1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Virtual Device Labels 30 * --------------------- 31 * 32 * The vdev label serves several distinct purposes: 33 * 34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 35 * identity within the pool. 36 * 37 * 2. Verify that all the devices given in a configuration are present 38 * within the pool. 39 * 40 * 3. Determine the uberblock for the pool. 41 * 42 * 4. In case of an import operation, determine the configuration of the 43 * toplevel vdev of which it is a part. 44 * 45 * 5. If an import operation cannot find all the devices in the pool, 46 * provide enough information to the administrator to determine which 47 * devices are missing. 48 * 49 * It is important to note that while the kernel is responsible for writing the 50 * label, it only consumes the information in the first three cases. The 51 * latter information is only consumed in userland when determining the 52 * configuration to import a pool. 53 * 54 * 55 * Label Organization 56 * ------------------ 57 * 58 * Before describing the contents of the label, it's important to understand how 59 * the labels are written and updated with respect to the uberblock. 60 * 61 * When the pool configuration is altered, either because it was newly created 62 * or a device was added, we want to update all the labels such that we can deal 63 * with fatal failure at any point. To this end, each disk has two labels which 64 * are updated before and after the uberblock is synced. Assuming we have 65 * labels and an uberblock with the following transacation groups: 66 * 67 * L1 UB L2 68 * +------+ +------+ +------+ 69 * | | | | | | 70 * | t10 | | t10 | | t10 | 71 * | | | | | | 72 * +------+ +------+ +------+ 73 * 74 * In this stable state, the labels and the uberblock were all updated within 75 * the same transaction group (10). Each label is mirrored and checksummed, so 76 * that we can detect when we fail partway through writing the label. 77 * 78 * In order to identify which labels are valid, the labels are written in the 79 * following manner: 80 * 81 * 1. For each vdev, update 'L1' to the new label 82 * 2. Update the uberblock 83 * 3. For each vdev, update 'L2' to the new label 84 * 85 * Given arbitrary failure, we can determine the correct label to use based on 86 * the transaction group. If we fail after updating L1 but before updating the 87 * UB, we will notice that L1's transaction group is greater than the uberblock, 88 * so L2 must be valid. If we fail after writing the uberblock but before 89 * writing L2, we will notice that L2's transaction group is less than L1, and 90 * therefore L1 is valid. 91 * 92 * Another added complexity is that not every label is updated when the config 93 * is synced. If we add a single device, we do not want to have to re-write 94 * every label for every device in the pool. This means that both L1 and L2 may 95 * be older than the pool uberblock, because the necessary information is stored 96 * on another vdev. 97 * 98 * 99 * On-disk Format 100 * -------------- 101 * 102 * The vdev label consists of two distinct parts, and is wrapped within the 103 * vdev_label_t structure. The label includes 8k of padding to permit legacy 104 * VTOC disk labels, but is otherwise ignored. 105 * 106 * The first half of the label is a packed nvlist which contains pool wide 107 * properties, per-vdev properties, and configuration information. It is 108 * described in more detail below. 109 * 110 * The latter half of the label consists of a redundant array of uberblocks. 111 * These uberblocks are updated whenever a transaction group is committed, 112 * or when the configuration is updated. When a pool is loaded, we scan each 113 * vdev for the 'best' uberblock. 114 * 115 * 116 * Configuration Information 117 * ------------------------- 118 * 119 * The nvlist describing the pool and vdev contains the following elements: 120 * 121 * version ZFS on-disk version 122 * name Pool name 123 * state Pool state 124 * txg Transaction group in which this label was written 125 * pool_guid Unique identifier for this pool 126 * vdev_tree An nvlist describing vdev tree. 127 * 128 * Each leaf device label also contains the following: 129 * 130 * top_guid Unique ID for top-level vdev in which this is contained 131 * guid Unique ID for the leaf vdev 132 * 133 * The 'vs' configuration follows the format described in 'spa_config.c'. 