xref: /titanic_44/usr/src/uts/common/fs/zfs/vdev_label.c (revision 03fc868668dd42b1b163d1fb8af3968f7283a7eb)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2013 by Delphix. All rights reserved.
25  */
26 
27 /*
28  * Virtual Device Labels
29  * ---------------------
30  *
31  * The vdev label serves several distinct purposes:
32  *
33  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
34  *	   identity within the pool.
35  *
36  * 	2. Verify that all the devices given in a configuration are present
37  *         within the pool.
38  *
39  * 	3. Determine the uberblock for the pool.
40  *
41  * 	4. In case of an import operation, determine the configuration of the
42  *         toplevel vdev of which it is a part.
43  *
44  * 	5. If an import operation cannot find all the devices in the pool,
45  *         provide enough information to the administrator to determine which
46  *         devices are missing.
47  *
48  * It is important to note that while the kernel is responsible for writing the
49  * label, it only consumes the information in the first three cases.  The
50  * latter information is only consumed in userland when determining the
51  * configuration to import a pool.
52  *
53  *
54  * Label Organization
55  * ------------------
56  *
57  * Before describing the contents of the label, it's important to understand how
58  * the labels are written and updated with respect to the uberblock.
59  *
60  * When the pool configuration is altered, either because it was newly created
61  * or a device was added, we want to update all the labels such that we can deal
62  * with fatal failure at any point.  To this end, each disk has two labels which
63  * are updated before and after the uberblock is synced.  Assuming we have
64  * labels and an uberblock with the following transaction groups:
65  *
66  *              L1          UB          L2
67  *           +------+    +------+    +------+
68  *           |      |    |      |    |      |
69  *           | t10  |    | t10  |    | t10  |
70  *           |      |    |      |    |      |
71  *           +------+    +------+    +------+
72  *
73  * In this stable state, the labels and the uberblock were all updated within
74  * the same transaction group (10).  Each label is mirrored and checksummed, so
75  * that we can detect when we fail partway through writing the label.
76  *
77  * In order to identify which labels are valid, the labels are written in the
78  * following manner:
79  *
80  * 	1. For each vdev, update 'L1' to the new label
81  * 	2. Update the uberblock
82  * 	3. For each vdev, update 'L2' to the new label
83  *
84  * Given arbitrary failure, we can determine the correct label to use based on
85  * the transaction group.  If we fail after updating L1 but before updating the
86  * UB, we will notice that L1's transaction group is greater than the uberblock,
87  * so L2 must be valid.  If we fail after writing the uberblock but before
88  * writing L2, we will notice that L2's transaction group is less than L1, and
89  * therefore L1 is valid.
90  *
91  * Another added complexity is that not every label is updated when the config
92  * is synced.  If we add a single device, we do not want to have to re-write
93  * every label for every device in the pool.  This means that both L1 and L2 may
94  * be older than the pool uberblock, because the necessary information is stored
95  * on another vdev.
96  *
97  *
98  * On-disk Format
99  * --------------
100  *
101  * The vdev label consists of two distinct parts, and is wrapped within the
102  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
103  * VTOC disk labels, but is otherwise ignored.
104  *
105  * The first half of the label is a packed nvlist which contains pool wide
106  * properties, per-vdev properties, and configuration information.  It is
107  * described in more detail below.
108  *
109  * The latter half of the label consists of a redundant array of uberblocks.
110  * These uberblocks are updated whenever a transaction group is committed,
111  * or when the configuration is updated.  When a pool is loaded, we scan each
112  * vdev for the 'best' uberblock.
113  *
114  *
115  * Configuration Information
116  * -------------------------
117  *
118  * The nvlist describing the pool and vdev contains the following elements:
119  *
120  * 	version		ZFS on-disk version
121  * 	name		Pool name
122  * 	state		Pool state
123  * 	txg		Transaction group in which this label was written
124  * 	pool_guid	Unique identifier for this pool
125  * 	vdev_tree	An nvlist describing vdev tree.
126  *	features_for_read
127  *			An nvlist of the features necessary for reading the MOS.
128  *
129  * Each leaf device label also contains the following:
130  *
131  * 	top_guid	Unique ID for top-level vdev in which this is contained
132  * 	guid		Unique ID for the leaf vdev
133  *
134  * The 'vs' configuration follows the format described in 'spa_config.c'.
135  */
136 
137 #include <sys/zfs_context.h>
138 #include <sys/spa.h>
139 #include <sys/spa_impl.h>
140 #include <sys/dmu.h>
141 #include <sys/zap.h>
142 #include <sys/vdev.h>
143 #include <sys/vdev_impl.h>
144 #include <sys/uberblock_impl.h>
145 #include <sys/metaslab.h>
146 #include <sys/zio.h>
147 #include <sys/dsl_scan.h>
148 #include <sys/fs/zfs.h>
149 
150 /*
151  * Basic routines to read and write from a vdev label.
152  * Used throughout the rest of this file.
