1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/fm/fs/zfs.h> 28 #include <sys/spa.h> 29 #include <sys/spa_impl.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/uberblock_impl.h> 34 #include <sys/metaslab.h> 35 #include <sys/metaslab_impl.h> 36 #include <sys/space_map.h> 37 #include <sys/zio.h> 38 #include <sys/zap.h> 39 #include <sys/fs/zfs.h> 40 #include <sys/arc.h> 41 #include <sys/zil.h> 42 #include <sys/dsl_scan.h> 43 44 /* 45 * Virtual device management. 46 */ 47 48 static vdev_ops_t *vdev_ops_table[] = { 49 &vdev_root_ops, 50 &vdev_raidz_ops, 51 &vdev_mirror_ops, 52 &vdev_replacing_ops, 53 &vdev_spare_ops, 54 &vdev_disk_ops, 55 &vdev_file_ops, 56 &vdev_missing_ops, 57 &vdev_hole_ops, 58 NULL 59 }; 60 61 /* maximum scrub/resilver I/O queue per leaf vdev */ 62 int zfs_scrub_limit = 10; 63 64 /* 65 * Given a vdev type, return the appropriate ops vector. 66 */ 67 static vdev_ops_t * 68 vdev_getops(const char *type) 69 { 70 vdev_ops_t *ops, **opspp; 71 72 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 73 if (strcmp(ops->vdev_op_type, type) == 0) 74 break; 75 76 return (ops); 77 } 78 79 /* 80 * Default asize function: return the MAX of psize with the asize of 81 * all children. This is what's used by anything other than RAID-Z. 82 */ 83 uint64_t 84 vdev_default_asize(vdev_t *vd, uint64_t psize) 85 { 86 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 87 uint64_t csize; 88 89 for (int c = 0; c < vd->vdev_children; c++) { 90 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 91 asize = MAX(asize, csize); 92 } 93 94 return (asize); 95 } 96 97 /* 98 * Get the minimum allocatable size. We define the allocatable size as 99 * the vdev's asize rounded to the nearest metaslab. This allows us to 100 * replace or attach devices which don't have the same physical size but 101 * can still satisfy the same number of allocations. 102 */ 103 uint64_t 104 vdev_get_min_asize(vdev_t *vd) 105 { 106 vdev_t *pvd = vd->vdev_parent; 107 108 /* 109 * The our parent is NULL (inactive spare or cache) or is the root, 110 * just return our own asize. 111 */ 112 if (pvd == NULL) 113 return (vd->vdev_asize); 114 115 /* 116 * The top-level vdev just returns the allocatable size rounded 117 * to the nearest metaslab. 118 */ 119 if (vd == vd->vdev_top) 120 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 121 122 /* 123 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 124 * so each child must provide at least 1/Nth of its asize. 125 */ 126 if (pvd->vdev_ops == &vdev_raidz_ops) 127 return (pvd->vdev_min_asize / pvd->vdev_children); 128 129 return (pvd->vdev_min_asize); 130 } 131 132 void 133 vdev_set_min_asize(vdev_t *vd) 134 { 135 vd->vdev_min_asize = vdev_get_min_asize(vd); 136 137 for (int c = 0; c < vd->vdev_children; c++) 138 vdev_set_min_asize(vd->vdev_child[c]); 139 } 140 141 vdev_t * 142 vdev_lookup_top(spa_t *spa, uint64_t vdev) 143 { 144 vdev_t *rvd = spa->spa_root_vdev; 145 146 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 147 148 if (vdev < rvd->vdev_children) { 149 ASSERT(rvd->vdev_child[vdev] != NULL); 150 return (rvd->vdev_child[vdev]); 151 } 152 153 return (NULL); 154 } 155 156 vdev_t * 157 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 158 { 159 vdev_t *mvd; 160 161 if (vd->vdev_guid == guid) 162 return (vd); 163 164 for (int c = 0; c < vd->vdev_children; c++) 165 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 166 NULL) 167 return (mvd); 168 169 return (NULL); 170 } 171 172 void 173 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 174 { 175 size_t oldsize, newsize; 176 uint64_t id = cvd->vdev_id; 177 vdev_t **newchild; 178 179 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 180 ASSERT(cvd->vdev_parent == NULL); 181 182 cvd->vdev_parent = pvd; 183 184 if (pvd == NULL) 185 return; 186 187 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 188 189 oldsize = pvd->vdev_children * sizeof (vdev_t *); 190 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 191 newsize = pvd->vdev_children * sizeof (vdev_t *); 192 193 newchild = kmem_zalloc(newsize, KM_SLEEP); 194 if (pvd->vdev_child != NULL) { 195 bcopy(pvd->vdev_child, newchild, oldsize); 196 kmem_free(pvd->vdev_child, oldsize); 197 } 198 199 pvd->vdev_child = newchild; 200 pvd->vdev_child[id] = cvd; 201 202 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 203 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 204 205 /* 206 * Walk up all ancestors to update guid sum. 207 */ 208 for (; pvd != NULL; pvd = pvd->vdev_parent) 209 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 210 } 211 212 void 213 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 214 { 215 int c; 216 uint_t id = cvd->vdev_id; 217 218 ASSERT(cvd->vdev_parent == pvd); 219 220 if (pvd == NULL) 221 return; 222 223 ASSERT(id < pvd->vdev_children); 224 ASSERT(pvd->vdev_child[id] == cvd); 225 226 pvd->vdev_child[id] = NULL; 227 cvd->vdev_parent = NULL; 228 229 for (c = 0; c < pvd->vdev_children; c++) 230 if (pvd->vdev_child[c]) 231 break; 232 233 if (c == pvd->vdev_children) { 234 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 235 pvd->vdev_child = NULL; 236 pvd->vdev_children = 0; 237 } 238 239 /* 240 * Walk up all ancestors to update guid sum. 241 */ 242 for (; pvd != NULL; pvd = pvd->vdev_parent) 243 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 244 } 245 246 /* 247 * Remove any holes in the child array. 248 */ 249 void 250 vdev_compact_children(vdev_t *pvd) 251 { 252 vdev_t **newchild, *cvd; 253 int oldc = pvd->vdev_children; 254 int newc; 255 256 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 257 258 for (int c = newc = 0; c < oldc; c++) 259 if (pvd->vdev_child[c]) 260 newc++; 261 262 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 263 264 for (int c = newc = 0; c < oldc; c++) { 265 if ((cvd = pvd->vdev_child[c]) != NULL) { 266 newchild[newc] = cvd; 267 cvd->vdev_id = newc++; 268 } 269 } 270 271 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 272 pvd->vdev_child = newchild; 273 pvd->vdev_children = newc; 274 } 275 276 /* 277 * Allocate and minimally initialize a vdev_t. 278 */ 279 vdev_t * 280 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 281 { 282 vdev_t *vd; 283 284 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 285 286 if (spa->spa_root_vdev == NULL) { 287 ASSERT(ops == &vdev_root_ops); 288 spa->spa_root_vdev = vd; 289 } 290 291 if (guid == 0 && ops != &vdev_hole_ops) { 292 if (spa->spa_root_vdev == vd) { 293 /* 294 * The root vdev's guid will also be the pool guid, 295 * which must be unique among all pools. 296 */ 297 guid = spa_generate_guid(NULL); 298 } else { 299 /* 300 * Any other vdev's guid must be unique within the pool. 301 */ 302 guid = spa_generate_guid(spa); 303 } 304 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 305 } 306 307 vd->vdev_spa = spa; 308 vd->vdev_id = id; 309 vd->vdev_guid = guid; 310 vd->vdev_guid_sum = guid; 311 vd->vdev_ops = ops; 312 vd->vdev_state = VDEV_STATE_CLOSED; 313 vd->vdev_ishole = (ops == &vdev_hole_ops); 314 315 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 316 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 317 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 318 for (int t = 0; t < DTL_TYPES; t++) { 319 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, 320 &vd->vdev_dtl_lock); 321 } 322 txg_list_create(&vd->vdev_ms_list, 323 offsetof(struct metaslab, ms_txg_node)); 324 txg_list_create(&vd->vdev_dtl_list, 325 offsetof(struct vdev, vdev_dtl_node)); 326 vd->vdev_stat.vs_timestamp = gethrtime(); 327 vdev_queue_init(vd); 328 vdev_cache_init(vd); 329 330 return (vd); 331 } 332 333 /* 334 * Allocate a new vdev. The 'alloctype' is used to control whether we are 335 * creating a new vdev or loading an existing one - the behavior is slightly 336 * different for each case. 337 */ 338 int 339 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 340 int alloctype) 341 { 342 vdev_ops_t *ops; 343 char *type; 344 uint64_t guid = 0, islog, nparity; 345 vdev_t *vd; 346 347 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 348 349 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 350 return (EINVAL); 351 352 if ((ops = vdev_getops(type)) == NULL) 353 return (EINVAL); 354 355 /* 356 * If this is a load, get the vdev guid from the nvlist. 357 * Otherwise, vdev_alloc_common() will generate one for us. 358 */ 359 if (alloctype == VDEV_ALLOC_LOAD) { 360 uint64_t label_id; 361 362 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 363 label_id != id) 364 return (EINVAL); 365 366 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 367 return (EINVAL); 368 } else if (alloctype == VDEV_ALLOC_SPARE) { 369 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 370 return (EINVAL); 371 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 372 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 373 return (EINVAL); 374 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 376 return (EINVAL); 377 } 378 379 /* 380 * The first allocated vdev must be of type 'root'. 381 */ 382 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 383 return (EINVAL); 384 385 /* 386 * Determine whether we're a log vdev. 387 */ 388 islog = 0; 389 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 390 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 391 return (ENOTSUP); 392 393 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 394 return (ENOTSUP); 395 396 /* 397 * Set the nparity property for RAID-Z vdevs. 398 */ 399 nparity = -1ULL; 400 if (ops == &vdev_raidz_ops) { 401 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 402 &nparity) == 0) { 403 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 404 return (EINVAL); 405 /* 406 * Previous versions could only support 1 or 2 parity 407 * device. 408 */ 409 if (nparity > 1 && 410 spa_version(spa) < SPA_VERSION_RAIDZ2) 411 return (ENOTSUP); 412 if (nparity > 2 && 413 spa_version(spa) < SPA_VERSION_RAIDZ3) 414 return (ENOTSUP); 415 } else { 416 /* 417 * We require the parity to be specified for SPAs that 418 * support multiple parity levels. 419 */ 420 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 421 return (EINVAL); 422 /* 423 * Otherwise, we default to 1 parity device for RAID-Z. 424 */ 425 nparity = 1; 426 } 427 } else { 428 nparity = 0; 429 } 430 ASSERT(nparity != -1ULL); 431 432 vd = vdev_alloc_common(spa, id, guid, ops); 433 434 vd->vdev_islog = islog; 435 vd->vdev_nparity = nparity; 436 437 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 438 vd->vdev_path = spa_strdup(vd->vdev_path); 439 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 440 vd->vdev_devid = spa_strdup(vd->vdev_devid); 441 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 442 &vd->vdev_physpath) == 0) 443 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 444 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 445 vd->vdev_fru = spa_strdup(vd->vdev_fru); 446 447 /* 448 * Set the whole_disk property. If it's not specified, leave the value 449 * as -1. 450 */ 451 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 452 &vd->vdev_wholedisk) != 0) 453 vd->vdev_wholedisk = -1ULL; 454 455 /* 456 * Look for the 'not present' flag. This will only be set if the device 457 * was not present at the time of import. 458 */ 459 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 460 &vd->vdev_not_present); 461 462 /* 463 * Get the alignment requirement. 