1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/fm/fs/zfs.h> 29 #include <sys/spa.h> 30 #include <sys/spa_impl.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/uberblock_impl.h> 35 #include <sys/metaslab.h> 36 #include <sys/metaslab_impl.h> 37 #include <sys/space_map.h> 38 #include <sys/zio.h> 39 #include <sys/zap.h> 40 #include <sys/fs/zfs.h> 41 #include <sys/arc.h> 42 #include <sys/zil.h> 43 44 /* 45 * Virtual device management. 46 */ 47 48 static vdev_ops_t *vdev_ops_table[] = { 49 &vdev_root_ops, 50 &vdev_raidz_ops, 51 &vdev_mirror_ops, 52 &vdev_replacing_ops, 53 &vdev_spare_ops, 54 &vdev_disk_ops, 55 &vdev_file_ops, 56 &vdev_missing_ops, 57 &vdev_hole_ops, 58 NULL 59 }; 60 61 /* maximum scrub/resilver I/O queue per leaf vdev */ 62 int zfs_scrub_limit = 10; 63 64 /* 65 * Given a vdev type, return the appropriate ops vector. 66 */ 67 static vdev_ops_t * 68 vdev_getops(const char *type) 69 { 70 vdev_ops_t *ops, **opspp; 71 72 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 73 if (strcmp(ops->vdev_op_type, type) == 0) 74 break; 75 76 return (ops); 77 } 78 79 /* 80 * Default asize function: return the MAX of psize with the asize of 81 * all children. This is what's used by anything other than RAID-Z. 82 */ 83 uint64_t 84 vdev_default_asize(vdev_t *vd, uint64_t psize) 85 { 86 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 87 uint64_t csize; 88 89 for (int c = 0; c < vd->vdev_children; c++) { 90 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 91 asize = MAX(asize, csize); 92 } 93 94 return (asize); 95 } 96 97 /* 98 * Get the minimum allocatable size. We define the allocatable size as 99 * the vdev's asize rounded to the nearest metaslab. This allows us to 100 * replace or attach devices which don't have the same physical size but 101 * can still satisfy the same number of allocations. 102 */ 103 uint64_t 104 vdev_get_min_asize(vdev_t *vd) 105 { 106 vdev_t *pvd = vd->vdev_parent; 107 108 /* 109 * The our parent is NULL (inactive spare or cache) or is the root, 110 * just return our own asize. 111 */ 112 if (pvd == NULL) 113 return (vd->vdev_asize); 114 115 /* 116 * The top-level vdev just returns the allocatable size rounded 117 * to the nearest metaslab. 118 */ 119 if (vd == vd->vdev_top) 120 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 121 122 /* 123 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 124 * so each child must provide at least 1/Nth of its asize. 125 */ 126 if (pvd->vdev_ops == &vdev_raidz_ops) 127 return (pvd->vdev_min_asize / pvd->vdev_children); 128 129 return (pvd->vdev_min_asize); 130 } 131 132 void 133 vdev_set_min_asize(vdev_t *vd) 134 { 135 vd->vdev_min_asize = vdev_get_min_asize(vd); 136 137 for (int c = 0; c < vd->vdev_children; c++) 138 vdev_set_min_asize(vd->vdev_child[c]); 139 } 140 141 vdev_t * 142 vdev_lookup_top(spa_t *spa, uint64_t vdev) 143 { 144 vdev_t *rvd = spa->spa_root_vdev; 145 146 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 147 148 if (vdev < rvd->vdev_children) { 149 ASSERT(rvd->vdev_child[vdev] != NULL); 150 return (rvd->vdev_child[vdev]); 151 } 152 153 return (NULL); 154 } 155 156 vdev_t * 157 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 158 { 159 vdev_t *mvd; 160 161 if (vd->vdev_guid == guid) 162 return (vd); 163 164 for (int c = 0; c < vd->vdev_children; c++) 165 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 166 NULL) 167 return (mvd); 168 169 return (NULL); 170 } 171 172 void 173 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 174 { 175 size_t oldsize, newsize; 176 uint64_t id = cvd->vdev_id; 177 vdev_t **newchild; 178 179 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 180 ASSERT(cvd->vdev_parent == NULL); 181 182 cvd->vdev_parent = pvd; 183 184 if (pvd == NULL) 185 return; 186 187 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 188 189 oldsize = pvd->vdev_children * sizeof (vdev_t *); 190 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 191 newsize = pvd->vdev_children * sizeof (vdev_t *); 192 193 newchild = kmem_zalloc(newsize, KM_SLEEP); 194 if (pvd->vdev_child != NULL) { 195 bcopy(pvd->vdev_child, newchild, oldsize); 196 kmem_free(pvd->vdev_child, oldsize); 197 } 198 199 pvd->vdev_child = newchild; 200 pvd->vdev_child[id] = cvd; 201 202 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 203 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 204 205 /* 206 * Walk up all ancestors to update guid sum. 207 */ 208 for (; pvd != NULL; pvd = pvd->vdev_parent) 209 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 210 211 if (cvd->vdev_ops->vdev_op_leaf) 212 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; 213 } 214 215 void 216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 217 { 218 int c; 219 uint_t id = cvd->vdev_id; 220 221 ASSERT(cvd->vdev_parent == pvd); 222 223 if (pvd == NULL) 224 return; 225 226 ASSERT(id < pvd->vdev_children); 227 ASSERT(pvd->vdev_child[id] == cvd); 228 229 pvd->vdev_child[id] = NULL; 230 cvd->vdev_parent = NULL; 231 232 for (c = 0; c < pvd->vdev_children; c++) 233 if (pvd->vdev_child[c]) 234 break; 235 236 if (c == pvd->vdev_children) { 237 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 238 pvd->vdev_child = NULL; 239 pvd->vdev_children = 0; 240 } 241 242 /* 243 * Walk up all ancestors to update guid sum. 244 */ 245 for (; pvd != NULL; pvd = pvd->vdev_parent) 246 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 247 248 if (cvd->vdev_ops->vdev_op_leaf) 249 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; 250 } 251 252 /* 253 * Remove any holes in the child array. 254 */ 255 void 256 vdev_compact_children(vdev_t *pvd) 257 { 258 vdev_t **newchild, *cvd; 259 int oldc = pvd->vdev_children; 260 int newc; 261 262 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 263 264 for (int c = newc = 0; c < oldc; c++) 265 if (pvd->vdev_child[c]) 266 newc++; 267 268 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 269 270 for (int c = newc = 0; c < oldc; c++) { 271 if ((cvd = pvd->vdev_child[c]) != NULL) { 272 newchild[newc] = cvd; 273 cvd->vdev_id = newc++; 274 } 275 } 276 277 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 278 pvd->vdev_child = newchild; 279 pvd->vdev_children = newc; 280 } 281 282 /* 283 * Allocate and minimally initialize a vdev_t. 284 */ 285 vdev_t * 286 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 287 { 288 vdev_t *vd; 289 290 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 291 292 if (spa->spa_root_vdev == NULL) { 293 ASSERT(ops == &vdev_root_ops); 294 spa->spa_root_vdev = vd; 295 } 296 297 if (guid == 0 && ops != &vdev_hole_ops) { 298 if (spa->spa_root_vdev == vd) { 299 /* 300 * The root vdev's guid will also be the pool guid, 301 * which must be unique among all pools. 302 */ 303 while (guid == 0 || spa_guid_exists(guid, 0)) 304 guid = spa_get_random(-1ULL); 305 } else { 306 /* 307 * Any other vdev's guid must be unique within the pool. 308 */ 309 while (guid == 0 || 310 spa_guid_exists(spa_guid(spa), guid)) 311 guid = spa_get_random(-1ULL); 312 } 313 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 314 } 315 316 vd->vdev_spa = spa; 317 vd->vdev_id = id; 318 vd->vdev_guid = guid; 319 vd->vdev_guid_sum = guid; 320 vd->vdev_ops = ops; 321 vd->vdev_state = VDEV_STATE_CLOSED; 322 vd->vdev_ishole = (ops == &vdev_hole_ops); 323 324 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 325 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 326 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 327 for (int t = 0; t < DTL_TYPES; t++) { 328 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, 329 &vd->vdev_dtl_lock); 330 } 331 txg_list_create(&vd->vdev_ms_list, 332 offsetof(struct metaslab, ms_txg_node)); 333 txg_list_create(&vd->vdev_dtl_list, 334 offsetof(struct vdev, vdev_dtl_node)); 335 vd->vdev_stat.vs_timestamp = gethrtime(); 336 vdev_queue_init(vd); 337 vdev_cache_init(vd); 338 339 return (vd); 340 } 341 342 /* 343 * Allocate a new vdev. The 'alloctype' is used to control whether we are 344 * creating a new vdev or loading an existing one - the behavior is slightly 345 * different for each case. 346 */ 347 int 348 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 349 int alloctype) 350 { 351 vdev_ops_t *ops; 352 char *type; 353 uint64_t guid = 0, islog, nparity; 354 vdev_t *vd; 355 356 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 357 358 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 359 return (EINVAL); 360 361 if ((ops = vdev_getops(type)) == NULL) 362 return (EINVAL); 363 364 /* 365 * If this is a load, get the vdev guid from the nvlist. 366 * Otherwise, vdev_alloc_common() will generate one for us. 367 */ 368 if (alloctype == VDEV_ALLOC_LOAD) { 369 uint64_t label_id; 370 371 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 372 label_id != id) 373 return (EINVAL); 374 375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 376 return (EINVAL); 377 } else if (alloctype == VDEV_ALLOC_SPARE) { 378 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 379 return (EINVAL); 380 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 381 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 382 return (EINVAL); 383 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 384 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 385 return (EINVAL); 386 } 387 388 /* 389 * The first allocated vdev must be of type 'root'. 390 */ 391 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 392 return (EINVAL); 393 394 /* 395 * Determine whether we're a log vdev. 396 */ 397 islog = 0; 398 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 399 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 400 return (ENOTSUP); 401 402 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 403 return (ENOTSUP); 404 405 /* 406 * Set the nparity property for RAID-Z vdevs. 407 */ 408 nparity = -1ULL; 409 if (ops == &vdev_raidz_ops) { 410 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 411 &nparity) == 0) { 412 /* 413 * Currently, we can only support 3 parity devices. 414 */ 415 if (nparity == 0 || nparity > 3) 416 return (EINVAL); 417 /* 418 * Previous versions could only support 1 or 2 parity 419 * device. 420 */ 421 if (nparity > 1 && 422 spa_version(spa) < SPA_VERSION_RAIDZ2) 423 return (ENOTSUP); 424 if (nparity > 2 && 425 spa_version(spa) < SPA_VERSION_RAIDZ3) 426 return (ENOTSUP); 427 } else { 428 /* 429 * We require the parity to be specified for SPAs that 430 * support multiple parity levels. 