xref: /titanic_44/usr/src/uts/common/fs/zfs/vdev_cache.c (revision 7c88c50ef35328afdaa3d296db006398990feaa8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/spa.h>
28 #include <sys/vdev_impl.h>
29 #include <sys/zio.h>
30 #include <sys/kstat.h>
31 
32 /*
33  * Virtual device read-ahead caching.
34  *
35  * This file implements a simple LRU read-ahead cache.  When the DMU reads
36  * a given block, it will often want other, nearby blocks soon thereafter.
37  * We take advantage of this by reading a larger disk region and caching
38  * the result.  In the best case, this can turn 128 back-to-back 512-byte
39  * reads into a single 64k read followed by 127 cache hits; this reduces
40  * latency dramatically.  In the worst case, it can turn an isolated 512-byte
41  * read into a 64k read, which doesn't affect latency all that much but is
42  * terribly wasteful of bandwidth.  A more intelligent version of the cache
43  * could keep track of access patterns and not do read-ahead unless it sees
44  * at least two temporally close I/Os to the same region.  Currently, only
45  * metadata I/O is inflated.  A futher enhancement could take advantage of
46  * more semantic information about the I/O.  And it could use something
47  * faster than an AVL tree; that was chosen solely for convenience.
48  *
49  * There are five cache operations: allocate, fill, read, write, evict.
50  *
51  * (1) Allocate.  This reserves a cache entry for the specified region.
52  *     We separate the allocate and fill operations so that multiple threads
53  *     don't generate I/O for the same cache miss.
54  *
55  * (2) Fill.  When the I/O for a cache miss completes, the fill routine
56  *     places the data in the previously allocated cache entry.
57  *
58  * (3) Read.  Read data from the cache.
59  *
60  * (4) Write.  Update cache contents after write completion.
61  *
62  * (5) Evict.  When allocating a new entry, we evict the oldest (LRU) entry
63  *     if the total cache size exceeds zfs_vdev_cache_size.
64  */
65 
66 /*
67  * These tunables are for performance analysis.
68  */
69 /*
70  * All i/os smaller than zfs_vdev_cache_max will be turned into
71  * 1<<zfs_vdev_cache_bshift byte reads by the vdev_cache (aka software
72  * track buffer).  At most zfs_vdev_cache_size bytes will be kept in each
73  * vdev's vdev_cache.
74  */
75 int zfs_vdev_cache_max = 1<<14;			/* 16KB */
76 int zfs_vdev_cache_size = 10ULL << 20;		/* 10MB */
77 int zfs_vdev_cache_bshift = 16;
78 
79 #define	VCBS (1 << zfs_vdev_cache_bshift)	/* 64KB */
80 
81 kstat_t	*vdc_ksp = NULL;
82 
83 typedef struct vdc_stats {
84 	kstat_named_t vdc_stat_delegations;
85 	kstat_named_t vdc_stat_hits;
86 	kstat_named_t vdc_stat_misses;
87 } vdc_stats_t;
88 
89 static vdc_stats_t vdc_stats = {
90 	{ "delegations",	KSTAT_DATA_UINT64 },
91 	{ "hits",		KSTAT_DATA_UINT64 },
92 	{ "misses",		KSTAT_DATA_UINT64 }
93 };
94 
95 #define	VDCSTAT_BUMP(stat)	atomic_add_64(&vdc_stats.stat.value.ui64, 1);
96 
97 static int
98 vdev_cache_offset_compare(const void *a1, const void *a2)
99 {
100 	const vdev_cache_entry_t *ve1 = a1;
101 	const vdev_cache_entry_t *ve2 = a2;
102 
103 	if (ve1->ve_offset < ve2->ve_offset)
104 		return (-1);
105 	if (ve1->ve_offset > ve2->ve_offset)
106 		return (1);
107 	return (0);
108 }
109 
110 static int
111 vdev_cache_lastused_compare(const void *a1, const void *a2)
112 {
113 	const vdev_cache_entry_t *ve1 = a1;
114 	const vdev_cache_entry_t *ve2 = a2;
115 
116 	if (ve1->ve_lastused < ve2->ve_lastused)
117 		return (-1);
118 	if (ve1->ve_lastused > ve2->ve_lastused)
119 		return (1);
120 
121 	/*
122 	 * Among equally old entries, sort by offset to ensure uniqueness.