464 */ 465 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 466 467 /* 468 * Retrieve the vdev creation time. 469 */ 470 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 471 &vd->vdev_crtxg); 472 473 /* 474 * If we're a top-level vdev, try to load the allocation parameters. 475 */ 476 if (parent && !parent->vdev_parent && 477 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 478 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 479 &vd->vdev_ms_array); 480 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 481 &vd->vdev_ms_shift); 482 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 483 &vd->vdev_asize); 484 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 485 &vd->vdev_removing); 486 } 487 488 if (parent && !parent->vdev_parent) { 489 ASSERT(alloctype == VDEV_ALLOC_LOAD || 490 alloctype == VDEV_ALLOC_ADD || 491 alloctype == VDEV_ALLOC_SPLIT || 492 alloctype == VDEV_ALLOC_ROOTPOOL); 493 vd->vdev_mg = metaslab_group_create(islog ? 494 spa_log_class(spa) : spa_normal_class(spa), vd); 495 } 496 497 /* 498 * If we're a leaf vdev, try to load the DTL object and other state. 499 */ 500 if (vd->vdev_ops->vdev_op_leaf && 501 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 502 alloctype == VDEV_ALLOC_ROOTPOOL)) { 503 if (alloctype == VDEV_ALLOC_LOAD) { 504 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 505 &vd->vdev_dtl_smo.smo_object); 506 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 507 &vd->vdev_unspare); 508 } 509 510 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 511 uint64_t spare = 0; 512 513 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 514 &spare) == 0 && spare) 515 spa_spare_add(vd); 516 } 517 518 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 519 &vd->vdev_offline); 520 521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING, 522 &vd->vdev_resilvering); 523 524 /* 525 * When importing a pool, we want to ignore the persistent fault 526 * state, as the diagnosis made on another system may not be 527 * valid in the current context. Local vdevs will 528 * remain in the faulted state. 529 */ 530 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 531 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 532 &vd->vdev_faulted); 533 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 534 &vd->vdev_degraded); 535 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 536 &vd->vdev_removed); 537 538 if (vd->vdev_faulted || vd->vdev_degraded) { 539 char *aux; 540 541 vd->vdev_label_aux = 542 VDEV_AUX_ERR_EXCEEDED; 543 if (nvlist_lookup_string(nv, 544 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 545 strcmp(aux, "external") == 0) 546 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 547 } 548 } 549 } 550 551 /* 552 * Add ourselves to the parent's list of children. 553 */ 554 vdev_add_child(parent, vd); 555 556 *vdp = vd; 557 558 return (0); 559 } 560 561 void 562 vdev_free(vdev_t *vd) 563 { 564 spa_t *spa = vd->vdev_spa; 565 566 /* 567 * vdev_free() implies closing the vdev first. This is simpler than 568 * trying to ensure complicated semantics for all callers. 569 */ 570 vdev_close(vd); 571 572 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 573 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 574 575 /* 576 * Free all children. 577 */ 578 for (int c = 0; c < vd->vdev_children; c++) 579 vdev_free(vd->vdev_child[c]); 580 581 ASSERT(vd->vdev_child == NULL); 582 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 583 584 /* 585 * Discard allocation state. 586 */ 587 if (vd->vdev_mg != NULL) { 588 vdev_metaslab_fini(vd); 589 metaslab_group_destroy(vd->vdev_mg); 590 } 591 592 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 593 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 594 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 595 596 /* 597 * Remove this vdev from its parent's child list. 598 */ 599 vdev_remove_child(vd->vdev_parent, vd); 600 601 ASSERT(vd->vdev_parent == NULL); 602 603 /* 604 * Clean up vdev structure. 605 */ 606 vdev_queue_fini(vd); 607 vdev_cache_fini(vd); 608 609 if (vd->vdev_path) 610 spa_strfree(vd->vdev_path); 611 if (vd->vdev_devid) 612 spa_strfree(vd->vdev_devid); 613 if (vd->vdev_physpath) 614 spa_strfree(vd->vdev_physpath); 615 if (vd->vdev_fru) 616 spa_strfree(vd->vdev_fru); 617 618 if (vd->vdev_isspare) 619 spa_spare_remove(vd); 620 if (vd->vdev_isl2cache) 621 spa_l2cache_remove(vd); 622 623 txg_list_destroy(&vd->vdev_ms_list); 624 txg_list_destroy(&vd->vdev_dtl_list); 625 626 mutex_enter(&vd->vdev_dtl_lock); 627 for (int t = 0; t < DTL_TYPES; t++) { 628 space_map_unload(&vd->vdev_dtl[t]); 629 space_map_destroy(&vd->vdev_dtl[t]); 630 } 631 mutex_exit(&vd->vdev_dtl_lock); 632 633 mutex_destroy(&vd->vdev_dtl_lock); 634 mutex_destroy(&vd->vdev_stat_lock); 635 mutex_destroy(&vd->vdev_probe_lock); 636 637 if (vd == spa->spa_root_vdev) 638 spa->spa_root_vdev = NULL; 639 640 kmem_free(vd, sizeof (vdev_t)); 641 } 642 643 /* 644 * Transfer top-level vdev state from svd to tvd. 645 */ 646 static void 647 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 648 { 649 spa_t *spa = svd->vdev_spa; 650 metaslab_t *msp; 651 vdev_t *vd; 652 int t; 653 654 ASSERT(tvd == tvd->vdev_top); 655 656 tvd->vdev_ms_array = svd->vdev_ms_array; 657 tvd->vdev_ms_shift = svd->vdev_ms_shift; 658 tvd->vdev_ms_count = svd->vdev_ms_count; 659 660 svd->vdev_ms_array = 0; 661 svd->vdev_ms_shift = 0; 662 svd->vdev_ms_count = 0; 663 664 tvd->vdev_mg = svd->vdev_mg; 665 tvd->vdev_ms = svd->vdev_ms; 666 667 svd->vdev_mg = NULL; 668 svd->vdev_ms = NULL; 669 670 if (tvd->vdev_mg != NULL) 671 tvd->vdev_mg->mg_vd = tvd; 672 673 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 674 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 675 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 676 677 svd->vdev_stat.vs_alloc = 0; 678 svd->vdev_stat.vs_space = 0; 679 svd->vdev_stat.vs_dspace = 0; 680 681 for (t = 0; t < TXG_SIZE; t++) { 682 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 683 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 684 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 685 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 686 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 687 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 688 } 689 690 if (list_link_active(&svd->vdev_config_dirty_node)) { 691 vdev_config_clean(svd); 692 vdev_config_dirty(tvd); 693 } 694 695 if (list_link_active(&svd->vdev_state_dirty_node)) { 696 vdev_state_clean(svd); 697 vdev_state_dirty(tvd); 698 } 699 700 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 701 svd->vdev_deflate_ratio = 0; 702 703 tvd->vdev_islog = svd->vdev_islog; 704 svd->vdev_islog = 0; 705 } 706 707 static void 708 vdev_top_update(vdev_t *tvd, vdev_t *vd) 709 { 710 if (vd == NULL) 711 return; 712 713 vd->vdev_top = tvd; 714 715 for (int c = 0; c < vd->vdev_children; c++) 716 vdev_top_update(tvd, vd->vdev_child[c]); 717 } 718 719 /* 720 * Add a mirror/replacing vdev above an existing vdev. 721 */ 722 vdev_t * 723 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 724 { 725 spa_t *spa = cvd->vdev_spa; 726 vdev_t *pvd = cvd->vdev_parent; 727 vdev_t *mvd; 728 729 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 730 731 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 732 733 mvd->vdev_asize = cvd->vdev_asize; 734 mvd->vdev_min_asize = cvd->vdev_min_asize; 735 mvd->vdev_ashift = cvd->vdev_ashift; 736 mvd->vdev_state = cvd->vdev_state; 737 mvd->vdev_crtxg = cvd->vdev_crtxg; 738 739 vdev_remove_child(pvd, cvd); 740 vdev_add_child(pvd, mvd); 741 cvd->vdev_id = mvd->vdev_children; 742 vdev_add_child(mvd, cvd); 743 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 744 745 if (mvd == mvd->vdev_top) 746 vdev_top_transfer(cvd, mvd); 747 748 return (mvd); 749 } 750 751 /* 752 * Remove a 1-way mirror/replacing vdev from the tree. 753 */ 754 void 755 vdev_remove_parent(vdev_t *cvd) 756 { 757 vdev_t *mvd = cvd->vdev_parent; 758 vdev_t *pvd = mvd->vdev_parent; 759 760 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 761 762 ASSERT(mvd->vdev_children == 1); 763 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 764 mvd->vdev_ops == &vdev_replacing_ops || 765 mvd->vdev_ops == &vdev_spare_ops); 766 cvd->vdev_ashift = mvd->vdev_ashift; 767 768 vdev_remove_child(mvd, cvd); 769 vdev_remove_child(pvd, mvd); 770 771 /* 772 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 773 * Otherwise, we could have detached an offline device, and when we 774 * go to import the pool we'll think we have two top-level vdevs, 775 * instead of a different version of the same top-level vdev. 776 */ 777 if (mvd->vdev_top == mvd) { 778 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 779 cvd->vdev_orig_guid = cvd->vdev_guid; 780 cvd->vdev_guid += guid_delta; 781 cvd->vdev_guid_sum += guid_delta; 782 } 783 cvd->vdev_id = mvd->vdev_id; 784 vdev_add_child(pvd, cvd); 785 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 786 787 if (cvd == cvd->vdev_top) 788 vdev_top_transfer(mvd, cvd); 789 790 ASSERT(mvd->vdev_children == 0); 791 vdev_free(mvd); 792 } 793 794 int 795 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 796 { 797 spa_t *spa = vd->vdev_spa; 798 objset_t *mos = spa->spa_meta_objset; 799 uint64_t m; 800 uint64_t oldc = vd->vdev_ms_count; 801 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 802 metaslab_t **mspp; 803 int error; 804 805 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 806 807 /* 808 * This vdev is not being allocated from yet or is a hole. 809 */ 810 if (vd->vdev_ms_shift == 0) 811 return (0); 812 813 ASSERT(!vd->vdev_ishole); 814 815 /* 816 * Compute the raidz-deflation ratio. Note, we hard-code 817 * in 128k (1 << 17) because it is the current "typical" blocksize. 818 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 819 * or we will inconsistently account for existing bp's. 820 */ 821 vd->vdev_deflate_ratio = (1 << 17) / 822 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 823 824 ASSERT(oldc <= newc); 825 826 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 827 828 if (oldc != 0) { 829 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 830 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 831 } 832 833 vd->vdev_ms = mspp; 834 vd->vdev_ms_count = newc; 835 836 for (m = oldc; m < newc; m++) { 837 space_map_obj_t smo = { 0, 0, 0 }; 838 if (txg == 0) { 839 uint64_t object = 0; 840 error = dmu_read(mos, vd->vdev_ms_array, 841 m * sizeof (uint64_t), sizeof (uint64_t), &object, 842 DMU_READ_PREFETCH); 843 if (error) 844 return (error); 845 if (object != 0) { 846 dmu_buf_t *db; 847 error = dmu_bonus_hold(mos, object, FTAG, &db); 848 if (error) 849 return (error); 850 ASSERT3U(db->db_size, >=, sizeof (smo)); 851 bcopy(db->db_data, &smo, sizeof (smo)); 852 ASSERT3U(smo.smo_object, ==, object); 853 dmu_buf_rele(db, FTAG); 854 } 855 } 856 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 857 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 858 } 859 860 if (txg == 0) 861 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 862 863 /* 864 * If the vdev is being removed we don't activate 865 * the metaslabs since we want to ensure that no new 866 * allocations are performed on this device. 