431 */ 432 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 433 return (EINVAL); 434 /* 435 * Otherwise, we default to 1 parity device for RAID-Z. 436 */ 437 nparity = 1; 438 } 439 } else { 440 nparity = 0; 441 } 442 ASSERT(nparity != -1ULL); 443 444 vd = vdev_alloc_common(spa, id, guid, ops); 445 446 vd->vdev_islog = islog; 447 vd->vdev_nparity = nparity; 448 449 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 450 vd->vdev_path = spa_strdup(vd->vdev_path); 451 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 452 vd->vdev_devid = spa_strdup(vd->vdev_devid); 453 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 454 &vd->vdev_physpath) == 0) 455 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 456 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 457 vd->vdev_fru = spa_strdup(vd->vdev_fru); 458 459 /* 460 * Set the whole_disk property. If it's not specified, leave the value 461 * as -1. 462 */ 463 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 464 &vd->vdev_wholedisk) != 0) 465 vd->vdev_wholedisk = -1ULL; 466 467 /* 468 * Look for the 'not present' flag. This will only be set if the device 469 * was not present at the time of import. 470 */ 471 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 472 &vd->vdev_not_present); 473 474 /* 475 * Get the alignment requirement. 476 */ 477 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 478 479 /* 480 * Retrieve the vdev creation time. 481 */ 482 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 483 &vd->vdev_crtxg); 484 485 /* 486 * If we're a top-level vdev, try to load the allocation parameters. 487 */ 488 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 489 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 490 &vd->vdev_ms_array); 491 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 492 &vd->vdev_ms_shift); 493 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 494 &vd->vdev_asize); 495 } 496 497 /* 498 * If we're a leaf vdev, try to load the DTL object and other state. 499 */ 500 if (vd->vdev_ops->vdev_op_leaf && 501 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 502 alloctype == VDEV_ALLOC_ROOTPOOL)) { 503 if (alloctype == VDEV_ALLOC_LOAD) { 504 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 505 &vd->vdev_dtl_smo.smo_object); 506 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 507 &vd->vdev_unspare); 508 } 509 510 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 511 uint64_t spare = 0; 512 513 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 514 &spare) == 0 && spare) 515 spa_spare_add(vd); 516 } 517 518 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 519 &vd->vdev_offline); 520 521 /* 522 * When importing a pool, we want to ignore the persistent fault 523 * state, as the diagnosis made on another system may not be 524 * valid in the current context. Local vdevs will 525 * remain in the faulted state. 526 */ 527 if (spa->spa_load_state == SPA_LOAD_OPEN) { 528 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 529 &vd->vdev_faulted); 530 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 531 &vd->vdev_degraded); 532 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 533 &vd->vdev_removed); 534 535 if (vd->vdev_faulted || vd->vdev_degraded) { 536 char *aux; 537 538 vd->vdev_label_aux = 539 VDEV_AUX_ERR_EXCEEDED; 540 if (nvlist_lookup_string(nv, 541 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 542 strcmp(aux, "external") == 0) 543 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 544 } 545 } 546 } 547 548 /* 549 * Add ourselves to the parent's list of children. 550 */ 551 vdev_add_child(parent, vd); 552 553 *vdp = vd; 554 555 return (0); 556 } 557 558 void 559 vdev_free(vdev_t *vd) 560 { 561 spa_t *spa = vd->vdev_spa; 562 563 /* 564 * vdev_free() implies closing the vdev first. This is simpler than 565 * trying to ensure complicated semantics for all callers. 566 */ 567 vdev_close(vd); 568 569 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 570 571 /* 572 * Free all children. 573 */ 574 for (int c = 0; c < vd->vdev_children; c++) 575 vdev_free(vd->vdev_child[c]); 576 577 ASSERT(vd->vdev_child == NULL); 578 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 579 580 /* 581 * Discard allocation state. 582 */ 583 if (vd == vd->vdev_top) 584 vdev_metaslab_fini(vd); 585 586 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 587 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 588 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 589 590 /* 591 * Remove this vdev from its parent's child list. 592 */ 593 vdev_remove_child(vd->vdev_parent, vd); 594 595 ASSERT(vd->vdev_parent == NULL); 596 597 /* 598 * Clean up vdev structure. 599 */ 600 vdev_queue_fini(vd); 601 vdev_cache_fini(vd); 602 603 if (vd->vdev_path) 604 spa_strfree(vd->vdev_path); 605 if (vd->vdev_devid) 606 spa_strfree(vd->vdev_devid); 607 if (vd->vdev_physpath) 608 spa_strfree(vd->vdev_physpath); 609 if (vd->vdev_fru) 610 spa_strfree(vd->vdev_fru); 611 612 if (vd->vdev_isspare) 613 spa_spare_remove(vd); 614 if (vd->vdev_isl2cache) 615 spa_l2cache_remove(vd); 616 617 txg_list_destroy(&vd->vdev_ms_list); 618 txg_list_destroy(&vd->vdev_dtl_list); 619 620 mutex_enter(&vd->vdev_dtl_lock); 621 for (int t = 0; t < DTL_TYPES; t++) { 622 space_map_unload(&vd->vdev_dtl[t]); 623 space_map_destroy(&vd->vdev_dtl[t]); 624 } 625 mutex_exit(&vd->vdev_dtl_lock); 626 627 mutex_destroy(&vd->vdev_dtl_lock); 628 mutex_destroy(&vd->vdev_stat_lock); 629 mutex_destroy(&vd->vdev_probe_lock); 630 631 if (vd == spa->spa_root_vdev) 632 spa->spa_root_vdev = NULL; 633 634 kmem_free(vd, sizeof (vdev_t)); 635 } 636 637 /* 638 * Transfer top-level vdev state from svd to tvd. 639 */ 640 static void 641 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 642 { 643 spa_t *spa = svd->vdev_spa; 644 metaslab_t *msp; 645 vdev_t *vd; 646 int t; 647 648 ASSERT(tvd == tvd->vdev_top); 649 650 tvd->vdev_ms_array = svd->vdev_ms_array; 651 tvd->vdev_ms_shift = svd->vdev_ms_shift; 652 tvd->vdev_ms_count = svd->vdev_ms_count; 653 654 svd->vdev_ms_array = 0; 655 svd->vdev_ms_shift = 0; 656 svd->vdev_ms_count = 0; 657 658 tvd->vdev_mg = svd->vdev_mg; 659 tvd->vdev_ms = svd->vdev_ms; 660 661 svd->vdev_mg = NULL; 662 svd->vdev_ms = NULL; 663 664 if (tvd->vdev_mg != NULL) 665 tvd->vdev_mg->mg_vd = tvd; 666 667 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 668 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 669 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 670 671 svd->vdev_stat.vs_alloc = 0; 672 svd->vdev_stat.vs_space = 0; 673 svd->vdev_stat.vs_dspace = 0; 674 675 for (t = 0; t < TXG_SIZE; t++) { 676 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 677 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 678 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 679 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 680 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 681 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 682 } 683 684 if (list_link_active(&svd->vdev_config_dirty_node)) { 685 vdev_config_clean(svd); 686 vdev_config_dirty(tvd); 687 } 688 689 if (list_link_active(&svd->vdev_state_dirty_node)) { 690 vdev_state_clean(svd); 691 vdev_state_dirty(tvd); 692 } 693 694 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 695 svd->vdev_deflate_ratio = 0; 696 697 tvd->vdev_islog = svd->vdev_islog; 698 svd->vdev_islog = 0; 699 } 700 701 static void 702 vdev_top_update(vdev_t *tvd, vdev_t *vd) 703 { 704 if (vd == NULL) 705 return; 706 707 vd->vdev_top = tvd; 708 709 for (int c = 0; c < vd->vdev_children; c++) 710 vdev_top_update(tvd, vd->vdev_child[c]); 711 } 712 713 /* 714 * Add a mirror/replacing vdev above an existing vdev. 715 */ 716 vdev_t * 717 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 718 { 719 spa_t *spa = cvd->vdev_spa; 720 vdev_t *pvd = cvd->vdev_parent; 721 vdev_t *mvd; 722 723 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 724 725 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 726 727 mvd->vdev_asize = cvd->vdev_asize; 728 mvd->vdev_min_asize = cvd->vdev_min_asize; 729 mvd->vdev_ashift = cvd->vdev_ashift; 730 mvd->vdev_state = cvd->vdev_state; 731 mvd->vdev_crtxg = cvd->vdev_crtxg; 732 733 vdev_remove_child(pvd, cvd); 734 vdev_add_child(pvd, mvd); 735 cvd->vdev_id = mvd->vdev_children; 736 vdev_add_child(mvd, cvd); 737 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 738 739 if (mvd == mvd->vdev_top) 740 vdev_top_transfer(cvd, mvd); 741 742 return (mvd); 743 } 744 745 /* 746 * Remove a 1-way mirror/replacing vdev from the tree. 747 */ 748 void 749 vdev_remove_parent(vdev_t *cvd) 750 { 751 vdev_t *mvd = cvd->vdev_parent; 752 vdev_t *pvd = mvd->vdev_parent; 753 754 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 755 756 ASSERT(mvd->vdev_children == 1); 757 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 758 mvd->vdev_ops == &vdev_replacing_ops || 759 mvd->vdev_ops == &vdev_spare_ops); 760 cvd->vdev_ashift = mvd->vdev_ashift; 761 762 vdev_remove_child(mvd, cvd); 763 vdev_remove_child(pvd, mvd); 764 765 /* 766 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 767 * Otherwise, we could have detached an offline device, and when we 768 * go to import the pool we'll think we have two top-level vdevs, 769 * instead of a different version of the same top-level vdev. 770 */ 771 if (mvd->vdev_top == mvd) { 772 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 773 cvd->vdev_guid += guid_delta; 774 cvd->vdev_guid_sum += guid_delta; 775 } 776 cvd->vdev_id = mvd->vdev_id; 777 vdev_add_child(pvd, cvd); 778 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 779 780 if (cvd == cvd->vdev_top) 781 vdev_top_transfer(mvd, cvd); 782 783 ASSERT(mvd->vdev_children == 0); 784 vdev_free(mvd); 785 } 786 787 int 788 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 789 { 790 spa_t *spa = vd->vdev_spa; 791 objset_t *mos = spa->spa_meta_objset; 792 metaslab_class_t *mc; 793 uint64_t m; 794 uint64_t oldc = vd->vdev_ms_count; 795 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 796 metaslab_t **mspp; 797 int error; 798 799 /* 800 * This vdev is not being allocated from yet or is a hole. 801 */ 802 if (vd->vdev_ms_shift == 0) 803 return (0); 804 805 ASSERT(!vd->vdev_ishole); 806 807 /* 808 * Compute the raidz-deflation ratio. Note, we hard-code 809 * in 128k (1 << 17) because it is the current "typical" blocksize. 