xref: /titanic_44/usr/src/uts/common/fs/zfs/vdev.c (revision 19e1255fca03b62e8105a1c6f74377fe34b2ff77)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/metaslab_impl.h>
39 #include <sys/space_map.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 
45 /*
46  * Virtual device management.
47  */
48 
49 static vdev_ops_t *vdev_ops_table[] = {
50 	&vdev_root_ops,
51 	&vdev_raidz_ops,
52 	&vdev_mirror_ops,
53 	&vdev_replacing_ops,
54 	&vdev_spare_ops,
55 	&vdev_disk_ops,
56 	&vdev_file_ops,
57 	&vdev_missing_ops,
58 	NULL
59 };
60 
61 /* maximum scrub/resilver I/O queue per leaf vdev */
62 int zfs_scrub_limit = 10;
63 
64 /*
65  * Given a vdev type, return the appropriate ops vector.
66  */
67 static vdev_ops_t *
68 vdev_getops(const char *type)
69 {
70 	vdev_ops_t *ops, **opspp;
71 
72 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73 		if (strcmp(ops->vdev_op_type, type) == 0)
74 			break;
75 
76 	return (ops);
77 }
78 
79 /*
80  * Default asize function: return the MAX of psize with the asize of
81  * all children.  This is what's used by anything other than RAID-Z.
82  */
83 uint64_t
84 vdev_default_asize(vdev_t *vd, uint64_t psize)
85 {
86 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87 	uint64_t csize;
88 	uint64_t c;
89 
90 	for (c = 0; c < vd->vdev_children; c++) {
91 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
92 		asize = MAX(asize, csize);
93 	}
94 
95 	return (asize);
96 }
97 
98 /*
99  * Get the replaceable or attachable device size.
100  * If the parent is a mirror or raidz, the replaceable size is the minimum
101  * psize of all its children. For the rest, just return our own psize.
102  *
103  * e.g.
104  *			psize	rsize
105  * root			-	-
106  *	mirror/raidz	-	-
107  *	    disk1	20g	20g
108  *	    disk2 	40g	20g
109  *	disk3 		80g	80g
110  */
111 uint64_t
112 vdev_get_rsize(vdev_t *vd)
113 {
114 	vdev_t *pvd, *cvd;
115 	uint64_t c, rsize;
116 
117 	pvd = vd->vdev_parent;
118 
119 	/*
120 	 * If our parent is NULL or the root, just return our own psize.
121 	 */
122 	if (pvd == NULL || pvd->vdev_parent == NULL)
123 		return (vd->vdev_psize);
124 
125 	rsize = 0;
126 
127 	for (c = 0; c < pvd->vdev_children; c++) {
128 		cvd = pvd->vdev_child[c];
129 		rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
130 	}
131 
132 	return (rsize);
133 }
134 
135 vdev_t *
136 vdev_lookup_top(spa_t *spa, uint64_t vdev)
137 {
138 	vdev_t *rvd = spa->spa_root_vdev;
139 
140 	ASSERT(spa_config_held(spa, RW_READER));
141 
142 	if (vdev < rvd->vdev_children) {
143 		ASSERT(rvd->vdev_child[vdev] != NULL);
144 		return (rvd->vdev_child[vdev]);
145 	}
146 
147 	return (NULL);
148 }
149 
150 vdev_t *
151 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
152 {
153 	int c;
154 	vdev_t *mvd;
155 
156 	if (vd->vdev_guid == guid)
157 		return (vd);
158 
159 	for (c = 0; c < vd->vdev_children; c++)
160 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
161 		    NULL)
162 			return (mvd);
163 
164 	return (NULL);
165 }
166 
167 void
168 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
169 {
170 	size_t oldsize, newsize;
171 	uint64_t id = cvd->vdev_id;
172 	vdev_t **newchild;
173 
174 	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
175 	ASSERT(cvd->vdev_parent == NULL);
176 
177 	cvd->vdev_parent = pvd;
178 
179 	if (pvd == NULL)
180 		return;
181 
182 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
183 
184 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
185 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
186 	newsize = pvd->vdev_children * sizeof (vdev_t *);
187 
188 	newchild = kmem_zalloc(newsize, KM_SLEEP);
189 	if (pvd->vdev_child != NULL) {
190 		bcopy(pvd->vdev_child, newchild, oldsize);
191 		kmem_free(pvd->vdev_child, oldsize);
192 	}
193 
194 	pvd->vdev_child = newchild;
195 	pvd->vdev_child[id] = cvd;
196 
197 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
198 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
199 
200 	/*
201 	 * Walk up all ancestors to update guid sum.