867 */ 868 if (oldc == 0 && !vd->vdev_removing) 869 metaslab_group_activate(vd->vdev_mg); 870 871 if (txg == 0) 872 spa_config_exit(spa, SCL_ALLOC, FTAG); 873 874 return (0); 875 } 876 877 void 878 vdev_metaslab_fini(vdev_t *vd) 879 { 880 uint64_t m; 881 uint64_t count = vd->vdev_ms_count; 882 883 if (vd->vdev_ms != NULL) { 884 metaslab_group_passivate(vd->vdev_mg); 885 for (m = 0; m < count; m++) 886 if (vd->vdev_ms[m] != NULL) 887 metaslab_fini(vd->vdev_ms[m]); 888 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 889 vd->vdev_ms = NULL; 890 } 891 } 892 893 typedef struct vdev_probe_stats { 894 boolean_t vps_readable; 895 boolean_t vps_writeable; 896 int vps_flags; 897 } vdev_probe_stats_t; 898 899 static void 900 vdev_probe_done(zio_t *zio) 901 { 902 spa_t *spa = zio->io_spa; 903 vdev_t *vd = zio->io_vd; 904 vdev_probe_stats_t *vps = zio->io_private; 905 906 ASSERT(vd->vdev_probe_zio != NULL); 907 908 if (zio->io_type == ZIO_TYPE_READ) { 909 if (zio->io_error == 0) 910 vps->vps_readable = 1; 911 if (zio->io_error == 0 && spa_writeable(spa)) { 912 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 913 zio->io_offset, zio->io_size, zio->io_data, 914 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 915 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 916 } else { 917 zio_buf_free(zio->io_data, zio->io_size); 918 } 919 } else if (zio->io_type == ZIO_TYPE_WRITE) { 920 if (zio->io_error == 0) 921 vps->vps_writeable = 1; 922 zio_buf_free(zio->io_data, zio->io_size); 923 } else if (zio->io_type == ZIO_TYPE_NULL) { 924 zio_t *pio; 925 926 vd->vdev_cant_read |= !vps->vps_readable; 927 vd->vdev_cant_write |= !vps->vps_writeable; 928 929 if (vdev_readable(vd) && 930 (vdev_writeable(vd) || !spa_writeable(spa))) { 931 zio->io_error = 0; 932 } else { 933 ASSERT(zio->io_error != 0); 934 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 935 spa, vd, NULL, 0, 0); 936 zio->io_error = ENXIO; 937 } 938 939 mutex_enter(&vd->vdev_probe_lock); 940 ASSERT(vd->vdev_probe_zio == zio); 941 vd->vdev_probe_zio = NULL; 942 mutex_exit(&vd->vdev_probe_lock); 943 944 while ((pio = zio_walk_parents(zio)) != NULL) 945 if (!vdev_accessible(vd, pio)) 946 pio->io_error = ENXIO; 947 948 kmem_free(vps, sizeof (*vps)); 949 } 950 } 951 952 /* 953 * Determine whether this device is accessible by reading and writing 954 * to several known locations: the pad regions of each vdev label 955 * but the first (which we leave alone in case it contains a VTOC). 956 */ 957 zio_t * 958 vdev_probe(vdev_t *vd, zio_t *zio) 959 { 960 spa_t *spa = vd->vdev_spa; 961 vdev_probe_stats_t *vps = NULL; 962 zio_t *pio; 963 964 ASSERT(vd->vdev_ops->vdev_op_leaf); 965 966 /* 967 * Don't probe the probe. 968 */ 969 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 970 return (NULL); 971 972 /* 973 * To prevent 'probe storms' when a device fails, we create 974 * just one probe i/o at a time. All zios that want to probe 975 * this vdev will become parents of the probe io. 976 */ 977 mutex_enter(&vd->vdev_probe_lock); 978 979 if ((pio = vd->vdev_probe_zio) == NULL) { 980 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 981 982 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 983 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 984 ZIO_FLAG_TRYHARD; 985 986 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 987 /* 988 * vdev_cant_read and vdev_cant_write can only 989 * transition from TRUE to FALSE when we have the 990 * SCL_ZIO lock as writer; otherwise they can only 991 * transition from FALSE to TRUE. This ensures that 992 * any zio looking at these values can assume that 993 * failures persist for the life of the I/O. That's 994 * important because when a device has intermittent 995 * connectivity problems, we want to ensure that 996 * they're ascribed to the device (ENXIO) and not 997 * the zio (EIO). 998 * 999 * Since we hold SCL_ZIO as writer here, clear both 1000 * values so the probe can reevaluate from first 1001 * principles. 1002 */ 1003 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1004 vd->vdev_cant_read = B_FALSE; 1005 vd->vdev_cant_write = B_FALSE; 1006 } 1007 1008 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1009 vdev_probe_done, vps, 1010 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1011 1012 /* 1013 * We can't change the vdev state in this context, so we 1014 * kick off an async task to do it on our behalf. 1015 */ 1016 if (zio != NULL) { 1017 vd->vdev_probe_wanted = B_TRUE; 1018 spa_async_request(spa, SPA_ASYNC_PROBE); 1019 } 1020 } 1021 1022 if (zio != NULL) 1023 zio_add_child(zio, pio); 1024 1025 mutex_exit(&vd->vdev_probe_lock); 1026 1027 if (vps == NULL) { 1028 ASSERT(zio != NULL); 1029 return (NULL); 1030 } 1031 1032 for (int l = 1; l < VDEV_LABELS; l++) { 1033 zio_nowait(zio_read_phys(pio, vd, 1034 vdev_label_offset(vd->vdev_psize, l, 1035 offsetof(vdev_label_t, vl_pad2)), 1036 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1037 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1038 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1039 } 1040 1041 if (zio == NULL) 1042 return (pio); 1043 1044 zio_nowait(pio); 1045 return (NULL); 1046 } 1047 1048 static void 1049 vdev_open_child(void *arg) 1050 { 1051 vdev_t *vd = arg; 1052 1053 vd->vdev_open_thread = curthread; 1054 vd->vdev_open_error = vdev_open(vd); 1055 vd->vdev_open_thread = NULL; 1056 } 1057 1058 boolean_t 1059 vdev_uses_zvols(vdev_t *vd) 1060 { 1061 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1062 strlen(ZVOL_DIR)) == 0) 1063 return (B_TRUE); 1064 for (int c = 0; c < vd->vdev_children; c++) 1065 if (vdev_uses_zvols(vd->vdev_child[c])) 1066 return (B_TRUE); 1067 return (B_FALSE); 1068 } 1069 1070 void 1071 vdev_open_children(vdev_t *vd) 1072 { 1073 taskq_t *tq; 1074 int children = vd->vdev_children; 1075 1076 /* 1077 * in order to handle pools on top of zvols, do the opens 1078 * in a single thread so that the same thread holds the 1079 * spa_namespace_lock 1080 */ 1081 if (vdev_uses_zvols(vd)) { 1082 for (int c = 0; c < children; c++) 1083 vd->vdev_child[c]->vdev_open_error = 1084 vdev_open(vd->vdev_child[c]); 1085 return; 1086 } 1087 tq = taskq_create("vdev_open", children, minclsyspri, 1088 children, children, TASKQ_PREPOPULATE); 1089 1090 for (int c = 0; c < children; c++) 1091 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1092 TQ_SLEEP) != NULL); 1093 1094 taskq_destroy(tq); 1095 } 1096 1097 /* 1098 * Prepare a virtual device for access. 1099 */ 1100 int 1101 vdev_open(vdev_t *vd) 1102 { 1103 spa_t *spa = vd->vdev_spa; 1104 int error; 1105 uint64_t osize = 0; 1106 uint64_t asize, psize; 1107 uint64_t ashift = 0; 1108 1109 ASSERT(vd->vdev_open_thread == curthread || 1110 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1111 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1112 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1113 vd->vdev_state == VDEV_STATE_OFFLINE); 1114 1115 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1116 vd->vdev_cant_read = B_FALSE; 1117 vd->vdev_cant_write = B_FALSE; 1118 vd->vdev_min_asize = vdev_get_min_asize(vd); 1119 1120 /* 1121 * If this vdev is not removed, check its fault status. If it's 1122 * faulted, bail out of the open. 1123 */ 1124 if (!vd->vdev_removed && vd->vdev_faulted) { 1125 ASSERT(vd->vdev_children == 0); 1126 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1127 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1128 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1129 vd->vdev_label_aux); 1130 return (ENXIO); 1131 } else if (vd->vdev_offline) { 1132 ASSERT(vd->vdev_children == 0); 1133 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1134 return (ENXIO); 1135 } 1136 1137 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 1138 1139 /* 1140 * Reset the vdev_reopening flag so that we actually close 1141 * the vdev on error. 1142 */ 1143 vd->vdev_reopening = B_FALSE; 1144 if (zio_injection_enabled && error == 0) 1145 error = zio_handle_device_injection(vd, NULL, ENXIO); 1146 1147 if (error) { 1148 if (vd->vdev_removed && 1149 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1150 vd->vdev_removed = B_FALSE; 1151 1152 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1153 vd->vdev_stat.vs_aux); 1154 return (error); 1155 } 1156 1157 vd->vdev_removed = B_FALSE; 1158 1159 /* 1160 * Recheck the faulted flag now that we have confirmed that 1161 * the vdev is accessible. If we're faulted, bail. 1162 */ 1163 if (vd->vdev_faulted) { 1164 ASSERT(vd->vdev_children == 0); 1165 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1166 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1167 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1168 vd->vdev_label_aux); 1169 return (ENXIO); 1170 } 1171 1172 if (vd->vdev_degraded) { 1173 ASSERT(vd->vdev_children == 0); 1174 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1175 VDEV_AUX_ERR_EXCEEDED); 1176 } else { 1177 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1178 } 1179 1180 /* 1181 * For hole or missing vdevs we just return success. 1182 */ 1183 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1184 return (0); 1185 1186 for (int c = 0; c < vd->vdev_children; c++) { 1187 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1188 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1189 VDEV_AUX_NONE); 1190 break; 1191 } 1192 } 1193 1194 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1195 1196 if (vd->vdev_children == 0) { 1197 if (osize < SPA_MINDEVSIZE) { 1198 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1199 VDEV_AUX_TOO_SMALL); 1200 return (EOVERFLOW); 1201 } 1202 psize = osize; 1203 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1204 } else { 1205 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1206 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1207 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1208 VDEV_AUX_TOO_SMALL); 1209 return (EOVERFLOW); 1210 } 1211 psize = 0; 1212 asize = osize; 1213 } 1214 1215 vd->vdev_psize = psize; 1216 1217 /* 1218 * Make sure the allocatable size hasn't shrunk. 1219 */ 1220 if (asize < vd->vdev_min_asize) { 1221 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1222 VDEV_AUX_BAD_LABEL); 1223 return (EINVAL); 1224 } 1225 1226 if (vd->vdev_asize == 0) { 1227 /* 1228 * This is the first-ever open, so use the computed values. 1229 * For testing purposes, a higher ashift can be requested. 1230 */ 1231 vd->vdev_asize = asize; 1232 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1233 } else { 1234 /* 1235 * Make sure the alignment requirement hasn't increased. 1236 */ 1237 if (ashift > vd->vdev_top->vdev_ashift) { 1238 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1239 VDEV_AUX_BAD_LABEL); 1240 return (EINVAL); 1241 } 1242 } 1243 1244 /* 1245 * If all children are healthy and the asize has increased, 1246 * then we've experienced dynamic LUN growth. If automatic 1247 * expansion is enabled then use the additional space. 1248 */ 1249 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1250 (vd->vdev_expanding || spa->spa_autoexpand)) 1251 vd->vdev_asize = asize; 1252 1253 vdev_set_min_asize(vd); 1254 1255 /* 1256 * Ensure we can issue some IO before declaring the 1257 * vdev open for business. 1258 */ 1259 if (vd->vdev_ops->vdev_op_leaf && 1260 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1261 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1262 VDEV_AUX_ERR_EXCEEDED); 1263 return (error); 1264 } 1265 1266 /* 1267 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1268 * resilver. But don't do this if we are doing a reopen for a scrub, 1269 * since this would just restart the scrub we are already doing. 