1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa_impl.h> 29 #include <sys/refcount.h> 30 #include <sys/vdev_disk.h> 31 #include <sys/vdev_impl.h> 32 #include <sys/fs/zfs.h> 33 #include <sys/zio.h> 34 #include <sys/sunldi.h> 35 #include <sys/efi_partition.h> 36 #include <sys/fm/fs/zfs.h> 37 38 /* 39 * Virtual device vector for disks. 40 */ 41 42 extern ldi_ident_t zfs_li; 43 44 static void 45 vdev_disk_hold(vdev_t *vd) 46 { 47 ddi_devid_t devid; 48 char *minor; 49 50 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER)); 51 52 /* 53 * We must have a pathname, and it must be absolute. 54 */ 55 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') 56 return; 57 58 /* 59 * Only prefetch path and devid info if the device has 60 * never been opened. 61 */ 62 if (vd->vdev_tsd != NULL) 63 return; 64 65 if (vd->vdev_wholedisk == -1ULL) { 66 size_t len = strlen(vd->vdev_path) + 3; 67 char *buf = kmem_alloc(len, KM_SLEEP); 68 69 (void) snprintf(buf, len, "%ss0", vd->vdev_path); 70 71 (void) ldi_vp_from_name(buf, &vd->vdev_name_vp); 72 kmem_free(buf, len); 73 } 74 75 if (vd->vdev_name_vp == NULL) 76 (void) ldi_vp_from_name(vd->vdev_path, &vd->vdev_name_vp); 77 78 if (vd->vdev_devid != NULL && 79 ddi_devid_str_decode(vd->vdev_devid, &devid, &minor) == 0) { 80 (void) ldi_vp_from_devid(devid, minor, &vd->vdev_devid_vp); 81 ddi_devid_str_free(minor); 82 ddi_devid_free(devid); 83 } 84 } 85 86 static void 87 vdev_disk_rele(vdev_t *vd) 88 { 89 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER)); 90 91 if (vd->vdev_name_vp) { 92 VN_RELE_ASYNC(vd->vdev_name_vp, 93 dsl_pool_vnrele_taskq(vd->vdev_spa->spa_dsl_pool)); 94 vd->vdev_name_vp = NULL; 95 } 96 if (vd->vdev_devid_vp) { 97 VN_RELE_ASYNC(vd->vdev_devid_vp, 98 dsl_pool_vnrele_taskq(vd->vdev_spa->spa_dsl_pool)); 99 vd->vdev_devid_vp = NULL; 100 } 101 } 102 103 static uint64_t 104 vdev_disk_get_space(vdev_t *vd, uint64_t capacity, uint_t blksz) 105 { 106 ASSERT(vd->vdev_wholedisk); 107 108 vdev_disk_t *dvd = vd->vdev_tsd; 109 dk_efi_t dk_ioc; 110 efi_gpt_t *efi; 111 uint64_t avail_space = 0; 112 int efisize = EFI_LABEL_SIZE * 2; 113 114 dk_ioc.dki_data = kmem_alloc(efisize, KM_SLEEP); 115 dk_ioc.dki_lba = 1; 116 dk_ioc.dki_length = efisize; 117 dk_ioc.dki_data_64 = (uint64_t)(uintptr_t)dk_ioc.dki_data; 118 efi = dk_ioc.dki_data; 119 120 if (ldi_ioctl(dvd->vd_lh, DKIOCGETEFI, (intptr_t)&dk_ioc, 121 FKIOCTL, kcred, NULL) == 0) { 122 uint64_t efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA); 123 124 zfs_dbgmsg("vdev %s, capacity %llu, altern lba %llu", 125 vd->vdev_path, capacity, efi_altern_lba); 126 if (capacity > efi_altern_lba) 127 avail_space = (capacity - efi_altern_lba) * blksz; 128 } 129 kmem_free(dk_ioc.dki_data, efisize); 130 return (avail_space); 131 } 132 133 /* 134 * We want to be loud in DEBUG kernels when DKIOCGMEDIAINFOEXT fails, or when 135 * even a fallback to DKIOCGMEDIAINFO fails. 