202 	 */
203 	for (; pvd != NULL; pvd = pvd->vdev_parent)
204 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
205 
206 	if (cvd->vdev_ops->vdev_op_leaf)
207 		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
208 }
209 
210 void
211 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
212 {
213 	int c;
214 	uint_t id = cvd->vdev_id;
215 
216 	ASSERT(cvd->vdev_parent == pvd);
217 
218 	if (pvd == NULL)
219 		return;
220 
221 	ASSERT(id < pvd->vdev_children);
222 	ASSERT(pvd->vdev_child[id] == cvd);
223 
224 	pvd->vdev_child[id] = NULL;
225 	cvd->vdev_parent = NULL;
226 
227 	for (c = 0; c < pvd->vdev_children; c++)
228 		if (pvd->vdev_child[c])
229 			break;
230 
231 	if (c == pvd->vdev_children) {
232 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
233 		pvd->vdev_child = NULL;
234 		pvd->vdev_children = 0;
235 	}
236 
237 	/*
238 	 * Walk up all ancestors to update guid sum.
239 	 */
240 	for (; pvd != NULL; pvd = pvd->vdev_parent)
241 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
242 
243 	if (cvd->vdev_ops->vdev_op_leaf)
244 		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
245 }
246 
247 /*
248  * Remove any holes in the child array.
249  */
250 void
251 vdev_compact_children(vdev_t *pvd)
252 {
253 	vdev_t **newchild, *cvd;
254 	int oldc = pvd->vdev_children;
255 	int newc, c;
256 
257 	ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER));
258 
259 	for (c = newc = 0; c < oldc; c++)
260 		if (pvd->vdev_child[c])
261 			newc++;
262 
263 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
264 
265 	for (c = newc = 0; c < oldc; c++) {
266 		if ((cvd = pvd->vdev_child[c]) != NULL) {
267 			newchild[newc] = cvd;
268 			cvd->vdev_id = newc++;
269 		}
270 	}
271 
272 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
273 	pvd->vdev_child = newchild;
274 	pvd->vdev_children = newc;
275 }
276 
277 /*
278  * Allocate and minimally initialize a vdev_t.
279  */
280 static vdev_t *
281 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
282 {
283 	vdev_t *vd;
284 
285 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
286 
287 	if (spa->spa_root_vdev == NULL) {
288 		ASSERT(ops == &vdev_root_ops);
289 		spa->spa_root_vdev = vd;
290 	}
291 
292 	if (guid == 0) {
293 		if (spa->spa_root_vdev == vd) {
294 			/*
295 			 * The root vdev's guid will also be the pool guid,
296 			 * which must be unique among all pools.
297 			 */
298 			while (guid == 0 || spa_guid_exists(guid, 0))
299 				guid = spa_get_random(-1ULL);
300 		} else {
301 			/*
302 			 * Any other vdev's guid must be unique within the pool.
303 			 */
304 			while (guid == 0 ||
305 			    spa_guid_exists(spa_guid(spa), guid))
306 				guid = spa_get_random(-1ULL);
307 		}
308 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
309 	}
310 
311 	vd->vdev_spa = spa;
312 	vd->vdev_id = id;
313 	vd->vdev_guid = guid;
314 	vd->vdev_guid_sum = guid;
315 	vd->vdev_ops = ops;
316 	vd->vdev_state = VDEV_STATE_CLOSED;
317 
318 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
319 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
320 	space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock);
321 	space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock);
322 	txg_list_create(&vd->vdev_ms_list,
323 	    offsetof(struct metaslab, ms_txg_node));
324 	txg_list_create(&vd->vdev_dtl_list,
325 	    offsetof(struct vdev, vdev_dtl_node));
326 	vd->vdev_stat.vs_timestamp = gethrtime();
327 	vdev_queue_init(vd);
328 	vdev_cache_init(vd);
329 
330 	return (vd);
331 }
332 
333 /*
334  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
335  * creating a new vdev or loading an existing one - the behavior is slightly
336  * different for each case.
