1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Virtual Device Labels 28 * --------------------- 29 * 30 * The vdev label serves several distinct purposes: 31 * 32 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 33 * identity within the pool. 34 * 35 * 2. Verify that all the devices given in a configuration are present 36 * within the pool. 37 * 38 * 3. Determine the uberblock for the pool. 39 * 40 * 4. In case of an import operation, determine the configuration of the 41 * toplevel vdev of which it is a part. 42 * 43 * 5. If an import operation cannot find all the devices in the pool, 44 * provide enough information to the administrator to determine which 45 * devices are missing. 46 * 47 * It is important to note that while the kernel is responsible for writing the 48 * label, it only consumes the information in the first three cases. The 49 * latter information is only consumed in userland when determining the 50 * configuration to import a pool. 51 * 52 * 53 * Label Organization 54 * ------------------ 55 * 56 * Before describing the contents of the label, it's important to understand how 57 * the labels are written and updated with respect to the uberblock. 58 * 59 * When the pool configuration is altered, either because it was newly created 60 * or a device was added, we want to update all the labels such that we can deal 61 * with fatal failure at any point. To this end, each disk has two labels which 62 * are updated before and after the uberblock is synced. Assuming we have 63 * labels and an uberblock with the following transaction groups: 64 * 65 * L1 UB L2 66 * +------+ +------+ +------+ 67 * | | | | | | 68 * | t10 | | t10 | | t10 | 69 * | | | | | | 70 * +------+ +------+ +------+ 71 * 72 * In this stable state, the labels and the uberblock were all updated within 73 * the same transaction group (10). Each label is mirrored and checksummed, so 74 * that we can detect when we fail partway through writing the label. 75 * 76 * In order to identify which labels are valid, the labels are written in the 77 * following manner: 78 * 79 * 1. For each vdev, update 'L1' to the new label 80 * 2. Update the uberblock 81 * 3. For each vdev, update 'L2' to the new label 82 * 83 * Given arbitrary failure, we can determine the correct label to use based on 84 * the transaction group. If we fail after updating L1 but before updating the 85 * UB, we will notice that L1's transaction group is greater than the uberblock, 86 * so L2 must be valid. If we fail after writing the uberblock but before 87 * writing L2, we will notice that L2's transaction group is less than L1, and 88 * therefore L1 is valid. 89 * 90 * Another added complexity is that not every label is updated when the config 91 * is synced. If we add a single device, we do not want to have to re-write 92 * every label for every device in the pool. This means that both L1 and L2 may 93 * be older than the pool uberblock, because the necessary information is stored 94 * on another vdev. 95 * 96 * 97 * On-disk Format 98 * -------------- 99 * 100 * The vdev label consists of two distinct parts, and is wrapped within the 101 * vdev_label_t structure. The label includes 8k of padding to permit legacy 102 * VTOC disk labels, but is otherwise ignored. 103 * 104 * The first half of the label is a packed nvlist which contains pool wide 105 * properties, per-vdev properties, and configuration information. It is 106 * described in more detail below. 107 * 108 * The latter half of the label consists of a redundant array of uberblocks. 109 * These uberblocks are updated whenever a transaction group is committed, 110 * or when the configuration is updated. When a pool is loaded, we scan each 111 * vdev for the 'best' uberblock. 112 * 113 * 114 * Configuration Information 115 * ------------------------- 116 * 117 * The nvlist describing the pool and vdev contains the following elements: 118 * 119 * version ZFS on-disk version 120 * name Pool name 121 * state Pool state 122 * txg Transaction group in which this label was written 123 * pool_guid Unique identifier for this pool 124 * vdev_tree An nvlist describing vdev tree. 125 * 126 * Each leaf device label also contains the following: 127 * 128 * top_guid Unique ID for top-level vdev in which this is contained 129 * guid Unique ID for the leaf vdev 130 * 131 * The 'vs' configuration follows the format described in 'spa_config.c'. 