136 */ 137 #ifdef DEBUG 138 #define VDEV_DEBUG(...) cmn_err(CE_NOTE, __VA_ARGS__) 139 #else 140 #define VDEV_DEBUG(...) /* Nothing... */ 141 #endif 142 143 static int 144 vdev_disk_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize, 145 uint64_t *ashift) 146 { 147 spa_t *spa = vd->vdev_spa; 148 vdev_disk_t *dvd; 149 union { 150 struct dk_minfo_ext ude; 151 struct dk_minfo ud; 152 } dks; 153 struct dk_minfo_ext *dkmext = &dks.ude; 154 struct dk_minfo *dkm = &dks.ud; 155 int error; 156 dev_t dev; 157 int otyp; 158 boolean_t validate_devid = B_FALSE; 159 ddi_devid_t devid; 160 uint64_t capacity = 0, blksz = 0, pbsize; 161 162 /* 163 * We must have a pathname, and it must be absolute. 164 */ 165 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') { 166 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 167 return (SET_ERROR(EINVAL)); 168 } 169 170 /* 171 * Reopen the device if it's not currently open. Otherwise, 172 * just update the physical size of the device. 173 */ 174 if (vd->vdev_tsd != NULL) { 175 ASSERT(vd->vdev_reopening); 176 dvd = vd->vdev_tsd; 177 goto skip_open; 178 } 179 180 dvd = vd->vdev_tsd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP); 181 182 /* 183 * When opening a disk device, we want to preserve the user's original 184 * intent. We always want to open the device by the path the user gave 185 * us, even if it is one of multiple paths to the same device. But we 186 * also want to be able to survive disks being removed/recabled. 187 * Therefore the sequence of opening devices is: 188 * 189 * 1. Try opening the device by path. For legacy pools without the 190 * 'whole_disk' property, attempt to fix the path by appending 's0'. 191 * 192 * 2. If the devid of the device matches the stored value, return 193 * success. 194 * 195 * 3. Otherwise, the device may have moved. Try opening the device 196 * by the devid instead. 197 */ 198 if (vd->vdev_devid != NULL) { 199 if (ddi_devid_str_decode(vd->vdev_devid, &dvd->vd_devid, 200 &dvd->vd_minor) != 0) { 201 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 202 return (SET_ERROR(EINVAL)); 203 } 204 } 205 206 error = EINVAL; /* presume failure */ 207 208 if (vd->vdev_path != NULL) { 209 210 if (vd->vdev_wholedisk == -1ULL) { 211 size_t len = strlen(vd->vdev_path) + 3; 212 char *buf = kmem_alloc(len, KM_SLEEP); 213 ldi_handle_t lh; 214 215 (void) snprintf(buf, len, "%ss0", vd->vdev_path); 216 217 if (ldi_open_by_name(buf, spa_mode(spa), kcred, 218 &lh, zfs_li) == 0) { 219 spa_strfree(vd->vdev_path); 220 vd->vdev_path = buf; 221 vd->vdev_wholedisk = 1ULL; 222 (void) ldi_close(lh, spa_mode(spa), kcred); 223 } else { 224 kmem_free(buf, len); 225 } 226 } 227 228 error = ldi_open_by_name(vd->vdev_path, spa_mode(spa), kcred, 229 &dvd->vd_lh, zfs_li); 230 231 /* 232 * Compare the devid to the stored value. 233 */ 234 if (error == 0 && vd->vdev_devid != NULL && 235 ldi_get_devid(dvd->vd_lh, &devid) == 0) { 236 if (ddi_devid_compare(devid, dvd->vd_devid) != 0) { 237 error = SET_ERROR(EINVAL); 238 (void) ldi_close(dvd->vd_lh, spa_mode(spa), 239 kcred); 240 dvd->vd_lh = NULL; 241 } 242 ddi_devid_free(devid); 243 } 244 245 /* 246 * If we succeeded in opening the device, but 'vdev_wholedisk' 247 * is not yet set, then this must be a slice. 248 */ 249 if (error == 0 && vd->vdev_wholedisk == -1ULL) 250 vd->vdev_wholedisk = 0; 251 } 252 253 /* 254 * If we were unable to open by path, or the devid check fails, open by 255 * devid instead. 