1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Virtual Device Labels 28 * --------------------- 29 * 30 * The vdev label serves several distinct purposes: 31 * 32 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 33 * identity within the pool. 34 * 35 * 2. Verify that all the devices given in a configuration are present 36 * within the pool. 37 * 38 * 3. Determine the uberblock for the pool. 39 * 40 * 4. In case of an import operation, determine the configuration of the 41 * toplevel vdev of which it is a part. 42 * 43 * 5. If an import operation cannot find all the devices in the pool, 44 * provide enough information to the administrator to determine which 45 * devices are missing. 46 * 47 * It is important to note that while the kernel is responsible for writing the 48 * label, it only consumes the information in the first three cases. The 49 * latter information is only consumed in userland when determining the 50 * configuration to import a pool. 51 * 52 * 53 * Label Organization 54 * ------------------ 55 * 56 * Before describing the contents of the label, it's important to understand how 57 * the labels are written and updated with respect to the uberblock. 58 * 59 * When the pool configuration is altered, either because it was newly created 60 * or a device was added, we want to update all the labels such that we can deal 61 * with fatal failure at any point. To this end, each disk has two labels which 62 * are updated before and after the uberblock is synced. Assuming we have 63 * labels and an uberblock with the following transaction groups: 64 * 65 * L1 UB L2 66 * +------+ +------+ +------+ 67 * | | | | | | 68 * | t10 | | t10 | | t10 | 69 * | | | | | | 70 * +------+ +------+ +------+ 71 * 72 * In this stable state, the labels and the uberblock were all updated within 73 * the same transaction group (10). Each label is mirrored and checksummed, so 74 * that we can detect when we fail partway through writing the label. 75 * 76 * In order to identify which labels are valid, the labels are written in the 77 * following manner: 78 * 79 * 1. For each vdev, update 'L1' to the new label 80 * 2. Update the uberblock 81 * 3. For each vdev, update 'L2' to the new label 82 * 83 * Given arbitrary failure, we can determine the correct label to use based on 84 * the transaction group. If we fail after updating L1 but before updating the 85 * UB, we will notice that L1's transaction group is greater than the uberblock, 86 * so L2 must be valid. If we fail after writing the uberblock but before 87 * writing L2, we will notice that L2's transaction group is less than L1, and 88 * therefore L1 is valid. 89 * 90 * Another added complexity is that not every label is updated when the config 91 * is synced. If we add a single device, we do not want to have to re-write 92 * every label for every device in the pool. This means that both L1 and L2 may 93 * be older than the pool uberblock, because the necessary information is stored 94 * on another vdev. 95 * 96 * 97 * On-disk Format 98 * -------------- 99 * 100 * The vdev label consists of two distinct parts, and is wrapped within the 101 * vdev_label_t structure. The label includes 8k of padding to permit legacy 102 * VTOC disk labels, but is otherwise ignored. 103 * 104 * The first half of the label is a packed nvlist which contains pool wide 105 * properties, per-vdev properties, and configuration information. It is 106 * described in more detail below. 107 * 108 * The latter half of the label consists of a redundant array of uberblocks. 109 * These uberblocks are updated whenever a transaction group is committed, 110 * or when the configuration is updated. When a pool is loaded, we scan each 111 * vdev for the 'best' uberblock. 112 * 113 * 114 * Configuration Information 115 * ------------------------- 116 * 117 * The nvlist describing the pool and vdev contains the following elements: 118 * 119 * version ZFS on-disk version 120 * name Pool name 121 * state Pool state 122 * txg Transaction group in which this label was written 123 * pool_guid Unique identifier for this pool 124 * vdev_tree An nvlist describing vdev tree. 125 * 126 * Each leaf device label also contains the following: 127 * 128 * top_guid Unique ID for top-level vdev in which this is contained 129 * guid Unique ID for the leaf vdev 130 * 131 * The 'vs' configuration follows the format described in 'spa_config.c'. 