs); 230 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS, 231 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0); 232 } 233 234 if (!vd->vdev_ops->vdev_op_leaf) { 235 nvlist_t **child; 236 int c; 237 238 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 239 KM_SLEEP); 240 241 for (c = 0; c < vd->vdev_children; c++) 242 child[c] = vdev_config_generate(vd->vdev_child[c], 243 getstats); 244 245 VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 246 child, vd->vdev_children) == 0); 247 248 for (c = 0; c < vd->vdev_children; c++) 249 nvlist_free(child[c]); 250 251 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 252 253 } else { 254 if (!vd->vdev_tmpoffline) { 255 if (vd->vdev_offline) 256 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, 257 B_TRUE) == 0); 258 else 259 (void) nvlist_remove(nv, ZPOOL_CONFIG_OFFLINE, 260 DATA_TYPE_UINT64); 261 } 262 } 263 264 return (nv); 265 } 266 267 nvlist_t * 268 vdev_label_read_config(vdev_t *vd) 269 { 270 nvlist_t *config = NULL; 271 vdev_phys_t *vp; 272 uint64_t version; 273 zio_t *zio; 274 int l; 275 276 if (vdev_is_dead(vd)) 277 return (NULL); 278 279 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 280 281 for (l = 0; l < VDEV_LABELS; l++) { 282 283 zio = zio_root(vd->vdev_spa, NULL, NULL, 284 ZIO_FLAG_CANFAIL | ZIO_FLAG_CONFIG_HELD); 285 286 vdev_label_read(zio, vd, l, vp, 287 offsetof(vdev_label_t, vl_vdev_phys), 288 sizeof (vdev_phys_t), NULL, NULL); 289 290 if (zio_wait(zio) == 0 && 291 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 292 &config, 0) == 0 && 293 nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 294 &version) == 0 && 295 version == UBERBLOCK_VERSION) 296 break; 297 298 if (config != NULL) { 299 nvlist_free(config); 300 config = NULL; 301 } 302 } 303 304 zio_buf_free(vp, sizeof (vdev_phys_t)); 305 306 return (config); 307 } 308 309 int 310 vdev_label_init(vdev_t *vd, uint64_t crtxg) 311 { 312 spa_t *spa = vd->vdev_spa; 313 nvlist_t *label; 314 vdev_phys_t *vp; 315 vdev_boot_header_t *vb; 316 uberblock_phys_t *ubphys; 317 zio_t *zio; 318 int l, c, n; 319 char *buf; 320 size_t buflen; 321 int error; 322 323 for (c = 0; c < vd->vdev_children; c++) 324 if ((error = vdev_label_init(vd->vdev_child[c], crtxg)) != 0) 325 return (error); 326 327 if (!vd->vdev_ops->vdev_op_leaf) 328 return (0); 329 330 /* 331 * Make sure each leaf device is writable, and zero its initial content. 332 * Along the way, also make sure that no leaf is already in use. 333 * Note that it's important to do this sequentially, not in parallel, 334 * so that we catch cases of multiple use of the same leaf vdev in 335 * the vdev we're creating -- e.g. mirroring a disk with itself. 336 */ 337 if (vdev_is_dead(vd)) 338 return (EIO); 339 340 /* 341 * Check whether this device is already in use. 342 * Ignore the check if crtxg == 0, which we use for device removal. 343 */ 344 if (crtxg != 0 && (label = vdev_label_read_config(vd)) != NULL) { 345 uint64_t version, state, pool_guid, device_guid, txg; 346 uint64_t mycrtxg = 0; 347 348 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 349 &mycrtxg); 350 351 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, 352 &version) == 0 && version == UBERBLOCK_VERSION && 353 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 354 &state) == 0 && state == POOL_STATE_ACTIVE && 355 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 356 &pool_guid) == 0 && 357 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 358 &device_guid) == 0 && 359 spa_guid_exists(pool_guid, device_guid) && 360 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 361 &txg) == 0 && (txg != 0 || mycrtxg == crtxg)) { 362 dprintf("vdev %s in use, pool_state %d\n", 363 vdev_description(vd), state); 364 nvlist_free(label); 365 return (EBUSY); 366 } 367 nvlist_free(label); 368 } 369 370 /* 371 * The device isn't in use, so initialize its label. 