134 */ 135 136 #include <sys/zfs_context.h> 137 #include <sys/spa.h> 138 #include <sys/spa_impl.h> 139 #include <sys/dmu.h> 140 #include <sys/zap.h> 141 #include <sys/vdev.h> 142 #include <sys/vdev_impl.h> 143 #include <sys/uberblock_impl.h> 144 #include <sys/metaslab.h> 145 #include <sys/zio.h> 146 #include <sys/fs/zfs.h> 147 148 /* 149 * Basic routines to read and write from a vdev label. 150 * Used throughout the rest of this file. 151 */ 152 uint64_t 153 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 154 { 155 ASSERT(offset < sizeof (vdev_label_t)); 156 157 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 158 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 159 } 160 161 static void 162 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 163 uint64_t size, zio_done_func_t *done, void *private) 164 { 165 ASSERT(vd->vdev_children == 0); 166 167 zio_nowait(zio_read_phys(zio, vd, 168 vdev_label_offset(vd->vdev_psize, l, offset), 169 size, buf, ZIO_CHECKSUM_LABEL, done, private, 170 ZIO_PRIORITY_SYNC_READ, 171 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE)); 172 } 173 174 static void 175 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 176 uint64_t size, zio_done_func_t *done, void *private) 177 { 178 ASSERT(vd->vdev_children == 0); 179 180 zio_nowait(zio_write_phys(zio, vd, 181 vdev_label_offset(vd->vdev_psize, l, offset), 182 size, buf, ZIO_CHECKSUM_LABEL, done, private, 183 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL)); 184 } 185 186 /* 187 * Generate the nvlist representing this vdev's config. 188 */ 189 nvlist_t * 190 vdev_config_generate(vdev_t *vd, int getstats) 191 { 192 nvlist_t *nv = NULL; 193 194 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 195 196 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 197 vd->vdev_ops->vdev_op_type) == 0); 198 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) == 0); 199 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); 200 201 if (vd->vdev_path != NULL) 202 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, 203 vd->vdev_path) == 0); 204 205 if (vd->vdev_devid != NULL) 206 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, 207 vd->vdev_devid) == 0); 208 209 if (vd->vdev_wholedisk != -1ULL) 210 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 211 vd->vdev_wholedisk) == 0); 212 213 if (vd->vdev_not_present) 214 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0); 215 216 if (vd == vd->vdev_top) { 217 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 218 vd->vdev_ms_array) == 0); 219 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 220 vd->vdev_ms_shift) == 0); 221 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, 222 vd->vdev_ashift) == 0); 223 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 224 vd->vdev_asize) == 0); 225 } 226 227 if (vd->vdev_dtl.smo_object != 0) 228 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 229 vd->vdev_dtl.smo_object) == 0); 230 231 if (getstats) { 232 vdev_stat_t vs; 233 vdev_get_stats(vd, &vs); 234 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS, 235 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0); 236 } 237 238 if (!vd->vdev_ops->vdev_op_leaf) { 239 nvlist_t **child; 240 int c; 241 242 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 243 KM_SLEEP); 244 245 for (c = 0; c < vd->vdev_children; c++) 246 child[c] = vdev_config_generate(vd->vdev_child[c], 247 getstats); 248 249 VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 250 child, vd->vdev_children) == 0); 251 252 for (c = 0; c < vd->vdev_children; c++) 253 nvlist_free(child[c]); 254 255 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 256 257 } else { 258 if (vd->vdev_offline && !vd->vdev_tmpoffline) 259 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, 260 B_TRUE) == 0); 261 else 262 (void) nvlist_remove(nv, ZPOOL_CONFIG_OFFLINE, 263 DATA_TYPE_UINT64); 264 } 265 266 return (nv); 267 } 268 269 nvlist_t * 270 vdev_label_read_config(vdev_t *vd) 271 { 272 spa_t *spa = vd->vdev_spa; 273 nvlist_t *config = NULL; 274 vdev_phys_t *vp; 275 zio_t *zio; 276 int l; 277 278 ASSERT(spa_config_held(spa, RW_READER)); 279 280 if (vdev_is_dead(vd)) 281 return (NULL); 282 283 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 284 285 for (l = 0; l < VDEV_LABELS; l++) { 286 287 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | 288 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CONFIG_HELD); 289 290 vdev_label_read(zio, vd, l, vp, 291 offsetof(vdev_label_t, vl_vdev_phys), 292 sizeof (vdev_phys_t), NULL, NULL); 293 294 if (zio_wait(zio) == 0 && 295 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 296 &config, 0) == 0) 297 break; 298 299 if (config != NULL) { 300 nvlist_free(config); 301 config = NULL; 302 } 303 } 304 305 zio_buf_free(vp, sizeof (vdev_phys_t)); 306 307 return (config); 308 } 309 310 int 311 vdev_label_init(vdev_t *vd, uint64_t crtxg) 312 { 313 spa_t *spa = vd->vdev_spa; 314 nvlist_t *label; 315 vdev_phys_t *vp; 316 vdev_boot_header_t *vb; 317 uberblock_t *ub; 318 zio_t *zio; 319 int l, c, n; 320 char *buf; 321 size_t buflen; 322 int error; 323 324 ASSERT(spa_config_held(spa, RW_WRITER)); 325 326 for (c = 0; c < vd->vdev_children; c++) 327 if ((error = vdev_label_init(vd->vdev_child[c], crtxg)) != 0) 328 return (error); 329 330 if (!vd->vdev_ops->vdev_op_leaf) 331 return (0); 332 333 /* 334 * Make sure each leaf device is writable, and zero its initial content. 335 * Along the way, also make sure that no leaf is already in use. 336 * Note that it's important to do this sequentially, not in parallel, 337 * so that we catch cases of multiple use of the same leaf vdev in 338 * the vdev we're creating -- e.g. mirroring a disk with itself. 339 */ 340 if (vdev_is_dead(vd)) 341 return (EIO); 342 343 /* 344 * Check whether this device is already in use. 345 * Ignore the check if crtxg == 0, which we use for device removal. 346 */ 347 if (crtxg != 0 && 348 (label = vdev_label_read_config(vd)) != NULL) { 349 uint64_t state, pool_guid, device_guid, txg; 350 uint64_t mycrtxg = 0; 351 352 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 353 &mycrtxg); 354 355 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 356 &state) == 0 && state == POOL_STATE_ACTIVE && 357 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 358 &pool_guid) == 0 && 359 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 360 &device_guid) == 0 && 361 spa_guid_exists(pool_guid, device_guid) && 362 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 363 &txg) == 0 && (txg != 0 || mycrtxg == crtxg)) { 364 dprintf("vdev %s in use, pool_state %d\n", 365 vdev_description(vd), state); 366 nvlist_free(label); 367 return (EBUSY); 368 } 369 nvlist_free(label); 370 } 371 372 /* 373 * The device isn't in use, so initialize its label. 374 */ 375 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 376 bzero(vp, sizeof (vdev_phys_t)); 377 378 /* 379 * Generate a label describing the pool and our top-level vdev. 380 * We mark it as being from txg 0 to indicate that it's not 381 * really part of an active pool just yet. The labels will 382 * be written again with a meaningful txg by spa_sync(). 383 */ 384 label = spa_config_generate(spa, vd, 0ULL, B_FALSE); 385 386 /* 387 * Add our creation time. This allows us to detect multiple vdev 388 * uses as described above, and automatically expires if we fail. 389 */ 390 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, crtxg) == 0); 391 392 buf = vp->vp_nvlist; 393 buflen = sizeof (vp->vp_nvlist); 394 395 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) != 0) { 396 nvlist_free(label); 397 zio_buf_free(vp, sizeof (vdev_phys_t)); 398 return (EINVAL); 399 } 400 401 /* 402 * Initialize boot block header. 403 */ 404 vb = zio_buf_alloc(sizeof (vdev_boot_header_t)); 405 bzero(vb, sizeof (vdev_boot_header_t)); 406 vb->vb_magic = VDEV_BOOT_MAGIC; 407 vb->vb_version = VDEV_BOOT_VERSION; 408 vb->vb_offset = VDEV_BOOT_OFFSET; 409 vb->vb_size = VDEV_BOOT_SIZE; 410 411 /* 412 * Initialize uberblock template. 413 */ 414 ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 415 bzero(ub, VDEV_UBERBLOCK_SIZE(vd)); 416 *ub = spa->spa_uberblock; 417 ub->ub_txg = 0; 418 419 /* 420 * Write everything in parallel. 