810 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 811 * or we will inconsistently account for existing bp's. 812 */ 813 vd->vdev_deflate_ratio = (1 << 17) / 814 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 815 816 ASSERT(oldc <= newc); 817 818 if (vd->vdev_islog) 819 mc = spa->spa_log_class; 820 else 821 mc = spa->spa_normal_class; 822 823 if (vd->vdev_mg == NULL) 824 vd->vdev_mg = metaslab_group_create(mc, vd); 825 826 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 827 828 if (oldc != 0) { 829 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 830 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 831 } 832 833 vd->vdev_ms = mspp; 834 vd->vdev_ms_count = newc; 835 836 for (m = oldc; m < newc; m++) { 837 space_map_obj_t smo = { 0, 0, 0 }; 838 if (txg == 0) { 839 uint64_t object = 0; 840 error = dmu_read(mos, vd->vdev_ms_array, 841 m * sizeof (uint64_t), sizeof (uint64_t), &object, 842 DMU_READ_PREFETCH); 843 if (error) 844 return (error); 845 if (object != 0) { 846 dmu_buf_t *db; 847 error = dmu_bonus_hold(mos, object, FTAG, &db); 848 if (error) 849 return (error); 850 ASSERT3U(db->db_size, >=, sizeof (smo)); 851 bcopy(db->db_data, &smo, sizeof (smo)); 852 ASSERT3U(smo.smo_object, ==, object); 853 dmu_buf_rele(db, FTAG); 854 } 855 } 856 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 857 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 858 } 859 860 return (0); 861 } 862 863 void 864 vdev_metaslab_fini(vdev_t *vd) 865 { 866 uint64_t m; 867 uint64_t count = vd->vdev_ms_count; 868 869 if (vd->vdev_ms != NULL) { 870 for (m = 0; m < count; m++) 871 if (vd->vdev_ms[m] != NULL) 872 metaslab_fini(vd->vdev_ms[m]); 873 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 874 vd->vdev_ms = NULL; 875 } 876 } 877 878 typedef struct vdev_probe_stats { 879 boolean_t vps_readable; 880 boolean_t vps_writeable; 881 int vps_flags; 882 } vdev_probe_stats_t; 883 884 static void 885 vdev_probe_done(zio_t *zio) 886 { 887 spa_t *spa = zio->io_spa; 888 vdev_t *vd = zio->io_vd; 889 vdev_probe_stats_t *vps = zio->io_private; 890 891 ASSERT(vd->vdev_probe_zio != NULL); 892 893 if (zio->io_type == ZIO_TYPE_READ) { 894 if (zio->io_error == 0) 895 vps->vps_readable = 1; 896 if (zio->io_error == 0 && spa_writeable(spa)) { 897 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 898 zio->io_offset, zio->io_size, zio->io_data, 899 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 900 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 901 } else { 902 zio_buf_free(zio->io_data, zio->io_size); 903 } 904 } else if (zio->io_type == ZIO_TYPE_WRITE) { 905 if (zio->io_error == 0) 906 vps->vps_writeable = 1; 907 zio_buf_free(zio->io_data, zio->io_size); 908 } else if (zio->io_type == ZIO_TYPE_NULL) { 909 zio_t *pio; 910 911 vd->vdev_cant_read |= !vps->vps_readable; 912 vd->vdev_cant_write |= !vps->vps_writeable; 913 914 if (vdev_readable(vd) && 915 (vdev_writeable(vd) || !spa_writeable(spa))) { 916 zio->io_error = 0; 917 } else { 918 ASSERT(zio->io_error != 0); 919 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 920 spa, vd, NULL, 0, 0); 921 zio->io_error = ENXIO; 922 } 923 924 mutex_enter(&vd->vdev_probe_lock); 925 ASSERT(vd->vdev_probe_zio == zio); 926 vd->vdev_probe_zio = NULL; 927 mutex_exit(&vd->vdev_probe_lock); 928 929 while ((pio = zio_walk_parents(zio)) != NULL) 930 if (!vdev_accessible(vd, pio)) 931 pio->io_error = ENXIO; 932 933 kmem_free(vps, sizeof (*vps)); 934 } 935 } 936 937 /* 938 * Determine whether this device is accessible by reading and writing 939 * to several known locations: the pad regions of each vdev label 940 * but the first (which we leave alone in case it contains a VTOC). 941 */ 942 zio_t * 943 vdev_probe(vdev_t *vd, zio_t *zio) 944 { 945 spa_t *spa = vd->vdev_spa; 946 vdev_probe_stats_t *vps = NULL; 947 zio_t *pio; 948 949 ASSERT(vd->vdev_ops->vdev_op_leaf); 950 951 /* 952 * Don't probe the probe. 953 */ 954 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 955 return (NULL); 956 957 /* 958 * To prevent 'probe storms' when a device fails, we create 959 * just one probe i/o at a time. All zios that want to probe 960 * this vdev will become parents of the probe io. 961 */ 962 mutex_enter(&vd->vdev_probe_lock); 963 964 if ((pio = vd->vdev_probe_zio) == NULL) { 965 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 966 967 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 968 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 969 ZIO_FLAG_TRYHARD; 970 971 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 972 /* 973 * vdev_cant_read and vdev_cant_write can only 974 * transition from TRUE to FALSE when we have the 975 * SCL_ZIO lock as writer; otherwise they can only 976 * transition from FALSE to TRUE. This ensures that 977 * any zio looking at these values can assume that 978 * failures persist for the life of the I/O. That's 979 * important because when a device has intermittent 980 * connectivity problems, we want to ensure that 981 * they're ascribed to the device (ENXIO) and not 982 * the zio (EIO). 983 * 984 * Since we hold SCL_ZIO as writer here, clear both 985 * values so the probe can reevaluate from first 986 * principles. 987 */ 988 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 989 vd->vdev_cant_read = B_FALSE; 990 vd->vdev_cant_write = B_FALSE; 991 } 992 993 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 994 vdev_probe_done, vps, 995 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 996 997 if (zio != NULL) { 998 vd->vdev_probe_wanted = B_TRUE; 999 spa_async_request(spa, SPA_ASYNC_PROBE); 1000 } 1001 } 1002 1003 if (zio != NULL) 1004 zio_add_child(zio, pio); 1005 1006 mutex_exit(&vd->vdev_probe_lock); 1007 1008 if (vps == NULL) { 1009 ASSERT(zio != NULL); 1010 return (NULL); 1011 } 1012 1013 for (int l = 1; l < VDEV_LABELS; l++) { 1014 zio_nowait(zio_read_phys(pio, vd, 1015 vdev_label_offset(vd->vdev_psize, l, 1016 offsetof(vdev_label_t, vl_pad2)), 1017 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1018 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1019 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1020 } 1021 1022 if (zio == NULL) 1023 return (pio); 1024 1025 zio_nowait(pio); 1026 return (NULL); 1027 } 1028 1029 static void 1030 vdev_open_child(void *arg) 1031 { 1032 vdev_t *vd = arg; 1033 1034 vd->vdev_open_thread = curthread; 1035 vd->vdev_open_error = vdev_open(vd); 1036 vd->vdev_open_thread = NULL; 1037 } 1038 1039 boolean_t 1040 vdev_uses_zvols(vdev_t *vd) 1041 { 1042 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1043 strlen(ZVOL_DIR)) == 0) 1044 return (B_TRUE); 1045 for (int c = 0; c < vd->vdev_children; c++) 1046 if (vdev_uses_zvols(vd->vdev_child[c])) 1047 return (B_TRUE); 1048 return (B_FALSE); 1049 } 1050 1051 void 1052 vdev_open_children(vdev_t *vd) 1053 { 1054 taskq_t *tq; 1055 int children = vd->vdev_children; 1056 1057 /* 1058 * in order to handle pools on top of zvols, do the opens 1059 * in a single thread so that the same thread holds the 1060 * spa_namespace_lock 1061 */ 1062 if (vdev_uses_zvols(vd)) { 1063 for (int c = 0; c < children; c++) 1064 vd->vdev_child[c]->vdev_open_error = 1065 vdev_open(vd->vdev_child[c]); 1066 return; 1067 } 1068 tq = taskq_create("vdev_open", children, minclsyspri, 1069 children, children, TASKQ_PREPOPULATE); 1070 1071 for (int c = 0; c < children; c++) 1072 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1073 TQ_SLEEP) != NULL); 1074 1075 taskq_destroy(tq); 1076 } 1077 1078 /* 1079 * Prepare a virtual device for access. 1080 */ 1081 int 1082 vdev_open(vdev_t *vd) 1083 { 1084 spa_t *spa = vd->vdev_spa; 1085 int error; 1086 uint64_t osize = 0; 1087 uint64_t asize, psize; 1088 uint64_t ashift = 0; 1089 1090 ASSERT(vd->vdev_open_thread == curthread || 1091 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1092 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1093 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1094 vd->vdev_state == VDEV_STATE_OFFLINE); 1095 1096 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1097 vd->vdev_cant_read = B_FALSE; 1098 vd->vdev_cant_write = B_FALSE; 1099 vd->vdev_min_asize = vdev_get_min_asize(vd); 1100 1101 /* 1102 * If this vdev is not removed, check its fault status. If it's 1103 * faulted, bail out of the open. 1104 */ 1105 if (!vd->vdev_removed && vd->vdev_faulted) { 1106 ASSERT(vd->vdev_children == 0); 1107 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1108 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1109 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1110 vd->vdev_label_aux); 1111 return (ENXIO); 1112 } else if (vd->vdev_offline) { 1113 ASSERT(vd->vdev_children == 0); 1114 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1115 return (ENXIO); 1116 } 1117 1118 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 1119 1120 if (zio_injection_enabled && error == 0) 1121 error = zio_handle_device_injection(vd, NULL, ENXIO); 1122 1123 if (error) { 1124 if (vd->vdev_removed && 1125 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1126 vd->vdev_removed = B_FALSE; 1127 1128 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1129 vd->vdev_stat.vs_aux); 1130 return (error); 1131 } 1132 1133 vd->vdev_removed = B_FALSE; 1134 1135 /* 1136 * Recheck the faulted flag now that we have confirmed that 1137 * the vdev is accessible. If we're faulted, bail. 1138 */ 1139 if (vd->vdev_faulted) { 1140 ASSERT(vd->vdev_children == 0); 1141 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1142 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1143 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1144 vd->vdev_label_aux); 1145 return (ENXIO); 1146 } 1147 1148 if (vd->vdev_degraded) { 1149 ASSERT(vd->vdev_children == 0); 1150 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1151 VDEV_AUX_ERR_EXCEEDED); 1152 } else { 1153 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1154 } 1155 1156 /* 1157 * For hole or missing vdevs we just return success. 1158 */ 1159 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1160 return (0); 1161 1162 for (int c = 0; c < vd->vdev_children; c++) { 1163 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1164 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1165 VDEV_AUX_NONE); 1166 break; 1167 } 1168 } 1169 1170 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1171 1172 if (vd->vdev_children == 0) { 1173 if (osize < SPA_MINDEVSIZE) { 1174 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1175 VDEV_AUX_TOO_SMALL); 1176 return (EOVERFLOW); 1177 } 1178 psize = osize; 1179 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1180 } else { 1181 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1182 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1183 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1184 VDEV_AUX_TOO_SMALL); 1185 return (EOVERFLOW); 1186 } 1187 psize = 0; 1188 asize = osize; 1189 } 1190 1191 vd->vdev_psize = psize; 1192 1193 /* 1194 * Make sure the allocatable size hasn't shrunk. 1195 */ 1196 if (asize < vd->vdev_min_asize) { 1197 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1198 VDEV_AUX_BAD_LABEL); 1199 return (EINVAL); 1200 } 1201 1202 if (vd->vdev_asize == 0) { 1203 /* 1204 * This is the first-ever open, so use the computed values. 1205 * For testing purposes, a higher ashift can be requested. 1206 */ 1207 vd->vdev_asize = asize; 1208 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1209 } else { 1210 /* 1211 * Make sure the alignment requirement hasn't increased. 1212 */ 1213 if (ashift > vd->vdev_top->vdev_ashift) { 1214 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1215 VDEV_AUX_BAD_LABEL); 1216 return (EINVAL); 1217 } 1218 } 1219 1220 /* 1221 * If all children are healthy and the asize has increased, 1222 * then we've experienced dynamic LUN growth. If automatic 1223 * expansion is enabled then use the additional space. 