372 */ 373 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 374 bzero(vp, sizeof (vdev_phys_t)); 375 376 /* 377 * Generate a label describing the pool and our top-level vdev. 378 * We mark it as being from txg 0 to indicate that it's not 379 * really part of an active pool just yet. The labels will 380 * be written again with a meaningful txg by spa_sync(). 381 */ 382 label = spa_config_generate(spa, vd, 0ULL, 0); 383 384 /* 385 * Add our creation time. This allows us to detect multiple vdev 386 * uses as described above, and automatically expires if we fail. 387 */ 388 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, crtxg) == 0); 389 390 buf = vp->vp_nvlist; 391 buflen = sizeof (vp->vp_nvlist); 392 393 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, 0) != 0) { 394 nvlist_free(label); 395 zio_buf_free(vp, sizeof (vdev_phys_t)); 396 return (EINVAL); 397 } 398 399 /* 400 * Initialize boot block header. 401 */ 402 vb = zio_buf_alloc(sizeof (vdev_boot_header_t)); 403 bzero(vb, sizeof (vdev_boot_header_t)); 404 vb->vb_magic = VDEV_BOOT_MAGIC; 405 vb->vb_version = VDEV_BOOT_VERSION; 406 vb->vb_offset = VDEV_BOOT_OFFSET; 407 vb->vb_size = VDEV_BOOT_SIZE; 408 409 /* 410 * Initialize uberblock template. 411 */ 412 ubphys = zio_buf_alloc(sizeof (uberblock_phys_t)); 413 bzero(ubphys, sizeof (uberblock_phys_t)); 414 ubphys->ubp_uberblock = spa->spa_uberblock; 415 ubphys->ubp_uberblock.ub_txg = 0; 416 417 /* 418 * Write everything in parallel. 419 */ 420 zio = zio_root(spa, NULL, NULL, 421 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 422 423 for (l = 0; l < VDEV_LABELS; l++) { 424 425 vdev_label_write(zio, vd, l, vp, 426 offsetof(vdev_label_t, vl_vdev_phys), 427 sizeof (vdev_phys_t), NULL, NULL); 428 429 vdev_label_write(zio, vd, l, vb, 430 offsetof(vdev_label_t, vl_boot_header), 431 sizeof (vdev_boot_header_t), NULL, NULL); 432 433 for (n = 0; n < VDEV_UBERBLOCKS; n++) { 434 435 vdev_label_write(zio, vd, l, ubphys, 436 offsetof(vdev_label_t, vl_uberblock[n]), 437 sizeof (uberblock_phys_t), NULL, NULL); 438 439 } 440 } 441 442 error = zio_wait(zio); 443 444 nvlist_free(label); 445 zio_buf_free(ubphys, sizeof (uberblock_phys_t)); 446 zio_buf_free(vb, sizeof (vdev_boot_header_t)); 447 zio_buf_free(vp, sizeof (vdev_phys_t)); 448 449 return (error); 450 } 451 452 /* 453 * ========================================================================== 454 * uberblock load/sync 455 * ========================================================================== 456 */ 457 458 /* 459 * Consider the following situation: txg is safely synced to disk. We've 460 * written the first uberblock for txg + 1, and then we lose power. When we 461 * come back up, we fail to see the uberblock for txg + 1 because, say, 462 * it was on a mirrored device and the replica to which we wrote txg + 1 463 * is now offline. If we then make some changes and sync txg + 1, and then 464 * the missing replica comes back, then for a new seconds we'll have two 465 * conflicting uberblocks on disk with the same txg. The solution is simple: 466 * among uberblocks with equal txg, choose the one with the latest timestamp. 