1270 */ 1271 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1272 vdev_resilver_needed(vd, NULL, NULL)) 1273 spa_async_request(spa, SPA_ASYNC_RESILVER); 1274 1275 return (0); 1276 } 1277 1278 /* 1279 * Called once the vdevs are all opened, this routine validates the label 1280 * contents. This needs to be done before vdev_load() so that we don't 1281 * inadvertently do repair I/Os to the wrong device. 1282 * 1283 * This function will only return failure if one of the vdevs indicates that it 1284 * has since been destroyed or exported. This is only possible if 1285 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1286 * will be updated but the function will return 0. 1287 */ 1288 int 1289 vdev_validate(vdev_t *vd) 1290 { 1291 spa_t *spa = vd->vdev_spa; 1292 nvlist_t *label; 1293 uint64_t guid = 0, top_guid; 1294 uint64_t state; 1295 1296 for (int c = 0; c < vd->vdev_children; c++) 1297 if (vdev_validate(vd->vdev_child[c]) != 0) 1298 return (EBADF); 1299 1300 /* 1301 * If the device has already failed, or was marked offline, don't do 1302 * any further validation. Otherwise, label I/O will fail and we will 1303 * overwrite the previous state. 1304 */ 1305 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1306 uint64_t aux_guid = 0; 1307 nvlist_t *nvl; 1308 1309 if ((label = vdev_label_read_config(vd)) == NULL) { 1310 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1311 VDEV_AUX_BAD_LABEL); 1312 return (0); 1313 } 1314 1315 /* 1316 * Determine if this vdev has been split off into another 1317 * pool. If so, then refuse to open it. 1318 */ 1319 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1320 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1321 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1322 VDEV_AUX_SPLIT_POOL); 1323 nvlist_free(label); 1324 return (0); 1325 } 1326 1327 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1328 &guid) != 0 || guid != spa_guid(spa)) { 1329 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1330 VDEV_AUX_CORRUPT_DATA); 1331 nvlist_free(label); 1332 return (0); 1333 } 1334 1335 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1336 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1337 &aux_guid) != 0) 1338 aux_guid = 0; 1339 1340 /* 1341 * If this vdev just became a top-level vdev because its 1342 * sibling was detached, it will have adopted the parent's 1343 * vdev guid -- but the label may or may not be on disk yet. 1344 * Fortunately, either version of the label will have the 1345 * same top guid, so if we're a top-level vdev, we can 1346 * safely compare to that instead. 1347 * 1348 * If we split this vdev off instead, then we also check the 1349 * original pool's guid. We don't want to consider the vdev 1350 * corrupt if it is partway through a split operation. 1351 */ 1352 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1353 &guid) != 0 || 1354 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1355 &top_guid) != 0 || 1356 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1357 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1358 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1359 VDEV_AUX_CORRUPT_DATA); 1360 nvlist_free(label); 1361 return (0); 1362 } 1363 1364 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1365 &state) != 0) { 1366 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1367 VDEV_AUX_CORRUPT_DATA); 1368 nvlist_free(label); 1369 return (0); 1370 } 1371 1372 nvlist_free(label); 1373 1374 /* 1375 * If this is a verbatim import, no need to check the 1376 * state of the pool. 1377 */ 1378 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1379 spa_load_state(spa) == SPA_LOAD_OPEN && 1380 state != POOL_STATE_ACTIVE) 1381 return (EBADF); 1382 1383 /* 1384 * If we were able to open and validate a vdev that was 1385 * previously marked permanently unavailable, clear that state 1386 * now. 1387 */ 1388 if (vd->vdev_not_present) 1389 vd->vdev_not_present = 0; 1390 } 1391 1392 return (0); 1393 } 1394 1395 /* 1396 * Close a virtual device. 1397 */ 1398 void 1399 vdev_close(vdev_t *vd) 1400 { 1401 spa_t *spa = vd->vdev_spa; 1402 vdev_t *pvd = vd->vdev_parent; 1403 1404 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1405 1406 /* 1407 * If our parent is reopening, then we are as well, unless we are 1408 * going offline. 1409 */ 1410 if (pvd != NULL && pvd->vdev_reopening) 1411 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1412 1413 vd->vdev_ops->vdev_op_close(vd); 1414 1415 vdev_cache_purge(vd); 1416 1417 /* 1418 * We record the previous state before we close it, so that if we are 1419 * doing a reopen(), we don't generate FMA ereports if we notice that 1420 * it's still faulted. 1421 */ 1422 vd->vdev_prevstate = vd->vdev_state; 1423 1424 if (vd->vdev_offline) 1425 vd->vdev_state = VDEV_STATE_OFFLINE; 1426 else 1427 vd->vdev_state = VDEV_STATE_CLOSED; 1428 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1429 } 1430 1431 void 1432 vdev_hold(vdev_t *vd) 1433 { 1434 spa_t *spa = vd->vdev_spa; 1435 1436 ASSERT(spa_is_root(spa)); 1437 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1438 return; 1439 1440 for (int c = 0; c < vd->vdev_children; c++) 1441 vdev_hold(vd->vdev_child[c]); 1442 1443 if (vd->vdev_ops->vdev_op_leaf) 1444 vd->vdev_ops->vdev_op_hold(vd); 1445 } 1446 1447 void 1448 vdev_rele(vdev_t *vd) 1449 { 1450 spa_t *spa = vd->vdev_spa; 1451 1452 ASSERT(spa_is_root(spa)); 1453 for (int c = 0; c < vd->vdev_children; c++) 1454 vdev_rele(vd->vdev_child[c]); 1455 1456 if (vd->vdev_ops->vdev_op_leaf) 1457 vd->vdev_ops->vdev_op_rele(vd); 1458 } 1459 1460 /* 1461 * Reopen all interior vdevs and any unopened leaves. We don't actually 1462 * reopen leaf vdevs which had previously been opened as they might deadlock 1463 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1464 * If the leaf has never been opened then open it, as usual. 1465 */ 1466 void 1467 vdev_reopen(vdev_t *vd) 1468 { 1469 spa_t *spa = vd->vdev_spa; 1470 1471 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1472 1473 /* set the reopening flag unless we're taking the vdev offline */ 1474 vd->vdev_reopening = !vd->vdev_offline; 1475 vdev_close(vd); 1476 (void) vdev_open(vd); 1477 1478 /* 1479 * Call vdev_validate() here to make sure we have the same device. 1480 * Otherwise, a device with an invalid label could be successfully 1481 * opened in response to vdev_reopen(). 1482 */ 1483 if (vd->vdev_aux) { 1484 (void) vdev_validate_aux(vd); 1485 if (vdev_readable(vd) && vdev_writeable(vd) && 1486 vd->vdev_aux == &spa->spa_l2cache && 1487 !l2arc_vdev_present(vd)) 1488 l2arc_add_vdev(spa, vd); 1489 } else { 1490 (void) vdev_validate(vd); 1491 } 1492 1493 /* 1494 * Reassess parent vdev's health. 1495 */ 1496 vdev_propagate_state(vd); 1497 } 1498 1499 int 1500 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1501 { 1502 int error; 1503 1504 /* 1505 * Normally, partial opens (e.g. of a mirror) are allowed. 1506 * For a create, however, we want to fail the request if 1507 * there are any components we can't open. 1508 */ 1509 error = vdev_open(vd); 1510 1511 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1512 vdev_close(vd); 1513 return (error ? error : ENXIO); 1514 } 1515 1516 /* 1517 * Recursively initialize all labels. 1518 */ 1519 if ((error = vdev_label_init(vd, txg, isreplacing ? 1520 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1521 vdev_close(vd); 1522 return (error); 1523 } 1524 1525 return (0); 1526 } 1527 1528 void 1529 vdev_metaslab_set_size(vdev_t *vd) 1530 { 1531 /* 1532 * Aim for roughly 200 metaslabs per vdev. 1533 */ 1534 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1535 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1536 } 1537 1538 void 1539 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1540 { 1541 ASSERT(vd == vd->vdev_top); 1542 ASSERT(!vd->vdev_ishole); 1543 ASSERT(ISP2(flags)); 1544 1545 if (flags & VDD_METASLAB) 1546 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1547 1548 if (flags & VDD_DTL) 1549 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1550 1551 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1552 } 1553 1554 /* 1555 * DTLs. 1556 * 1557 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1558 * the vdev has less than perfect replication. There are four kinds of DTL: 1559 * 1560 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1561 * 1562 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1563 * 1564 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1565 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1566 * txgs that was scrubbed. 1567 * 1568 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1569 * persistent errors or just some device being offline. 1570 * Unlike the other three, the DTL_OUTAGE map is not generally 1571 * maintained; it's only computed when needed, typically to 1572 * determine whether a device can be detached. 1573 * 1574 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1575 * either has the data or it doesn't. 1576 * 1577 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1578 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1579 * if any child is less than fully replicated, then so is its parent. 1580 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1581 * comprising only those txgs which appear in 'maxfaults' or more children; 1582 * those are the txgs we don't have enough replication to read. For example, 1583 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1584 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1585 * two child DTL_MISSING maps. 1586 * 1587 * It should be clear from the above that to compute the DTLs and outage maps 1588 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1589 * Therefore, that is all we keep on disk. When loading the pool, or after 1590 * a configuration change, we generate all other DTLs from first principles. 1591 */ 1592 void 1593 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1594 { 1595 space_map_t *sm = &vd->vdev_dtl[t]; 1596 1597 ASSERT(t < DTL_TYPES); 1598 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1599 1600 mutex_enter(sm->sm_lock); 1601 if (!space_map_contains(sm, txg, size)) 1602 space_map_add(sm, txg, size); 1603 mutex_exit(sm->sm_lock); 1604 } 1605 1606 boolean_t 1607 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1608 { 1609 space_map_t *sm = &vd->vdev_dtl[t]; 1610 boolean_t dirty = B_FALSE; 1611 1612 ASSERT(t < DTL_TYPES); 1613 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1614 1615 mutex_enter(sm->sm_lock); 1616 if (sm->sm_space != 0) 1617 dirty = space_map_contains(sm, txg, size); 1618 mutex_exit(sm->sm_lock); 1619 1620 return (dirty); 1621 } 1622 1623 boolean_t 1624 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1625 { 1626 space_map_t *sm = &vd->vdev_dtl[t]; 1627 boolean_t empty; 1628 1629 mutex_enter(sm->sm_lock); 1630 empty = (sm->sm_space == 0); 1631 mutex_exit(sm->sm_lock); 1632 1633 return (empty); 1634 } 1635 1636 /* 1637 * Reassess DTLs after a config change or scrub completion. 