132 */ 133 134 #include <sys/zfs_context.h> 135 #include <sys/spa.h> 136 #include <sys/spa_impl.h> 137 #include <sys/dmu.h> 138 #include <sys/zap.h> 139 #include <sys/vdev.h> 140 #include <sys/vdev_impl.h> 141 #include <sys/uberblock_impl.h> 142 #include <sys/metaslab.h> 143 #include <sys/zio.h> 144 #include <sys/fs/zfs.h> 145 146 /* 147 * Basic routines to read and write from a vdev label. 148 * Used throughout the rest of this file. 149 */ 150 uint64_t 151 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 152 { 153 ASSERT(offset < sizeof (vdev_label_t)); 154 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 155 156 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 157 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 158 } 159 160 /* 161 * Returns back the vdev label associated with the passed in offset. 162 */ 163 int 164 vdev_label_number(uint64_t psize, uint64_t offset) 165 { 166 int l; 167 168 if (offset >= psize - VDEV_LABEL_END_SIZE) { 169 offset -= psize - VDEV_LABEL_END_SIZE; 170 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 171 } 172 l = offset / sizeof (vdev_label_t); 173 return (l < VDEV_LABELS ? l : -1); 174 } 175 176 static void 177 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 178 uint64_t size, zio_done_func_t *done, void *private, int flags) 179 { 180 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == 181 SCL_STATE_ALL); 182 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 183 184 zio_nowait(zio_read_phys(zio, vd, 185 vdev_label_offset(vd->vdev_psize, l, offset), 186 size, buf, ZIO_CHECKSUM_LABEL, done, private, 187 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 188 } 189 190 static void 191 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 192 uint64_t size, zio_done_func_t *done, void *private, int flags) 193 { 194 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || 195 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == 196 (SCL_CONFIG | SCL_STATE) && 197 dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); 198 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 199 200 zio_nowait(zio_write_phys(zio, vd, 201 vdev_label_offset(vd->vdev_psize, l, offset), 202 size, buf, ZIO_CHECKSUM_LABEL, done, private, 203 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 204 } 205 206 /* 207 * Generate the nvlist representing this vdev's config. 208 */ 209 nvlist_t * 210 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 211 boolean_t isspare, boolean_t isl2cache) 212 { 213 nvlist_t *nv = NULL; 214 215 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 216 217 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 218 vd->vdev_ops->vdev_op_type) == 0); 219 if (!isspare && !isl2cache) 220 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) 221 == 0); 222 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); 223 224 if (vd->vdev_path != NULL) 225 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, 226 vd->vdev_path) == 0); 227 228 if (vd->vdev_devid != NULL) 229 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, 230 vd->vdev_devid) == 0); 231 232 if (vd->vdev_physpath != NULL) 233 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 234 vd->vdev_physpath) == 0); 235 236 if (vd->vdev_fru != NULL) 237 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU, 238 vd->vdev_fru) == 0); 239 240 if (vd->vdev_nparity != 0) { 241 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 242 VDEV_TYPE_RAIDZ) == 0); 243 244 /* 245 * Make sure someone hasn't managed to sneak a fancy new vdev 246 * into a crufty old storage pool. 247 */ 248 ASSERT(vd->vdev_nparity == 1 || 249 (vd->vdev_nparity <= 2 && 250 spa_version(spa) >= SPA_VERSION_RAIDZ2) || 251 (vd->vdev_nparity <= 3 && 252 spa_version(spa) >= SPA_VERSION_RAIDZ3)); 253 254 /* 255 * Note that we'll add the nparity tag even on storage pools 256 * that only support a single parity device -- older software 257 * will just ignore it. 258 */ 259 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, 260 vd->vdev_nparity) == 0); 261 } 262 263 if (vd->vdev_wholedisk != -1ULL) 264 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 265 vd->vdev_wholedisk) == 0); 266 267 if (vd->vdev_not_present) 268 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0); 269 270 if (vd->vdev_isspare) 271 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0); 272 273 if (!isspare && !isl2cache && vd == vd->vdev_top) { 274 