1224 */ 1225 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1226 (vd->vdev_expanding || spa->spa_autoexpand)) 1227 vd->vdev_asize = asize; 1228 1229 vdev_set_min_asize(vd); 1230 1231 /* 1232 * Ensure we can issue some IO before declaring the 1233 * vdev open for business. 1234 */ 1235 if (vd->vdev_ops->vdev_op_leaf && 1236 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1237 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1238 VDEV_AUX_IO_FAILURE); 1239 return (error); 1240 } 1241 1242 /* 1243 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1244 * resilver. But don't do this if we are doing a reopen for a scrub, 1245 * since this would just restart the scrub we are already doing. 1246 */ 1247 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1248 vdev_resilver_needed(vd, NULL, NULL)) 1249 spa_async_request(spa, SPA_ASYNC_RESILVER); 1250 1251 return (0); 1252 } 1253 1254 /* 1255 * Called once the vdevs are all opened, this routine validates the label 1256 * contents. This needs to be done before vdev_load() so that we don't 1257 * inadvertently do repair I/Os to the wrong device. 1258 * 1259 * This function will only return failure if one of the vdevs indicates that it 1260 * has since been destroyed or exported. This is only possible if 1261 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1262 * will be updated but the function will return 0. 1263 */ 1264 int 1265 vdev_validate(vdev_t *vd) 1266 { 1267 spa_t *spa = vd->vdev_spa; 1268 nvlist_t *label; 1269 uint64_t guid, top_guid; 1270 uint64_t state; 1271 1272 for (int c = 0; c < vd->vdev_children; c++) 1273 if (vdev_validate(vd->vdev_child[c]) != 0) 1274 return (EBADF); 1275 1276 /* 1277 * If the device has already failed, or was marked offline, don't do 1278 * any further validation. Otherwise, label I/O will fail and we will 1279 * overwrite the previous state. 1280 */ 1281 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1282 1283 if ((label = vdev_label_read_config(vd)) == NULL) { 1284 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1285 VDEV_AUX_BAD_LABEL); 1286 return (0); 1287 } 1288 1289 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1290 &guid) != 0 || guid != spa_guid(spa)) { 1291 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1292 VDEV_AUX_CORRUPT_DATA); 1293 nvlist_free(label); 1294 return (0); 1295 } 1296 1297 /* 1298 * If this vdev just became a top-level vdev because its 1299 * sibling was detached, it will have adopted the parent's 1300 * vdev guid -- but the label may or may not be on disk yet. 1301 * Fortunately, either version of the label will have the 1302 * same top guid, so if we're a top-level vdev, we can 1303 * safely compare to that instead. 1304 */ 1305 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1306 &guid) != 0 || 1307 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1308 &top_guid) != 0 || 1309 (vd->vdev_guid != guid && 1310 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1311 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1312 VDEV_AUX_CORRUPT_DATA); 1313 nvlist_free(label); 1314 return (0); 1315 } 1316 1317 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1318 &state) != 0) { 1319 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1320 VDEV_AUX_CORRUPT_DATA); 1321 nvlist_free(label); 1322 return (0); 1323 } 1324 1325 nvlist_free(label); 1326 1327 /* 1328 * If spa->spa_load_verbatim is true, no need to check the 1329 * state of the pool. 1330 */ 1331 if (!spa->spa_load_verbatim && 1332 spa->spa_load_state == SPA_LOAD_OPEN && 1333 state != POOL_STATE_ACTIVE) 1334 return (EBADF); 1335 1336 /* 1337 * If we were able to open and validate a vdev that was 1338 * previously marked permanently unavailable, clear that state 1339 * now. 1340 */ 1341 if (vd->vdev_not_present) 1342 vd->vdev_not_present = 0; 1343 } 1344 1345 return (0); 1346 } 1347 1348 /* 1349 * Close a virtual device. 1350 */ 1351 void 1352 vdev_close(vdev_t *vd) 1353 { 1354 spa_t *spa = vd->vdev_spa; 1355 1356 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1357 1358 vd->vdev_ops->vdev_op_close(vd); 1359 1360 vdev_cache_purge(vd); 1361 1362 /* 1363 * We record the previous state before we close it, so that if we are 1364 * doing a reopen(), we don't generate FMA ereports if we notice that 1365 * it's still faulted. 1366 */ 1367 vd->vdev_prevstate = vd->vdev_state; 1368 1369 if (vd->vdev_offline) 1370 vd->vdev_state = VDEV_STATE_OFFLINE; 1371 else 1372 vd->vdev_state = VDEV_STATE_CLOSED; 1373 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1374 } 1375 1376 void 1377 vdev_reopen(vdev_t *vd) 1378 { 1379 spa_t *spa = vd->vdev_spa; 1380 1381 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1382 1383 vdev_close(vd); 1384 (void) vdev_open(vd); 1385 1386 /* 1387 * Call vdev_validate() here to make sure we have the same device. 1388 * Otherwise, a device with an invalid label could be successfully 1389 * opened in response to vdev_reopen(). 1390 */ 1391 if (vd->vdev_aux) { 1392 (void) vdev_validate_aux(vd); 1393 if (vdev_readable(vd) && vdev_writeable(vd) && 1394 vd->vdev_aux == &spa->spa_l2cache && 1395 !l2arc_vdev_present(vd)) 1396 l2arc_add_vdev(spa, vd); 1397 } else { 1398 (void) vdev_validate(vd); 1399 } 1400 1401 /* 1402 * Reassess parent vdev's health. 1403 */ 1404 vdev_propagate_state(vd); 1405 } 1406 1407 int 1408 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1409 { 1410 int error; 1411 1412 /* 1413 * Normally, partial opens (e.g. of a mirror) are allowed. 1414 * For a create, however, we want to fail the request if 1415 * there are any components we can't open. 1416 */ 1417 error = vdev_open(vd); 1418 1419 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1420 vdev_close(vd); 1421 return (error ? error : ENXIO); 1422 } 1423 1424 /* 1425 * Recursively initialize all labels. 1426 */ 1427 if ((error = vdev_label_init(vd, txg, isreplacing ? 1428 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1429 vdev_close(vd); 1430 return (error); 1431 } 1432 1433 return (0); 1434 } 1435 1436 void 1437 vdev_metaslab_set_size(vdev_t *vd) 1438 { 1439 /* 1440 * Aim for roughly 200 metaslabs per vdev. 1441 */ 1442 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1443 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1444 } 1445 1446 void 1447 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1448 { 1449 ASSERT(vd == vd->vdev_top); 1450 ASSERT(!vd->vdev_ishole); 1451 ASSERT(ISP2(flags)); 1452 1453 if (flags & VDD_METASLAB) 1454 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1455 1456 if (flags & VDD_DTL) 1457 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1458 1459 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1460 } 1461 1462 /* 1463 * DTLs. 1464 * 1465 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1466 * the vdev has less than perfect replication. There are three kinds of DTL: 1467 * 1468 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1469 * 1470 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1471 * 1472 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1473 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1474 * txgs that was scrubbed. 1475 * 1476 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1477 * persistent errors or just some device being offline. 1478 * Unlike the other three, the DTL_OUTAGE map is not generally 1479 * maintained; it's only computed when needed, typically to 1480 * determine whether a device can be detached. 1481 * 1482 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1483 * either has the data or it doesn't. 1484 * 1485 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1486 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1487 * if any child is less than fully replicated, then so is its parent. 1488 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1489 * comprising only those txgs which appear in 'maxfaults' or more children; 1490 * those are the txgs we don't have enough replication to read. For example, 1491 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1492 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1493 * two child DTL_MISSING maps. 1494 * 1495 * It should be clear from the above that to compute the DTLs and outage maps 1496 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1497 * Therefore, that is all we keep on disk. When loading the pool, or after 1498 * a configuration change, we generate all other DTLs from first principles. 1499 */ 1500 void 1501 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1502 { 1503 space_map_t *sm = &vd->vdev_dtl[t]; 1504 1505 ASSERT(t < DTL_TYPES); 1506 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1507 1508 mutex_enter(sm->sm_lock); 1509 if (!space_map_contains(sm, txg, size)) 1510 space_map_add(sm, txg, size); 1511 mutex_exit(sm->sm_lock); 1512 } 1513 1514 boolean_t 1515 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1516 { 1517 space_map_t *sm = &vd->vdev_dtl[t]; 1518 boolean_t dirty = B_FALSE; 1519 1520 ASSERT(t < DTL_TYPES); 1521 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1522 1523 mutex_enter(sm->sm_lock); 1524 if (sm->sm_space != 0) 1525 dirty = space_map_contains(sm, txg, size); 1526 mutex_exit(sm->sm_lock); 1527 1528 return (dirty); 1529 } 1530 1531 boolean_t 1532 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1533 { 1534 space_map_t *sm = &vd->vdev_dtl[t]; 1535 boolean_t empty; 1536 1537 mutex_enter(sm->sm_lock); 1538 empty = (sm->sm_space == 0); 1539 mutex_exit(sm->sm_lock); 1540 1541 return (empty); 1542 } 1543 1544 /* 1545 * Reassess DTLs after a config change or scrub completion. 1546 */ 1547 void 1548 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1549 { 1550 spa_t *spa = vd->vdev_spa; 1551 avl_tree_t reftree; 1552 int minref; 1553 1554 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1555 1556 for (int c = 0; c < vd->vdev_children; c++) 1557 vdev_dtl_reassess(vd->vdev_child[c], txg, 1558 scrub_txg, scrub_done); 1559 1560 if (vd == spa->spa_root_vdev || vd->vdev_ishole) 1561 return; 1562 1563 if (vd->vdev_ops->vdev_op_leaf) { 1564 mutex_enter(&vd->vdev_dtl_lock); 1565 if (scrub_txg != 0 && 1566 (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) { 1567 /* XXX should check scrub_done? */ 1568 /* 1569 * We completed a scrub up to scrub_txg. If we 1570 * did it without rebooting, then the scrub dtl 1571 * will be valid, so excise the old region and 1572 * fold in the scrub dtl. Otherwise, leave the 1573 * dtl as-is if there was an error. 1574 * 1575 * There's little trick here: to excise the beginning 1576 * of the DTL_MISSING map, we put it into a reference 1577 * tree and then add a segment with refcnt -1 that 1578 * covers the range [0, scrub_txg). This means 1579 * that each txg in that range has refcnt -1 or 0. 