132 */ 133 134 #include <sys/zfs_context.h> 135 #include <sys/spa.h> 136 #include <sys/spa_impl.h> 137 #include <sys/dmu.h> 138 #include <sys/zap.h> 139 #include <sys/vdev.h> 140 #include <sys/vdev_impl.h> 141 #include <sys/uberblock_impl.h> 142 #include <sys/metaslab.h> 143 #include <sys/zio.h> 144 #include <sys/fs/zfs.h> 145 146 /* 147 * Basic routines to read and write from a vdev label. 148 * Used throughout the rest of this file. 149 */ 150 uint64_t 151 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 152 { 153 ASSERT(offset < sizeof (vdev_label_t)); 154 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 155 156 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 157 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 158 } 159 160 /* 161 * Returns back the vdev label associated with the passed in offset. 162 */ 163 int 164 vdev_label_number(uint64_t psize, uint64_t offset) 165 { 166 int l; 167 168 if (offset >= psize - VDEV_LABEL_END_SIZE) { 169 offset -= psize - VDEV_LABEL_END_SIZE; 170 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 171 } 172 l = offset / sizeof (vdev_label_t); 173 return (l < VDEV_LABELS ? l : -1); 174 } 175 176 static void 177 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 178 uint64_t size, zio_done_func_t *done, void *private, int flags) 179 { 180 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == 181 SCL_STATE_ALL); 182 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 183 184 zio_nowait(zio_read_phys(zio, vd, 185 vdev_label_offset(vd->vdev_psize, l, offset), 186 size, buf, ZIO_CHECKSUM_LABEL, done, private, 187 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 188 } 189 190 static void 191 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 192 uint64_t size, zio_done_func_t *done, void *private, int flags) 193 { 194 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || 195 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == 196 (SCL_CONFIG | SCL_STATE) && 197 dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); 198 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 199 200 zio_nowait(zio_write_phys(zio, vd, 201 vdev_label_offset(vd->vdev_psize, l, offset), 202 size, buf, ZIO_CHECKSUM_LABEL, done, private, 203 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 204 } 205 206 /* 207 * Generate the nvlist representing this vdev's config. 208 */ 209 nvlist_t * 210 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 211 boolean_t isspare, boolean_t isl2cache) 212 { 213 nvlist_t *nv = NULL; 214 215 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 216 217 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 218 vd->vdev_ops->vdev_op_type) == 0); 219 if (!isspare && !isl2cache) 220 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) 221 == 0); 222 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); 223 224 if (vd->vdev_path != NULL) 225 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, 226 vd->vdev_path) == 0); 227 228 if (vd->vdev_devid != NULL) 229 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, 230 vd->vdev_devid) == 0); 231 232 if (vd->vdev_physpath != NULL) 233 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 234 vd->vdev_physpath) == 0); 235 236 if (vd->vdev_fru != NULL) 237 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU, 238 vd->vdev_fru) == 0); 239 240 if (vd->vdev_nparity != 0) { 241 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 242 VDEV_TYPE_RAIDZ) == 0); 243 244 /* 245 * Make sure someone hasn't managed to sneak a fancy new vdev 246 * into a crufty old storage pool. 247 */ 248 ASSERT(vd->vdev_nparity == 1 || 249 (vd->vdev_nparity == 2 && 250 spa_version(spa) >= SPA_VERSION_RAID6)); 251 252 /* 253 * Note that we'll add the nparity tag even on storage pools 254 * that only support a single parity device -- older software 255 * will just ignore it. 256 */ 257 