153  */
154 uint64_t
155 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
156 {
157 	ASSERT(offset < sizeof (vdev_label_t));
158 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
159 
160 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
161 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
162 }
163 
164 /*
165  * Returns back the vdev label associated with the passed in offset.
166  */
167 int
168 vdev_label_number(uint64_t psize, uint64_t offset)
169 {
170 	int l;
171 
172 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
173 		offset -= psize - VDEV_LABEL_END_SIZE;
174 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
175 	}
176 	l = offset / sizeof (vdev_label_t);
177 	return (l < VDEV_LABELS ? l : -1);
178 }
179 
180 static void
181 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
182 	uint64_t size, zio_done_func_t *done, void *private, int flags)
183 {
184 	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
185 	    SCL_STATE_ALL);
186 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
187 
188 	zio_nowait(zio_read_phys(zio, vd,
189 	    vdev_label_offset(vd->vdev_psize, l, offset),
190 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
191 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
192 }
193 
194 static void
195 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
196 	uint64_t size, zio_done_func_t *done, void *private, int flags)
197 {
198 	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
199 	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
200 	    (SCL_CONFIG | SCL_STATE) &&
201 	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
202 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
203 
204 	zio_nowait(zio_write_phys(zio, vd,
205 	    vdev_label_offset(vd->vdev_psize, l, offset),
206 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
207 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
208 }
209 
210 /*
211  * Generate the nvlist representing this vdev's config.
212  */
213 nvlist_t *
214 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
215     vdev_config_flag_t flags)
216 {
217 	nvlist_t *nv = NULL;
218 
219 	nv = fnvlist_alloc();
220 
221 	fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
222 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
223 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
224 	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
225 
226 	if (vd->vdev_path != NULL)
227 		fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
228 
229 	if (vd->vdev_devid != NULL)
230 		fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
231 
232 	if (vd->vdev_physpath != NULL)
233 		fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
234 		    vd->vdev_physpath);
235 
236 	if (vd->vdev_fru != NULL)
237 		fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
238 
239 	if (vd->vdev_nparity != 0) {
240 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
241 		    VDEV_TYPE_RAIDZ) == 0);
242 
243 		/*
244 		 * Make sure someone hasn't managed to sneak a fancy new vdev
245 		 * into a crufty old storage pool.
246 		 */
247 		ASSERT(vd->vdev_nparity == 1 ||
248 		    (vd->vdev_nparity <= 2 &&
249 		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
250 		    (vd->vdev_nparity <= 3 &&
251 		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
252 
253 		/*
254 		 * Note that we'll add the nparity tag even on storage pools
255 		 * that only support a single parity device -- older software
256 		 * will just ignore it.
257 		 */
258 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
259 	}
260 
261 	if (vd->vdev_wholedisk != -1ULL)
262 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
263 		    vd->vdev_wholedisk);
264 
265 	if (vd->vdev_not_present)
266 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
267 
268 	if (vd->vdev_isspare)
269 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
270 
271 	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
272 	    vd == vd->vdev_top) {
273 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
274 		    vd->vdev_ms_array);
275 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
276 		    vd->vdev_ms_shift);
277 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
278 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
279 		    vd->vdev_asize);
280 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
281 		if (vd->vdev_removing)
282 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
283 			    vd->vdev_removing);
284 	}
285 
286 	if (vd->vdev_dtl_smo.smo_object != 0)
287 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
288 		    vd->vdev_dtl_smo.smo_object);
289 
290 	if (vd->vdev_crtxg)
291 		fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
292 
293 	if (getstats) {
294 		vdev_stat_t vs;
295 		pool_scan_stat_t ps;
296 
297 		vdev_get_stats(vd, &vs);
298 		fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
299 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t));
300 
301 		/* provide either current or previous scan information */
302 		if (spa_scan_get_stats(spa, &ps) == 0) {
303 			fnvlist_add_uint64_array(nv,
304 			    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
305 			    sizeof (pool_scan_stat_t) / sizeof (uint64_t));
306 		}
307 	}
308 
309 	if (!vd->vdev_ops->vdev_op_leaf) {
310 		nvlist_t **child;
311 		int c, idx;
312 
313 		ASSERT(!vd->vdev_ishole);
314 
315 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
316 		    KM_SLEEP);
317 
318 		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
319 			vdev_t *cvd = vd->vdev_child[c];
320 
321 			/*
322 			 * If we're generating an nvlist of removing
323 			 * vdevs then skip over any device which is
324 			 * not being removed.