123 	 */
124 	return (vdev_cache_offset_compare(a1, a2));
125 }
126 
127 /*
128  * Evict the specified entry from the cache.
129  */
130 static void
131 vdev_cache_evict(vdev_cache_t *vc, vdev_cache_entry_t *ve)
132 {
133 	ASSERT(MUTEX_HELD(&vc->vc_lock));
134 	ASSERT(ve->ve_fill_io == NULL);
135 	ASSERT(ve->ve_data != NULL);
136 
137 	avl_remove(&vc->vc_lastused_tree, ve);
138 	avl_remove(&vc->vc_offset_tree, ve);
139 	zio_buf_free(ve->ve_data, VCBS);
140 	kmem_free(ve, sizeof (vdev_cache_entry_t));
141 }
142 
143 /*
144  * Allocate an entry in the cache.  At the point we don't have the data,
145  * we're just creating a placeholder so that multiple threads don't all
146  * go off and read the same blocks.
147  */
148 static vdev_cache_entry_t *
149 vdev_cache_allocate(zio_t *zio)
150 {
151 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
152 	uint64_t offset = P2ALIGN(zio->io_offset, VCBS);
153 	vdev_cache_entry_t *ve;
154 
155 	ASSERT(MUTEX_HELD(&vc->vc_lock));
156 
157 	if (zfs_vdev_cache_size == 0)
158 		return (NULL);
159 
160 	/*
161 	 * If adding a new entry would exceed the cache size,
162 	 * evict the oldest entry (LRU).
163 	 */
164 	if ((avl_numnodes(&vc->vc_lastused_tree) << zfs_vdev_cache_bshift) >
165 	    zfs_vdev_cache_size) {
166 		ve = avl_first(&vc->vc_lastused_tree);
167 		if (ve->ve_fill_io != NULL)
168 			return (NULL);
169 		ASSERT(ve->ve_hits != 0);
170 		vdev_cache_evict(vc, ve);
171 	}
172 
173 	ve = kmem_zalloc(sizeof (vdev_cache_entry_t), KM_SLEEP);
174 	ve->ve_offset = offset;
175 	ve->ve_lastused = lbolt;
176 	ve->ve_data = zio_buf_alloc(VCBS);
177 
178 	avl_add(&vc->vc_offset_tree, ve);
179 	avl_add(&vc->vc_lastused_tree, ve);
180 
181 	return (ve);
182 }
183 
184 static void
185 vdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio)
186 {
187 	uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
188 
189 	ASSERT(MUTEX_HELD(&vc->vc_lock));
190 	ASSERT(ve->ve_fill_io == NULL);
191 
192 	if (ve->ve_lastused != lbolt) {
193 		avl_remove(&vc->vc_lastused_tree, ve);
194 		ve->ve_lastused = lbolt;
195 		avl_add(&vc->vc_lastused_tree, ve);
196 	}
197 
198 	ve->ve_hits++;
199 	bcopy(ve->ve_data + cache_phase, zio->io_data, zio->io_size);
200 }
201 
202 /*
203  * Fill a previously allocated cache entry with data.
204  */
205 static void
206 vdev_cache_fill(zio_t *zio)
207 {
208 	vdev_t *vd = zio->io_vd;
209 	vdev_cache_t *vc = &vd->vdev_cache;
210 	vdev_cache_entry_t *ve = zio->io_private;
211 	zio_t *dio;
212 
213 	ASSERT(zio->io_size == VCBS);
214 
215 	/*
216 	 * Add data to the cache.