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, 258 vd->vdev_nparity) == 0); 259 } 260 261 if (vd->vdev_wholedisk != -1ULL) 262 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 263 vd->vdev_wholedisk) == 0); 264 265 if (vd->vdev_not_present) 266 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0); 267 268 if (vd->vdev_isspare) 269 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0); 270 271 if (!isspare && !isl2cache && vd == vd->vdev_top) { 272 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 273 vd->vdev_ms_array) == 0); 274 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 275 vd->vdev_ms_shift) == 0); 276 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, 277 vd->vdev_ashift) == 0); 278 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 279 vd->vdev_asize) == 0); 280 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, 281 vd->vdev_islog) == 0); 282 } 283 284 if (vd->vdev_dtl_smo.smo_object != 0) 285 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 286 vd->vdev_dtl_smo.smo_object) == 0); 287 288 if (getstats) { 289 vdev_stat_t vs; 290 vdev_get_stats(vd, &vs); 291 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS, 292 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0); 293 } 294 295 if (!vd->vdev_ops->vdev_op_leaf) { 296 nvlist_t **child; 297 int c; 298 299 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 300 KM_SLEEP); 301 302 for (c = 0; c < vd->vdev_children; c++) 303 child[c] = vdev_config_generate(spa, vd->vdev_child[c], 304 getstats, isspare, isl2cache); 305 306 VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 307 child, vd->vdev_children) == 0); 308 309 for (c = 0; c < vd->vdev_children; c++) 310 nvlist_free(child[c]); 311 312 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 313 314 } else { 315 if (vd->vdev_offline && !vd->vdev_tmpoffline) 316 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, 317 B_TRUE) == 0); 318 if (vd->vdev_faulted) 319 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, 320 B_TRUE) == 0); 321 if (vd->vdev_degraded) 322 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, 323 B_TRUE) == 0); 324 if (vd->vdev_removed) 325 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, 326 B_TRUE) == 0); 327 if (vd->vdev_unspare) 328 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, 329 B_TRUE) == 0); 330 } 331 332 return (nv); 333 } 334 335 nvlist_t * 336 vdev_label_read_config(vdev_t *vd) 337 { 338 spa_t *spa = vd->vdev_spa; 339 nvlist_t *config = NULL; 340 vdev_phys_t *vp; 341 zio_t *zio; 342 int flags = 343 ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 344 345 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 346 347 if (!vdev_readable(vd)) 348 return (NULL); 349 350 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 351 352 for (int l = 0; l < VDEV_LABELS; l++) { 353 354 zio = zio_root(spa, NULL, NULL, flags); 355 356 vdev_label_read(zio, vd, l, vp, 357 offsetof(vdev_label_t, vl_vdev_phys), 358 sizeof (vdev_phys_t), NULL, NULL, flags); 359 360 if (zio_wait(zio) == 0 && 361 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 362 &config, 0) == 0) 363 break; 364 365 if (config != NULL) { 366 nvlist_free(config); 367 config = NULL; 368 } 369 } 370 371 zio_buf_free(vp, sizeof (vdev_phys_t)); 372 373 return (config); 374 } 375 376 /* 377 * Determine if a device is in use. The 'spare_guid' parameter will be filled 378 * in with the device guid if this spare is active elsewhere on the system. 379 */ 380 static boolean_t 381 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 382 uint64_t *spare_guid, uint64_t *l2cache_guid) 383 { 384 spa_t *spa = vd->vdev_spa; 385 uint64_t state, pool_guid, device_guid, txg, spare_pool; 386 uint64_t vdtxg = 0; 387 nvlist_t *label; 388 389 if (spare_guid) 390 *spare_guid = 0ULL; 391 if (l2cache_guid) 392 *l2cache_guid = 0ULL; 393 394 /* 395 * Read the label, if any, and perform some basic sanity checks. 