256 */ 257 if (error != 0 && vd->vdev_devid != NULL) { 258 error = ldi_open_by_devid(dvd->vd_devid, dvd->vd_minor, 259 spa_mode(spa), kcred, &dvd->vd_lh, zfs_li); 260 } 261 262 /* 263 * If all else fails, then try opening by physical path (if available) 264 * or the logical path (if we failed due to the devid check). While not 265 * as reliable as the devid, this will give us something, and the higher 266 * level vdev validation will prevent us from opening the wrong device. 267 */ 268 if (error) { 269 if (vd->vdev_devid != NULL) 270 validate_devid = B_TRUE; 271 272 if (vd->vdev_physpath != NULL && 273 (dev = ddi_pathname_to_dev_t(vd->vdev_physpath)) != NODEV) 274 error = ldi_open_by_dev(&dev, OTYP_BLK, spa_mode(spa), 275 kcred, &dvd->vd_lh, zfs_li); 276 277 /* 278 * Note that we don't support the legacy auto-wholedisk support 279 * as above. This hasn't been used in a very long time and we 280 * don't need to propagate its oddities to this edge condition. 281 */ 282 if (error && vd->vdev_path != NULL) 283 error = ldi_open_by_name(vd->vdev_path, spa_mode(spa), 284 kcred, &dvd->vd_lh, zfs_li); 285 } 286 287 if (error) { 288 vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED; 289 return (error); 290 } 291 292 /* 293 * Now that the device has been successfully opened, update the devid 294 * if necessary. 295 */ 296 if (validate_devid && spa_writeable(spa) && 297 ldi_get_devid(dvd->vd_lh, &devid) == 0) { 298 if (ddi_devid_compare(devid, dvd->vd_devid) != 0) { 299 char *vd_devid; 300 301 vd_devid = ddi_devid_str_encode(devid, dvd->vd_minor); 302 zfs_dbgmsg("vdev %s: update devid from %s, " 303 "to %s", vd->vdev_path, vd->vdev_devid, vd_devid); 304 spa_strfree(vd->vdev_devid); 305 vd->vdev_devid = spa_strdup(vd_devid); 306 ddi_devid_str_free(vd_devid); 307 } 308 ddi_devid_free(devid); 309 } 310 311 /* 312 * Once a device is opened, verify that the physical device path (if 313 * available) is up to date. 314 */ 315 if (ldi_get_dev(dvd->vd_lh, &dev) == 0 && 316 ldi_get_otyp(dvd->vd_lh, &otyp) == 0) { 317 char *physpath, *minorname; 318 319 physpath = kmem_alloc(MAXPATHLEN, KM_SLEEP); 320 minorname = NULL; 321 if (ddi_dev_pathname(dev, otyp, physpath) == 0 && 322 ldi_get_minor_name(dvd->vd_lh, &minorname) == 0 && 323 (vd->vdev_physpath == NULL || 324 strcmp(vd->vdev_physpath, physpath) != 0)) { 325 if (vd->vdev_physpath) 326 spa_strfree(vd->vdev_physpath); 327 (void) strlcat(physpath, ":", MAXPATHLEN); 328 (void) strlcat(physpath, minorname, MAXPATHLEN); 329 vd->vdev_physpath = spa_strdup(physpath); 330 } 331 if (minorname) 332 kmem_free(minorname, strlen(minorname) + 1); 333 kmem_free(physpath, MAXPATHLEN); 334 } 335 336 skip_open: 337 /* 338 * Determine the actual size of the device. 339 */ 340 if (ldi_get_size(dvd->vd_lh, psize) != 0) { 341 vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED; 342 return (SET_ERROR(EINVAL)); 343 } 344 345 *max_psize = *psize; 346 347 /* 348 * Determine the device's minimum transfer size. 349 * If the ioctl isn't supported, assume DEV_BSIZE. 