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 275 vd->vdev_ms_array) == 0); 276 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 277 vd->vdev_ms_shift) == 0); 278 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, 279 vd->vdev_ashift) == 0); 280 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 281 vd->vdev_asize) == 0); 282 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, 283 vd->vdev_islog) == 0); 284 } 285 286 if (vd->vdev_dtl_smo.smo_object != 0) 287 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 288 vd->vdev_dtl_smo.smo_object) == 0); 289 290 if (vd->vdev_crtxg) 291 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 292 vd->vdev_crtxg) == 0); 293 294 if (getstats) { 295 vdev_stat_t vs; 296 vdev_get_stats(vd, &vs); 297 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS, 298 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0); 299 } 300 301 if (!vd->vdev_ops->vdev_op_leaf) { 302 nvlist_t **child; 303 int c; 304 305 ASSERT(!vd->vdev_ishole); 306 307 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 308 KM_SLEEP); 309 310 for (c = 0; c < vd->vdev_children; c++) 311 child[c] = vdev_config_generate(spa, vd->vdev_child[c], 312 getstats, isspare, isl2cache); 313 314 VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 315 child, vd->vdev_children) == 0); 316 317 for (c = 0; c < vd->vdev_children; c++) 318 nvlist_free(child[c]); 319 320 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 321 322 } else { 323 const char *aux = NULL; 324 325 if (vd->vdev_offline && !vd->vdev_tmpoffline) 326 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, 327 B_TRUE) == 0); 328 if (vd->vdev_faulted) 329 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, 330 B_TRUE) == 0); 331 if (vd->vdev_degraded) 332 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, 333 B_TRUE) == 0); 334 if (vd->vdev_removed) 335 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, 336 B_TRUE) == 0); 337 if (vd->vdev_unspare) 338 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, 339 B_TRUE) == 0); 340 if (vd->vdev_ishole) 341 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, 342 B_TRUE) == 0); 343 344 switch (vd->vdev_stat.vs_aux) { 345 case VDEV_AUX_ERR_EXCEEDED: 346 aux = "err_exceeded"; 347 break; 348 349 case VDEV_AUX_EXTERNAL: 350 aux = "external"; 351 break; 352 } 353 354 if (aux != NULL) 355 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, 356 aux) == 0); 357 } 358 359 return (nv); 360 } 361 362 /* 363 * Generate a view of the top-level vdevs. If we currently have holes 364 * in the namespace, then generate an array which contains a list of holey 365 * vdevs. Additionally, add the number of top-level children that currently 366 * exist. 367 */ 368 void 369 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 370 { 371 vdev_t *rvd = spa->spa_root_vdev; 372 uint64_t *array; 373 uint_t idx; 374 375 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 376 377 idx = 0; 378 for (int c = 0; c < rvd->vdev_children; c++) { 379 vdev_t *tvd = rvd->vdev_child[c]; 380 381 if (tvd->vdev_ishole) 382 array[idx++] = c; 383 } 384 385 if (idx) { 386 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 387 array, idx) == 0); 388 } 389 390 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 391 rvd->vdev_children) == 0); 392 393 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 394 } 395 396 nvlist_t * 397 vdev_label_read_config(vdev_t *vd) 398 { 399 spa_t *spa = vd->vdev_spa; 400 nvlist_t *config = NULL; 401 vdev_phys_t *vp; 402 zio_t *zio; 403 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 404 ZIO_FLAG_SPECULATIVE; 405 406 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 407 408 if (!vdev_readable(vd)) 409 return (NULL); 410 411 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 412 413 retry: 414 for (int l = 0; l < VDEV_LABELS; l++) { 415 416 zio = zio_root(spa, NULL, NULL, flags); 417 418 vdev_label_read(zio, vd, l, vp, 419 offsetof(vdev_label_t, vl_vdev_phys), 420 sizeof (vdev_phys_t), NULL, NULL, flags); 421 422 if (zio_wait(zio) == 0 && 423 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 424 &config, 0) == 0) 425 break; 426 427 if (config != NULL) { 428 nvlist_free(config); 429 config = NULL; 430 } 431 } 432 433 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 434 flags |= ZIO_FLAG_TRYHARD; 435 goto retry; 436 } 437 438 zio_buf_free(vp, sizeof (vdev_phys_t)); 439 440 return (config); 441 } 442 443 /* 444 * Determine if a device is in use. The 'spare_guid' parameter will be filled 445 * in with the device guid if this spare is active elsewhere on the system. 