396 */ 397 if ((label = vdev_label_read_config(vd)) == NULL) 398 return (B_FALSE); 399 400 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 401 &vdtxg); 402 403 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 404 &state) != 0 || 405 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 406 &device_guid) != 0) { 407 nvlist_free(label); 408 return (B_FALSE); 409 } 410 411 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 412 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 413 &pool_guid) != 0 || 414 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 415 &txg) != 0)) { 416 nvlist_free(label); 417 return (B_FALSE); 418 } 419 420 nvlist_free(label); 421 422 /* 423 * Check to see if this device indeed belongs to the pool it claims to 424 * be a part of. The only way this is allowed is if the device is a hot 425 * spare (which we check for later on). 426 */ 427 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 428 !spa_guid_exists(pool_guid, device_guid) && 429 !spa_spare_exists(device_guid, NULL, NULL) && 430 !spa_l2cache_exists(device_guid, NULL)) 431 return (B_FALSE); 432 433 /* 434 * If the transaction group is zero, then this an initialized (but 435 * unused) label. This is only an error if the create transaction 436 * on-disk is the same as the one we're using now, in which case the 437 * user has attempted to add the same vdev multiple times in the same 438 * transaction. 439 */ 440 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 441 txg == 0 && vdtxg == crtxg) 442 return (B_TRUE); 443 444 /* 445 * Check to see if this is a spare device. We do an explicit check for 446 * spa_has_spare() here because it may be on our pending list of spares 447 * to add. We also check if it is an l2cache device. 448 */ 449 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 450 spa_has_spare(spa, device_guid)) { 451 if (spare_guid) 452 *spare_guid = device_guid; 453 454 switch (reason) { 455 case VDEV_LABEL_CREATE: 456 case VDEV_LABEL_L2CACHE: 457 return (B_TRUE); 458 459 case VDEV_LABEL_REPLACE: 460 return (!spa_has_spare(spa, device_guid) || 461 spare_pool != 0ULL); 462 463 case VDEV_LABEL_SPARE: 464 return (spa_has_spare(spa, device_guid)); 465 } 466 } 467 468 /* 469 * Check to see if this is an l2cache device. 470 */ 471 if (spa_l2cache_exists(device_guid, NULL)) 472 return (B_TRUE); 473 474 /* 475 * If the device is marked ACTIVE, then this device is in use by another 476 * pool on the system. 477 */ 478 return (state == POOL_STATE_ACTIVE); 479 } 480 481 /* 482 * Initialize a vdev label. We check to make sure each leaf device is not in 483 * use, and writable. We put down an initial label which we will later 484 * overwrite with a complete label. Note that it's important to do this 485 * sequentially, not in parallel, so that we catch cases of multiple use of the 486 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 487 * itself. 488 */ 489 int 490 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 491 { 492 spa_t *spa = vd->vdev_spa; 493 nvlist_t *label; 494 vdev_phys_t *vp; 495 char *pad2; 496 uberblock_t *ub; 497 zio_t *zio; 498 char *buf; 499 size_t buflen; 500 int error; 501 uint64_t spare_guid, l2cache_guid; 502 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 503 504 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 505 506 for (int c = 0; c < vd->vdev_children; c++) 507 if ((error = vdev_label_init(vd->vdev_child[c], 508 crtxg, reason)) != 0) 509 return (error); 510 511 if (!vd->vdev_ops->vdev_op_leaf) 512 return (0); 513 514 /* 515 * Dead vdevs cannot be initialized. 516 */ 517 if (vdev_is_dead(vd)) 518 return (EIO); 519 520 /* 521 * Determine if the vdev is in use. 522 */ 523 if (reason != VDEV_LABEL_REMOVE && 524 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 525 return (EBUSY); 526 527 /* 528 * If this is a request to add or replace a spare or l2cache device 529 * that is in use elsewhere on the system, then we must update the 530 * guid (which was initialized to a random value) to reflect the 531 * actual GUID (which is shared between multiple pools). 532 */ 533 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 534 spare_guid != 0ULL) { 535 uint64_t guid_delta = spare_guid - vd->vdev_guid; 536 537 vd->vdev_guid += guid_delta; 538 539 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 540 pvd->vdev_guid_sum += guid_delta; 541 542 /* 543 * If this is a replacement, then we want to fallthrough to the 544 * rest of the code. If we're adding a spare, then it's already 545 * labeled appropriately and we can just return. 