350 */ 351 if ((error = ldi_ioctl(dvd->vd_lh, DKIOCGMEDIAINFOEXT, 352 (intptr_t)dkmext, FKIOCTL, kcred, NULL)) == 0) { 353 capacity = dkmext->dki_capacity - 1; 354 blksz = dkmext->dki_lbsize; 355 pbsize = dkmext->dki_pbsize; 356 } else if ((error = ldi_ioctl(dvd->vd_lh, DKIOCGMEDIAINFO, 357 (intptr_t)dkm, FKIOCTL, kcred, NULL)) == 0) { 358 VDEV_DEBUG( 359 "vdev_disk_open(\"%s\"): fallback to DKIOCGMEDIAINFO\n", 360 vd->vdev_path); 361 capacity = dkm->dki_capacity - 1; 362 blksz = dkm->dki_lbsize; 363 pbsize = blksz; 364 } else { 365 VDEV_DEBUG("vdev_disk_open(\"%s\"): " 366 "both DKIOCGMEDIAINFO{,EXT} calls failed, %d\n", 367 vd->vdev_path, error); 368 pbsize = DEV_BSIZE; 369 } 370 371 *ashift = highbit(MAX(pbsize, SPA_MINBLOCKSIZE)) - 1; 372 373 if (vd->vdev_wholedisk == 1) { 374 int wce = 1; 375 376 if (error == 0) { 377 /* 378 * If we have the capability to expand, we'd have 379 * found out via success from DKIOCGMEDIAINFO{,EXT}. 380 * Adjust max_psize upward accordingly since we know 381 * we own the whole disk now. 382 */ 383 *max_psize += vdev_disk_get_space(vd, capacity, blksz); 384 zfs_dbgmsg("capacity change: vdev %s, psize %llu, " 385 "max_psize %llu", vd->vdev_path, *psize, 386 *max_psize); 387 } 388 389 /* 390 * Since we own the whole disk, try to enable disk write 391 * caching. We ignore errors because it's OK if we can't do it. 392 */ 393 (void) ldi_ioctl(dvd->vd_lh, DKIOCSETWCE, (intptr_t)&wce, 394 FKIOCTL, kcred, NULL); 395 } 396 397 /* 398 * Clear the nowritecache bit, so that on a vdev_reopen() we will 399 * try again. 400 */ 401 vd->vdev_nowritecache = B_FALSE; 402 403 return (0); 404 } 405 406 static void 407 vdev_disk_close(vdev_t *vd) 408 { 409 vdev_disk_t *dvd = vd->vdev_tsd; 410 411 if (vd->vdev_reopening || dvd == NULL) 412 return; 413 414 if (dvd->vd_minor != NULL) 415 ddi_devid_str_free(dvd->vd_minor); 416 417 if (dvd->vd_devid != NULL) 418 ddi_devid_free(dvd->vd_devid); 419 420 if (dvd->vd_lh != NULL) 421 (void) ldi_close(dvd->vd_lh, spa_mode(vd->vdev_spa), kcred); 422 423 vd->vdev_delayed_close = B_FALSE; 424 kmem_free(dvd, sizeof (vdev_disk_t)); 425 vd->vdev_tsd = NULL; 426 } 427 428 int 429 vdev_disk_physio(ldi_handle_t vd_lh, caddr_t data, size_t size, 430 uint64_t offset, int flags) 431 { 432 buf_t *bp; 433 int error = 0; 434 435 if (vd_lh == NULL) 436 return (SET_ERROR(EINVAL)); 437 438 ASSERT(flags & B_READ || flags & B_WRITE); 439 440 bp = getrbuf(KM_SLEEP); 441 bp->b_flags = flags | B_BUSY | B_NOCACHE | B_FAILFAST; 442 bp->b_bcount = size; 443 bp->b_un.b_addr = (void *)data; 444 bp->b_lblkno = lbtodb(offset); 445 bp->b_bufsize = size; 446 447 error = ldi_strategy(vd_lh, bp); 448 ASSERT(error == 0); 449 if ((error = biowait(bp)) == 0 && bp->b_resid != 0) 450 error = SET_ERROR(EIO); 451 freerbuf(bp); 452 453 return (error); 454 } 455 456 static void 457 vdev_disk_io_intr(buf_t *bp) 458 { 459 vdev_buf_t *vb = (vdev_buf_t *)bp; 460 zio_t *zio = vb->vb_io; 461 462 /* 463 * The rest of the zio stack only deals with EIO, ECKSUM, and ENXIO. 