325 			 */
326 			if ((flags & VDEV_CONFIG_REMOVING) &&
327 			    !cvd->vdev_removing)
328 				continue;
329 
330 			child[idx++] = vdev_config_generate(spa, cvd,
331 			    getstats, flags);
332 		}
333 
334 		if (idx) {
335 			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
336 			    child, idx);
337 		}
338 
339 		for (c = 0; c < idx; c++)
340 			nvlist_free(child[c]);
341 
342 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
343 
344 	} else {
345 		const char *aux = NULL;
346 
347 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
348 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
349 		if (vd->vdev_resilver_txg != 0)
350 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
351 			    vd->vdev_resilver_txg);
352 		if (vd->vdev_faulted)
353 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
354 		if (vd->vdev_degraded)
355 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
356 		if (vd->vdev_removed)
357 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
358 		if (vd->vdev_unspare)
359 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
360 		if (vd->vdev_ishole)
361 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
362 
363 		switch (vd->vdev_stat.vs_aux) {
364 		case VDEV_AUX_ERR_EXCEEDED:
365 			aux = "err_exceeded";
366 			break;
367 
368 		case VDEV_AUX_EXTERNAL:
369 			aux = "external";
370 			break;
371 		}
372 
373 		if (aux != NULL)
374 			fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
375 
376 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
377 			fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
378 			    vd->vdev_orig_guid);
379 		}
380 	}
381 
382 	return (nv);
383 }
384 
385 /*
386  * Generate a view of the top-level vdevs.  If we currently have holes
387  * in the namespace, then generate an array which contains a list of holey
388  * vdevs.  Additionally, add the number of top-level children that currently
389  * exist.
390  */
391 void
392 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
393 {
394 	vdev_t *rvd = spa->spa_root_vdev;
395 	uint64_t *array;
396 	uint_t c, idx;
397 
398 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
399 
400 	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
401 		vdev_t *tvd = rvd->vdev_child[c];
402 
403 		if (tvd->vdev_ishole)
404 			array[idx++] = c;
405 	}
406 
407 	if (idx) {
408 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
409 		    array, idx) == 0);
410 	}
411 
412 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
413 	    rvd->vdev_children) == 0);
414 
415 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
416 }
417 
418 /*
419  * Returns the configuration from the label of the given vdev. For vdevs
420  * which don't have a txg value stored on their label (i.e. spares/cache)
421  * or have not been completely initialized (txg = 0) just return
422  * the configuration from the first valid label we find. Otherwise,
423  * find the most up-to-date label that does not exceed the specified
424  * 'txg' value.
425  */
426 nvlist_t *
427 vdev_label_read_config(vdev_t *vd, uint64_t txg)
428 {
429 	spa_t *spa = vd->vdev_spa;
430 	nvlist_t *config = NULL;
431 	vdev_phys_t *vp;
432 	zio_t *zio;
433 	uint64_t best_txg = 0;
434 	int error = 0;
435 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
436 	    ZIO_FLAG_SPECULATIVE;
437 
438 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
439 
440 	if (!vdev_readable(vd))
441 		return (NULL);
442 
443 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
444 
445 retry:
446 	for (int l = 0; l < VDEV_LABELS; l++) {
447 		nvlist_t *label = NULL;
448 
449 		zio = zio_root(spa, NULL, NULL, flags);
450 
451 		vdev_label_read(zio, vd, l, vp,
452 		    offsetof(vdev_label_t, vl_vdev_phys),
453 		    sizeof (vdev_phys_t), NULL, NULL, flags);
454 
455 		if (zio_wait(zio) == 0 &&
456 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
457 		    &label, 0) == 0) {
458 			uint64_t label_txg = 0;
459 
460 			/*
461 			 * Auxiliary vdevs won't have txg values in their
462 			 * labels and newly added vdevs may not have been
463 			 * completely initialized so just return the
464 			 * configuration from the first valid label we
465 			 * encounter.
466 			 */
467 			error = nvlist_lookup_uint64(label,
468 			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
469 			if ((error || label_txg == 0) && !config) {
470 				config = label;
471 				break;
472 			} else if (label_txg <= txg && label_txg > best_txg) {
473 				best_txg = label_txg;
474 				nvlist_free(config);
475 				config = fnvlist_dup(label);
476 			}
477 		}
478 
479 		if (label != NULL) {
480 			nvlist_free(label);
481 			label = NULL;
482 		}
483 	}
484 
485 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
486 		flags |= ZIO_FLAG_TRYHARD;
487 		goto retry;
488 	}
489 
490 	zio_buf_free(vp, sizeof (vdev_phys_t));
491 
492 	return (config);
493 }
494 
495 /*
496  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
497  * in with the device guid if this spare is active elsewhere on the system.
498  */
499 static boolean_t
500 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
501     uint64_t *spare_guid, uint64_t *l2cache_guid)
502 {
503 	spa_t *spa = vd->vdev_spa;
504 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
505 	uint64_t vdtxg = 0;
506 	nvlist_t *label;
507 
508 	if (spare_guid)
509 		*spare_guid = 0ULL;
510 	if (l2cache_guid)
511 		*l2cache_guid = 0ULL;
512 
513 	/*
514 	 * Read the label, if any, and perform some basic sanity checks.