546 */ 547 if (reason == VDEV_LABEL_SPARE) 548 return (0); 549 ASSERT(reason == VDEV_LABEL_REPLACE); 550 } 551 552 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 553 l2cache_guid != 0ULL) { 554 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 555 556 vd->vdev_guid += guid_delta; 557 558 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 559 pvd->vdev_guid_sum += guid_delta; 560 561 /* 562 * If this is a replacement, then we want to fallthrough to the 563 * rest of the code. If we're adding an l2cache, then it's 564 * already labeled appropriately and we can just return. 565 */ 566 if (reason == VDEV_LABEL_L2CACHE) 567 return (0); 568 ASSERT(reason == VDEV_LABEL_REPLACE); 569 } 570 571 /* 572 * Initialize its label. 573 */ 574 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 575 bzero(vp, sizeof (vdev_phys_t)); 576 577 /* 578 * Generate a label describing the pool and our top-level vdev. 579 * We mark it as being from txg 0 to indicate that it's not 580 * really part of an active pool just yet. The labels will 581 * be written again with a meaningful txg by spa_sync(). 582 */ 583 if (reason == VDEV_LABEL_SPARE || 584 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 585 /* 586 * For inactive hot spares, we generate a special label that 587 * identifies as a mutually shared hot spare. We write the 588 * label if we are adding a hot spare, or if we are removing an 589 * active hot spare (in which case we want to revert the 590 * labels). 591 */ 592 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 593 594 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 595 spa_version(spa)) == 0); 596 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 597 POOL_STATE_SPARE) == 0); 598 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 599 vd->vdev_guid) == 0); 600 } else if (reason == VDEV_LABEL_L2CACHE || 601 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 602 /* 603 * For level 2 ARC devices, add a special label. 604 */ 605 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 606 607 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 608 spa_version(spa)) == 0); 609 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 610 POOL_STATE_L2CACHE) == 0); 611 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 612 vd->vdev_guid) == 0); 613 } else { 614 label = spa_config_generate(spa, vd, 0ULL, B_FALSE); 615 616 /* 617 * Add our creation time. This allows us to detect multiple 618 * vdev uses as described above, and automatically expires if we 619 * fail. 620 */ 621 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 622 crtxg) == 0); 623 } 624 625 buf = vp->vp_nvlist; 626 buflen = sizeof (vp->vp_nvlist); 627 628 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 629 if (error != 0) { 630 nvlist_free(label); 631 zio_buf_free(vp, sizeof (vdev_phys_t)); 632 /* EFAULT means nvlist_pack ran out of room */ 633 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 634 } 635 636 /* 637 * Initialize uberblock template. 638 */ 639 ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 640 bzero(ub, VDEV_UBERBLOCK_SIZE(vd)); 641 *ub = spa->spa_uberblock; 642 ub->ub_txg = 0; 643 644 /* Initialize the 2nd padding area. */ 645 pad2 = zio_buf_alloc(VDEV_PAD_SIZE); 646 bzero(pad2, VDEV_PAD_SIZE); 647 648 /* 649 * Write everything in parallel. 650 */ 651 zio = zio_root(spa, NULL, NULL, flags); 652 653 for (int l = 0; l < VDEV_LABELS; l++) { 654 655 vdev_label_write(zio, vd, l, vp, 656 offsetof(vdev_label_t, vl_vdev_phys), 657 sizeof (vdev_phys_t), NULL, NULL, flags); 658 659 /* 660 * Skip the 1st padding area. 661 * Zero out the 2nd padding area where it might have 662 * left over data from previous filesystem format. 