464 * Rather than teach the rest of the stack about other error 465 * possibilities (EFAULT, etc), we normalize the error value here. 466 */ 467 zio->io_error = (geterror(bp) != 0 ? EIO : 0); 468 469 if (zio->io_error == 0 && bp->b_resid != 0) 470 zio->io_error = SET_ERROR(EIO); 471 472 kmem_free(vb, sizeof (vdev_buf_t)); 473 474 zio_interrupt(zio); 475 } 476 477 static void 478 vdev_disk_ioctl_free(zio_t *zio) 479 { 480 kmem_free(zio->io_vsd, sizeof (struct dk_callback)); 481 } 482 483 static const zio_vsd_ops_t vdev_disk_vsd_ops = { 484 vdev_disk_ioctl_free, 485 zio_vsd_default_cksum_report 486 }; 487 488 static void 489 vdev_disk_ioctl_done(void *zio_arg, int error) 490 { 491 zio_t *zio = zio_arg; 492 493 zio->io_error = error; 494 495 zio_interrupt(zio); 496 } 497 498 static int 499 vdev_disk_io_start(zio_t *zio) 500 { 501 vdev_t *vd = zio->io_vd; 502 vdev_disk_t *dvd = vd->vdev_tsd; 503 vdev_buf_t *vb; 504 struct dk_callback *dkc; 505 buf_t *bp; 506 int error; 507 508 if (zio->io_type == ZIO_TYPE_IOCTL) { 509 /* XXPOLICY */ 510 if (!vdev_readable(vd)) { 511 zio->io_error = SET_ERROR(ENXIO); 512 return (ZIO_PIPELINE_CONTINUE); 513 } 514 515 switch (zio->io_cmd) { 516 517 case DKIOCFLUSHWRITECACHE: 518 519 if (zfs_nocacheflush) 520 break; 521 522 if (vd->vdev_nowritecache) { 523 zio->io_error = SET_ERROR(ENOTSUP); 524 break; 525 } 526 527 zio->io_vsd = dkc = kmem_alloc(sizeof (*dkc), KM_SLEEP); 528 zio->io_vsd_ops = &vdev_disk_vsd_ops; 529 530 dkc->dkc_callback = vdev_disk_ioctl_done; 531 dkc->dkc_flag = FLUSH_VOLATILE; 532 dkc->dkc_cookie = zio; 533 534 error = ldi_ioctl(dvd->vd_lh, zio->io_cmd, 535 (uintptr_t)dkc, FKIOCTL, kcred, NULL); 536 537 if (error == 0) { 538 /* 539 * The ioctl will be done asychronously, 540 * and will call vdev_disk_ioctl_done() 541 * upon completion. 542 */ 543 return (ZIO_PIPELINE_STOP); 544 } 545 546 if (error == ENOTSUP || error == ENOTTY) { 547 /* 548 * If we get ENOTSUP or ENOTTY, we know that 549 * no future attempts will ever succeed. 550 * In this case we set a persistent bit so 551 * that we don't bother with the ioctl in the 552 * future. 553 */ 554 vd->vdev_nowritecache = B_TRUE; 555 } 556 zio->io_error = error; 557 558 break; 559 560 default: 561 zio->io_error = SET_ERROR(ENOTSUP); 562 } 563 564 return (ZIO_PIPELINE_CONTINUE); 565 } 566 567 vb = kmem_alloc(sizeof (vdev_buf_t), KM_SLEEP); 568 569 vb->vb_io = zio; 570 bp = &vb->vb_buf; 571 572 bioinit(bp); 573 bp->b_flags = B_BUSY | B_NOCACHE | 574 (zio->io_type == ZIO_TYPE_READ ? B_READ : B_WRITE); 575 if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD))) 576 bp->b_flags |= B_FAILFAST; 577 bp->b_bcount = zio->io_size; 578 bp->b_un.b_addr = zio->io_data; 579 bp->b_lblkno = lbtodb(zio->io_offset); 580 bp->b_bufsize = zio->io_size; 581 bp->b_iodone = (int (*)())vdev_disk_io_intr; 582 583 /* ldi_strategy() will return non-zero only on programming errors */ 584 VERIFY(ldi_strategy(dvd->vd_lh, bp) == 0); 585 586 return (ZIO_PIPELINE_STOP); 587 } 588 589 static void 590 vdev_disk_io_done(zio_t *zio) 591 { 592 vdev_t *vd = zio->io_vd; 593 594 /* 595 * If the device returned EIO, then attempt a DKIOCSTATE ioctl to see if 596 * the device has been removed. If this is the case, then we trigger an 597 * asynchronous removal of the device. Otherwise, probe the device and 598 * make sure it's still accessible. 