1638 */ 1639 void 1640 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1641 { 1642 spa_t *spa = vd->vdev_spa; 1643 avl_tree_t reftree; 1644 int minref; 1645 1646 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1647 1648 for (int c = 0; c < vd->vdev_children; c++) 1649 vdev_dtl_reassess(vd->vdev_child[c], txg, 1650 scrub_txg, scrub_done); 1651 1652 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1653 return; 1654 1655 if (vd->vdev_ops->vdev_op_leaf) { 1656 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1657 1658 mutex_enter(&vd->vdev_dtl_lock); 1659 if (scrub_txg != 0 && 1660 (spa->spa_scrub_started || 1661 (scn && scn->scn_phys.scn_errors == 0))) { 1662 /* 1663 * We completed a scrub up to scrub_txg. If we 1664 * did it without rebooting, then the scrub dtl 1665 * will be valid, so excise the old region and 1666 * fold in the scrub dtl. Otherwise, leave the 1667 * dtl as-is if there was an error. 1668 * 1669 * There's little trick here: to excise the beginning 1670 * of the DTL_MISSING map, we put it into a reference 1671 * tree and then add a segment with refcnt -1 that 1672 * covers the range [0, scrub_txg). This means 1673 * that each txg in that range has refcnt -1 or 0. 1674 * We then add DTL_SCRUB with a refcnt of 2, so that 1675 * entries in the range [0, scrub_txg) will have a 1676 * positive refcnt -- either 1 or 2. We then convert 1677 * the reference tree into the new DTL_MISSING map. 1678 */ 1679 space_map_ref_create(&reftree); 1680 space_map_ref_add_map(&reftree, 1681 &vd->vdev_dtl[DTL_MISSING], 1); 1682 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); 1683 space_map_ref_add_map(&reftree, 1684 &vd->vdev_dtl[DTL_SCRUB], 2); 1685 space_map_ref_generate_map(&reftree, 1686 &vd->vdev_dtl[DTL_MISSING], 1); 1687 space_map_ref_destroy(&reftree); 1688 } 1689 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1690 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1691 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); 1692 if (scrub_done) 1693 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1694 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1695 if (!vdev_readable(vd)) 1696 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1697 else 1698 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1699 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); 1700 mutex_exit(&vd->vdev_dtl_lock); 1701 1702 if (txg != 0) 1703 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1704 return; 1705 } 1706 1707 mutex_enter(&vd->vdev_dtl_lock); 1708 for (int t = 0; t < DTL_TYPES; t++) { 1709 /* account for child's outage in parent's missing map */ 1710 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1711 if (t == DTL_SCRUB) 1712 continue; /* leaf vdevs only */ 1713 if (t == DTL_PARTIAL) 1714 minref = 1; /* i.e. non-zero */ 1715 else if (vd->vdev_nparity != 0) 1716 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1717 else 1718 minref = vd->vdev_children; /* any kind of mirror */ 1719 space_map_ref_create(&reftree); 1720 for (int c = 0; c < vd->vdev_children; c++) { 1721 vdev_t *cvd = vd->vdev_child[c]; 1722 mutex_enter(&cvd->vdev_dtl_lock); 1723 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1); 1724 mutex_exit(&cvd->vdev_dtl_lock); 1725 } 1726 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); 1727 space_map_ref_destroy(&reftree); 1728 } 1729 mutex_exit(&vd->vdev_dtl_lock); 1730 } 1731 1732 static int 1733 vdev_dtl_load(vdev_t *vd) 1734 { 1735 spa_t *spa = vd->vdev_spa; 1736 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1737 objset_t *mos = spa->spa_meta_objset; 1738 dmu_buf_t *db; 1739 int error; 1740 1741 ASSERT(vd->vdev_children == 0); 1742 1743 if (smo->smo_object == 0) 1744 return (0); 1745 1746 ASSERT(!vd->vdev_ishole); 1747 1748 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1749 return (error); 1750 1751 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1752 bcopy(db->db_data, smo, sizeof (*smo)); 1753 dmu_buf_rele(db, FTAG); 1754 1755 mutex_enter(&vd->vdev_dtl_lock); 1756 error = space_map_load(&vd->vdev_dtl[DTL_MISSING], 1757 NULL, SM_ALLOC, smo, mos); 1758 mutex_exit(&vd->vdev_dtl_lock); 1759 1760 return (error); 1761 } 1762 1763 void 1764 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1765 { 1766 spa_t *spa = vd->vdev_spa; 1767 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1768 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; 1769 objset_t *mos = spa->spa_meta_objset; 1770 space_map_t smsync; 1771 kmutex_t smlock; 1772 dmu_buf_t *db; 1773 dmu_tx_t *tx; 1774 1775 ASSERT(!vd->vdev_ishole); 1776 1777 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1778 1779 if (vd->vdev_detached) { 1780 if (smo->smo_object != 0) { 1781 int err = dmu_object_free(mos, smo->smo_object, tx); 1782 ASSERT3U(err, ==, 0); 1783 smo->smo_object = 0; 1784 } 1785 dmu_tx_commit(tx); 1786 return; 1787 } 1788 1789 if (smo->smo_object == 0) { 1790 ASSERT(smo->smo_objsize == 0); 1791 ASSERT(smo->smo_alloc == 0); 1792 smo->smo_object = dmu_object_alloc(mos, 1793 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1794 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1795 ASSERT(smo->smo_object != 0); 1796 vdev_config_dirty(vd->vdev_top); 1797 } 1798 1799 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1800 1801 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1802 &smlock); 1803 1804 mutex_enter(&smlock); 1805 1806 mutex_enter(&vd->vdev_dtl_lock); 1807 space_map_walk(sm, space_map_add, &smsync); 1808 mutex_exit(&vd->vdev_dtl_lock); 1809 1810 space_map_truncate(smo, mos, tx); 1811 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1812 1813 space_map_destroy(&smsync); 1814 1815 mutex_exit(&smlock); 1816 mutex_destroy(&smlock); 1817 1818 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1819 dmu_buf_will_dirty(db, tx); 1820 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1821 bcopy(smo, db->db_data, sizeof (*smo)); 1822 dmu_buf_rele(db, FTAG); 1823 1824 dmu_tx_commit(tx); 1825 } 1826 1827 /* 1828 * Determine whether the specified vdev can be offlined/detached/removed 1829 * without losing data. 1830 */ 1831 boolean_t 1832 vdev_dtl_required(vdev_t *vd) 1833 { 1834 spa_t *spa = vd->vdev_spa; 1835 vdev_t *tvd = vd->vdev_top; 1836 uint8_t cant_read = vd->vdev_cant_read; 1837 boolean_t required; 1838 1839 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1840 1841 if (vd == spa->spa_root_vdev || vd == tvd) 1842 return (B_TRUE); 1843 1844 /* 1845 * Temporarily mark the device as unreadable, and then determine 1846 * whether this results in any DTL outages in the top-level vdev. 1847 * If not, we can safely offline/detach/remove the device. 1848 */ 1849 vd->vdev_cant_read = B_TRUE; 1850 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1851 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1852 vd->vdev_cant_read = cant_read; 1853 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1854 1855 if (!required && zio_injection_enabled) 1856 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 1857 1858 return (required); 1859 } 1860 1861 /* 1862 * Determine if resilver is needed, and if so the txg range. 1863 */ 1864 boolean_t 1865 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1866 { 1867 boolean_t needed = B_FALSE; 1868 uint64_t thismin = UINT64_MAX; 1869 uint64_t thismax = 0; 1870 1871 if (vd->vdev_children == 0) { 1872 mutex_enter(&vd->vdev_dtl_lock); 1873 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && 1874 vdev_writeable(vd)) { 1875 space_seg_t *ss; 1876 1877 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); 1878 thismin = ss->ss_start - 1; 1879 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); 1880 thismax = ss->ss_end; 1881 needed = B_TRUE; 1882 } 1883 mutex_exit(&vd->vdev_dtl_lock); 1884 } else { 1885 for (int c = 0; c < vd->vdev_children; c++) { 1886 vdev_t *cvd = vd->vdev_child[c]; 1887 uint64_t cmin, cmax; 1888 1889 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1890 thismin = MIN(thismin, cmin); 1891 thismax = MAX(thismax, cmax); 1892 needed = B_TRUE; 1893 } 1894 } 1895 } 1896 1897 if (needed && minp) { 1898 *minp = thismin; 1899 *maxp = thismax; 1900 } 1901 return (needed); 1902 } 1903 1904 void 1905 vdev_load(vdev_t *vd) 1906 { 1907 /* 1908 * Recursively load all children. 1909 */ 1910 for (int c = 0; c < vd->vdev_children; c++) 1911 vdev_load(vd->vdev_child[c]); 1912 1913 /* 1914 * If this is a top-level vdev, initialize its metaslabs. 1915 */ 1916 if (vd == vd->vdev_top && !vd->vdev_ishole && 1917 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1918 vdev_metaslab_init(vd, 0) != 0)) 1919 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1920 VDEV_AUX_CORRUPT_DATA); 1921 1922 /* 1923 * If this is a leaf vdev, load its DTL. 1924 */ 1925 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1926 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1927 VDEV_AUX_CORRUPT_DATA); 1928 } 1929 1930 /* 1931 * The special vdev case is used for hot spares and l2cache devices. Its 1932 * sole purpose it to set the vdev state for the associated vdev. To do this, 1933 * we make sure that we can open the underlying device, then try to read the 1934 * label, and make sure that the label is sane and that it hasn't been 1935 * repurposed to another pool. 1936 */ 1937 int 1938 vdev_validate_aux(vdev_t *vd) 1939 { 1940 nvlist_t *label; 1941 uint64_t guid, version; 1942 uint64_t state; 1943 1944 if (!vdev_readable(vd)) 1945 return (0); 1946 1947 if ((label = vdev_label_read_config(vd)) == NULL) { 1948 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1949 VDEV_AUX_CORRUPT_DATA); 1950 return (-1); 1951 } 1952 1953 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1954 version > SPA_VERSION || 1955 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1956 guid != vd->vdev_guid || 1957 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1958 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1959 VDEV_AUX_CORRUPT_DATA); 1960 nvlist_free(label); 1961 return (-1); 1962 } 1963 1964 /* 1965 * We don't actually check the pool state here. If it's in fact in 1966 * use by another pool, we update this fact on the fly when requested. 1967 */ 1968 nvlist_free(label); 1969 return (0); 1970 } 1971 1972 void 1973 vdev_remove(vdev_t *vd, uint64_t txg) 1974 { 1975 spa_t *spa = vd->vdev_spa; 1976 objset_t *mos = spa->spa_meta_objset; 1977 dmu_tx_t *tx; 1978 1979 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 1980 1981 if (vd->vdev_dtl_smo.smo_object) { 1982 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0); 1983 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx); 1984 vd->vdev_dtl_smo.smo_object = 0; 1985 } 1986 1987 if (vd->vdev_ms != NULL) { 1988 for (int m = 0; m < vd->vdev_ms_count; m++) { 1989 metaslab_t *msp = vd->vdev_ms[m]; 1990 1991 if (msp == NULL || msp->ms_smo.smo_object == 0) 1992 continue; 1993 1994 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0); 1995 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx); 1996 msp->ms_smo.smo_object = 0; 1997 } 1998 } 1999 2000 if (vd->vdev_ms_array) { 2001 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2002 vd->vdev_ms_array = 0; 2003 vd->vdev_ms_shift = 0; 2004 } 2005 dmu_tx_commit(tx); 2006 } 2007 2008 void 2009 vdev_sync_done(vdev_t *vd, uint64_t txg) 2010 { 2011 metaslab_t *msp; 2012 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2013 2014 ASSERT(!vd->vdev_ishole); 2015 2016 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2017 metaslab_sync_done(msp, txg); 2018 2019 if (reassess) 2020 metaslab_sync_reassess(vd->vdev_mg); 2021 } 2022 2023 void 2024 vdev_sync(vdev_t *vd, uint64_t txg) 2025 { 2026 spa_t *spa = vd->vdev_spa; 2027 vdev_t *lvd; 2028 metaslab_t *msp; 2029 dmu_tx_t *tx; 2030 2031 ASSERT(!vd->vdev_ishole); 2032 2033 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2034 ASSERT(vd == vd->vdev_top); 2035 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2036 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2037 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2038 ASSERT(vd->vdev_ms_array != 0); 2039 vdev_config_dirty(vd); 2040 dmu_tx_commit(tx); 2041 } 2042 2043 /* 2044 * Remove the metadata associated with this vdev once it's empty. 