421 */ 422 zio = zio_root(spa, NULL, NULL, 423 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 424 425 for (l = 0; l < VDEV_LABELS; l++) { 426 427 vdev_label_write(zio, vd, l, vp, 428 offsetof(vdev_label_t, vl_vdev_phys), 429 sizeof (vdev_phys_t), NULL, NULL); 430 431 vdev_label_write(zio, vd, l, vb, 432 offsetof(vdev_label_t, vl_boot_header), 433 sizeof (vdev_boot_header_t), NULL, NULL); 434 435 for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 436 vdev_label_write(zio, vd, l, ub, 437 VDEV_UBERBLOCK_OFFSET(vd, n), 438 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL); 439 } 440 } 441 442 error = zio_wait(zio); 443 444 nvlist_free(label); 445 zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd)); 446 zio_buf_free(vb, sizeof (vdev_boot_header_t)); 447 zio_buf_free(vp, sizeof (vdev_phys_t)); 448 449 return (error); 450 } 451 452 /* 453 * ========================================================================== 454 * uberblock load/sync 455 * ========================================================================== 456 */ 457 458 /* 459 * Consider the following situation: txg is safely synced to disk. We've 460 * written the first uberblock for txg + 1, and then we lose power. When we 461 * come back up, we fail to see the uberblock for txg + 1 because, say, 462 * it was on a mirrored device and the replica to which we wrote txg + 1 463 * is now offline. If we then make some changes and sync txg + 1, and then 464 * the missing replica comes back, then for a new seconds we'll have two 465 * conflicting uberblocks on disk with the same txg. The solution is simple: 466 * among uberblocks with equal txg, choose the one with the latest timestamp. 467 */ 468 static int 469 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 470 { 471 if (ub1->ub_txg < ub2->ub_txg) 472 return (-1); 473 if (ub1->ub_txg > ub2->ub_txg) 474 return (1); 475 476 if (ub1->ub_timestamp < ub2->ub_timestamp) 477 return (-1); 478 if (ub1->ub_timestamp > ub2->ub_timestamp) 479 return (1); 480 481 return (0); 482 } 483 484 static void 485 vdev_uberblock_load_done(zio_t *zio) 486 { 487 uberblock_t *ub = zio->io_data; 488 uberblock_t *ubbest = zio->io_private; 489 spa_t *spa = zio->io_spa; 490 491 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd)); 492 493 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 494 mutex_enter(&spa->spa_uberblock_lock); 495 if (vdev_uberblock_compare(ub, ubbest) > 0) 496 *ubbest = *ub; 497 mutex_exit(&spa->spa_uberblock_lock); 498 } 499 500 zio_buf_free(zio->io_data, zio->io_size); 501 } 502 503 void 504 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest) 505 { 506 int l, c, n; 507 508 for (c = 0; c < vd->vdev_children; c++) 509 vdev_uberblock_load(zio, vd->vdev_child[c], ubbest); 510 511 if (!vd->vdev_ops->vdev_op_leaf) 512 return; 513 514 if (vdev_is_dead(vd)) 515 return; 516 517 for (l = 0; l < VDEV_LABELS; l++) { 518 for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 519 vdev_label_read(zio, vd, l, 520 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), 521 VDEV_UBERBLOCK_OFFSET(vd, n), 522 VDEV_UBERBLOCK_SIZE(vd), 523 vdev_uberblock_load_done, ubbest); 524 } 525 } 526 } 527 528 /* 529 * Write the uberblock to both labels of all leaves of the specified vdev. 530 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 531 */ 532 static void 533 vdev_uberblock_sync_done(zio_t *zio) 534 { 535 uint64_t *good_writes = zio->io_root->io_private; 536 537 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 538 atomic_add_64(good_writes, 1); 539 } 540 541 static void 542 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, uint64_t txg) 543 { 544 int l, c, n; 545 546 for (c = 0; c < vd->vdev_children; c++) 547 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], txg); 548 549 if (!vd->vdev_ops->vdev_op_leaf) 550 return; 551 552 if (vdev_is_dead(vd)) 553 return; 554 555 n = txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 556 557 ASSERT(ub->ub_txg == txg); 558 559 for (l = 0; l < VDEV_LABELS; l++) 560 vdev_label_write(zio, vd, l, ub, 561 VDEV_UBERBLOCK_OFFSET(vd, n), 562 VDEV_UBERBLOCK_SIZE(vd), 563 vdev_uberblock_sync_done, NULL); 564 565 dprintf("vdev %s in txg %llu\n", vdev_description(vd), txg); 566 } 567 568 static int 569 vdev_uberblock_sync_tree(spa_t *spa, uberblock_t *ub, vdev_t *vd, uint64_t