515 	 */
516 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
517 		return (B_FALSE);
518 
519 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
520 	    &vdtxg);
521 
522 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
523 	    &state) != 0 ||
524 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
525 	    &device_guid) != 0) {
526 		nvlist_free(label);
527 		return (B_FALSE);
528 	}
529 
530 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
531 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
532 	    &pool_guid) != 0 ||
533 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
534 	    &txg) != 0)) {
535 		nvlist_free(label);
536 		return (B_FALSE);
537 	}
538 
539 	nvlist_free(label);
540 
541 	/*
542 	 * Check to see if this device indeed belongs to the pool it claims to
543 	 * be a part of.  The only way this is allowed is if the device is a hot
544 	 * spare (which we check for later on).
545 	 */
546 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
547 	    !spa_guid_exists(pool_guid, device_guid) &&
548 	    !spa_spare_exists(device_guid, NULL, NULL) &&
549 	    !spa_l2cache_exists(device_guid, NULL))
550 		return (B_FALSE);
551 
552 	/*
553 	 * If the transaction group is zero, then this an initialized (but
554 	 * unused) label.  This is only an error if the create transaction
555 	 * on-disk is the same as the one we're using now, in which case the
556 	 * user has attempted to add the same vdev multiple times in the same
557 	 * transaction.
558 	 */
559 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
560 	    txg == 0 && vdtxg == crtxg)
561 		return (B_TRUE);
562 
563 	/*
564 	 * Check to see if this is a spare device.  We do an explicit check for
565 	 * spa_has_spare() here because it may be on our pending list of spares
566 	 * to add.  We also check if it is an l2cache device.
567 	 */
568 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
569 	    spa_has_spare(spa, device_guid)) {
570 		if (spare_guid)
571 			*spare_guid = device_guid;
572 
573 		switch (reason) {
574 		case VDEV_LABEL_CREATE:
575 		case VDEV_LABEL_L2CACHE:
576 			return (B_TRUE);
577 
578 		case VDEV_LABEL_REPLACE:
579 			return (!spa_has_spare(spa, device_guid) ||
580 			    spare_pool != 0ULL);
581 
582 		case VDEV_LABEL_SPARE:
583 			return (spa_has_spare(spa, device_guid));
584 		}
585 	}
586 
587 	/*
588 	 * Check to see if this is an l2cache device.
589 	 */
590 	if (spa_l2cache_exists(device_guid, NULL))
591 		return (B_TRUE);
592 
593 	/*
594 	 * We can't rely on a pool's state if it's been imported
595 	 * read-only.  Instead we look to see if the pools is marked
596 	 * read-only in the namespace and set the state to active.
597 	 */
598 	if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
599 	    spa_mode(spa) == FREAD)
600 		state = POOL_STATE_ACTIVE;
601 
602 	/*
603 	 * If the device is marked ACTIVE, then this device is in use by another
604 	 * pool on the system.
605 	 */
606 	return (state == POOL_STATE_ACTIVE);
607 }
608 
609 /*
610  * Initialize a vdev label.  We check to make sure each leaf device is not in
611  * use, and writable.  We put down an initial label which we will later
612  * overwrite with a complete label.  Note that it's important to do this
613  * sequentially, not in parallel, so that we catch cases of multiple use of the
614  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
615  * itself.
616  */
617 int
618 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
619 {
620 	spa_t *spa = vd->vdev_spa;
621 	nvlist_t *label;
622 	vdev_phys_t *vp;
623 	char *pad2;
624 	uberblock_t *ub;
625 	zio_t *zio;
626 	char *buf;
627 	size_t buflen;
628 	int error;
629 	uint64_t spare_guid, l2cache_guid;
630 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
631 
632 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
633 
634 	for (int c = 0; c < vd->vdev_children; c++)
635 		if ((error = vdev_label_init(vd->vdev_child[c],
636 		    crtxg, reason)) != 0)
637 			return (error);
638 
639 	/* Track the creation time for this vdev */
640 	vd->vdev_crtxg = crtxg;
641 
642 	if (!vd->vdev_ops->vdev_op_leaf)
643 		return (0);
644 
645 	/*
646 	 * Dead vdevs cannot be initialized.
647 	 */
648 	if (vdev_is_dead(vd))
649 		return (SET_ERROR(EIO));
650 
651 	/*
652 	 * Determine if the vdev is in use.
653 	 */
654 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
655 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
656 		return (SET_ERROR(EBUSY));
657 
658 	/*
659 	 * If this is a request to add or replace a spare or l2cache device
660 	 * that is in use elsewhere on the system, then we must update the
661 	 * guid (which was initialized to a random value) to reflect the
662 	 * actual GUID (which is shared between multiple pools).
663 	 */
664 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
665 	    spare_guid != 0ULL) {
666 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
667 
668 		vd->vdev_guid += guid_delta;
669 
670 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
671 			pvd->vdev_guid_sum += guid_delta;
672 
673 		/*
674 		 * If this is a replacement, then we want to fallthrough to the
675 		 * rest of the code.  If we're adding a spare, then it's already
676 		 * labeled appropriately and we can just return.