217 	 */
218 	mutex_enter(&vc->vc_lock);
219 
220 	ASSERT(ve->ve_fill_io == zio);
221 	ASSERT(ve->ve_offset == zio->io_offset);
222 	ASSERT(ve->ve_data == zio->io_data);
223 
224 	ve->ve_fill_io = NULL;
225 
226 	/*
227 	 * Even if this cache line was invalidated by a missed write update,
228 	 * any reads that were queued up before the missed update are still
229 	 * valid, so we can satisfy them from this line before we evict it.
230 	 */
231 	for (dio = zio->io_delegate_list; dio; dio = dio->io_delegate_next)
232 		vdev_cache_hit(vc, ve, dio);
233 
234 	if (zio->io_error || ve->ve_missed_update)
235 		vdev_cache_evict(vc, ve);
236 
237 	mutex_exit(&vc->vc_lock);
238 
239 	while ((dio = zio->io_delegate_list) != NULL) {
240 		zio->io_delegate_list = dio->io_delegate_next;
241 		dio->io_delegate_next = NULL;
242 		dio->io_error = zio->io_error;
243 		zio_execute(dio);
244 	}
245 }
246 
247 /*
248  * Read data from the cache.  Returns 0 on cache hit, errno on a miss.
249  */
250 int
251 vdev_cache_read(zio_t *zio)
252 {
253 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
254 	vdev_cache_entry_t *ve, ve_search;
255 	uint64_t cache_offset = P2ALIGN(zio->io_offset, VCBS);
256 	uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
257 	zio_t *fio;
258 
259 	ASSERT(zio->io_type == ZIO_TYPE_READ);
260 
261 	if (zio->io_flags & ZIO_FLAG_DONT_CACHE)
262 		return (EINVAL);
263 
264 	if (zio->io_size > zfs_vdev_cache_max)
265 		return (EOVERFLOW);
266 
267 	/*
268 	 * If the I/O straddles two or more cache blocks, don't cache it.
269 	 */
270 	if (P2BOUNDARY(zio->io_offset, zio->io_size, VCBS))
271 		return (EXDEV);
272 
273 	ASSERT(cache_phase + zio->io_size <= VCBS);
274 
275 	mutex_enter(&vc->vc_lock);
276 
277 	ve_search.ve_offset = cache_offset;
278 	ve = avl_find(&vc->vc_offset_tree, &ve_search, NULL);
279 
280 	if (ve != NULL) {
281 		if (ve->ve_missed_update) {
282 			mutex_exit(&vc->vc_lock);
283 			return (ESTALE);
284 		}
285 
286 		if ((fio = ve->ve_fill_io) != NULL) {
287 			zio->io_delegate_next = fio->io_delegate_list;
288 			fio->io_delegate_list = zio;
289 			zio_vdev_io_bypass(zio);
290 			mutex_exit(&vc->vc_lock);
291 			VDCSTAT_BUMP(vdc_stat_delegations);
292 			return (0);
293 		}
294 
295 		vdev_cache_hit(vc, ve, zio);
296 		zio_vdev_io_bypass(zio);
297 
298 		mutex_exit(&vc->vc_lock);
299 		zio_execute(zio);
300 		VDCSTAT_BUMP(vdc_stat_hits);
301 		return (0);
302 	}
303 
304 	ve = vdev_cache_allocate(zio);
305 
306 	if (ve == NULL) {
307 		mutex_exit(&vc->vc_lock);
308 		return (ENOMEM);
309 	}
310 
311 	fio = zio_vdev_delegated_io(zio->io_vd, cache_offset,
312 	    ve->ve_data, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_CACHE_FILL,
313 	    ZIO_FLAG_DONT_CACHE, vdev_cache_fill, ve);
314 
315 	ve->ve_fill_io = fio;
316 	fio->io_delegate_list = zio;
317 	zio_vdev_io_bypass(zio);
318 
319 	mutex_exit(&vc->vc_lock);
320 	zio_nowait(fio);
321 	VDCSTAT_BUMP(vdc_stat_misses);
322 
323 	return (0);
324 }
325 
326 /*
327  * Update cache contents upon write completion.