446 */ 447 static boolean_t 448 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 449 uint64_t *spare_guid, uint64_t *l2cache_guid) 450 { 451 spa_t *spa = vd->vdev_spa; 452 uint64_t state, pool_guid, device_guid, txg, spare_pool; 453 uint64_t vdtxg = 0; 454 nvlist_t *label; 455 456 if (spare_guid) 457 *spare_guid = 0ULL; 458 if (l2cache_guid) 459 *l2cache_guid = 0ULL; 460 461 /* 462 * Read the label, if any, and perform some basic sanity checks. 463 */ 464 if ((label = vdev_label_read_config(vd)) == NULL) 465 return (B_FALSE); 466 467 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 468 &vdtxg); 469 470 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 471 &state) != 0 || 472 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 473 &device_guid) != 0) { 474 nvlist_free(label); 475 return (B_FALSE); 476 } 477 478 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 479 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 480 &pool_guid) != 0 || 481 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 482 &txg) != 0)) { 483 nvlist_free(label); 484 return (B_FALSE); 485 } 486 487 nvlist_free(label); 488 489 /* 490 * Check to see if this device indeed belongs to the pool it claims to 491 * be a part of. The only way this is allowed is if the device is a hot 492 * spare (which we check for later on). 493 */ 494 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 495 !spa_guid_exists(pool_guid, device_guid) && 496 !spa_spare_exists(device_guid, NULL, NULL) && 497 !spa_l2cache_exists(device_guid, NULL)) 498 return (B_FALSE); 499 500 /* 501 * If the transaction group is zero, then this an initialized (but 502 * unused) label. This is only an error if the create transaction 503 * on-disk is the same as the one we're using now, in which case the 504 * user has attempted to add the same vdev multiple times in the same 505 * transaction. 506 */ 507 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 508 txg == 0 && vdtxg == crtxg) 509 return (B_TRUE); 510 511 /* 512 * Check to see if this is a spare device. We do an explicit check for 513 * spa_has_spare() here because it may be on our pending list of spares 514 * to add. We also check if it is an l2cache device. 515 */ 516 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 517 spa_has_spare(spa, device_guid)) { 518 if (spare_guid) 519 *spare_guid = device_guid; 520 521 switch (reason) { 522 case VDEV_LABEL_CREATE: 523 case VDEV_LABEL_L2CACHE: 524 return (B_TRUE); 525 526 case VDEV_LABEL_REPLACE: 527 return (!spa_has_spare(spa, device_guid) || 528 spare_pool != 0ULL); 529 530 case VDEV_LABEL_SPARE: 531 return (spa_has_spare(spa, device_guid)); 532 } 533 } 534 535 /* 536 * Check to see if this is an l2cache device. 537 */ 538 if (spa_l2cache_exists(device_guid, NULL)) 539 return (B_TRUE); 540 541 /* 542 * If the device is marked ACTIVE, then this device is in use by another 543 * pool on the system. 544 */ 545 return (state == POOL_STATE_ACTIVE); 546 } 547 548 /* 549 * Initialize a vdev label. We check to make sure each leaf device is not in 550 * use, and writable. We put down an initial label which we will later 551 * overwrite with a complete label. Note that it's important to do this 552 * sequentially, not in parallel, so that we catch cases of multiple use of the 553 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 554 * itself. 555 */ 556 int 557 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 558 { 559 spa_t *spa = vd->vdev_spa; 560 nvlist_t *label; 561 vdev_phys_t *vp; 562 char *pad2; 563 uberblock_t *ub; 564 zio_t *zio; 565 char *buf; 566 size_t buflen; 567 int error; 568 uint64_t spare_guid, l2cache_guid; 569 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 570 571 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 572 573 for (int c = 0; c < vd->vdev_children; c++) 574 if ((error = vdev_label_init(vd->vdev_child[c], 575 crtxg, reason)) != 0) 576 return (error); 577 578 /* Track the creation time for this vdev */ 579 vd->vdev_crtxg = crtxg; 580 581 if (!vd->vdev_ops->vdev_op_leaf) 582 return (0); 583 584 /* 585 * Dead vdevs cannot be initialized. 