677 		 */
678 		if (reason == VDEV_LABEL_SPARE)
679 			return (0);
680 		ASSERT(reason == VDEV_LABEL_REPLACE ||
681 		    reason == VDEV_LABEL_SPLIT);
682 	}
683 
684 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
685 	    l2cache_guid != 0ULL) {
686 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
687 
688 		vd->vdev_guid += guid_delta;
689 
690 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
691 			pvd->vdev_guid_sum += guid_delta;
692 
693 		/*
694 		 * If this is a replacement, then we want to fallthrough to the
695 		 * rest of the code.  If we're adding an l2cache, then it's
696 		 * already labeled appropriately and we can just return.
697 		 */
698 		if (reason == VDEV_LABEL_L2CACHE)
699 			return (0);
700 		ASSERT(reason == VDEV_LABEL_REPLACE);
701 	}
702 
703 	/*
704 	 * Initialize its label.
705 	 */
706 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
707 	bzero(vp, sizeof (vdev_phys_t));
708 
709 	/*
710 	 * Generate a label describing the pool and our top-level vdev.
711 	 * We mark it as being from txg 0 to indicate that it's not
712 	 * really part of an active pool just yet.  The labels will
713 	 * be written again with a meaningful txg by spa_sync().
714 	 */
715 	if (reason == VDEV_LABEL_SPARE ||
716 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
717 		/*
718 		 * For inactive hot spares, we generate a special label that
719 		 * identifies as a mutually shared hot spare.  We write the
720 		 * label if we are adding a hot spare, or if we are removing an
721 		 * active hot spare (in which case we want to revert the
722 		 * labels).
723 		 */
724 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
725 
726 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
727 		    spa_version(spa)) == 0);
728 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
729 		    POOL_STATE_SPARE) == 0);
730 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
731 		    vd->vdev_guid) == 0);
732 	} else if (reason == VDEV_LABEL_L2CACHE ||
733 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
734 		/*
735 		 * For level 2 ARC devices, add a special label.
736 		 */
737 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
738 
739 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
740 		    spa_version(spa)) == 0);
741 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
742 		    POOL_STATE_L2CACHE) == 0);
743 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
744 		    vd->vdev_guid) == 0);
745 	} else {
746 		uint64_t txg = 0ULL;
747 
748 		if (reason == VDEV_LABEL_SPLIT)
749 			txg = spa->spa_uberblock.ub_txg;
750 		label = spa_config_generate(spa, vd, txg, B_FALSE);
751 
752 		/*
753 		 * Add our creation time.  This allows us to detect multiple
754 		 * vdev uses as described above, and automatically expires if we
755 		 * fail.
756 		 */
757 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
758 		    crtxg) == 0);
759 	}
760 
761 	buf = vp->vp_nvlist;
762 	buflen = sizeof (vp->vp_nvlist);
763 
764 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
765 	if (error != 0) {
766 		nvlist_free(label);
767 		zio_buf_free(vp, sizeof (vdev_phys_t));
768 		/* EFAULT means nvlist_pack ran out of room */
769 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
770 	}
771 
772 	/*
773 	 * Initialize uberblock template.
774 	 */
775 	ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
776 	bzero(ub, VDEV_UBERBLOCK_RING);
777 	*ub = spa->spa_uberblock;
778 	ub->ub_txg = 0;
779 
780 	/* Initialize the 2nd padding area. */
781 	pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
782 	bzero(pad2, VDEV_PAD_SIZE);
783 
784 	/*
785 	 * Write everything in parallel.
786 	 */
787 retry:
788 	zio = zio_root(spa, NULL, NULL, flags);
789 
790 	for (int l = 0; l < VDEV_LABELS; l++) {
791 
792 		vdev_label_write(zio, vd, l, vp,
793 		    offsetof(vdev_label_t, vl_vdev_phys),
794 		    sizeof (vdev_phys_t), NULL, NULL, flags);
795 
796 		/*
797 		 * Skip the 1st padding area.
798 		 * Zero out the 2nd padding area where it might have
799 		 * left over data from previous filesystem format.
800 		 */
801 		vdev_label_write(zio, vd, l, pad2,
802 		    offsetof(vdev_label_t, vl_pad2),
803 		    VDEV_PAD_SIZE, NULL, NULL, flags);
804 
805 		vdev_label_write(zio, vd, l, ub,
806 		    offsetof(vdev_label_t, vl_uberblock),
807 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
808 	}
809 
810 	error = zio_wait(zio);
811 
812 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
813 		flags |= ZIO_FLAG_TRYHARD;
814 		goto retry;
815 	}
816 
817 	nvlist_free(label);
818 	zio_buf_free(pad2, VDEV_PAD_SIZE);
819 	zio_buf_free(ub, VDEV_UBERBLOCK_RING);
820 	zio_buf_free(vp, sizeof (vdev_phys_t));
821 
822 	/*
823 	 * If this vdev hasn't been previously identified as a spare, then we
824 	 * mark it as such only if a) we are labeling it as a spare, or b) it
825 	 * exists as a spare elsewhere in the system.  Do the same for
826 	 * level 2 ARC devices.