1580 * We then add DTL_SCRUB with a refcnt of 2, so that 1581 * entries in the range [0, scrub_txg) will have a 1582 * positive refcnt -- either 1 or 2. We then convert 1583 * the reference tree into the new DTL_MISSING map. 1584 */ 1585 space_map_ref_create(&reftree); 1586 space_map_ref_add_map(&reftree, 1587 &vd->vdev_dtl[DTL_MISSING], 1); 1588 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); 1589 space_map_ref_add_map(&reftree, 1590 &vd->vdev_dtl[DTL_SCRUB], 2); 1591 space_map_ref_generate_map(&reftree, 1592 &vd->vdev_dtl[DTL_MISSING], 1); 1593 space_map_ref_destroy(&reftree); 1594 } 1595 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1596 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1597 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); 1598 if (scrub_done) 1599 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1600 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1601 if (!vdev_readable(vd)) 1602 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1603 else 1604 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1605 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); 1606 mutex_exit(&vd->vdev_dtl_lock); 1607 1608 if (txg != 0) 1609 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1610 return; 1611 } 1612 1613 mutex_enter(&vd->vdev_dtl_lock); 1614 for (int t = 0; t < DTL_TYPES; t++) { 1615 if (t == DTL_SCRUB) 1616 continue; /* leaf vdevs only */ 1617 if (t == DTL_PARTIAL) 1618 minref = 1; /* i.e. non-zero */ 1619 else if (vd->vdev_nparity != 0) 1620 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1621 else 1622 minref = vd->vdev_children; /* any kind of mirror */ 1623 space_map_ref_create(&reftree); 1624 for (int c = 0; c < vd->vdev_children; c++) { 1625 vdev_t *cvd = vd->vdev_child[c]; 1626 mutex_enter(&cvd->vdev_dtl_lock); 1627 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1); 1628 mutex_exit(&cvd->vdev_dtl_lock); 1629 } 1630 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); 1631 space_map_ref_destroy(&reftree); 1632 } 1633 mutex_exit(&vd->vdev_dtl_lock); 1634 } 1635 1636 static int 1637 vdev_dtl_load(vdev_t *vd) 1638 { 1639 spa_t *spa = vd->vdev_spa; 1640 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1641 objset_t *mos = spa->spa_meta_objset; 1642 dmu_buf_t *db; 1643 int error; 1644 1645 ASSERT(vd->vdev_children == 0); 1646 1647 if (smo->smo_object == 0) 1648 return (0); 1649 1650 ASSERT(!vd->vdev_ishole); 1651 1652 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1653 return (error); 1654 1655 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1656 bcopy(db->db_data, smo, sizeof (*smo)); 1657 dmu_buf_rele(db, FTAG); 1658 1659 mutex_enter(&vd->vdev_dtl_lock); 1660 error = space_map_load(&vd->vdev_dtl[DTL_MISSING], 1661 NULL, SM_ALLOC, smo, mos); 1662 mutex_exit(&vd->vdev_dtl_lock); 1663 1664 return (error); 1665 } 1666 1667 void 1668 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1669 { 1670 spa_t *spa = vd->vdev_spa; 1671 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1672 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; 1673 objset_t *mos = spa->spa_meta_objset; 1674 space_map_t smsync; 1675 kmutex_t smlock; 1676 dmu_buf_t *db; 1677 dmu_tx_t *tx; 1678 1679 ASSERT(!vd->vdev_ishole); 1680 1681 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1682 1683 if (vd->vdev_detached) { 1684 if (smo->smo_object != 0) { 1685 int err = dmu_object_free(mos, smo->smo_object, tx); 1686 ASSERT3U(err, ==, 0); 1687 smo->smo_object = 0; 1688 } 1689 dmu_tx_commit(tx); 1690 return; 1691 } 1692 1693 if (smo->smo_object == 0) { 1694 ASSERT(smo->smo_objsize == 0); 1695 ASSERT(smo->smo_alloc == 0); 1696 smo->smo_object = dmu_object_alloc(mos, 1697 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1698 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1699 ASSERT(smo->smo_object != 0); 1700 vdev_config_dirty(vd->vdev_top); 1701 } 1702 1703 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1704 1705 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1706 &smlock); 1707 1708 mutex_enter(&smlock); 1709 1710 mutex_enter(&vd->vdev_dtl_lock); 1711 space_map_walk(sm, space_map_add, &smsync); 1712 mutex_exit(&vd->vdev_dtl_lock); 1713 1714 space_map_truncate(smo, mos, tx); 1715 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1716 1717 space_map_destroy(&smsync); 1718 1719 mutex_exit(&smlock); 1720 mutex_destroy(&smlock); 1721 1722 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1723 dmu_buf_will_dirty(db, tx); 1724 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1725 bcopy(smo, db->db_data, sizeof (*smo)); 1726 dmu_buf_rele(db, FTAG); 1727 1728 dmu_tx_commit(tx); 1729 } 1730 1731 /* 1732 * Determine whether the specified vdev can be offlined/detached/removed 1733 * without losing data. 1734 */ 1735 boolean_t 1736 vdev_dtl_required(vdev_t *vd) 1737 { 1738 spa_t *spa = vd->vdev_spa; 1739 vdev_t *tvd = vd->vdev_top; 1740 uint8_t cant_read = vd->vdev_cant_read; 1741 boolean_t required; 1742 1743 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1744 1745 if (vd == spa->spa_root_vdev || vd == tvd) 1746 return (B_TRUE); 1747 1748 /* 1749 * Temporarily mark the device as unreadable, and then determine 1750 * whether this results in any DTL outages in the top-level vdev. 1751 * If not, we can safely offline/detach/remove the device. 1752 */ 1753 vd->vdev_cant_read = B_TRUE; 1754 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1755 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1756 vd->vdev_cant_read = cant_read; 1757 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1758 1759 return (required); 1760 } 1761 1762 /* 1763 * Determine if resilver is needed, and if so the txg range. 1764 */ 1765 boolean_t 1766 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1767 { 1768 boolean_t needed = B_FALSE; 1769 uint64_t thismin = UINT64_MAX; 1770 uint64_t thismax = 0; 1771 1772 if (vd->vdev_children == 0) { 1773 mutex_enter(&vd->vdev_dtl_lock); 1774 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && 1775 vdev_writeable(vd)) { 1776 space_seg_t *ss; 1777 1778 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); 1779 thismin = ss->ss_start - 1; 1780 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); 1781 thismax = ss->ss_end; 1782 needed = B_TRUE; 1783 } 1784 mutex_exit(&vd->vdev_dtl_lock); 1785 } else { 1786 for (int c = 0; c < vd->vdev_children; c++) { 1787 vdev_t *cvd = vd->vdev_child[c]; 1788 uint64_t cmin, cmax; 1789 1790 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1791 thismin = MIN(thismin, cmin); 1792 thismax = MAX(thismax, cmax); 1793 needed = B_TRUE; 1794 } 1795 } 1796 } 1797 1798 if (needed && minp) { 1799 *minp = thismin; 1800 *maxp = thismax; 1801 } 1802 return (needed); 1803 } 1804 1805 void 1806 vdev_load(vdev_t *vd) 1807 { 1808 /* 1809 * Recursively load all children. 1810 */ 1811 for (int c = 0; c < vd->vdev_children; c++) 1812 vdev_load(vd->vdev_child[c]); 1813 1814 /* 1815 * If this is a top-level vdev, initialize its metaslabs. 1816 */ 1817 if (vd == vd->vdev_top && !vd->vdev_ishole && 1818 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1819 vdev_metaslab_init(vd, 0) != 0)) 1820 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1821 VDEV_AUX_CORRUPT_DATA); 1822 1823 /* 1824 * If this is a leaf vdev, load its DTL. 1825 */ 1826 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1827 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1828 VDEV_AUX_CORRUPT_DATA); 1829 } 1830 1831 /* 1832 * The special vdev case is used for hot spares and l2cache devices. Its 1833 * sole purpose it to set the vdev state for the associated vdev. To do this, 1834 * we make sure that we can open the underlying device, then try to read the 1835 * label, and make sure that the label is sane and that it hasn't been 1836 * repurposed to another pool. 1837 */ 1838 int 1839 vdev_validate_aux(vdev_t *vd) 1840 { 1841 nvlist_t *label; 1842 uint64_t guid, version; 1843 uint64_t state; 1844 1845 if (!vdev_readable(vd)) 1846 return (0); 1847 1848 if ((label = vdev_label_read_config(vd)) == NULL) { 1849 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1850 VDEV_AUX_CORRUPT_DATA); 1851 return (-1); 1852 } 1853 1854 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1855 version > SPA_VERSION || 1856 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1857 guid != vd->vdev_guid || 1858 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1859 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1860 VDEV_AUX_CORRUPT_DATA); 1861 nvlist_free(label); 1862 return (-1); 1863 } 1864 1865 /* 1866 * We don't actually check the pool state here. If it's in fact in 1867 * use by another pool, we update this fact on the fly when requested. 1868 */ 1869 nvlist_free(label); 1870 return (0); 1871 } 1872 1873 void 1874 vdev_remove(vdev_t *vd, uint64_t txg) 1875 { 1876 spa_t *spa = vd->vdev_spa; 1877 objset_t *mos = spa->spa_meta_objset; 1878 dmu_tx_t *tx; 1879 1880 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 1881 1882 if (vd->vdev_dtl_smo.smo_object) { 1883 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0); 1884 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx); 1885 vd->vdev_dtl_smo.smo_object = 0; 1886 } 1887 1888 if (vd->vdev_ms != NULL) { 1889 for (int m = 0; m < vd->vdev_ms_count; m++) { 1890 metaslab_t *msp = vd->vdev_ms[m]; 1891 1892 if (msp == NULL || msp->ms_smo.smo_object == 0) 1893 continue; 1894 1895 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0); 1896 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx); 1897 msp->ms_smo.smo_object = 0; 1898 } 1899 } 1900 1901 if (vd->vdev_ms_array) { 1902 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 1903 vd->vdev_ms_array = 0; 1904 vd->vdev_ms_shift = 0; 1905 } 1906 dmu_tx_commit(tx); 1907 } 1908 1909 void 1910 vdev_sync_done(vdev_t *vd, uint64_t txg) 1911 { 1912 metaslab_t *msp; 1913 1914 ASSERT(!vd->vdev_ishole); 1915 1916 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1917 metaslab_sync_done(msp, txg); 1918 } 1919 1920 void 1921 vdev_sync(vdev_t *vd, uint64_t txg) 1922 { 1923 spa_t *spa = vd->vdev_spa; 1924 vdev_t *lvd; 1925 metaslab_t *msp; 1926 dmu_tx_t *tx; 1927 1928 ASSERT(!vd->vdev_ishole); 1929 1930 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 1931 ASSERT(vd == vd->vdev_top); 1932 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1933 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1934 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1935 ASSERT(vd->vdev_ms_array != 0); 1936 vdev_config_dirty(vd); 1937 dmu_tx_commit(tx); 1938 } 1939 1940 if (vd->vdev_removing) 1941 vdev_remove(vd, txg); 1942 1943 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1944 metaslab_sync(msp, txg); 1945 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 1946 } 1947 1948 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1949 vdev_dtl_sync(lvd, txg); 1950 1951 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1952 } 1953 1954 uint64_t 1955 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1956 { 1957 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1958 } 1959 1960 /* 1961 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 1962 * not be opened, and no I/O is attempted. 