586 */ 587 if (vdev_is_dead(vd)) 588 return (EIO); 589 590 /* 591 * Determine if the vdev is in use. 592 */ 593 if (reason != VDEV_LABEL_REMOVE && 594 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 595 return (EBUSY); 596 597 /* 598 * If this is a request to add or replace a spare or l2cache device 599 * that is in use elsewhere on the system, then we must update the 600 * guid (which was initialized to a random value) to reflect the 601 * actual GUID (which is shared between multiple pools). 602 */ 603 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 604 spare_guid != 0ULL) { 605 uint64_t guid_delta = spare_guid - vd->vdev_guid; 606 607 vd->vdev_guid += guid_delta; 608 609 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 610 pvd->vdev_guid_sum += guid_delta; 611 612 /* 613 * If this is a replacement, then we want to fallthrough to the 614 * rest of the code. If we're adding a spare, then it's already 615 * labeled appropriately and we can just return. 616 */ 617 if (reason == VDEV_LABEL_SPARE) 618 return (0); 619 ASSERT(reason == VDEV_LABEL_REPLACE); 620 } 621 622 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 623 l2cache_guid != 0ULL) { 624 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 625 626 vd->vdev_guid += guid_delta; 627 628 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 629 pvd->vdev_guid_sum += guid_delta; 630 631 /* 632 * If this is a replacement, then we want to fallthrough to the 633 * rest of the code. If we're adding an l2cache, then it's 634 * already labeled appropriately and we can just return. 635 */ 636 if (reason == VDEV_LABEL_L2CACHE) 637 return (0); 638 ASSERT(reason == VDEV_LABEL_REPLACE); 639 } 640 641 /* 642 * Initialize its label. 643 */ 644 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 645 bzero(vp, sizeof (vdev_phys_t)); 646 647 /* 648 * Generate a label describing the pool and our top-level vdev. 649 * We mark it as being from txg 0 to indicate that it's not 650 * really part of an active pool just yet. The labels will 651 * be written again with a meaningful txg by spa_sync(). 652 */ 653 if (reason == VDEV_LABEL_SPARE || 654 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 655 /* 656 * For inactive hot spares, we generate a special label that 657 * identifies as a mutually shared hot spare. We write the 658 * label if we are adding a hot spare, or if we are removing an 659 * active hot spare (in which case we want to revert the 660 * labels). 661 */ 662 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 663 664 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 665 spa_version(spa)) == 0); 666 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 667 POOL_STATE_SPARE) == 0); 668 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 669 vd->vdev_guid) == 0); 670 } else if (reason == VDEV_LABEL_L2CACHE || 671 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 672 /* 673 * For level 2 ARC devices, add a special label. 674 */ 675 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 676 677 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 678 spa_version(spa)) == 0); 679 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 680 POOL_STATE_L2CACHE) == 0); 681 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 682 vd->vdev_guid) == 0); 683 } else { 684 label = spa_config_generate(spa, vd, 0ULL, B_FALSE); 685 686 /* 687 * Add our creation time. This allows us to detect multiple 688 * vdev uses as described above, and automatically expires if we 689 * fail. 690 */ 691 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 692 crtxg) == 0); 693 } 694 695 buf = vp->vp_nvlist; 696 buflen = sizeof (vp->vp_nvlist); 697 698 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 699 if (error != 0) { 700 nvlist_free(label); 701 zio_buf_free(vp, sizeof (vdev_phys_t)); 702 /* EFAULT means nvlist_pack ran out of room */ 703 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 704 } 705 706 /* 707 * Initialize uberblock template. 708 */ 709 ub = zio_buf_alloc(VDEV_UBERBLOCK_RING); 710 bzero(ub, VDEV_UBERBLOCK_RING); 711 *ub = spa->spa_uberblock; 712 ub->ub_txg = 0; 713 714 /* Initialize the 2nd padding area. */ 715 pad2 = zio_buf_alloc(VDEV_PAD_SIZE); 716 bzero(pad2, VDEV_PAD_SIZE); 717 718 /* 719 * Write everything in parallel. 720 */ 721 retry: 722 zio = zio_root(spa, NULL, NULL, flags); 723 724 for (int l = 0; l < VDEV_LABELS; l++) { 725 726 vdev_label_write(zio, vd, l, vp, 727 offsetof(vdev_label_t, vl_vdev_phys), 728 sizeof (vdev_phys_t), NULL, NULL, flags); 729 730 /* 731 * Skip the 1st padding area. 732 * Zero out the 2nd padding area where it might have 733 * left over data from previous filesystem format. 