827 	 */
828 	if (error == 0 && !vd->vdev_isspare &&
829 	    (reason == VDEV_LABEL_SPARE ||
830 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
831 		spa_spare_add(vd);
832 
833 	if (error == 0 && !vd->vdev_isl2cache &&
834 	    (reason == VDEV_LABEL_L2CACHE ||
835 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
836 		spa_l2cache_add(vd);
837 
838 	return (error);
839 }
840 
841 /*
842  * ==========================================================================
843  * uberblock load/sync
844  * ==========================================================================
845  */
846 
847 /*
848  * Consider the following situation: txg is safely synced to disk.  We've
849  * written the first uberblock for txg + 1, and then we lose power.  When we
850  * come back up, we fail to see the uberblock for txg + 1 because, say,
851  * it was on a mirrored device and the replica to which we wrote txg + 1
852  * is now offline.  If we then make some changes and sync txg + 1, and then
853  * the missing replica comes back, then for a few seconds we'll have two
854  * conflicting uberblocks on disk with the same txg.  The solution is simple:
855  * among uberblocks with equal txg, choose the one with the latest timestamp.
856  */
857 static int
858 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
859 {
860 	if (ub1->ub_txg < ub2->ub_txg)
861 		return (-1);
862 	if (ub1->ub_txg > ub2->ub_txg)
863 		return (1);
864 
865 	if (ub1->ub_timestamp < ub2->ub_timestamp)
866 		return (-1);
867 	if (ub1->ub_timestamp > ub2->ub_timestamp)
868 		return (1);
869 
870 	return (0);
871 }
872 
873 struct ubl_cbdata {
874 	uberblock_t	*ubl_ubbest;	/* Best uberblock */
875 	vdev_t		*ubl_vd;	/* vdev associated with the above */
876 };
877 
878 static void
879 vdev_uberblock_load_done(zio_t *zio)
880 {
881 	vdev_t *vd = zio->io_vd;
882 	spa_t *spa = zio->io_spa;
883 	zio_t *rio = zio->io_private;
884 	uberblock_t *ub = zio->io_data;
885 	struct ubl_cbdata *cbp = rio->io_private;
886 
887 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
888 
889 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
890 		mutex_enter(&rio->io_lock);
891 		if (ub->ub_txg <= spa->spa_load_max_txg &&
892 		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
893 			/*
894 			 * Keep track of the vdev in which this uberblock
895 			 * was found. We will use this information later
896 			 * to obtain the config nvlist associated with
897 			 * this uberblock.
898 			 */
899 			*cbp->ubl_ubbest = *ub;
900 			cbp->ubl_vd = vd;
901 		}
902 		mutex_exit(&rio->io_lock);
903 	}
904 
905 	zio_buf_free(zio->io_data, zio->io_size);
906 }
907 
908 static void
909 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
910     struct ubl_cbdata *cbp)
911 {
912 	for (int c = 0; c < vd->vdev_children; c++)
913 		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
914 
915 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
916 		for (int l = 0; l < VDEV_LABELS; l++) {
917 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
918 				vdev_label_read(zio, vd, l,
919 				    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
920 				    VDEV_UBERBLOCK_OFFSET(vd, n),
921 				    VDEV_UBERBLOCK_SIZE(vd),
922 				    vdev_uberblock_load_done, zio, flags);
923 			}
924 		}
925 	}
926 }
927 
928 /*
929  * Reads the 'best' uberblock from disk along with its associated
930  * configuration. First, we read the uberblock array of each label of each
931  * vdev, keeping track of the uberblock with the highest txg in each array.
932  * Then, we read the configuration from the same vdev as the best uberblock.
933  */
934 void
935 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
936 {
937 	zio_t *zio;
938 	spa_t *spa = rvd->vdev_spa;
939 	struct ubl_cbdata cb;
940 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
941 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
942 
943 	ASSERT(ub);
944 	ASSERT(config);
945 
946 	bzero(ub, sizeof (uberblock_t));
947 	*config = NULL;
948 
949 	cb.ubl_ubbest = ub;
950 	cb.ubl_vd = NULL;
951 
952 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
953 	zio = zio_root(spa, NULL, &cb, flags);
954 	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
955 	(void) zio_wait(zio);
956 
957 	/*
958 	 * It's possible that the best uberblock was discovered on a label
959 	 * that has a configuration which was written in a future txg.
960 	 * Search all labels on this vdev to find the configuration that
961 	 * matches the txg for our uberblock.
962 	 */
963 	if (cb.ubl_vd != NULL)
964 		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
965 	spa_config_exit(spa, SCL_ALL, FTAG);
966 }
967 
968 /*
969  * On success, increment root zio's count of good writes.