663 */ 664 vdev_label_write(zio, vd, l, pad2, 665 offsetof(vdev_label_t, vl_pad2), 666 VDEV_PAD_SIZE, NULL, NULL, flags); 667 668 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 669 vdev_label_write(zio, vd, l, ub, 670 VDEV_UBERBLOCK_OFFSET(vd, n), 671 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, flags); 672 } 673 } 674 675 error = zio_wait(zio); 676 677 nvlist_free(label); 678 zio_buf_free(pad2, VDEV_PAD_SIZE); 679 zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd)); 680 zio_buf_free(vp, sizeof (vdev_phys_t)); 681 682 /* 683 * If this vdev hasn't been previously identified as a spare, then we 684 * mark it as such only if a) we are labeling it as a spare, or b) it 685 * exists as a spare elsewhere in the system. Do the same for 686 * level 2 ARC devices. 687 */ 688 if (error == 0 && !vd->vdev_isspare && 689 (reason == VDEV_LABEL_SPARE || 690 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 691 spa_spare_add(vd); 692 693 if (error == 0 && !vd->vdev_isl2cache && 694 (reason == VDEV_LABEL_L2CACHE || 695 spa_l2cache_exists(vd->vdev_guid, NULL))) 696 spa_l2cache_add(vd); 697 698 return (error); 699 } 700 701 /* 702 * ========================================================================== 703 * uberblock load/sync 704 * ========================================================================== 705 */ 706 707 /* 708 * For use by zdb and debugging purposes only 709 */ 710 uint64_t ub_max_txg = UINT64_MAX; 711 712 /* 713 * Consider the following situation: txg is safely synced to disk. We've 714 * written the first uberblock for txg + 1, and then we lose power. When we 715 * come back up, we fail to see the uberblock for txg + 1 because, say, 716 * it was on a mirrored device and the replica to which we wrote txg + 1 717 * is now offline. If we then make some changes and sync txg + 1, and then 718 * the missing replica comes back, then for a new seconds we'll have two 719 * conflicting uberblocks on disk with the same txg. The solution is simple: 720 * among uberblocks with equal txg, choose the one with the latest timestamp. 721 */ 722 static int 723 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 724 { 725 if (ub1->ub_txg < ub2->ub_txg) 726 return (-1); 727 if (ub1->ub_txg > ub2->ub_txg) 728 return (1); 729 730 if (ub1->ub_timestamp < ub2->ub_timestamp) 731 return (-1); 732 if (ub1->ub_timestamp > ub2->ub_timestamp) 733 return (1); 734 735 return (0); 736 } 737 738 static void 739 vdev_uberblock_load_done(zio_t *zio) 740 { 741 zio_t *rio = zio->io_private; 742 uberblock_t *ub = zio->io_data; 743 uberblock_t *ubbest = rio->io_private; 744 745 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd)); 746 747 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 748 mutex_enter(&rio->io_lock); 749 if (ub->ub_txg <= ub_max_txg && 750 vdev_uberblock_compare(ub, ubbest) > 0) 751 *ubbest = *ub; 752 mutex_exit(&rio->io_lock); 753 } 754 755 zio_buf_free(zio->io_data, zio->io_size); 756 } 757 758 void 759 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest) 760 { 761 spa_t *spa = vd->vdev_spa; 762 vdev_t *rvd = spa->spa_root_vdev; 763 int flags = 764 ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE; 765 766 if (vd == rvd) { 767 ASSERT(zio == NULL); 768 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 769 zio = zio_root(spa, NULL, ubbest, flags); 770 bzero(ubbest, sizeof (uberblock_t)); 771 } 772 773 ASSERT(zio != NULL); 774 775 for (int c = 0; c < vd->vdev_children; c++) 776 vdev_uberblock_load(zio, vd->vdev_child[c], ubbest); 777 778 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 779 for (int l = 0; l < VDEV_LABELS; l++) { 780 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 781 vdev_label_read(zio, vd, l, 782 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), 783 VDEV_UBERBLOCK_OFFSET(vd, n), 784 VDEV_UBERBLOCK_SIZE(vd), 785 vdev_uberblock_load_done, zio, flags); 786 } 787 } 788 } 789 790 if (vd == rvd) { 791 (void) zio_wait(zio); 792 spa_config_exit(spa, SCL_ALL, FTAG); 793 } 794 } 795 796 /* 797 * On success, increment root zio's count of good writes. 