2045 */ 2046 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2047 vdev_remove(vd, txg); 2048 2049 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2050 metaslab_sync(msp, txg); 2051 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2052 } 2053 2054 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2055 vdev_dtl_sync(lvd, txg); 2056 2057 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2058 } 2059 2060 uint64_t 2061 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2062 { 2063 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2064 } 2065 2066 /* 2067 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2068 * not be opened, and no I/O is attempted. 2069 */ 2070 int 2071 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2072 { 2073 vdev_t *vd, *tvd; 2074 2075 spa_vdev_state_enter(spa, SCL_NONE); 2076 2077 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2078 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2079 2080 if (!vd->vdev_ops->vdev_op_leaf) 2081 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2082 2083 tvd = vd->vdev_top; 2084 2085 /* 2086 * We don't directly use the aux state here, but if we do a 2087 * vdev_reopen(), we need this value to be present to remember why we 2088 * were faulted. 2089 */ 2090 vd->vdev_label_aux = aux; 2091 2092 /* 2093 * Faulted state takes precedence over degraded. 2094 */ 2095 vd->vdev_delayed_close = B_FALSE; 2096 vd->vdev_faulted = 1ULL; 2097 vd->vdev_degraded = 0ULL; 2098 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2099 2100 /* 2101 * If this device has the only valid copy of the data, then 2102 * back off and simply mark the vdev as degraded instead. 2103 */ 2104 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2105 vd->vdev_degraded = 1ULL; 2106 vd->vdev_faulted = 0ULL; 2107 2108 /* 2109 * If we reopen the device and it's not dead, only then do we 2110 * mark it degraded. 2111 */ 2112 vdev_reopen(tvd); 2113 2114 if (vdev_readable(vd)) 2115 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2116 } 2117 2118 return (spa_vdev_state_exit(spa, vd, 0)); 2119 } 2120 2121 /* 2122 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2123 * user that something is wrong. The vdev continues to operate as normal as far 2124 * as I/O is concerned. 2125 */ 2126 int 2127 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2128 { 2129 vdev_t *vd; 2130 2131 spa_vdev_state_enter(spa, SCL_NONE); 2132 2133 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2134 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2135 2136 if (!vd->vdev_ops->vdev_op_leaf) 2137 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2138 2139 /* 2140 * If the vdev is already faulted, then don't do anything. 2141 */ 2142 if (vd->vdev_faulted || vd->vdev_degraded) 2143 return (spa_vdev_state_exit(spa, NULL, 0)); 2144 2145 vd->vdev_degraded = 1ULL; 2146 if (!vdev_is_dead(vd)) 2147 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2148 aux); 2149 2150 return (spa_vdev_state_exit(spa, vd, 0)); 2151 } 2152 2153 /* 2154 * Online the given vdev. If 'unspare' is set, it implies two things. First, 2155 * any attached spare device should be detached when the device finishes 2156 * resilvering. Second, the online should be treated like a 'test' online case, 2157 * so no FMA events are generated if the device fails to open. 2158 */ 2159 int 2160 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2161 { 2162 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2163 2164 spa_vdev_state_enter(spa, SCL_NONE); 2165 2166 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2167 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2168 2169 if (!vd->vdev_ops->vdev_op_leaf) 2170 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2171 2172 tvd = vd->vdev_top; 2173 vd->vdev_offline = B_FALSE; 2174 vd->vdev_tmpoffline = B_FALSE; 2175 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2176 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2177 2178 /* XXX - L2ARC 1.0 does not support expansion */ 2179 if (!vd->vdev_aux) { 2180 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2181 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2182 } 2183 2184 vdev_reopen(tvd); 2185 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2186 2187 if (!vd->vdev_aux) { 2188 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2189 pvd->vdev_expanding = B_FALSE; 2190 } 2191 2192 if (newstate) 2193 *newstate = vd->vdev_state; 2194 if ((flags & ZFS_ONLINE_UNSPARE) && 2195 !vdev_is_dead(vd) && vd->vdev_parent && 2196 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2197 vd->vdev_parent->vdev_child[0] == vd) 2198 vd->vdev_unspare = B_TRUE; 2199 2200 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2201 2202 /* XXX - L2ARC 1.0 does not support expansion */ 2203 if (vd->vdev_aux) 2204 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2205 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2206 } 2207 return (spa_vdev_state_exit(spa, vd, 0)); 2208 } 2209 2210 static int 2211 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2212 { 2213 vdev_t *vd, *tvd; 2214 int error = 0; 2215 uint64_t generation; 2216 metaslab_group_t *mg; 2217 2218 top: 2219 spa_vdev_state_enter(spa, SCL_ALLOC); 2220 2221 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2222 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2223 2224 if (!vd->vdev_ops->vdev_op_leaf) 2225 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2226 2227 tvd = vd->vdev_top; 2228 mg = tvd->vdev_mg; 2229 generation = spa->spa_config_generation + 1; 2230 2231 /* 2232 * If the device isn't already offline, try to offline it. 2233 */ 2234 if (!vd->vdev_offline) { 2235 /* 2236 * If this device has the only valid copy of some data, 2237 * don't allow it to be offlined. Log devices are always 2238 * expendable. 2239 */ 2240 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2241 vdev_dtl_required(vd)) 2242 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2243 2244 /* 2245 * If the top-level is a slog and it has had allocations 2246 * then proceed. We check that the vdev's metaslab group 2247 * is not NULL since it's possible that we may have just 2248 * added this vdev but not yet initialized its metaslabs. 2249 */ 2250 if (tvd->vdev_islog && mg != NULL) { 2251 /* 2252 * Prevent any future allocations. 2253 */ 2254 metaslab_group_passivate(mg); 2255 (void) spa_vdev_state_exit(spa, vd, 0); 2256 2257 error = spa_offline_log(spa); 2258 2259 spa_vdev_state_enter(spa, SCL_ALLOC); 2260 2261 /* 2262 * Check to see if the config has changed. 2263 */ 2264 if (error || generation != spa->spa_config_generation) { 2265 metaslab_group_activate(mg); 2266 if (error) 2267 return (spa_vdev_state_exit(spa, 2268 vd, error)); 2269 (void) spa_vdev_state_exit(spa, vd, 0); 2270 goto top; 2271 } 2272 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0); 2273 } 2274 2275 /* 2276 * Offline this device and reopen its top-level vdev. 2277 * If the top-level vdev is a log device then just offline 2278 * it. Otherwise, if this action results in the top-level 2279 * vdev becoming unusable, undo it and fail the request. 2280 */ 2281 vd->vdev_offline = B_TRUE; 2282 vdev_reopen(tvd); 2283 2284 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2285 vdev_is_dead(tvd)) { 2286 vd->vdev_offline = B_FALSE; 2287 vdev_reopen(tvd); 2288 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2289 } 2290 2291 /* 2292 * Add the device back into the metaslab rotor so that 2293 * once we online the device it's open for business. 2294 */ 2295 if (tvd->vdev_islog && mg != NULL) 2296 metaslab_group_activate(mg); 2297 } 2298 2299 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2300 2301 return (spa_vdev_state_exit(spa, vd, 0)); 2302 } 2303 2304 int 2305 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2306 { 2307 int error; 2308 2309 mutex_enter(&spa->spa_vdev_top_lock); 2310 error = vdev_offline_locked(spa, guid, flags); 2311 mutex_exit(&spa->spa_vdev_top_lock); 2312 2313 return (error); 2314 } 2315 2316 /* 2317 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2318 * vdev_offline(), we assume the spa config is locked. We also clear all 2319 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2320 */ 2321 void 2322 vdev_clear(spa_t *spa, vdev_t *vd) 2323 { 2324 vdev_t *rvd = spa->spa_root_vdev; 2325 2326 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2327 2328 if (vd == NULL) 2329 vd = rvd; 2330 2331 vd->vdev_stat.vs_read_errors = 0; 2332 vd->vdev_stat.vs_write_errors = 0; 2333 vd->vdev_stat.vs_checksum_errors = 0; 2334 2335 for (int c = 0; c < vd->vdev_children; c++) 2336 vdev_clear(spa, vd->vdev_child[c]); 2337 2338 /* 2339 * If we're in the FAULTED state or have experienced failed I/O, then 2340 * clear the persistent state and attempt to reopen the device. We 2341 * also mark the vdev config dirty, so that the new faulted state is 2342 * written out to disk. 2343 */ 2344 if (vd->vdev_faulted || vd->vdev_degraded || 2345 !vdev_readable(vd) || !vdev_writeable(vd)) { 2346 2347 /* 2348 * When reopening in reponse to a clear event, it may be due to 2349 * a fmadm repair request. In this case, if the device is 2350 * still broken, we want to still post the ereport again. 2351 */ 2352 vd->vdev_forcefault = B_TRUE; 2353 2354 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2355 vd->vdev_cant_read = B_FALSE; 2356 vd->vdev_cant_write = B_FALSE; 2357 2358 vdev_reopen(vd); 2359 2360 vd->vdev_forcefault = B_FALSE; 2361 2362 if (vd != rvd) 2363 vdev_state_dirty(vd->vdev_top); 2364 2365 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2366 spa_async_request(spa, SPA_ASYNC_RESILVER); 2367 2368 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2369 } 2370 2371 /* 2372 * When clearing a FMA-diagnosed fault, we always want to 2373 * unspare the device, as we assume that the original spare was 2374 * done in response to the FMA fault. 2375 */ 2376 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2377 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2378 vd->vdev_parent->vdev_child[0] == vd) 2379 vd->vdev_unspare = B_TRUE; 2380 } 2381 2382 boolean_t 2383 vdev_is_dead(vdev_t *vd) 2384 { 2385 /* 2386 * Holes and missing devices are always considered "dead". 2387 * This simplifies the code since we don't have to check for 2388 * these types of devices in the various code paths. 