970  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
971  */
972 static void
973 vdev_uberblock_sync_done(zio_t *zio)
974 {
975 	uint64_t *good_writes = zio->io_private;
976 
977 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
978 		atomic_add_64(good_writes, 1);
979 }
980 
981 /*
982  * Write the uberblock to all labels of all leaves of the specified vdev.
983  */
984 static void
985 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
986 {
987 	uberblock_t *ubbuf;
988 	int n;
989 
990 	for (int c = 0; c < vd->vdev_children; c++)
991 		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
992 
993 	if (!vd->vdev_ops->vdev_op_leaf)
994 		return;
995 
996 	if (!vdev_writeable(vd))
997 		return;
998 
999 	n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
1000 
1001 	ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
1002 	bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1003 	*ubbuf = *ub;
1004 
1005 	for (int l = 0; l < VDEV_LABELS; l++)
1006 		vdev_label_write(zio, vd, l, ubbuf,
1007 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1008 		    vdev_uberblock_sync_done, zio->io_private,
1009 		    flags | ZIO_FLAG_DONT_PROPAGATE);
1010 
1011 	zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
1012 }
1013 
1014 /* Sync the uberblocks to all vdevs in svd[] */
1015 int
1016 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1017 {
1018 	spa_t *spa = svd[0]->vdev_spa;
1019 	zio_t *zio;
1020 	uint64_t good_writes = 0;
1021 
1022 	zio = zio_root(spa, NULL, &good_writes, flags);
1023 
1024 	for (int v = 0; v < svdcount; v++)
1025 		vdev_uberblock_sync(zio, ub, svd[v], flags);
1026 
1027 	(void) zio_wait(zio);
1028 
1029 	/*
1030 	 * Flush the uberblocks to disk.  This ensures that the odd labels
1031 	 * are no longer needed (because the new uberblocks and the even
1032 	 * labels are safely on disk), so it is safe to overwrite them.
1033 	 */
1034 	zio = zio_root(spa, NULL, NULL, flags);
1035 
1036 	for (int v = 0; v < svdcount; v++)
1037 		zio_flush(zio, svd[v]);
1038 
1039 	(void) zio_wait(zio);
1040 
1041 	return (good_writes >= 1 ? 0 : EIO);
1042 }
1043 
1044 /*
1045  * On success, increment the count of good writes for our top-level vdev.
1046  */
1047 static void
1048 vdev_label_sync_done(zio_t *zio)
1049 {
1050 	uint64_t *good_writes = zio->io_private;
1051 
1052 	if (zio->io_error == 0)
1053 		atomic_add_64(good_writes, 1);
1054 }
1055 
1056 /*
1057  * If there weren't enough good writes, indicate failure to the parent.
1058  */
1059 static void
1060 vdev_label_sync_top_done(zio_t *zio)
1061 {
1062 	uint64_t *good_writes = zio->io_private;
1063 
1064 	if (*good_writes == 0)
1065 		zio->io_error = SET_ERROR(EIO);
1066 
1067 	kmem_free(good_writes, sizeof (uint64_t));
1068 }
1069 
1070 /*
1071  * We ignore errors for log and cache devices, simply free the private data.
1072  */
1073 static void
1074 vdev_label_sync_ignore_done(zio_t *zio)
1075 {
1076 	kmem_free(zio->io_private, sizeof (uint64_t));
1077 }
1078 
1079 /*
1080  * Write all even or odd labels to all leaves of the specified vdev.
1081  */
1082 static void
1083 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1084 {
1085 	nvlist_t *label;
1086 	vdev_phys_t *vp;
1087 	char *buf;
1088 	size_t buflen;
1089 
1090 	for (int c = 0; c < vd->vdev_children; c++)
1091 		vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1092 
1093 	if (!vd->vdev_ops->vdev_op_leaf)
1094 		return;
1095 
1096 	if (!vdev_writeable(vd))
1097 		return;
1098 
1099 	/*
1100 	 * Generate a label describing the top-level config to which we belong.
1101 	 */
1102 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1103 
1104 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
1105 	bzero(vp, sizeof (vdev_phys_t));
1106 
1107 	buf = vp->vp_nvlist;
1108 	buflen = sizeof (vp->vp_nvlist);
1109 
1110 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1111 		for (; l < VDEV_LABELS; l += 2) {
1112 			vdev_label_write(zio, vd, l, vp,
1113 			    offsetof(vdev_label_t, vl_vdev_phys),
1114 			    sizeof (vdev_phys_t),
1115 			    vdev_label_sync_done, zio->io_private,
1116 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1117 		}
1118 	}
1119 
1120 	zio_buf_free(vp, sizeof (vdev_phys_t));
1121 	nvlist_free(label);
1122 }
1123 
1124 int
1125 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1126 {
1127 	list_t *dl = &spa->spa_config_dirty_list;
1128 	vdev_t *vd;
1129 	zio_t *zio;
1130 	int error;
1131 
1132 	/*
1133 	 * Write the new labels to disk.