1963 */ 1964 int 1965 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 1966 { 1967 vdev_t *vd; 1968 1969 spa_vdev_state_enter(spa, SCL_NONE); 1970 1971 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1972 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1973 1974 if (!vd->vdev_ops->vdev_op_leaf) 1975 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1976 1977 /* 1978 * We don't directly use the aux state here, but if we do a 1979 * vdev_reopen(), we need this value to be present to remember why we 1980 * were faulted. 1981 */ 1982 vd->vdev_label_aux = aux; 1983 1984 /* 1985 * Faulted state takes precedence over degraded. 1986 */ 1987 vd->vdev_faulted = 1ULL; 1988 vd->vdev_degraded = 0ULL; 1989 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 1990 1991 /* 1992 * If marking the vdev as faulted cause the top-level vdev to become 1993 * unavailable, then back off and simply mark the vdev as degraded 1994 * instead. 1995 */ 1996 if (vdev_is_dead(vd->vdev_top) && !vd->vdev_islog && 1997 vd->vdev_aux == NULL) { 1998 vd->vdev_degraded = 1ULL; 1999 vd->vdev_faulted = 0ULL; 2000 2001 /* 2002 * If we reopen the device and it's not dead, only then do we 2003 * mark it degraded. 2004 */ 2005 vdev_reopen(vd); 2006 2007 if (vdev_readable(vd)) 2008 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2009 } 2010 2011 return (spa_vdev_state_exit(spa, vd, 0)); 2012 } 2013 2014 /* 2015 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2016 * user that something is wrong. The vdev continues to operate as normal as far 2017 * as I/O is concerned. 2018 */ 2019 int 2020 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2021 { 2022 vdev_t *vd; 2023 2024 spa_vdev_state_enter(spa, SCL_NONE); 2025 2026 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2027 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2028 2029 if (!vd->vdev_ops->vdev_op_leaf) 2030 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2031 2032 /* 2033 * If the vdev is already faulted, then don't do anything. 2034 */ 2035 if (vd->vdev_faulted || vd->vdev_degraded) 2036 return (spa_vdev_state_exit(spa, NULL, 0)); 2037 2038 vd->vdev_degraded = 1ULL; 2039 if (!vdev_is_dead(vd)) 2040 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2041 aux); 2042 2043 return (spa_vdev_state_exit(spa, vd, 0)); 2044 } 2045 2046 /* 2047 * Online the given vdev. If 'unspare' is set, it implies two things. First, 2048 * any attached spare device should be detached when the device finishes 2049 * resilvering. Second, the online should be treated like a 'test' online case, 2050 * so no FMA events are generated if the device fails to open. 2051 */ 2052 int 2053 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2054 { 2055 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2056 2057 spa_vdev_state_enter(spa, SCL_NONE); 2058 2059 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2060 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2061 2062 if (!vd->vdev_ops->vdev_op_leaf) 2063 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2064 2065 tvd = vd->vdev_top; 2066 vd->vdev_offline = B_FALSE; 2067 vd->vdev_tmpoffline = B_FALSE; 2068 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2069 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2070 2071 /* XXX - L2ARC 1.0 does not support expansion */ 2072 if (!vd->vdev_aux) { 2073 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2074 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2075 } 2076 2077 vdev_reopen(tvd); 2078 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2079 2080 if (!vd->vdev_aux) { 2081 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2082 pvd->vdev_expanding = B_FALSE; 2083 } 2084 2085 if (newstate) 2086 *newstate = vd->vdev_state; 2087 if ((flags & ZFS_ONLINE_UNSPARE) && 2088 !vdev_is_dead(vd) && vd->vdev_parent && 2089 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2090 vd->vdev_parent->vdev_child[0] == vd) 2091 vd->vdev_unspare = B_TRUE; 2092 2093 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2094 2095 /* XXX - L2ARC 1.0 does not support expansion */ 2096 if (vd->vdev_aux) 2097 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2098 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2099 } 2100 return (spa_vdev_state_exit(spa, vd, 0)); 2101 } 2102 2103 int 2104 vdev_offline_log(spa_t *spa) 2105 { 2106 int error = 0; 2107 2108 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 2109 NULL, DS_FIND_CHILDREN)) == 0) { 2110 2111 /* 2112 * We successfully offlined the log device, sync out the 2113 * current txg so that the "stubby" block can be removed 2114 * by zil_sync(). 2115 */ 2116 txg_wait_synced(spa->spa_dsl_pool, 0); 2117 } 2118 return (error); 2119 } 2120 2121 int 2122 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2123 { 2124 vdev_t *vd, *tvd; 2125 int error = 0; 2126 uint64_t generation; 2127 metaslab_group_t *mg; 2128 2129 top: 2130 spa_vdev_state_enter(spa, SCL_ALLOC); 2131 2132 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2133 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2134 2135 if (!vd->vdev_ops->vdev_op_leaf) 2136 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2137 2138 tvd = vd->vdev_top; 2139 mg = tvd->vdev_mg; 2140 generation = spa->spa_config_generation + 1; 2141 2142 /* 2143 * If the device isn't already offline, try to offline it. 2144 */ 2145 if (!vd->vdev_offline) { 2146 /* 2147 * If this device has the only valid copy of some data, 2148 * don't allow it to be offlined. Log devices are always 2149 * expendable. 2150 */ 2151 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2152 vdev_dtl_required(vd)) 2153 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2154 2155 /* 2156 * If the top-level is a slog and it's had allocations 2157 * then proceed. We check that the vdev's metaslab 2158 * grop is not NULL since it's possible that we may 2159 * have just added this vdev and have not yet initialized 2160 * it's metaslabs. 2161 */ 2162 if (tvd->vdev_islog && mg != NULL) { 2163 /* 2164 * Prevent any future allocations. 2165 */ 2166 metaslab_class_remove(spa->spa_log_class, mg); 2167 (void) spa_vdev_state_exit(spa, vd, 0); 2168 2169 error = vdev_offline_log(spa); 2170 2171 spa_vdev_state_enter(spa, SCL_ALLOC); 2172 2173 /* 2174 * Check to see if the config has changed. 2175 */ 2176 if (error || generation != spa->spa_config_generation) { 2177 metaslab_class_add(spa->spa_log_class, mg); 2178 if (error) 2179 return (spa_vdev_state_exit(spa, 2180 vd, error)); 2181 (void) spa_vdev_state_exit(spa, vd, 0); 2182 goto top; 2183 } 2184 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0); 2185 } 2186 2187 /* 2188 * Offline this device and reopen its top-level vdev. 2189 * If the top-level vdev is a log device then just offline 2190 * it. Otherwise, if this action results in the top-level 2191 * vdev becoming unusable, undo it and fail the request. 2192 */ 2193 vd->vdev_offline = B_TRUE; 2194 vdev_reopen(tvd); 2195 2196 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2197 vdev_is_dead(tvd)) { 2198 vd->vdev_offline = B_FALSE; 2199 vdev_reopen(tvd); 2200 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2201 } 2202 2203 /* 2204 * Add the device back into the metaslab rotor so that 2205 * once we online the device it's open for business. 2206 */ 2207 if (tvd->vdev_islog && mg != NULL) 2208 metaslab_class_add(spa->spa_log_class, mg); 2209 } 2210 2211 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2212 2213 return (spa_vdev_state_exit(spa, vd, 0)); 2214 } 2215 2216 /* 2217 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2218 * vdev_offline(), we assume the spa config is locked. We also clear all 2219 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2220 */ 2221 void 2222 vdev_clear(spa_t *spa, vdev_t *vd) 2223 { 2224 vdev_t *rvd = spa->spa_root_vdev; 2225 2226 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2227 2228 if (vd == NULL) 2229 vd = rvd; 2230 2231 vd->vdev_stat.vs_read_errors = 0; 2232 vd->vdev_stat.vs_write_errors = 0; 2233 vd->vdev_stat.vs_checksum_errors = 0; 2234 2235 for (int c = 0; c < vd->vdev_children; c++) 2236 vdev_clear(spa, vd->vdev_child[c]); 2237 2238 /* 2239 * If we're in the FAULTED state or have experienced failed I/O, then 2240 * clear the persistent state and attempt to reopen the device. We 2241 * also mark the vdev config dirty, so that the new faulted state is 2242 * written out to disk. 2243 */ 2244 if (vd->vdev_faulted || vd->vdev_degraded || 2245 !vdev_readable(vd) || !vdev_writeable(vd)) { 2246 2247 /* 2248 * When reopening in reponse to a clear event, it may be due to 2249 * a fmadm repair request. In this case, if the device is 2250 * still broken, we want to still post the ereport again. 2251 */ 2252 vd->vdev_forcefault = B_TRUE; 2253 2254 vd->vdev_faulted = vd->vdev_degraded = 0; 2255 vd->vdev_cant_read = B_FALSE; 2256 vd->vdev_cant_write = B_FALSE; 2257 2258 vdev_reopen(vd); 2259 2260 vd->vdev_forcefault = B_FALSE; 2261 2262 if (vd != rvd) 2263 vdev_state_dirty(vd->vdev_top); 2264 2265 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2266 spa_async_request(spa, SPA_ASYNC_RESILVER); 2267 2268 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2269 } 2270 2271 /* 2272 * When clearing a FMA-diagnosed fault, we always want to 2273 * unspare the device, as we assume that the original spare was 2274 * done in response to the FMA fault. 2275 */ 2276 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2277 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2278 vd->vdev_parent->vdev_child[0] == vd) 2279 vd->vdev_unspare = B_TRUE; 2280 } 2281 2282 boolean_t 2283 vdev_is_dead(vdev_t *vd) 2284 { 2285 /* 2286 * Holes and missing devices are always considered "dead". 2287 * This simplifies the code since we don't have to check for 2288 * these types of devices in the various code paths. 