txg) 570 { 571 uberblock_t *ubbuf; 572 size_t size = vd->vdev_top ? VDEV_UBERBLOCK_SIZE(vd) : SPA_MAXBLOCKSIZE; 573 uint64_t *good_writes; 574 zio_t *zio; 575 int error; 576 577 ubbuf = zio_buf_alloc(size); 578 bzero(ubbuf, size); 579 *ubbuf = *ub; 580 581 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 582 583 zio = zio_root(spa, NULL, good_writes, 584 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 585 586 vdev_uberblock_sync(zio, ubbuf, vd, txg); 587 588 error = zio_wait(zio); 589 590 if (error && *good_writes != 0) { 591 dprintf("partial success: good_writes = %llu\n", *good_writes); 592 error = 0; 593 } 594 595 /* 596 * It's possible to have no good writes and no error if every vdev is in 597 * the CANT_OPEN state. 598 */ 599 if (*good_writes == 0 && error == 0) 600 error = EIO; 601 602 kmem_free(good_writes, sizeof (uint64_t)); 603 zio_buf_free(ubbuf, size); 604 605 return (error); 606 } 607 608 /* 609 * Sync out an individual vdev. 610 */ 611 static void 612 vdev_sync_label_done(zio_t *zio) 613 { 614 uint64_t *good_writes = zio->io_root->io_private; 615 616 if (zio->io_error == 0) 617 atomic_add_64(good_writes, 1); 618 } 619 620 static void 621 vdev_sync_label(zio_t *zio, vdev_t *vd, int l, uint64_t txg) 622 { 623 nvlist_t *label; 624 vdev_phys_t *vp; 625 char *buf; 626 size_t buflen; 627 int c; 628 629 for (c = 0; c < vd->vdev_children; c++) 630 vdev_sync_label(zio, vd->vdev_child[c], l, txg); 631 632 if (!vd->vdev_ops->vdev_op_leaf) 633 return; 634 635 if (vdev_is_dead(vd)) 636 return; 637 638 /* 639 * Generate a label describing the top-level config to which we belong. 640 */ 641 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 642 643 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 644 bzero(vp, sizeof (vdev_phys_t)); 645 646 buf = vp->vp_nvlist; 647 buflen = sizeof (vp->vp_nvlist); 648 649 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) 650 vdev_label_write(zio, vd, l, vp, 651 offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t), 652 vdev_sync_label_done, NULL); 653 654 zio_buf_free(vp, sizeof (vdev_phys_t)); 655 nvlist_free(label); 656 657 dprintf("%s label %d txg %llu\n", vdev_description(vd), l, txg); 658 } 659 660 static int 661 vdev_sync_labels(vdev_t *vd, int l, uint64_t txg) 662 { 663 uint64_t *good_writes; 664 zio_t *zio; 665 int error; 666 667 ASSERT(vd == vd->vdev_top); 668 669 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 670 671 zio = zio_root(vd->vdev_spa, NULL, good_writes, 672 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 673 674 /* 675 * Recursively kick off writes to all labels. 676 */ 677 vdev_sync_label(zio, vd, l, txg); 678 679 error = zio_wait(zio); 680 681 if (error && *good_writes != 0) { 682 dprintf("partial success: good_writes = %llu\n", *good_writes); 683 error = 0; 684 } 685 686 if (*good_writes == 0 && error == 0) 687 error = ENODEV; 688 689 kmem_free(good_writes, sizeof (uint64_t)); 690 691 return (error); 692 } 693 694 /* 695 * Sync the entire vdev configuration. 696 * 697 * The order of operations is carefully crafted to ensure that 698 * if the system panics or loses power at any time, the state on disk 699 * is still transactionally consistent. The in-line comments below 700 * describe the failure semantics at each stage. 701 * 702 * Moreover, it is designed to be idempotent: if spa_sync_labels() fails 703 * at any time, you can just call it again, and it will resume its work. 704 */ 705 int 706 vdev_config_sync(vdev_t *uvd, uint64_t txg) 707 { 708 spa_t *spa = uvd->vdev_spa; 709 uberblock_t *ub = &spa->spa_uberblock; 710 vdev_t *rvd = spa->spa_root_vdev; 711 vdev_t *vd; 712 zio_t *zio; 713 int l, error; 714 715 ASSERT(ub->ub_txg <= txg); 716 717 /* 718 * If this isn't a resync due to I/O errors, and nothing changed 719 * in this transaction group, and the vdev configuration hasn't changed, 720 * then there's nothing to do. 721 */ 722 if (ub->ub_txg < txg && uberblock_update(ub, rvd, txg) == B_FALSE && 723 list_is_empty(&spa->spa_dirty_list)) { 724 dprintf("nothing to sync in %s in txg %llu\n", 725 spa_name(spa), txg); 726 return (0); 727 } 728 729 if (txg > spa_freeze_txg(spa)) 730 return (0); 731 732 ASSERT(txg <= spa->spa_final_txg); 733 734 dprintf("syncing %s txg %llu\n", spa_name(spa), txg); 735 736 /* 737 * Flush the write cache of every disk that's been written to 738 * in this transaction group. This ensures that all blocks 739 * written in this txg will be committed to stable storage 740 * before any uberblock that references them. 741 */ 742 zio = zio_root(spa, NULL, NULL, 743 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 744 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 745 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) { 746 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 747 NULL, NULL, ZIO_PRIORITY_NOW, 748 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 749 } 750 (void) zio_wait(zio); 751 752 /* 753 * Sync out the even labels (L0, L2) for every dirty vdev. If the 754 * system dies in the middle of this process, that's OK: all of the 755 * even labels that made it to disk will be newer than any uberblock, 756 * and will therefore be considered invalid. The odd labels (L1, L3), 757 * which have not yet been touched, will still be valid. 758 */ 759 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 760 vd = list_next(&spa->spa_dirty_list, vd)) { 761 for (l = 0; l < VDEV_LABELS; l++) { 762 if (l & 1) 763 continue; 764 if ((error = vdev_sync_labels(vd, l, txg)) != 0) 765 return (error); 766 } 767 } 768 769 /* 770 * Flush the new labels to disk. This ensures that all even-label 771 * updates are committed to stable storage before the uberblock update. 772 */ 773 zio = zio_root(spa, NULL, NULL, 774 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 775 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 776 vd = list_next(&spa->spa_dirty_list, vd)) { 777 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 778 NULL, NULL, ZIO_PRIORITY_NOW, 779 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 780 } 781 (void) zio_wait(zio); 782 783 /* 784 * Sync the uberblocks to all vdevs in the tree specified by uvd. 785 * If the system dies in the middle of this step, there are two cases 786 * to consider, and the on-disk state is consistent either way: 787 * 788 * (1) If none of the new uberblocks made it to disk, then the 789 * previous uberblock will be the newest, and the odd labels 790 * (which had not yet been touched) will be valid with respect 791 * to that uberblock. 792 * 793 * (2) If one or more new uberblocks made it to disk, then they 794 * will be the newest, and the even labels (which had all 795 * been successfully committed) will be valid with respect 796 * to the new uberblocks. 797 */ 798 if ((error = vdev_uberblock_sync_tree(spa, ub, uvd, txg)) != 0) 799 return (error); 800 801 /* 802 * Flush the uberblocks to disk. This ensures that the odd labels 803 * are no longer needed (because the new uberblocks and the even 804 * labels are safely on disk), so it is safe to overwrite them. 805 */ 806 (void) zio_wait(zio_ioctl(NULL, spa, uvd, DKIOCFLUSHWRITECACHE, 807 NULL, NULL, ZIO_PRIORITY_NOW, 808 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 809 810 /* 811 * Sync out odd labels for every dirty vdev. If the system dies 812 * in the middle of this process, the even labels and the new 813 * uberblocks will suffice to open the pool. The next time 814 * the pool is opened, the first thing we'll do -- before any 815 * user data is modified -- is mark every vdev dirty so that 816 * all labels will be brought up to date. 817 */ 818 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 819 vd = list_next(&spa->spa_dirty_list, vd)) { 820 for (l = 0; l < VDEV_LABELS; l++) { 821 if ((l & 1) == 0) 822 continue; 823 if ((error = vdev_sync_labels(vd, l, txg)) != 0) 824 return (error); 825 } 826 } 827 828 /* 829 * Flush the new labels to disk. This ensures that all odd-label 830 * updates are committed to stable storage before the next 831 * transaction group begins. 832 */ 833 zio = zio_root(spa, NULL, NULL, 834 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 835 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 836 vd = list_next(&spa->spa_dirty_list, vd)) { 837 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 838 NULL, NULL, ZIO_PRIORITY_NOW, 839 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 840 } 841 (void) zio_wait(zio); 842 843 return (0); 844 } 845