328  */
329 void
330 vdev_cache_write(zio_t *zio)
331 {
332 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
333 	vdev_cache_entry_t *ve, ve_search;
334 	uint64_t io_start = zio->io_offset;
335 	uint64_t io_end = io_start + zio->io_size;
336 	uint64_t min_offset = P2ALIGN(io_start, VCBS);
337 	uint64_t max_offset = P2ROUNDUP(io_end, VCBS);
338 	avl_index_t where;
339 
340 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
341 
342 	mutex_enter(&vc->vc_lock);
343 
344 	ve_search.ve_offset = min_offset;
345 	ve = avl_find(&vc->vc_offset_tree, &ve_search, &where);
346 
347 	if (ve == NULL)
348 		ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER);
349 
350 	while (ve != NULL && ve->ve_offset < max_offset) {
351 		uint64_t start = MAX(ve->ve_offset, io_start);
352 		uint64_t end = MIN(ve->ve_offset + VCBS, io_end);
353 
354 		if (ve->ve_fill_io != NULL) {
355 			ve->ve_missed_update = 1;
356 		} else {
357 			bcopy((char *)zio->io_data + start - io_start,
358 			    ve->ve_data + start - ve->ve_offset, end - start);
359 		}
360 		ve = AVL_NEXT(&vc->vc_offset_tree, ve);
361 	}
362 	mutex_exit(&vc->vc_lock);
363 }
364 
365 void
366 vdev_cache_purge(vdev_t *vd)
367 {
368 	vdev_cache_t *vc = &vd->vdev_cache;
369 	vdev_cache_entry_t *ve;
370 
371 	mutex_enter(&vc->vc_lock);
372 	while ((ve = avl_first(&vc->vc_offset_tree)) != NULL)
373 		vdev_cache_evict(vc, ve);
374 	mutex_exit(&vc->vc_lock);
375 }
376 
377 void
378 vdev_cache_init(vdev_t *vd)
379 {
380 	vdev_cache_t *vc = &vd->vdev_cache;
381 
382 	mutex_init(&vc->vc_lock, NULL, MUTEX_DEFAULT, NULL);
383 
384 	avl_create(&vc->vc_offset_tree, vdev_cache_offset_compare,
385 	    sizeof (vdev_cache_entry_t),
386 	    offsetof(struct vdev_cache_entry, ve_offset_node));
387 
388 	avl_create(&vc->vc_lastused_tree, vdev_cache_lastused_compare,
389 	    sizeof (vdev_cache_entry_t),
390 	    offsetof(struct vdev_cache_entry, ve_lastused_node));
391 }
392 
393 void
394 vdev_cache_fini(vdev_t *vd)
395 {
396 	vdev_cache_t *vc = &vd->vdev_cache;
397 
398 	vdev_cache_purge(vd);
399 
400 	avl_destroy(&vc->vc_offset_tree);
401 	avl_destroy(&vc->vc_lastused_tree);
402 
403 	mutex_destroy(&vc->vc_lock);
404 }
405 
406 void
407 vdev_cache_stat_init(void)
408 {
409 	vdc_ksp = kstat_create("zfs", 0, "vdev_cache_stats", "misc",
410 	    KSTAT_TYPE_NAMED, sizeof (vdc_stats) / sizeof (kstat_named_t),
411 	    KSTAT_FLAG_VIRTUAL);
412 	if (vdc_ksp != NULL) {
413 		vdc_ksp->ks_data = &vdc_stats;
414 		kstat_install(vdc_ksp);
415 	}
416 }
417 
418 void
419 vdev_cache_stat_fini(void)
420 {
421 	if (vdc_ksp != NULL) {
422 		kstat_delete(vdc_ksp);
423 		vdc_ksp = NULL;
424 	}
425 }
426