2289 * Instead we rely on the fact that we skip over dead devices 2290 * before issuing I/O to them. 2291 */ 2292 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2293 vd->vdev_ops == &vdev_missing_ops); 2294 } 2295 2296 boolean_t 2297 vdev_readable(vdev_t *vd) 2298 { 2299 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2300 } 2301 2302 boolean_t 2303 vdev_writeable(vdev_t *vd) 2304 { 2305 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2306 } 2307 2308 boolean_t 2309 vdev_allocatable(vdev_t *vd) 2310 { 2311 uint64_t state = vd->vdev_state; 2312 2313 /* 2314 * We currently allow allocations from vdevs which may be in the 2315 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2316 * fails to reopen then we'll catch it later when we're holding 2317 * the proper locks. Note that we have to get the vdev state 2318 * in a local variable because although it changes atomically, 2319 * we're asking two separate questions about it. 2320 */ 2321 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2322 !vd->vdev_cant_write && !vd->vdev_ishole && !vd->vdev_removing); 2323 } 2324 2325 boolean_t 2326 vdev_accessible(vdev_t *vd, zio_t *zio) 2327 { 2328 ASSERT(zio->io_vd == vd); 2329 2330 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2331 return (B_FALSE); 2332 2333 if (zio->io_type == ZIO_TYPE_READ) 2334 return (!vd->vdev_cant_read); 2335 2336 if (zio->io_type == ZIO_TYPE_WRITE) 2337 return (!vd->vdev_cant_write); 2338 2339 return (B_TRUE); 2340 } 2341 2342 /* 2343 * Get statistics for the given vdev. 2344 */ 2345 void 2346 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2347 { 2348 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2349 2350 mutex_enter(&vd->vdev_stat_lock); 2351 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2352 vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors; 2353 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2354 vs->vs_state = vd->vdev_state; 2355 vs->vs_rsize = vdev_get_min_asize(vd); 2356 if (vd->vdev_ops->vdev_op_leaf) 2357 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2358 mutex_exit(&vd->vdev_stat_lock); 2359 2360 /* 2361 * If we're getting stats on the root vdev, aggregate the I/O counts 2362 * over all top-level vdevs (i.e. the direct children of the root). 2363 */ 2364 if (vd == rvd) { 2365 for (int c = 0; c < rvd->vdev_children; c++) { 2366 vdev_t *cvd = rvd->vdev_child[c]; 2367 vdev_stat_t *cvs = &cvd->vdev_stat; 2368 2369 mutex_enter(&vd->vdev_stat_lock); 2370 for (int t = 0; t < ZIO_TYPES; t++) { 2371 vs->vs_ops[t] += cvs->vs_ops[t]; 2372 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2373 } 2374 vs->vs_scrub_examined += cvs->vs_scrub_examined; 2375 mutex_exit(&vd->vdev_stat_lock); 2376 } 2377 } 2378 } 2379 2380 void 2381 vdev_clear_stats(vdev_t *vd) 2382 { 2383 mutex_enter(&vd->vdev_stat_lock); 2384 vd->vdev_stat.vs_space = 0; 2385 vd->vdev_stat.vs_dspace = 0; 2386 vd->vdev_stat.vs_alloc = 0; 2387 mutex_exit(&vd->vdev_stat_lock); 2388 } 2389 2390 void 2391 vdev_stat_update(zio_t *zio, uint64_t psize) 2392 { 2393 spa_t *spa = zio->io_spa; 2394 vdev_t *rvd = spa->spa_root_vdev; 2395 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2396 vdev_t *pvd; 2397 uint64_t txg = zio->io_txg; 2398 vdev_stat_t *vs = &vd->vdev_stat; 2399 zio_type_t type = zio->io_type; 2400 int flags = zio->io_flags; 2401 2402 /* 2403 * If this i/o is a gang leader, it didn't do any actual work. 2404 */ 2405 if (zio->io_gang_tree) 2406 return; 2407 2408 if (zio->io_error == 0) { 2409 /* 2410 * If this is a root i/o, don't count it -- we've already 2411 * counted the top-level vdevs, and vdev_get_stats() will 2412 * aggregate them when asked. This reduces contention on 2413 * the root vdev_stat_lock and implicitly handles blocks 2414 * that compress away to holes, for which there is no i/o. 2415 * (Holes never create vdev children, so all the counters 2416 * remain zero, which is what we want.) 2417 * 2418 * Note: this only applies to successful i/o (io_error == 0) 2419 * because unlike i/o counts, errors are not additive. 2420 * When reading a ditto block, for example, failure of 2421 * one top-level vdev does not imply a root-level error. 2422 */ 2423 if (vd == rvd) 2424 return; 2425 2426 ASSERT(vd == zio->io_vd); 2427 2428 if (flags & ZIO_FLAG_IO_BYPASS) 2429 return; 2430 2431 mutex_enter(&vd->vdev_stat_lock); 2432 2433 if (flags & ZIO_FLAG_IO_REPAIR) { 2434 if (flags & ZIO_FLAG_SCRUB_THREAD) 2435 vs->vs_scrub_repaired += psize; 2436 if (flags & ZIO_FLAG_SELF_HEAL) 2437 vs->vs_self_healed += psize; 2438 } 2439 2440 vs->vs_ops[type]++; 2441 vs->vs_bytes[type] += psize; 2442 2443 mutex_exit(&vd->vdev_stat_lock); 2444 return; 2445 } 2446 2447 if (flags & ZIO_FLAG_SPECULATIVE) 2448 return; 2449 2450 /* 2451 * If this is an I/O error that is going to be retried, then ignore the 2452 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2453 * hard errors, when in reality they can happen for any number of 2454 * innocuous reasons (bus resets, MPxIO link failure, etc). 2455 */ 2456 if (zio->io_error == EIO && 2457 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2458 return; 2459 2460 /* 2461 * Intent logs writes won't propagate their error to the root 2462 * I/O so don't mark these types of failures as pool-level 2463 * errors. 2464 */ 2465 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2466 return; 2467 2468 mutex_enter(&vd->vdev_stat_lock); 2469 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2470 if (zio->io_error == ECKSUM) 2471 vs->vs_checksum_errors++; 2472 else 2473 vs->vs_read_errors++; 2474 } 2475 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2476 vs->vs_write_errors++; 2477 mutex_exit(&vd->vdev_stat_lock); 2478 2479 if (type == ZIO_TYPE_WRITE && txg != 0 && 2480 (!(flags & ZIO_FLAG_IO_REPAIR) || 2481 (flags & ZIO_FLAG_SCRUB_THREAD))) { 2482 /* 2483 * This is either a normal write (not a repair), or it's a 2484 * repair induced by the scrub thread. In the normal case, 2485 * we commit the DTL change in the same txg as the block 2486 * was born. In the scrub-induced repair case, we know that 2487 * scrubs run in first-pass syncing context, so we commit 2488 * the DTL change in spa->spa_syncing_txg. 2489 * 2490 * We currently do not make DTL entries for failed spontaneous 2491 * self-healing writes triggered by normal (non-scrubbing) 2492 * reads, because we have no transactional context in which to 2493 * do so -- and it's not clear that it'd be desirable anyway. 2494 */ 2495 if (vd->vdev_ops->vdev_op_leaf) { 2496 uint64_t commit_txg = txg; 2497 if (flags & ZIO_FLAG_SCRUB_THREAD) { 2498 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2499 ASSERT(spa_sync_pass(spa) == 1); 2500 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2501 commit_txg = spa->spa_syncing_txg; 2502 } 2503 ASSERT(commit_txg >= spa->spa_syncing_txg); 2504 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2505 return; 2506 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2507 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2508 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2509 } 2510 if (vd != rvd) 2511 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2512 } 2513 } 2514 2515 void 2516 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 2517 { 2518 vdev_stat_t *vs = &vd->vdev_stat; 2519 2520 for (int c = 0; c < vd->vdev_children; c++) 2521 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 2522 2523 mutex_enter(&vd->vdev_stat_lock); 2524 2525 if (type == POOL_SCRUB_NONE) { 2526 /* 2527 * Update completion and end time. Leave everything else alone 2528 * so we can report what happened during the previous scrub. 2529 */ 2530 vs->vs_scrub_complete = complete; 2531 vs->vs_scrub_end = gethrestime_sec(); 2532 } else { 2533 vs->vs_scrub_type = type; 2534 vs->vs_scrub_complete = 0; 2535 vs->vs_scrub_examined = 0; 2536 vs->vs_scrub_repaired = 0; 2537 vs->vs_scrub_start = gethrestime_sec(); 2538 vs->vs_scrub_end = 0; 2539 } 2540 2541 mutex_exit(&vd->vdev_stat_lock); 2542 } 2543 2544 /* 2545 * Update the in-core space usage stats for this vdev and the root vdev. 2546 */ 2547 void 2548 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta, 2549 boolean_t update_root) 2550 { 2551 int64_t dspace_delta = space_delta; 2552 spa_t *spa = vd->vdev_spa; 2553 vdev_t *rvd = spa->spa_root_vdev; 2554 2555 ASSERT(vd == vd->vdev_top); 2556 2557 /* 2558 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2559 * factor. We must calculate this here and not at the root vdev 2560 * because the root vdev's psize-to-asize is simply the max of its 2561 * childrens', thus not accurate enough for us. 2562 */ 2563 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2564 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2565 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2566 vd->vdev_deflate_ratio; 2567 2568 mutex_enter(&vd->vdev_stat_lock); 2569 vd->vdev_stat.vs_space += space_delta; 2570 vd->vdev_stat.vs_alloc += alloc_delta; 2571 vd->vdev_stat.vs_dspace += dspace_delta; 2572 mutex_exit(&vd->vdev_stat_lock); 2573 2574 if (update_root) { 2575 ASSERT(rvd == vd->vdev_parent); 2576 ASSERT(vd->vdev_ms_count != 0); 2577 2578 /* 2579 * Don't count non-normal (e.g. intent log) space as part of 2580 * the pool's capacity. 2581 */ 2582 if (vd->vdev_islog) 2583 return; 2584 2585 mutex_enter(&rvd->vdev_stat_lock); 2586 rvd->vdev_stat.vs_space += space_delta; 2587 rvd->vdev_stat.vs_alloc += alloc_delta; 2588 rvd->vdev_stat.vs_dspace += dspace_delta; 2589 mutex_exit(&rvd->vdev_stat_lock); 2590 } 2591 } 2592 2593 /* 2594 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2595 * so that it will be written out next time the vdev configuration is synced. 2596 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2597 */ 2598 void 2599 vdev_config_dirty(vdev_t *vd) 2600 { 2601 spa_t *spa = vd->vdev_spa; 2602 vdev_t *rvd = spa->spa_root_vdev; 2603 int c; 2604 2605 /* 2606 * If this is an aux vdev (as with l2cache and spare devices), then we 2607 * update the vdev config manually and set the sync flag. 2608 */ 2609 if (vd->vdev_aux != NULL) { 2610 spa_aux_vdev_t *sav = vd->vdev_aux; 2611 nvlist_t **aux; 2612 uint_t naux; 2613 2614 for (c = 0; c < sav->sav_count; c++) { 2615 if (sav->sav_vdevs[c] == vd) 2616 break; 2617 } 2618 2619 if (c == sav->sav_count) { 2620 /* 2621 * We're being removed. There's nothing more to do. 2622 */ 2623 ASSERT(sav->sav_sync == B_TRUE); 2624 return; 2625 } 2626 2627 sav->sav_sync = B_TRUE; 2628 2629 if (nvlist_lookup_nvlist_array(sav->sav_config, 2630 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2631 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2632 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2633 } 2634 2635 ASSERT(c < naux); 2636 2637 /* 2638 * Setting the nvlist in the middle if the array is a little 2639 * sketchy, but it will work. 2640 */ 2641 nvlist_free(aux[c]); 2642 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE); 2643 2644 return; 2645 } 2646 2647 /* 2648 * The dirty list is protected by the SCL_CONFIG lock. The caller 2649 * must either hold SCL_CONFIG as writer, or must be the sync thread 2650 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2651 * so this is sufficient to ensure mutual exclusion. 