467 */ 468 static int 469 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 470 { 471 if (ub1->ub_txg < ub2->ub_txg) 472 return (-1); 473 if (ub1->ub_txg > ub2->ub_txg) 474 return (1); 475 476 if (ub1->ub_timestamp < ub2->ub_timestamp) 477 return (-1); 478 if (ub1->ub_timestamp > ub2->ub_timestamp) 479 return (1); 480 481 return (0); 482 } 483 484 static void 485 vdev_uberblock_load_done(zio_t *zio) 486 { 487 uberblock_phys_t *ubphys = zio->io_data; 488 uberblock_t *ub = &ubphys->ubp_uberblock; 489 uberblock_t *ubbest = zio->io_private; 490 spa_t *spa = zio->io_spa; 491 492 ASSERT3U(zio->io_size, ==, sizeof (uberblock_phys_t)); 493 494 if (uberblock_verify(ub) == 0) { 495 mutex_enter(&spa->spa_uberblock_lock); 496 if (vdev_uberblock_compare(ub, ubbest) > 0) 497 *ubbest = *ub; 498 mutex_exit(&spa->spa_uberblock_lock); 499 } 500 501 zio_buf_free(zio->io_data, zio->io_size); 502 } 503 504 void 505 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest) 506 { 507 int l, c, n; 508 509 for (c = 0; c < vd->vdev_children; c++) 510 vdev_uberblock_load(zio, vd->vdev_child[c], ubbest); 511 512 if (!vd->vdev_ops->vdev_op_leaf) 513 return; 514 515 if (vdev_is_dead(vd)) 516 return; 517 518 for (l = 0; l < VDEV_LABELS; l++) { 519 for (n = 0; n < VDEV_UBERBLOCKS; n++) { 520 vdev_label_read(zio, vd, l, 521 zio_buf_alloc(sizeof (uberblock_phys_t)), 522 offsetof(vdev_label_t, vl_uberblock[n]), 523 sizeof (uberblock_phys_t), 524 vdev_uberblock_load_done, ubbest); 525 } 526 } 527 } 528 529 /* 530 * Write the uberblock to both labels of all leaves of the specified vdev. 531 */ 532 static void 533 vdev_uberblock_sync_done(zio_t *zio) 534 { 535 uint64_t *good_writes = zio->io_root->io_private; 536 537 if (zio->io_error == 0) 538 atomic_add_64(good_writes, 1); 539 } 540 541 static void 542 vdev_uberblock_sync(zio_t *zio, uberblock_phys_t *ubphys, vdev_t *vd, 543 uint64_t txg) 544 { 545 int l, c, n; 546 547 for (c = 0; c < vd->vdev_children; c++) 548 vdev_uberblock_sync(zio, ubphys, vd->vdev_child[c], txg); 549 550 if (!vd->vdev_ops->vdev_op_leaf) 551 return; 552 553 if (vdev_is_dead(vd)) 554 return; 555 556 n = txg & (VDEV_UBERBLOCKS - 1); 557 558 ASSERT(ubphys->ubp_uberblock.ub_txg == txg); 559 560 for (l = 0; l < VDEV_LABELS; l++) 561 vdev_label_write(zio, vd, l, ubphys, 562 offsetof(vdev_label_t, vl_uberblock[n]), 563 sizeof (uberblock_phys_t), vdev_uberblock_sync_done, NULL); 564 565 dprintf("vdev %s in txg %llu\n", vdev_description(vd), txg); 566 } 567 568 static int 569 vdev_uberblock_sync_tree(spa_t *spa, uberblock_t *ub, vdev_t *uvd, uint64_t txg) 570 { 571 uberblock_phys_t *ubphys; 572 uint64_t *good_writes; 573 zio_t *zio; 574 int error; 575 576 ubphys = zio_buf_alloc(sizeof (uberblock_phys_t)); 577 bzero(ubphys, sizeof (uberblock_phys_t)); 578 ubphys->ubp_uberblock = *ub; 579 580 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 581 582 zio = zio_root(spa, NULL, good_writes, 583 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 584 585 vdev_uberblock_sync(zio, ubphys, uvd, txg); 586 587 error = zio_wait(zio); 588 589 if (error && *good_writes != 0) { 590 dprintf("partial success: good_writes = %llu\n", *good_writes); 591 error = 0; 592 } 593 594 /* 595 * It's possible to have no good writes and no error if every vdev is in 596 * the CANT_OPEN state. 597 */ 598 if (*good_writes == 0 && error == 0) 599 error = EIO; 600 601 kmem_free(good_writes, sizeof (uint64_t)); 602 zio_buf_free(ubphys, sizeof (uberblock_phys_t)); 603 604 return (error); 605 } 606 607 /* 608 * Sync out an individual vdev. 609 */ 610 static void 611 vdev_sync_label_done(zio_t *zio) 612 { 613 uint64_t *good_writes = zio->io_root->io_private; 614 615 if (zio->io_error == 0) 616 atomic_add_64(good_writes, 1); 617 } 618 619 static void 620 vdev_sync_label(zio_t *zio, vdev_t *vd, int l, uint64_t txg) 621 { 622 nvlist_t *label; 623 vdev_phys_t *vp; 624 char *buf; 625 size_t buflen; 626 int c; 627 628 for (c = 0; c < vd->vdev_children; c++) 629 vdev_sync_label(zio, vd->vdev_child[c], l, txg); 630 631 if (!vd->vdev_ops->vdev_op_leaf) 632 return; 633 634 if (vdev_is_dead(vd)) 635 return; 636 637 /* 638 * Generate a label describing the top-level config to which we belong. 