734 */ 735 vdev_label_write(zio, vd, l, pad2, 736 offsetof(vdev_label_t, vl_pad2), 737 VDEV_PAD_SIZE, NULL, NULL, flags); 738 739 vdev_label_write(zio, vd, l, ub, 740 offsetof(vdev_label_t, vl_uberblock), 741 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 742 } 743 744 error = zio_wait(zio); 745 746 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 747 flags |= ZIO_FLAG_TRYHARD; 748 goto retry; 749 } 750 751 nvlist_free(label); 752 zio_buf_free(pad2, VDEV_PAD_SIZE); 753 zio_buf_free(ub, VDEV_UBERBLOCK_RING); 754 zio_buf_free(vp, sizeof (vdev_phys_t)); 755 756 /* 757 * If this vdev hasn't been previously identified as a spare, then we 758 * mark it as such only if a) we are labeling it as a spare, or b) it 759 * exists as a spare elsewhere in the system. Do the same for 760 * level 2 ARC devices. 761 */ 762 if (error == 0 && !vd->vdev_isspare && 763 (reason == VDEV_LABEL_SPARE || 764 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 765 spa_spare_add(vd); 766 767 if (error == 0 && !vd->vdev_isl2cache && 768 (reason == VDEV_LABEL_L2CACHE || 769 spa_l2cache_exists(vd->vdev_guid, NULL))) 770 spa_l2cache_add(vd); 771 772 return (error); 773 } 774 775 /* 776 * ========================================================================== 777 * uberblock load/sync 778 * ========================================================================== 779 */ 780 781 /* 782 * Consider the following situation: txg is safely synced to disk. We've 783 * written the first uberblock for txg + 1, and then we lose power. When we 784 * come back up, we fail to see the uberblock for txg + 1 because, say, 785 * it was on a mirrored device and the replica to which we wrote txg + 1 786 * is now offline. If we then make some changes and sync txg + 1, and then 787 * the missing replica comes back, then for a new seconds we'll have two 788 * conflicting uberblocks on disk with the same txg. The solution is simple: 789 * among uberblocks with equal txg, choose the one with the latest timestamp. 790 */ 791 static int 792 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 793 { 794 if (ub1->ub_txg < ub2->ub_txg) 795 return (-1); 796 if (ub1->ub_txg > ub2->ub_txg) 797 return (1); 798 799 if (ub1->ub_timestamp < ub2->ub_timestamp) 800 return (-1); 801 if (ub1->ub_timestamp > ub2->ub_timestamp) 802 return (1); 803 804 return (0); 805 } 806 807 static void 808 vdev_uberblock_load_done(zio_t *zio) 809 { 810 spa_t *spa = zio->io_spa; 811 zio_t *rio = zio->io_private; 812 uberblock_t *ub = zio->io_data; 813 uberblock_t *ubbest = rio->io_private; 814 815 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd)); 816 817 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 818 mutex_enter(&rio->io_lock); 819 if (ub->ub_txg <= spa->spa_load_max_txg && 820 vdev_uberblock_compare(ub, ubbest) > 0) 821 *ubbest = *ub; 822 mutex_exit(&rio->io_lock); 823 } 824 825 zio_buf_free(zio->io_data, zio->io_size); 826 } 827 828 void 829 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest) 830 { 831 spa_t *spa = vd->vdev_spa; 832 vdev_t *rvd = spa->spa_root_vdev; 833 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 834 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 835 836 if (vd == rvd) { 837 ASSERT(zio == NULL); 838 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 839 zio = zio_root(spa, NULL, ubbest, flags); 840 bzero(ubbest, sizeof (uberblock_t)); 841 } 842 843 ASSERT(zio != NULL); 844 845 for (int c = 0; c < vd->vdev_children; c++) 846 vdev_uberblock_load(zio, vd->vdev_child[c], ubbest); 847 848 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 849 for (int l = 0; l < VDEV_LABELS; l++) { 850 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 851 vdev_label_read(zio, vd, l, 852 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), 853 VDEV_UBERBLOCK_OFFSET(vd, n), 854 VDEV_UBERBLOCK_SIZE(vd), 855 vdev_uberblock_load_done, zio, flags); 856 } 857 } 858 } 859 860 if (vd == rvd) { 861 (void) zio_wait(zio); 862 spa_config_exit(spa, SCL_ALL, FTAG); 863 } 864 } 865 866 /* 867 * On success, increment root zio's count of good writes. 