798 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 799 */ 800 static void 801 vdev_uberblock_sync_done(zio_t *zio) 802 { 803 uint64_t *good_writes = zio->io_private; 804 805 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 806 atomic_add_64(good_writes, 1); 807 } 808 809 /* 810 * Write the uberblock to all labels of all leaves of the specified vdev. 811 */ 812 static void 813 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags) 814 { 815 uberblock_t *ubbuf; 816 int n; 817 818 for (int c = 0; c < vd->vdev_children; c++) 819 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags); 820 821 if (!vd->vdev_ops->vdev_op_leaf) 822 return; 823 824 if (!vdev_writeable(vd)) 825 return; 826 827 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 828 829 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 830 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 831 *ubbuf = *ub; 832 833 for (int l = 0; l < VDEV_LABELS; l++) 834 vdev_label_write(zio, vd, l, ubbuf, 835 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 836 vdev_uberblock_sync_done, zio->io_private, 837 flags | ZIO_FLAG_DONT_PROPAGATE); 838 839 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 840 } 841 842 int 843 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 844 { 845 spa_t *spa = svd[0]->vdev_spa; 846 zio_t *zio; 847 uint64_t good_writes = 0; 848 849 zio = zio_root(spa, NULL, &good_writes, flags); 850 851 for (int v = 0; v < svdcount; v++) 852 vdev_uberblock_sync(zio, ub, svd[v], flags); 853 854 (void) zio_wait(zio); 855 856 /* 857 * Flush the uberblocks to disk. This ensures that the odd labels 858 * are no longer needed (because the new uberblocks and the even 859 * labels are safely on disk), so it is safe to overwrite them. 860 */ 861 zio = zio_root(spa, NULL, NULL, flags); 862 863 for (int v = 0; v < svdcount; v++) 864 zio_flush(zio, svd[v]); 865 866 (void) zio_wait(zio); 867 868 return (good_writes >= 1 ? 0 : EIO); 869 } 870 871 /* 872 * On success, increment the count of good writes for our top-level vdev. 873 */ 874 static void 875 vdev_label_sync_done(zio_t *zio) 876 { 877 uint64_t *good_writes = zio->io_private; 878 879 if (zio->io_error == 0) 880 atomic_add_64(good_writes, 1); 881 } 882 883 /* 884 * If there weren't enough good writes, indicate failure to the parent. 885 */ 886 static void 887 vdev_label_sync_top_done(zio_t *zio) 888 { 889 uint64_t *good_writes = zio->io_private; 890 891 if (*good_writes == 0) 892 zio->io_error = EIO; 893 894 kmem_free(good_writes, sizeof (uint64_t)); 895 } 896 897 /* 898 * We ignore errors for log and cache devices, simply free the private data. 899 */ 900 static void 901 vdev_label_sync_ignore_done(zio_t *zio) 902 { 903 kmem_free(zio->io_private, sizeof (uint64_t)); 904 } 905 906 /* 907 * Write all even or odd labels to all leaves of the specified vdev. 908 */ 909 static void 910 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags) 911 { 912 nvlist_t *label; 913 vdev_phys_t *vp; 914 char *buf; 915 size_t buflen; 916 917 for (int c = 0; c < vd->vdev_children; c++) 918 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags); 919 920 if (!vd->vdev_ops->vdev_op_leaf) 921 return; 922 923 if (!vdev_writeable(vd)) 924 return; 925 926 /* 927 * Generate a label describing the top-level config to which we belong. 928 */ 929 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 930 931 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 932 bzero(vp, sizeof (vdev_phys_t)); 933 934 buf = vp->vp_nvlist; 935 buflen = sizeof (vp->vp_nvlist); 936 937 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 938 for (; l < VDEV_LABELS; l += 2) { 939 vdev_label_write(zio, vd, l, vp, 940 offsetof(vdev_label_t, vl_vdev_phys), 941 sizeof (vdev_phys_t), 942 vdev_label_sync_done, zio->io_private, 943 flags | ZIO_FLAG_DONT_PROPAGATE); 944 } 945 } 946 947 zio_buf_free(vp, sizeof (vdev_phys_t)); 948 nvlist_free(label); 949 } 950 951 int 952 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 953 { 954 list_t *dl = &spa->spa_config_dirty_list; 955 vdev_t *vd; 956 zio_t *zio; 957 int error; 958 959 /* 960 * Write the new labels to disk. 961 */ 962 zio = zio_root(spa, NULL, NULL, flags); 963 964 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 965 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 966 KM_SLEEP); 967 zio_t *vio = zio_null(zio, spa, NULL, 968 (vd->vdev_islog || vd->vdev_aux != NULL) ? 