639 */ 640 label = spa_config_generate(vd->vdev_spa, vd, txg, 0); 641 642 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 643 bzero(vp, sizeof (vdev_phys_t)); 644 645 buf = vp->vp_nvlist; 646 buflen = sizeof (vp->vp_nvlist); 647 648 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, 0) == 0) 649 vdev_label_write(zio, vd, l, vp, 650 offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t), 651 vdev_sync_label_done, NULL); 652 653 zio_buf_free(vp, sizeof (vdev_phys_t)); 654 nvlist_free(label); 655 656 dprintf("%s label %d txg %llu\n", vdev_description(vd), l, txg); 657 } 658 659 static int 660 vdev_sync_labels(vdev_t *vd, int l, uint64_t txg) 661 { 662 uint64_t *good_writes; 663 zio_t *zio; 664 int error; 665 666 ASSERT(vd == vd->vdev_top); 667 668 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 669 670 zio = zio_root(vd->vdev_spa, NULL, good_writes, 671 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 672 673 /* 674 * Recursively kick off writes to all labels. 675 */ 676 vdev_sync_label(zio, vd, l, txg); 677 678 error = zio_wait(zio); 679 680 if (error && *good_writes != 0) { 681 dprintf("partial success: good_writes = %llu\n", *good_writes); 682 error = 0; 683 } 684 685 if (*good_writes == 0 && error == 0) 686 error = ENODEV; 687 688 kmem_free(good_writes, sizeof (uint64_t)); 689 690 return (error); 691 } 692 693 /* 694 * Sync the entire vdev configuration. 695 * 696 * The order of operations is carefully crafted to ensure that 697 * if the system panics or loses power at any time, the state on disk 698 * is still transactionally consistent. The in-line comments below 699 * describe the failure semantics at each stage. 700 * 701 * Moreover, it is designed to be idempotent: if spa_sync_labels() fails 702 * at any time, you can just call it again, and it will resume its work. 703 */ 704 int 705 spa_sync_labels(spa_t *spa, uint64_t txg) 706 { 707 uberblock_t *ub = &spa->spa_uberblock; 708 vdev_t *rvd = spa->spa_root_vdev; 709 vdev_t *vd, *uvd; 710 zio_t *zio; 711 int c, l, error; 712 713 ASSERT(ub->ub_txg <= txg); 714 715 /* 716 * If this isn't a resync due to I/O errors, and nothing changed 717 * in this transaction group, and the vdev configuration hasn't changed, 718 * and this isn't an explicit sync-all, then there's nothing to do. 719 */ 720 if (ub->ub_txg < txg && uberblock_update(ub, rvd, txg) == B_FALSE && 721 list_is_empty(&spa->spa_dirty_list)) { 722 dprintf("nothing to sync in %s in txg %llu\n", 723 spa_name(spa), txg); 724 return (0); 725 } 726 727 if (txg > spa_freeze_txg(spa)) 728 return (0); 729 730 dprintf("syncing %s txg %llu\n", spa_name(spa), txg); 731 732 /* 733 * Flush the write cache of every disk that's been written to 734 * in this transaction group. This ensures that all blocks 735 * written in this txg will be committed to stable storage 736 * before any uberblock that references them. 737 */ 738 zio = zio_root(spa, NULL, NULL, 739 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 740 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 741 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) { 742 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 743 NULL, NULL, ZIO_PRIORITY_NOW, 744 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 745 } 746 (void) zio_wait(zio); 747 748 /* 749 * Sync out the even labels (L0, L2) for every dirty vdev. If the 750 * system dies in the middle of this process, that's OK: all of the 751 * even labels that made it to disk will be newer than any uberblock, 752 * and will therefore be considered invalid. The odd labels (L1, L3), 753 * which have not yet been touched, will still be valid. 