868 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 869 */ 870 static void 871 vdev_uberblock_sync_done(zio_t *zio) 872 { 873 uint64_t *good_writes = zio->io_private; 874 875 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 876 atomic_add_64(good_writes, 1); 877 } 878 879 /* 880 * Write the uberblock to all labels of all leaves of the specified vdev. 881 */ 882 static void 883 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags) 884 { 885 uberblock_t *ubbuf; 886 int n; 887 888 for (int c = 0; c < vd->vdev_children; c++) 889 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags); 890 891 if (!vd->vdev_ops->vdev_op_leaf) 892 return; 893 894 if (!vdev_writeable(vd)) 895 return; 896 897 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 898 899 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 900 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 901 *ubbuf = *ub; 902 903 for (int l = 0; l < VDEV_LABELS; l++) 904 vdev_label_write(zio, vd, l, ubbuf, 905 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 906 vdev_uberblock_sync_done, zio->io_private, 907 flags | ZIO_FLAG_DONT_PROPAGATE); 908 909 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 910 } 911 912 int 913 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 914 { 915 spa_t *spa = svd[0]->vdev_spa; 916 zio_t *zio; 917 uint64_t good_writes = 0; 918 919 zio = zio_root(spa, NULL, &good_writes, flags); 920 921 for (int v = 0; v < svdcount; v++) 922 vdev_uberblock_sync(zio, ub, svd[v], flags); 923 924 (void) zio_wait(zio); 925 926 /* 927 * Flush the uberblocks to disk. This ensures that the odd labels 928 * are no longer needed (because the new uberblocks and the even 929 * labels are safely on disk), so it is safe to overwrite them. 930 */ 931 zio = zio_root(spa, NULL, NULL, flags); 932 933 for (int v = 0; v < svdcount; v++) 934 zio_flush(zio, svd[v]); 935 936 (void) zio_wait(zio); 937 938 return (good_writes >= 1 ? 0 : EIO); 939 } 940 941 /* 942 * On success, increment the count of good writes for our top-level vdev. 943 */ 944 static void 945 vdev_label_sync_done(zio_t *zio) 946 { 947 uint64_t *good_writes = zio->io_private; 948 949 if (zio->io_error == 0) 950 atomic_add_64(good_writes, 1); 951 } 952 953 /* 954 * If there weren't enough good writes, indicate failure to the parent. 955 */ 956 static void 957 vdev_label_sync_top_done(zio_t *zio) 958 { 959 uint64_t *good_writes = zio->io_private; 960 961 if (*good_writes == 0) 962 zio->io_error = EIO; 963 964 kmem_free(good_writes, sizeof (uint64_t)); 965 } 966 967 /* 968 * We ignore errors for log and cache devices, simply free the private data. 969 */ 970 static void 971 vdev_label_sync_ignore_done(zio_t *zio) 972 { 973 kmem_free(zio->io_private, sizeof (uint64_t)); 974 } 975 976 /* 977 * Write all even or odd labels to all leaves of the specified vdev. 978 */ 979 static void 980 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags) 981 { 982 nvlist_t *label; 983 vdev_phys_t *vp; 984 char *buf; 985 size_t buflen; 986 987 for (int c = 0; c < vd->vdev_children; c++) 988 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags); 989 990 if (!vd->vdev_ops->vdev_op_leaf) 991 return; 992 993 if (!vdev_writeable(vd)) 994 return; 995 996 /* 997 * Generate a label describing the top-level config to which we belong. 998 */ 999 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1000 1001 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 1002 bzero(vp, sizeof (vdev_phys_t)); 1003 1004 buf = vp->vp_nvlist; 1005 buflen = sizeof (vp->vp_nvlist); 1006 1007 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 1008 for (; l < VDEV_LABELS; l += 2) { 1009 vdev_label_write(zio, vd, l, vp, 1010 offsetof(vdev_label_t, vl_vdev_phys), 1011 sizeof (vdev_phys_t), 1012 vdev_label_sync_done, zio->io_private, 1013 flags | ZIO_FLAG_DONT_PROPAGATE); 1014 } 1015 } 1016 1017 zio_buf_free(vp, sizeof (vdev_phys_t)); 1018 nvlist_free(label); 1019 } 1020 1021 int 1022 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1023 { 1024 list_t *dl = &spa->spa_config_dirty_list; 1025 vdev_t *vd; 1026 zio_t *zio; 1027 int error; 1028 1029 /* 1030 * Write the new labels to disk. 1031 */ 1032 zio = zio_root(spa, NULL, NULL, flags); 1033 1034 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1035 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 1036 KM_SLEEP); 1037 1038 ASSERT(!vd->vdev_ishole); 1039 1040 zio_t *vio = zio_null(zio, spa, NULL, 1041 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1042 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1043 good_writes, flags); 1044 vdev_label_sync(vio, vd, l, txg, flags); 1045 zio_nowait(vio); 1046 } 1047 1048 error = zio_wait(zio); 1049 1050 /* 1051 * Flush the new labels to disk. 1052 */ 1053 zio = zio_root(spa, NULL, NULL, flags); 1054 1055 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1056 zio_flush(zio, vd); 1057 1058 (void) zio_wait(zio); 1059 1060 return (error); 1061 } 1062 1063 /* 1064 * Sync the uberblock and any changes to the vdev configuration. 