969 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 970 good_writes, flags); 971 vdev_label_sync(vio, vd, l, txg, flags); 972 zio_nowait(vio); 973 } 974 975 error = zio_wait(zio); 976 977 /* 978 * Flush the new labels to disk. 979 */ 980 zio = zio_root(spa, NULL, NULL, flags); 981 982 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 983 zio_flush(zio, vd); 984 985 (void) zio_wait(zio); 986 987 return (error); 988 } 989 990 /* 991 * Sync the uberblock and any changes to the vdev configuration. 992 * 993 * The order of operations is carefully crafted to ensure that 994 * if the system panics or loses power at any time, the state on disk 995 * is still transactionally consistent. The in-line comments below 996 * describe the failure semantics at each stage. 997 * 998 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 999 * at any time, you can just call it again, and it will resume its work. 1000 */ 1001 int 1002 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 1003 { 1004 spa_t *spa = svd[0]->vdev_spa; 1005 uberblock_t *ub = &spa->spa_uberblock; 1006 vdev_t *vd; 1007 zio_t *zio; 1008 int error; 1009 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1010 1011 ASSERT(ub->ub_txg <= txg); 1012 1013 /* 1014 * If this isn't a resync due to I/O errors, 1015 * and nothing changed in this transaction group, 1016 * and the vdev configuration hasn't changed, 1017 * then there's nothing to do. 1018 */ 1019 if (ub->ub_txg < txg && 1020 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && 1021 list_is_empty(&spa->spa_config_dirty_list)) 1022 return (0); 1023 1024 if (txg > spa_freeze_txg(spa)) 1025 return (0); 1026 1027 ASSERT(txg <= spa->spa_final_txg); 1028 1029 /* 1030 * Flush the write cache of every disk that's been written to 1031 * in this transaction group. This ensures that all blocks 1032 * written in this txg will be committed to stable storage 1033 * before any uberblock that references them. 1034 */ 1035 zio = zio_root(spa, NULL, NULL, flags); 1036 1037 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 1038 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1039 zio_flush(zio, vd); 1040 1041 (void) zio_wait(zio); 1042 1043 /* 1044 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1045 * system dies in the middle of this process, that's OK: all of the 1046 * even labels that made it to disk will be newer than any uberblock, 1047 * and will therefore be considered invalid. The odd labels (L1, L3), 1048 * which have not yet been touched, will still be valid. We flush 1049 * the new labels to disk to ensure that all even-label updates 1050 * are committed to stable storage before the uberblock update. 1051 */ 1052 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) 1053 return (error); 1054 1055 /* 1056 * Sync the uberblocks to all vdevs in svd[]. 1057 * If the system dies in the middle of this step, there are two cases 1058 * to consider, and the on-disk state is consistent either way: 1059 * 1060 * (1) If none of the new uberblocks made it to disk, then the 1061 * previous uberblock will be the newest, and the odd labels 1062 * (which had not yet been touched) will be valid with respect 1063 * to that uberblock. 1064 * 1065 * (2) If one or more new uberblocks made it to disk, then they 1066 * will be the newest, and the even labels (which had all 1067 * been successfully committed) will be valid with respect 1068 * to the new uberblocks. 1069 */ 1070 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) 1071 return (error); 1072 1073 /* 1074 * Sync out odd labels for every dirty vdev. If the system dies 1075 * in the middle of this process, the even labels and the new 1076 * uberblocks will suffice to open the pool. The next time 1077 * the pool is opened, the first thing we'll do -- before any 1078 * user data is modified -- is mark every vdev dirty so that 1079 * all labels will be brought up to date. We flush the new labels 1080 * to disk to ensure that all odd-label updates are committed to 1081 * stable storage before the next transaction group begins. 1082 */ 1083 return (vdev_label_sync_list(spa, 1, txg, flags)); 1084 } 1085