1134 	 */
1135 	zio = zio_root(spa, NULL, NULL, flags);
1136 
1137 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1138 		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1139 		    KM_SLEEP);
1140 
1141 		ASSERT(!vd->vdev_ishole);
1142 
1143 		zio_t *vio = zio_null(zio, spa, NULL,
1144 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1145 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1146 		    good_writes, flags);
1147 		vdev_label_sync(vio, vd, l, txg, flags);
1148 		zio_nowait(vio);
1149 	}
1150 
1151 	error = zio_wait(zio);
1152 
1153 	/*
1154 	 * Flush the new labels to disk.
1155 	 */
1156 	zio = zio_root(spa, NULL, NULL, flags);
1157 
1158 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1159 		zio_flush(zio, vd);
1160 
1161 	(void) zio_wait(zio);
1162 
1163 	return (error);
1164 }
1165 
1166 /*
1167  * Sync the uberblock and any changes to the vdev configuration.
1168  *
1169  * The order of operations is carefully crafted to ensure that
1170  * if the system panics or loses power at any time, the state on disk
1171  * is still transactionally consistent.  The in-line comments below
1172  * describe the failure semantics at each stage.
1173  *
1174  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1175  * at any time, you can just call it again, and it will resume its work.
1176  */
1177 int
1178 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
1179 {
1180 	spa_t *spa = svd[0]->vdev_spa;
1181 	uberblock_t *ub = &spa->spa_uberblock;
1182 	vdev_t *vd;
1183 	zio_t *zio;
1184 	int error;
1185 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1186 
1187 	/*
1188 	 * Normally, we don't want to try too hard to write every label and
1189 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1190 	 * sync process to block while we retry.  But if we can't write a
1191 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1192 	 * bailing out and declaring the pool faulted.
1193 	 */
1194 	if (tryhard)
1195 		flags |= ZIO_FLAG_TRYHARD;
1196 
1197 	ASSERT(ub->ub_txg <= txg);
1198 
1199 	/*
1200 	 * If this isn't a resync due to I/O errors,
1201 	 * and nothing changed in this transaction group,
1202 	 * and the vdev configuration hasn't changed,
1203 	 * then there's nothing to do.
1204 	 */
1205 	if (ub->ub_txg < txg &&
1206 	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1207 	    list_is_empty(&spa->spa_config_dirty_list))
1208 		return (0);
1209 
1210 	if (txg > spa_freeze_txg(spa))
1211 		return (0);
1212 
1213 	ASSERT(txg <= spa->spa_final_txg);
1214 
1215 	/*
1216 	 * Flush the write cache of every disk that's been written to
1217 	 * in this transaction group.  This ensures that all blocks
1218 	 * written in this txg will be committed to stable storage
1219 	 * before any uberblock that references them.
1220 	 */
1221 	zio = zio_root(spa, NULL, NULL, flags);
1222 
1223 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1224 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1225 		zio_flush(zio, vd);
1226 
1227 	(void) zio_wait(zio);
1228 
1229 	/*
1230 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1231 	 * system dies in the middle of this process, that's OK: all of the
1232 	 * even labels that made it to disk will be newer than any uberblock,
1233 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1234 	 * which have not yet been touched, will still be valid.  We flush
1235 	 * the new labels to disk to ensure that all even-label updates
1236 	 * are committed to stable storage before the uberblock update.
1237 	 */
1238 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1239 		return (error);
1240 
1241 	/*
1242 	 * Sync the uberblocks to all vdevs in svd[].
1243 	 * If the system dies in the middle of this step, there are two cases
1244 	 * to consider, and the on-disk state is consistent either way:
1245 	 *
1246 	 * (1)	If none of the new uberblocks made it to disk, then the
1247 	 *	previous uberblock will be the newest, and the odd labels
1248 	 *	(which had not yet been touched) will be valid with respect
1249 	 *	to that uberblock.
1250 	 *
1251 	 * (2)	If one or more new uberblocks made it to disk, then they
1252 	 *	will be the newest, and the even labels (which had all
1253 	 *	been successfully committed) will be valid with respect
1254 	 *	to the new uberblocks.
1255 	 */
1256 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1257 		return (error);
1258 
1259 	/*
1260 	 * Sync out odd labels for every dirty vdev.  If the system dies
1261 	 * in the middle of this process, the even labels and the new
1262 	 * uberblocks will suffice to open the pool.  The next time
1263 	 * the pool is opened, the first thing we'll do -- before any
1264 	 * user data is modified -- is mark every vdev dirty so that
1265 	 * all labels will be brought up to date.  We flush the new labels
1266 	 * to disk to ensure that all odd-label updates are committed to
1267 	 * stable storage before the next transaction group begins.
1268 	 */
1269 	return (vdev_label_sync_list(spa, 1, txg, flags));
1270 }
1271