337  */
338 int
339 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
340     int alloctype)
341 {
342 	vdev_ops_t *ops;
343 	char *type;
344 	uint64_t guid = 0, islog, nparity;
345 	vdev_t *vd;
346 
347 	ASSERT(spa_config_held(spa, RW_WRITER));
348 
349 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
350 		return (EINVAL);
351 
352 	if ((ops = vdev_getops(type)) == NULL)
353 		return (EINVAL);
354 
355 	/*
356 	 * If this is a load, get the vdev guid from the nvlist.
357 	 * Otherwise, vdev_alloc_common() will generate one for us.
358 	 */
359 	if (alloctype == VDEV_ALLOC_LOAD) {
360 		uint64_t label_id;
361 
362 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
363 		    label_id != id)
364 			return (EINVAL);
365 
366 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
367 			return (EINVAL);
368 	} else if (alloctype == VDEV_ALLOC_SPARE) {
369 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
370 			return (EINVAL);
371 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
372 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
373 			return (EINVAL);
374 	}
375 
376 	/*
377 	 * The first allocated vdev must be of type 'root'.
378 	 */
379 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
380 		return (EINVAL);
381 
382 	/*
383 	 * Determine whether we're a log vdev.
384 	 */
385 	islog = 0;
386 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
387 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
388 		return (ENOTSUP);
389 
390 	/*
391 	 * Set the nparity property for RAID-Z vdevs.
392 	 */
393 	nparity = -1ULL;
394 	if (ops == &vdev_raidz_ops) {
395 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
396 		    &nparity) == 0) {
397 			/*
398 			 * Currently, we can only support 2 parity devices.
399 			 */
400 			if (nparity == 0 || nparity > 2)
401 				return (EINVAL);
402 			/*
403 			 * Older versions can only support 1 parity device.
404 			 */
405 			if (nparity == 2 &&
406 			    spa_version(spa) < SPA_VERSION_RAID6)
407 				return (ENOTSUP);
408 		} else {
409 			/*
410 			 * We require the parity to be specified for SPAs that
411 			 * support multiple parity levels.
412 			 */
413 			if (spa_version(spa) >= SPA_VERSION_RAID6)
414 				return (EINVAL);
415 			/*
416 			 * Otherwise, we default to 1 parity device for RAID-Z.
417 			 */
418 			nparity = 1;
419 		}
420 	} else {
421 		nparity = 0;
422 	}
423 	ASSERT(nparity != -1ULL);
424 
425 	vd = vdev_alloc_common(spa, id, guid, ops);
426 
427 	vd->vdev_islog = islog;
428 	vd->vdev_nparity = nparity;
429 
430 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
431 		vd->vdev_path = spa_strdup(vd->vdev_path);
432 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
433 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
434 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
435 	    &vd->vdev_physpath) == 0)
436 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
437 
438 	/*
439 	 * Set the whole_disk property.  If it's not specified, leave the value
440 	 * as -1.
441 	 */
442 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
443 	    &vd->vdev_wholedisk) != 0)
444 		vd->vdev_wholedisk = -1ULL;
445 
446 	/*
447 	 * Look for the 'not present' flag.  This will only be set if the device
448 	 * was not present at the time of import.
449 	 */
450 	if (!spa->spa_import_faulted)
451 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
452 		    &vd->vdev_not_present);
453 
454 	/*
455 	 * Get the alignment requirement.
456 	 */
457 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
458 
459 	/*
460 	 * If we're a top-level vdev, try to load the allocation parameters.
461 	 */
462 	if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
463 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
464 		    &vd->vdev_ms_array);
465 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
466 		    &vd->vdev_ms_shift);
467 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
468 		    &vd->vdev_asize);
469 	}
470 
471 	/*
472 	 * If we're a leaf vdev, try to load the DTL object and other state.
473 	 */
474 	if (vd->vdev_ops->vdev_op_leaf &&
475 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) {
476 		if (alloctype == VDEV_ALLOC_LOAD) {
477 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
478 			    &vd->vdev_dtl.smo_object);
479 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
480 			    &vd->vdev_unspare);
481 		}
482 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
483 		    &vd->vdev_offline);
484 
485 		/*
486 		 * When importing a pool, we want to ignore the persistent fault
487 		 * state, as the diagnosis made on another system may not be
488 		 * valid in the current context.
489 		 */
490 		if (spa->spa_load_state == SPA_LOAD_OPEN) {
491 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
492 			    &vd->vdev_faulted);
493 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
494 			    &vd->vdev_degraded);
495 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
496 			    &vd->vdev_removed);
497 		}
498 	}
499 
500 	/*
501 	 * Add ourselves to the parent's list of children.