2652 */ 2653 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2654 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2655 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2656 2657 if (vd == rvd) { 2658 for (c = 0; c < rvd->vdev_children; c++) 2659 vdev_config_dirty(rvd->vdev_child[c]); 2660 } else { 2661 ASSERT(vd == vd->vdev_top); 2662 2663 if (!list_link_active(&vd->vdev_config_dirty_node) && 2664 !vd->vdev_ishole) 2665 list_insert_head(&spa->spa_config_dirty_list, vd); 2666 } 2667 } 2668 2669 void 2670 vdev_config_clean(vdev_t *vd) 2671 { 2672 spa_t *spa = vd->vdev_spa; 2673 2674 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2675 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2676 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2677 2678 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2679 list_remove(&spa->spa_config_dirty_list, vd); 2680 } 2681 2682 /* 2683 * Mark a top-level vdev's state as dirty, so that the next pass of 2684 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2685 * the state changes from larger config changes because they require 2686 * much less locking, and are often needed for administrative actions. 2687 */ 2688 void 2689 vdev_state_dirty(vdev_t *vd) 2690 { 2691 spa_t *spa = vd->vdev_spa; 2692 2693 ASSERT(vd == vd->vdev_top); 2694 2695 /* 2696 * The state list is protected by the SCL_STATE lock. The caller 2697 * must either hold SCL_STATE as writer, or must be the sync thread 2698 * (which holds SCL_STATE as reader). There's only one sync thread, 2699 * so this is sufficient to ensure mutual exclusion. 2700 */ 2701 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2702 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2703 spa_config_held(spa, SCL_STATE, RW_READER))); 2704 2705 if (!list_link_active(&vd->vdev_state_dirty_node)) 2706 list_insert_head(&spa->spa_state_dirty_list, vd); 2707 } 2708 2709 void 2710 vdev_state_clean(vdev_t *vd) 2711 { 2712 spa_t *spa = vd->vdev_spa; 2713 2714 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2715 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2716 spa_config_held(spa, SCL_STATE, RW_READER))); 2717 2718 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2719 list_remove(&spa->spa_state_dirty_list, vd); 2720 } 2721 2722 /* 2723 * Propagate vdev state up from children to parent. 2724 */ 2725 void 2726 vdev_propagate_state(vdev_t *vd) 2727 { 2728 spa_t *spa = vd->vdev_spa; 2729 vdev_t *rvd = spa->spa_root_vdev; 2730 int degraded = 0, faulted = 0; 2731 int corrupted = 0; 2732 vdev_t *child; 2733 2734 if (vd->vdev_children > 0) { 2735 for (int c = 0; c < vd->vdev_children; c++) { 2736 child = vd->vdev_child[c]; 2737 2738 /* 2739 * Don't factor holes into the decision. 2740 */ 2741 if (child->vdev_ishole) 2742 continue; 2743 2744 if (!vdev_readable(child) || 2745 (!vdev_writeable(child) && spa_writeable(spa))) { 2746 /* 2747 * Root special: if there is a top-level log 2748 * device, treat the root vdev as if it were 2749 * degraded. 2750 */ 2751 if (child->vdev_islog && vd == rvd) 2752 degraded++; 2753 else 2754 faulted++; 2755 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2756 degraded++; 2757 } 2758 2759 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2760 corrupted++; 2761 } 2762 2763 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2764 2765 /* 2766 * Root special: if there is a top-level vdev that cannot be 2767 * opened due to corrupted metadata, then propagate the root 2768 * vdev's aux state as 'corrupt' rather than 'insufficient 2769 * replicas'. 2770 */ 2771 if (corrupted && vd == rvd && 2772 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2773 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2774 VDEV_AUX_CORRUPT_DATA); 2775 } 2776 2777 if (vd->vdev_parent) 2778 vdev_propagate_state(vd->vdev_parent); 2779 } 2780 2781 /* 2782 * Set a vdev's state. If this is during an open, we don't update the parent 2783 * state, because we're in the process of opening children depth-first. 2784 * Otherwise, we propagate the change to the parent. 2785 * 2786 * If this routine places a device in a faulted state, an appropriate ereport is 2787 * generated. 2788 */ 2789 void 2790 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2791 { 2792 uint64_t save_state; 2793 spa_t *spa = vd->vdev_spa; 2794 2795 if (state == vd->vdev_state) { 2796 vd->vdev_stat.vs_aux = aux; 2797 return; 2798 } 2799 2800 save_state = vd->vdev_state; 2801 2802 vd->vdev_state = state; 2803 vd->vdev_stat.vs_aux = aux; 2804 2805 /* 2806 * If we are setting the vdev state to anything but an open state, then 2807 * always close the underlying device. Otherwise, we keep accessible 2808 * but invalid devices open forever. We don't call vdev_close() itself, 2809 * because that implies some extra checks (offline, etc) that we don't 2810 * want here. This is limited to leaf devices, because otherwise 2811 * closing the device will affect other children. 2812 */ 2813 if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf) 2814 vd->vdev_ops->vdev_op_close(vd); 2815 2816 /* 2817 * If we have brought this vdev back into service, we need 2818 * to notify fmd so that it can gracefully repair any outstanding 2819 * cases due to a missing device. We do this in all cases, even those 2820 * that probably don't correlate to a repaired fault. This is sure to 2821 * catch all cases, and we let the zfs-retire agent sort it out. If 2822 * this is a transient state it's OK, as the retire agent will 2823 * double-check the state of the vdev before repairing it. 2824 */ 2825 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 2826 vd->vdev_prevstate != state) 2827 zfs_post_state_change(spa, vd); 2828 2829 if (vd->vdev_removed && 2830 state == VDEV_STATE_CANT_OPEN && 2831 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2832 /* 2833 * If the previous state is set to VDEV_STATE_REMOVED, then this 2834 * device was previously marked removed and someone attempted to 2835 * reopen it. If this failed due to a nonexistent device, then 2836 * keep the device in the REMOVED state. We also let this be if 2837 * it is one of our special test online cases, which is only 2838 * attempting to online the device and shouldn't generate an FMA 2839 * fault. 2840 */ 2841 vd->vdev_state = VDEV_STATE_REMOVED; 2842 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2843 } else if (state == VDEV_STATE_REMOVED) { 2844 vd->vdev_removed = B_TRUE; 2845 } else if (state == VDEV_STATE_CANT_OPEN) { 2846 /* 2847 * If we fail to open a vdev during an import, we mark it as 2848 * "not available", which signifies that it was never there to 2849 * begin with. Failure to open such a device is not considered 2850 * an error. 2851 */ 2852 if (spa->spa_load_state == SPA_LOAD_IMPORT && 2853 vd->vdev_ops->vdev_op_leaf) 2854 vd->vdev_not_present = 1; 2855 2856 /* 2857 * Post the appropriate ereport. If the 'prevstate' field is 2858 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2859 * that this is part of a vdev_reopen(). In this case, we don't 2860 * want to post the ereport if the device was already in the 2861 * CANT_OPEN state beforehand. 2862 * 2863 * If the 'checkremove' flag is set, then this is an attempt to 2864 * online the device in response to an insertion event. If we 2865 * hit this case, then we have detected an insertion event for a 2866 * faulted or offline device that wasn't in the removed state. 2867 * In this scenario, we don't post an ereport because we are 2868 * about to replace the device, or attempt an online with 2869 * vdev_forcefault, which will generate the fault for us. 2870 */ 2871 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 2872 !vd->vdev_not_present && !vd->vdev_checkremove && 2873 vd != spa->spa_root_vdev) { 2874 const char *class; 2875 2876 switch (aux) { 2877 case VDEV_AUX_OPEN_FAILED: 2878 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 2879 break; 2880 case VDEV_AUX_CORRUPT_DATA: 2881 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 2882 break; 2883 case VDEV_AUX_NO_REPLICAS: 2884 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 2885 break; 2886 case VDEV_AUX_BAD_GUID_SUM: 2887 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 2888 break; 2889 case VDEV_AUX_TOO_SMALL: 2890 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 2891 break; 2892 case VDEV_AUX_BAD_LABEL: 2893 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 2894 break; 2895 case VDEV_AUX_IO_FAILURE: 2896 class = FM_EREPORT_ZFS_IO_FAILURE; 2897 break; 2898 default: 2899 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 2900 } 2901 2902 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 2903 } 2904 2905 /* Erase any notion of persistent removed state */ 2906 vd->vdev_removed = B_FALSE; 2907 } else { 2908 vd->vdev_removed = B_FALSE; 2909 } 2910 2911 if (!isopen && vd->vdev_parent) 2912 vdev_propagate_state(vd->vdev_parent); 2913 } 2914 2915 /* 2916 * Check the vdev configuration to ensure that it's capable of supporting 2917 * a root pool. Currently, we do not support RAID-Z or partial configuration. 2918 * In addition, only a single top-level vdev is allowed and none of the leaves 2919 * can be wholedisks. 2920 */ 2921 boolean_t 2922 vdev_is_bootable(vdev_t *vd) 2923 { 2924 if (!vd->vdev_ops->vdev_op_leaf) { 2925 char *vdev_type = vd->vdev_ops->vdev_op_type; 2926 2927 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 2928 vd->vdev_children > 1) { 2929 return (B_FALSE); 2930 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 2931 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 2932 return (B_FALSE); 2933 } 2934 } else if (vd->vdev_wholedisk == 1) { 2935 return (B_FALSE); 2936 } 2937 2938 for (int c = 0; c < vd->vdev_children; c++) { 2939 if (!vdev_is_bootable(vd->vdev_child[c])) 2940 return (B_FALSE); 2941 } 2942 return (B_TRUE); 2943 } 2944 2945 /* 2946 * Load the state from the original vdev tree (ovd) which 2947 * we've retrieved from the MOS config object. If the original 2948 * vdev was offline then we transfer that state to the device 2949 * in the current vdev tree (nvd). 2950 */ 2951 void 2952 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 2953 { 2954 spa_t *spa = nvd->vdev_spa; 2955 2956 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2957 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 2958 2959 for (int c = 0; c < nvd->vdev_children; c++) 2960 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 2961 2962 if (nvd->vdev_ops->vdev_op_leaf && ovd->vdev_offline) { 2963 /* 2964 * It would be nice to call vdev_offline() 2965 * directly but the pool isn't fully loaded and 2966 * the txg threads have not been started yet. 2967 */ 2968 nvd->vdev_offline = ovd->vdev_offline; 2969 vdev_reopen(nvd->vdev_top); 2970 } 2971 } 2972 2973 /* 2974 * Expand a vdev if possible. 2975 */ 2976 void 2977 vdev_expand(vdev_t *vd, uint64_t txg) 2978 { 2979 ASSERT(vd->vdev_top == vd); 2980 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2981 2982 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 2983 VERIFY(vdev_metaslab_init(vd, txg) == 0); 2984 vdev_config_dirty(vd); 2985 } 2986 } 2987