2389 * Instead we rely on the fact that we skip over dead devices 2390 * before issuing I/O to them. 2391 */ 2392 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2393 vd->vdev_ops == &vdev_missing_ops); 2394 } 2395 2396 boolean_t 2397 vdev_readable(vdev_t *vd) 2398 { 2399 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2400 } 2401 2402 boolean_t 2403 vdev_writeable(vdev_t *vd) 2404 { 2405 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2406 } 2407 2408 boolean_t 2409 vdev_allocatable(vdev_t *vd) 2410 { 2411 uint64_t state = vd->vdev_state; 2412 2413 /* 2414 * We currently allow allocations from vdevs which may be in the 2415 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2416 * fails to reopen then we'll catch it later when we're holding 2417 * the proper locks. Note that we have to get the vdev state 2418 * in a local variable because although it changes atomically, 2419 * we're asking two separate questions about it. 2420 */ 2421 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2422 !vd->vdev_cant_write && !vd->vdev_ishole); 2423 } 2424 2425 boolean_t 2426 vdev_accessible(vdev_t *vd, zio_t *zio) 2427 { 2428 ASSERT(zio->io_vd == vd); 2429 2430 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2431 return (B_FALSE); 2432 2433 if (zio->io_type == ZIO_TYPE_READ) 2434 return (!vd->vdev_cant_read); 2435 2436 if (zio->io_type == ZIO_TYPE_WRITE) 2437 return (!vd->vdev_cant_write); 2438 2439 return (B_TRUE); 2440 } 2441 2442 /* 2443 * Get statistics for the given vdev. 2444 */ 2445 void 2446 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2447 { 2448 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2449 2450 mutex_enter(&vd->vdev_stat_lock); 2451 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2452 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2453 vs->vs_state = vd->vdev_state; 2454 vs->vs_rsize = vdev_get_min_asize(vd); 2455 if (vd->vdev_ops->vdev_op_leaf) 2456 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2457 mutex_exit(&vd->vdev_stat_lock); 2458 2459 /* 2460 * If we're getting stats on the root vdev, aggregate the I/O counts 2461 * over all top-level vdevs (i.e. the direct children of the root). 2462 */ 2463 if (vd == rvd) { 2464 for (int c = 0; c < rvd->vdev_children; c++) { 2465 vdev_t *cvd = rvd->vdev_child[c]; 2466 vdev_stat_t *cvs = &cvd->vdev_stat; 2467 2468 mutex_enter(&vd->vdev_stat_lock); 2469 for (int t = 0; t < ZIO_TYPES; t++) { 2470 vs->vs_ops[t] += cvs->vs_ops[t]; 2471 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2472 } 2473 cvs->vs_scan_removing = cvd->vdev_removing; 2474 mutex_exit(&vd->vdev_stat_lock); 2475 } 2476 } 2477 } 2478 2479 void 2480 vdev_clear_stats(vdev_t *vd) 2481 { 2482 mutex_enter(&vd->vdev_stat_lock); 2483 vd->vdev_stat.vs_space = 0; 2484 vd->vdev_stat.vs_dspace = 0; 2485 vd->vdev_stat.vs_alloc = 0; 2486 mutex_exit(&vd->vdev_stat_lock); 2487 } 2488 2489 void 2490 vdev_scan_stat_init(vdev_t *vd) 2491 { 2492 vdev_stat_t *vs = &vd->vdev_stat; 2493 2494 for (int c = 0; c < vd->vdev_children; c++) 2495 vdev_scan_stat_init(vd->vdev_child[c]); 2496 2497 mutex_enter(&vd->vdev_stat_lock); 2498 vs->vs_scan_processed = 0; 2499 mutex_exit(&vd->vdev_stat_lock); 2500 } 2501 2502 void 2503 vdev_stat_update(zio_t *zio, uint64_t psize) 2504 { 2505 spa_t *spa = zio->io_spa; 2506 vdev_t *rvd = spa->spa_root_vdev; 2507 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2508 vdev_t *pvd; 2509 uint64_t txg = zio->io_txg; 2510 vdev_stat_t *vs = &vd->vdev_stat; 2511 zio_type_t type = zio->io_type; 2512 int flags = zio->io_flags; 2513 2514 /* 2515 * If this i/o is a gang leader, it didn't do any actual work. 2516 */ 2517 if (zio->io_gang_tree) 2518 return; 2519 2520 if (zio->io_error == 0) { 2521 /* 2522 * If this is a root i/o, don't count it -- we've already 2523 * counted the top-level vdevs, and vdev_get_stats() will 2524 * aggregate them when asked. This reduces contention on 2525 * the root vdev_stat_lock and implicitly handles blocks 2526 * that compress away to holes, for which there is no i/o. 2527 * (Holes never create vdev children, so all the counters 2528 * remain zero, which is what we want.) 2529 * 2530 * Note: this only applies to successful i/o (io_error == 0) 2531 * because unlike i/o counts, errors are not additive. 2532 * When reading a ditto block, for example, failure of 2533 * one top-level vdev does not imply a root-level error. 2534 */ 2535 if (vd == rvd) 2536 return; 2537 2538 ASSERT(vd == zio->io_vd); 2539 2540 if (flags & ZIO_FLAG_IO_BYPASS) 2541 return; 2542 2543 mutex_enter(&vd->vdev_stat_lock); 2544 2545 if (flags & ZIO_FLAG_IO_REPAIR) { 2546 if (flags & ZIO_FLAG_SCAN_THREAD) { 2547 dsl_scan_phys_t *scn_phys = 2548 &spa->spa_dsl_pool->dp_scan->scn_phys; 2549 uint64_t *processed = &scn_phys->scn_processed; 2550 2551 /* XXX cleanup? */ 2552 if (vd->vdev_ops->vdev_op_leaf) 2553 atomic_add_64(processed, psize); 2554 vs->vs_scan_processed += psize; 2555 } 2556 2557 if (flags & ZIO_FLAG_SELF_HEAL) 2558 vs->vs_self_healed += psize; 2559 } 2560 2561 vs->vs_ops[type]++; 2562 vs->vs_bytes[type] += psize; 2563 2564 mutex_exit(&vd->vdev_stat_lock); 2565 return; 2566 } 2567 2568 if (flags & ZIO_FLAG_SPECULATIVE) 2569 return; 2570 2571 /* 2572 * If this is an I/O error that is going to be retried, then ignore the 2573 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2574 * hard errors, when in reality they can happen for any number of 2575 * innocuous reasons (bus resets, MPxIO link failure, etc). 2576 */ 2577 if (zio->io_error == EIO && 2578 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2579 return; 2580 2581 /* 2582 * Intent logs writes won't propagate their error to the root 2583 * I/O so don't mark these types of failures as pool-level 2584 * errors. 2585 */ 2586 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2587 return; 2588 2589 mutex_enter(&vd->vdev_stat_lock); 2590 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2591 if (zio->io_error == ECKSUM) 2592 vs->vs_checksum_errors++; 2593 else 2594 vs->vs_read_errors++; 2595 } 2596 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2597 vs->vs_write_errors++; 2598 mutex_exit(&vd->vdev_stat_lock); 2599 2600 if (type == ZIO_TYPE_WRITE && txg != 0 && 2601 (!(flags & ZIO_FLAG_IO_REPAIR) || 2602 (flags & ZIO_FLAG_SCAN_THREAD) || 2603 spa->spa_claiming)) { 2604 /* 2605 * This is either a normal write (not a repair), or it's 2606 * a repair induced by the scrub thread, or it's a repair 2607 * made by zil_claim() during spa_load() in the first txg. 2608 * In the normal case, we commit the DTL change in the same 2609 * txg as the block was born. In the scrub-induced repair 2610 * case, we know that scrubs run in first-pass syncing context, 2611 * so we commit the DTL change in spa_syncing_txg(spa). 2612 * In the zil_claim() case, we commit in spa_first_txg(spa). 2613 * 2614 * We currently do not make DTL entries for failed spontaneous 2615 * self-healing writes triggered by normal (non-scrubbing) 2616 * reads, because we have no transactional context in which to 2617 * do so -- and it's not clear that it'd be desirable anyway. 2618 */ 2619 if (vd->vdev_ops->vdev_op_leaf) { 2620 uint64_t commit_txg = txg; 2621 if (flags & ZIO_FLAG_SCAN_THREAD) { 2622 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2623 ASSERT(spa_sync_pass(spa) == 1); 2624 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2625 commit_txg = spa_syncing_txg(spa); 2626 } else if (spa->spa_claiming) { 2627 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2628 commit_txg = spa_first_txg(spa); 2629 } 2630 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2631 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2632 return; 2633 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2634 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2635 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2636 } 2637 if (vd != rvd) 2638 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2639 } 2640 } 2641 2642 /* 2643 * Update the in-core space usage stats for this vdev, its metaslab class, 2644 * and the root vdev. 2645 */ 2646 void 2647 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2648 int64_t space_delta) 2649 { 2650 int64_t dspace_delta = space_delta; 2651 spa_t *spa = vd->vdev_spa; 2652 vdev_t *rvd = spa->spa_root_vdev; 2653 metaslab_group_t *mg = vd->vdev_mg; 2654 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2655 2656 ASSERT(vd == vd->vdev_top); 2657 2658 /* 2659 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2660 * factor. We must calculate this here and not at the root vdev 2661 * because the root vdev's psize-to-asize is simply the max of its 2662 * childrens', thus not accurate enough for us. 2663 */ 2664 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2665 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2666 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2667 vd->vdev_deflate_ratio; 2668 2669 mutex_enter(&vd->vdev_stat_lock); 2670 vd->vdev_stat.vs_alloc += alloc_delta; 2671 vd->vdev_stat.vs_space += space_delta; 2672 vd->vdev_stat.vs_dspace += dspace_delta; 2673 mutex_exit(&vd->vdev_stat_lock); 2674 2675 if (mc == spa_normal_class(spa)) { 2676 mutex_enter(&rvd->vdev_stat_lock); 2677 rvd->vdev_stat.vs_alloc += alloc_delta; 2678 rvd->vdev_stat.vs_space += space_delta; 2679 rvd->vdev_stat.vs_dspace += dspace_delta; 2680 mutex_exit(&rvd->vdev_stat_lock); 2681 } 2682 2683 if (mc != NULL) { 2684 ASSERT(rvd == vd->vdev_parent); 2685 ASSERT(vd->vdev_ms_count != 0); 2686 2687 metaslab_class_space_update(mc, 2688 alloc_delta, defer_delta, space_delta, dspace_delta); 2689 } 2690 } 2691 2692 /* 2693 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2694 * so that it will be written out next time the vdev configuration is synced. 2695 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2696 */ 2697 void 2698 vdev_config_dirty(vdev_t *vd) 2699 { 2700 spa_t *spa = vd->vdev_spa; 2701 vdev_t *rvd = spa->spa_root_vdev; 2702 int c; 2703 2704 /* 2705 * If this is an aux vdev (as with l2cache and spare devices), then we 2706 * update the vdev config manually and set the sync flag. 2707 */ 2708 if (vd->vdev_aux != NULL) { 2709 spa_aux_vdev_t *sav = vd->vdev_aux; 2710 nvlist_t **aux; 2711 uint_t naux; 2712 2713 for (c = 0; c < sav->sav_count; c++) { 2714 if (sav->sav_vdevs[c] == vd) 2715 break; 2716 } 2717 2718 if (c == sav->sav_count) { 2719 /* 2720 * We're being removed. There's nothing more to do. 2721 */ 2722 ASSERT(sav->sav_sync == B_TRUE); 2723 return; 2724 } 2725 2726 sav->sav_sync = B_TRUE; 2727 2728 if (nvlist_lookup_nvlist_array(sav->sav_config, 2729 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2730 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2731 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2732 } 2733 2734 ASSERT(c < naux); 2735 2736 /* 2737 * Setting the nvlist in the middle if the array is a little 2738 * sketchy, but it will work. 2739 */ 2740 nvlist_free(aux[c]); 2741 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 2742 2743 return; 2744 } 2745 2746 /* 2747 * The dirty list is protected by the SCL_CONFIG lock. The caller 2748 * must either hold SCL_CONFIG as writer, or must be the sync thread 2749 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2750 * so this is sufficient to ensure mutual exclusion. 2751 */ 2752 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2753 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2754 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2755 2756 if (vd == rvd) { 2757 for (c = 0; c < rvd->vdev_children; c++) 2758 vdev_config_dirty(rvd->vdev_child[c]); 2759 } else { 2760 ASSERT(vd == vd->vdev_top); 2761 2762 if (!list_link_active(&vd->vdev_config_dirty_node) && 2763 !vd->vdev_ishole) 2764 list_insert_head(&spa->spa_config_dirty_list, vd); 2765 } 2766 } 2767 2768 void 2769 vdev_config_clean(vdev_t *vd) 2770 { 2771 spa_t *spa = vd->vdev_spa; 2772 2773 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2774 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2775 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2776 2777 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2778 list_remove(&spa->spa_config_dirty_list, vd); 2779 } 2780 2781 /* 2782 * Mark a top-level vdev's state as dirty, so that the next pass of 2783 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2784 * the state changes from larger config changes because they require 2785 * much less locking, and are often needed for administrative actions. 