754 */ 755 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 756 vd = list_next(&spa->spa_dirty_list, vd)) { 757 for (l = 0; l < VDEV_LABELS; l++) { 758 if (l & 1) 759 continue; 760 if ((error = vdev_sync_labels(vd, l, txg)) != 0) 761 return (error); 762 } 763 } 764 765 /* 766 * Flush the new labels to disk. This ensures that all even-label 767 * updates are committed to stable storage before the uberblock update. 768 */ 769 zio = zio_root(spa, NULL, NULL, 770 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 771 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 772 vd = list_next(&spa->spa_dirty_list, vd)) { 773 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 774 NULL, NULL, ZIO_PRIORITY_NOW, 775 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 776 } 777 (void) zio_wait(zio); 778 779 /* 780 * If there are any dirty vdevs, sync the uberblock to all vdevs. 781 * Otherwise, pick one top-level vdev at random. 782 */ 783 if (!list_is_empty(&spa->spa_dirty_list)) 784 uvd = rvd; 785 else 786 uvd = rvd->vdev_child[spa_get_random(rvd->vdev_children)]; 787 788 /* 789 * Sync the uberblocks. If the system dies in the middle of this 790 * step, there are two cases to consider, and the on-disk state 791 * is consistent either way: 792 * 793 * (1) If none of the new uberblocks made it to disk, then the 794 * previous uberblock will be the newest, and the odd labels 795 * (which had not yet been touched) will be valid with respect 796 * to that uberblock. 797 * 798 * (2) If one or more new uberblocks made it to disk, then they 799 * will be the newest, and the even labels (which had all 800 * been successfully committed) will be valid with respect 801 * to the new uberblocks. 802 */ 803 if ((error = vdev_uberblock_sync_tree(spa, ub, uvd, txg)) != 0) 804 return (error); 805 806 /* 807 * Flush the uberblocks to disk. This ensures that the odd labels 808 * are no longer needed (because the new uberblocks and the even 809 * labels are safely on disk), so it is safe to overwrite them. 810 */ 811 (void) zio_wait(zio_ioctl(NULL, spa, uvd, DKIOCFLUSHWRITECACHE, 812 NULL, NULL, ZIO_PRIORITY_NOW, 813 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 814 815 /* 816 * Sync out odd labels for every dirty vdev. If the system dies 817 * in the middle of this process, the even labels and the new 818 * uberblocks will suffice to open the pool. The next time 819 * the pool is opened, the first thing we'll do -- before any 820 * user data is modified -- is mark every vdev dirty so that 821 * all labels will be brought up to date. 822 */ 823 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 824 vd = list_next(&spa->spa_dirty_list, vd)) { 825 for (l = 0; l < VDEV_LABELS; l++) { 826 if ((l & 1) == 0) 827 continue; 828 if ((error = vdev_sync_labels(vd, l, txg)) != 0) 829 return (error); 830 } 831 } 832 833 /* 834 * Flush the new labels to disk. This ensures that all odd-label 835 * updates are committed to stable storage before the next 836 * transaction group begins. 837 */ 838 zio = zio_root(spa, NULL, NULL, 839 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 840 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 841 vd = list_next(&spa->spa_dirty_list, vd)) { 842 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 843 NULL, NULL, ZIO_PRIORITY_NOW, 844 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 845 } 846 (void) zio_wait(zio); 847 848 /* 849 * Clear the dirty list. 850 */ 851 while (!list_is_empty(&spa->spa_dirty_list)) 852 vdev_config_clean(list_head(&spa->spa_dirty_list)); 853 854 #ifdef DEBUG 855 for (c = 0; c < rvd->vdev_children; c++) { 856 ASSERT(rvd->vdev_child[c]->vdev_is_dirty == 0); 857 } 858 #endif 859 860 return (0); 861 } 862