1065 * 1066 * The order of operations is carefully crafted to ensure that 1067 * if the system panics or loses power at any time, the state on disk 1068 * is still transactionally consistent. The in-line comments below 1069 * describe the failure semantics at each stage. 1070 * 1071 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1072 * at any time, you can just call it again, and it will resume its work. 1073 */ 1074 int 1075 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard) 1076 { 1077 spa_t *spa = svd[0]->vdev_spa; 1078 uberblock_t *ub = &spa->spa_uberblock; 1079 vdev_t *vd; 1080 zio_t *zio; 1081 int error; 1082 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1083 1084 /* 1085 * Normally, we don't want to try too hard to write every label and 1086 * uberblock. If there is a flaky disk, we don't want the rest of the 1087 * sync process to block while we retry. But if we can't write a 1088 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1089 * bailing out and declaring the pool faulted. 1090 */ 1091 if (tryhard) 1092 flags |= ZIO_FLAG_TRYHARD; 1093 1094 ASSERT(ub->ub_txg <= txg); 1095 1096 /* 1097 * If this isn't a resync due to I/O errors, 1098 * and nothing changed in this transaction group, 1099 * and the vdev configuration hasn't changed, 1100 * then there's nothing to do. 1101 */ 1102 if (ub->ub_txg < txg && 1103 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && 1104 list_is_empty(&spa->spa_config_dirty_list)) 1105 return (0); 1106 1107 if (txg > spa_freeze_txg(spa)) 1108 return (0); 1109 1110 ASSERT(txg <= spa->spa_final_txg); 1111 1112 /* 1113 * Flush the write cache of every disk that's been written to 1114 * in this transaction group. This ensures that all blocks 1115 * written in this txg will be committed to stable storage 1116 * before any uberblock that references them. 1117 */ 1118 zio = zio_root(spa, NULL, NULL, flags); 1119 1120 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 1121 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1122 zio_flush(zio, vd); 1123 1124 (void) zio_wait(zio); 1125 1126 /* 1127 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1128 * system dies in the middle of this process, that's OK: all of the 1129 * even labels that made it to disk will be newer than any uberblock, 1130 * and will therefore be considered invalid. The odd labels (L1, L3), 1131 * which have not yet been touched, will still be valid. We flush 1132 * the new labels to disk to ensure that all even-label updates 1133 * are committed to stable storage before the uberblock update. 1134 */ 1135 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) 1136 return (error); 1137 1138 /* 1139 * Sync the uberblocks to all vdevs in svd[]. 1140 * If the system dies in the middle of this step, there are two cases 1141 * to consider, and the on-disk state is consistent either way: 1142 * 1143 * (1) If none of the new uberblocks made it to disk, then the 1144 * previous uberblock will be the newest, and the odd labels 1145 * (which had not yet been touched) will be valid with respect 1146 * to that uberblock. 1147 * 1148 * (2) If one or more new uberblocks made it to disk, then they 1149 * will be the newest, and the even labels (which had all 1150 * been successfully committed) will be valid with respect 1151 * to the new uberblocks. 1152 */ 1153 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) 1154 return (error); 1155 1156 /* 1157 * Sync out odd labels for every dirty vdev. If the system dies 1158 * in the middle of this process, the even labels and the new 1159 * uberblocks will suffice to open the pool. The next time 1160 * the pool is opened, the first thing we'll do -- before any 1161 * user data is modified -- is mark every vdev dirty so that 1162 * all labels will be brought up to date. We flush the new labels 1163 * to disk to ensure that all odd-label updates are committed to 1164 * stable storage before the next transaction group begins. 1165 */ 1166 return (vdev_label_sync_list(spa, 1, txg, flags)); 1167 } 1168