2786 */ 2787 void 2788 vdev_state_dirty(vdev_t *vd) 2789 { 2790 spa_t *spa = vd->vdev_spa; 2791 2792 ASSERT(vd == vd->vdev_top); 2793 2794 /* 2795 * The state list is protected by the SCL_STATE lock. The caller 2796 * must either hold SCL_STATE as writer, or must be the sync thread 2797 * (which holds SCL_STATE as reader). There's only one sync thread, 2798 * so this is sufficient to ensure mutual exclusion. 2799 */ 2800 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2801 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2802 spa_config_held(spa, SCL_STATE, RW_READER))); 2803 2804 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 2805 list_insert_head(&spa->spa_state_dirty_list, vd); 2806 } 2807 2808 void 2809 vdev_state_clean(vdev_t *vd) 2810 { 2811 spa_t *spa = vd->vdev_spa; 2812 2813 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2814 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2815 spa_config_held(spa, SCL_STATE, RW_READER))); 2816 2817 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2818 list_remove(&spa->spa_state_dirty_list, vd); 2819 } 2820 2821 /* 2822 * Propagate vdev state up from children to parent. 2823 */ 2824 void 2825 vdev_propagate_state(vdev_t *vd) 2826 { 2827 spa_t *spa = vd->vdev_spa; 2828 vdev_t *rvd = spa->spa_root_vdev; 2829 int degraded = 0, faulted = 0; 2830 int corrupted = 0; 2831 vdev_t *child; 2832 2833 if (vd->vdev_children > 0) { 2834 for (int c = 0; c < vd->vdev_children; c++) { 2835 child = vd->vdev_child[c]; 2836 2837 /* 2838 * Don't factor holes into the decision. 2839 */ 2840 if (child->vdev_ishole) 2841 continue; 2842 2843 if (!vdev_readable(child) || 2844 (!vdev_writeable(child) && spa_writeable(spa))) { 2845 /* 2846 * Root special: if there is a top-level log 2847 * device, treat the root vdev as if it were 2848 * degraded. 2849 */ 2850 if (child->vdev_islog && vd == rvd) 2851 degraded++; 2852 else 2853 faulted++; 2854 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2855 degraded++; 2856 } 2857 2858 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2859 corrupted++; 2860 } 2861 2862 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2863 2864 /* 2865 * Root special: if there is a top-level vdev that cannot be 2866 * opened due to corrupted metadata, then propagate the root 2867 * vdev's aux state as 'corrupt' rather than 'insufficient 2868 * replicas'. 2869 */ 2870 if (corrupted && vd == rvd && 2871 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2872 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2873 VDEV_AUX_CORRUPT_DATA); 2874 } 2875 2876 if (vd->vdev_parent) 2877 vdev_propagate_state(vd->vdev_parent); 2878 } 2879 2880 /* 2881 * Set a vdev's state. If this is during an open, we don't update the parent 2882 * state, because we're in the process of opening children depth-first. 2883 * Otherwise, we propagate the change to the parent. 2884 * 2885 * If this routine places a device in a faulted state, an appropriate ereport is 2886 * generated. 2887 */ 2888 void 2889 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2890 { 2891 uint64_t save_state; 2892 spa_t *spa = vd->vdev_spa; 2893 2894 if (state == vd->vdev_state) { 2895 vd->vdev_stat.vs_aux = aux; 2896 return; 2897 } 2898 2899 save_state = vd->vdev_state; 2900 2901 vd->vdev_state = state; 2902 vd->vdev_stat.vs_aux = aux; 2903 2904 /* 2905 * If we are setting the vdev state to anything but an open state, then 2906 * always close the underlying device unless the device has requested 2907 * a delayed close (i.e. we're about to remove or fault the device). 2908 * Otherwise, we keep accessible but invalid devices open forever. 2909 * We don't call vdev_close() itself, because that implies some extra 2910 * checks (offline, etc) that we don't want here. This is limited to 2911 * leaf devices, because otherwise closing the device will affect other 2912 * children. 2913 */ 2914 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 2915 vd->vdev_ops->vdev_op_leaf) 2916 vd->vdev_ops->vdev_op_close(vd); 2917 2918 /* 2919 * If we have brought this vdev back into service, we need 2920 * to notify fmd so that it can gracefully repair any outstanding 2921 * cases due to a missing device. We do this in all cases, even those 2922 * that probably don't correlate to a repaired fault. This is sure to 2923 * catch all cases, and we let the zfs-retire agent sort it out. If 2924 * this is a transient state it's OK, as the retire agent will 2925 * double-check the state of the vdev before repairing it. 2926 */ 2927 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 2928 vd->vdev_prevstate != state) 2929 zfs_post_state_change(spa, vd); 2930 2931 if (vd->vdev_removed && 2932 state == VDEV_STATE_CANT_OPEN && 2933 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2934 /* 2935 * If the previous state is set to VDEV_STATE_REMOVED, then this 2936 * device was previously marked removed and someone attempted to 2937 * reopen it. If this failed due to a nonexistent device, then 2938 * keep the device in the REMOVED state. We also let this be if 2939 * it is one of our special test online cases, which is only 2940 * attempting to online the device and shouldn't generate an FMA 2941 * fault. 2942 */ 2943 vd->vdev_state = VDEV_STATE_REMOVED; 2944 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2945 } else if (state == VDEV_STATE_REMOVED) { 2946 vd->vdev_removed = B_TRUE; 2947 } else if (state == VDEV_STATE_CANT_OPEN) { 2948 /* 2949 * If we fail to open a vdev during an import or recovery, we 2950 * mark it as "not available", which signifies that it was 2951 * never there to begin with. Failure to open such a device 2952 * is not considered an error. 2953 */ 2954 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 2955 spa_load_state(spa) == SPA_LOAD_RECOVER) && 2956 vd->vdev_ops->vdev_op_leaf) 2957 vd->vdev_not_present = 1; 2958 2959 /* 2960 * Post the appropriate ereport. If the 'prevstate' field is 2961 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2962 * that this is part of a vdev_reopen(). In this case, we don't 2963 * want to post the ereport if the device was already in the 2964 * CANT_OPEN state beforehand. 2965 * 2966 * If the 'checkremove' flag is set, then this is an attempt to 2967 * online the device in response to an insertion event. If we 2968 * hit this case, then we have detected an insertion event for a 2969 * faulted or offline device that wasn't in the removed state. 2970 * In this scenario, we don't post an ereport because we are 2971 * about to replace the device, or attempt an online with 2972 * vdev_forcefault, which will generate the fault for us. 2973 */ 2974 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 2975 !vd->vdev_not_present && !vd->vdev_checkremove && 2976 vd != spa->spa_root_vdev) { 2977 const char *class; 2978 2979 switch (aux) { 2980 case VDEV_AUX_OPEN_FAILED: 2981 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 2982 break; 2983 case VDEV_AUX_CORRUPT_DATA: 2984 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 2985 break; 2986 case VDEV_AUX_NO_REPLICAS: 2987 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 2988 break; 2989 case VDEV_AUX_BAD_GUID_SUM: 2990 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 2991 break; 2992 case VDEV_AUX_TOO_SMALL: 2993 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 2994 break; 2995 case VDEV_AUX_BAD_LABEL: 2996 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 2997 break; 2998 default: 2999 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3000 } 3001 3002 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3003 } 3004 3005 /* Erase any notion of persistent removed state */ 3006 vd->vdev_removed = B_FALSE; 3007 } else { 3008 vd->vdev_removed = B_FALSE; 3009 } 3010 3011 if (!isopen && vd->vdev_parent) 3012 vdev_propagate_state(vd->vdev_parent); 3013 } 3014 3015 /* 3016 * Check the vdev configuration to ensure that it's capable of supporting 3017 * a root pool. Currently, we do not support RAID-Z or partial configuration. 3018 * In addition, only a single top-level vdev is allowed and none of the leaves 3019 * can be wholedisks. 3020 */ 3021 boolean_t 3022 vdev_is_bootable(vdev_t *vd) 3023 { 3024 if (!vd->vdev_ops->vdev_op_leaf) { 3025 char *vdev_type = vd->vdev_ops->vdev_op_type; 3026 3027 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3028 vd->vdev_children > 1) { 3029 return (B_FALSE); 3030 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 3031 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3032 return (B_FALSE); 3033 } 3034 } else if (vd->vdev_wholedisk == 1) { 3035 return (B_FALSE); 3036 } 3037 3038 for (int c = 0; c < vd->vdev_children; c++) { 3039 if (!vdev_is_bootable(vd->vdev_child[c])) 3040 return (B_FALSE); 3041 } 3042 return (B_TRUE); 3043 } 3044 3045 /* 3046 * Load the state from the original vdev tree (ovd) which 3047 * we've retrieved from the MOS config object. If the original 3048 * vdev was offline or faulted then we transfer that state to the 3049 * device in the current vdev tree (nvd). 3050 */ 3051 void 3052 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3053 { 3054 spa_t *spa = nvd->vdev_spa; 3055 3056 ASSERT(nvd->vdev_top->vdev_islog); 3057 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3058 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3059 3060 for (int c = 0; c < nvd->vdev_children; c++) 3061 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3062 3063 if (nvd->vdev_ops->vdev_op_leaf) { 3064 /* 3065 * Restore the persistent vdev state 3066 */ 3067 nvd->vdev_offline = ovd->vdev_offline; 3068 nvd->vdev_faulted = ovd->vdev_faulted; 3069 nvd->vdev_degraded = ovd->vdev_degraded; 3070 nvd->vdev_removed = ovd->vdev_removed; 3071 } 3072 } 3073 3074 /* 3075 * Determine if a log device has valid content. If the vdev was 3076 * removed or faulted in the MOS config then we know that 3077 * the content on the log device has already been written to the pool. 3078 */ 3079 boolean_t 3080 vdev_log_state_valid(vdev_t *vd) 3081 { 3082 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3083 !vd->vdev_removed) 3084 return (B_TRUE); 3085 3086 for (int c = 0; c < vd->vdev_children; c++) 3087 if (vdev_log_state_valid(vd->vdev_child[c])) 3088 return (B_TRUE); 3089 3090 return (B_FALSE); 3091 } 3092 3093 /* 3094 * Expand a vdev if possible. 3095 */ 3096 void 3097 vdev_expand(vdev_t *vd, uint64_t txg) 3098 { 3099 ASSERT(vd->vdev_top == vd); 3100 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3101 3102 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3103 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3104 vdev_config_dirty(vd); 3105 } 3106 } 3107 3108 /* 3109 * Split a vdev. 3110 */ 3111 void 3112 vdev_split(vdev_t *vd) 3113 { 3114 vdev_t *cvd, *pvd = vd->vdev_parent; 3115 3116 vdev_remove_child(pvd, vd); 3117 vdev_compact_children(pvd); 3118 3119 cvd = pvd->vdev_child[0]; 3120 if (pvd->vdev_children == 1) { 3121 vdev_remove_parent(cvd); 3122 cvd->vdev_splitting = B_TRUE; 3123 } 3124 vdev_propagate_state(cvd); 3125 } 3126