599 */ 600 if (zio->io_error == EIO && !vd->vdev_remove_wanted) { 601 vdev_disk_t *dvd = vd->vdev_tsd; 602 int state = DKIO_NONE; 603 604 if (ldi_ioctl(dvd->vd_lh, DKIOCSTATE, (intptr_t)&state, 605 FKIOCTL, kcred, NULL) == 0 && state != DKIO_INSERTED) { 606 /* 607 * We post the resource as soon as possible, instead of 608 * when the async removal actually happens, because the 609 * DE is using this information to discard previous I/O 610 * errors. 611 */ 612 zfs_post_remove(zio->io_spa, vd); 613 vd->vdev_remove_wanted = B_TRUE; 614 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE); 615 } else if (!vd->vdev_delayed_close) { 616 vd->vdev_delayed_close = B_TRUE; 617 } 618 } 619 } 620 621 vdev_ops_t vdev_disk_ops = { 622 vdev_disk_open, 623 vdev_disk_close, 624 vdev_default_asize, 625 vdev_disk_io_start, 626 vdev_disk_io_done, 627 NULL, 628 vdev_disk_hold, 629 vdev_disk_rele, 630 VDEV_TYPE_DISK, /* name of this vdev type */ 631 B_TRUE /* leaf vdev */ 632 }; 633 634 /* 635 * Given the root disk device devid or pathname, read the label from 636 * the device, and construct a configuration nvlist. 637 */ 638 int 639 vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config) 640 { 641 ldi_handle_t vd_lh; 642 vdev_label_t *label; 643 uint64_t s, size; 644 int l; 645 ddi_devid_t tmpdevid; 646 int error = -1; 647 char *minor_name; 648 649 /* 650 * Read the device label and build the nvlist. 651 */ 652 if (devid != NULL && ddi_devid_str_decode(devid, &tmpdevid, 653 &minor_name) == 0) { 654 error = ldi_open_by_devid(tmpdevid, minor_name, 655 FREAD, kcred, &vd_lh, zfs_li); 656 ddi_devid_free(tmpdevid); 657 ddi_devid_str_free(minor_name); 658 } 659 660 if (error && (error = ldi_open_by_name(devpath, FREAD, kcred, &vd_lh, 661 zfs_li))) 662 return (error); 663 664 if (ldi_get_size(vd_lh, &s)) { 665 (void) ldi_close(vd_lh, FREAD, kcred); 666 return (SET_ERROR(EIO)); 667 } 668 669 size = P2ALIGN_TYPED(s, sizeof (vdev_label_t), uint64_t); 670 label = kmem_alloc(sizeof (vdev_label_t), KM_SLEEP); 671 672 *config = NULL; 673 for (l = 0; l < VDEV_LABELS; l++) { 674 uint64_t offset, state, txg = 0; 675 676 /* read vdev label */ 677 offset = vdev_label_offset(size, l, 0); 678 if (vdev_disk_physio(vd_lh, (caddr_t)label, 679 VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, B_READ) != 0) 680 continue; 681 682 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 683 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) { 684 *config = NULL; 685 continue; 686 } 687 688 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 689 &state) != 0 || state >= POOL_STATE_DESTROYED) { 690 nvlist_free(*config); 691 *config = NULL; 692 continue; 693 } 694 695 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 696 &txg) != 0 || txg == 0) { 697 nvlist_free(*config); 698 *config = NULL; 699 continue; 700 } 701 702 break; 703 } 704 705 kmem_free(label, sizeof (vdev_label_t)); 706 (void) ldi_close(vd_lh, FREAD, kcred); 707 if (*config == NULL) 708 error = SET_ERROR(EIDRM); 709 710 return (error); 711 } 712