502 	 */
503 	vdev_add_child(parent, vd);
504 
505 	*vdp = vd;
506 
507 	return (0);
508 }
509 
510 void
511 vdev_free(vdev_t *vd)
512 {
513 	int c;
514 	spa_t *spa = vd->vdev_spa;
515 
516 	/*
517 	 * vdev_free() implies closing the vdev first.  This is simpler than
518 	 * trying to ensure complicated semantics for all callers.
519 	 */
520 	vdev_close(vd);
521 
522 
523 	ASSERT(!list_link_active(&vd->vdev_dirty_node));
524 
525 	/*
526 	 * Free all children.
527 	 */
528 	for (c = 0; c < vd->vdev_children; c++)
529 		vdev_free(vd->vdev_child[c]);
530 
531 	ASSERT(vd->vdev_child == NULL);
532 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
533 
534 	/*
535 	 * Discard allocation state.
536 	 */
537 	if (vd == vd->vdev_top)
538 		vdev_metaslab_fini(vd);
539 
540 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
541 	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
542 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
543 
544 	/*
545 	 * Remove this vdev from its parent's child list.
546 	 */
547 	vdev_remove_child(vd->vdev_parent, vd);
548 
549 	ASSERT(vd->vdev_parent == NULL);
550 
551 	/*
552 	 * Clean up vdev structure.
553 	 */
554 	vdev_queue_fini(vd);
555 	vdev_cache_fini(vd);
556 
557 	if (vd->vdev_path)
558 		spa_strfree(vd->vdev_path);
559 	if (vd->vdev_devid)
560 		spa_strfree(vd->vdev_devid);
561 	if (vd->vdev_physpath)
562 		spa_strfree(vd->vdev_physpath);
563 
564 	if (vd->vdev_isspare)
565 		spa_spare_remove(vd);
566 	if (vd->vdev_isl2cache)
567 		spa_l2cache_remove(vd);
568 
569 	txg_list_destroy(&vd->vdev_ms_list);
570 	txg_list_destroy(&vd->vdev_dtl_list);
571 	mutex_enter(&vd->vdev_dtl_lock);
572 	space_map_unload(&vd->vdev_dtl_map);
573 	space_map_destroy(&vd->vdev_dtl_map);
574 	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
575 	space_map_destroy(&vd->vdev_dtl_scrub);
576 	mutex_exit(&vd->vdev_dtl_lock);
577 	mutex_destroy(&vd->vdev_dtl_lock);
578 	mutex_destroy(&vd->vdev_stat_lock);
579 
580 	if (vd == spa->spa_root_vdev)
581 		spa->spa_root_vdev = NULL;
582 
583 	kmem_free(vd, sizeof (vdev_t));
584 }
585 
586 /*
587  * Transfer top-level vdev state from svd to tvd.
588  */
589 static void
590 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
591 {
592 	spa_t *spa = svd->vdev_spa;
593 	metaslab_t *msp;
594 	vdev_t *vd;
595 	int t;
596 
597 	ASSERT(tvd == tvd->vdev_top);
598 
599 	tvd->vdev_ms_array = svd->vdev_ms_array;
600 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
601 	tvd->vdev_ms_count = svd->vdev_ms_count;
602 
603 	svd->vdev_ms_array = 0;
604 	svd->vdev_ms_shift = 0;
605 	svd->vdev_ms_count = 0;
606 
607 	tvd->vdev_mg = svd->vdev_mg;
608 	tvd->vdev_ms = svd->vdev_ms;
609 
610 	svd->vdev_mg = NULL;
611 	svd->vdev_ms = NULL;
612 
613 	if (tvd->vdev_mg != NULL)
614 		tvd->vdev_mg->mg_vd = tvd;
615 
616 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
617 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
618 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
619 
620 	svd->vdev_stat.vs_alloc = 0;
621 	svd->vdev_stat.vs_space = 0;
622 	svd->vdev_stat.vs_dspace = 0;
623 
624 	for (t = 0; t < TXG_SIZE; t++) {
625 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
626 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
627 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
628 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
629 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
630 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
631 	}
632 
633 	if (list_link_active(&svd->vdev_dirty_node)) {
634 		vdev_config_clean(svd);
635 		vdev_config_dirty(tvd);
636 	}
637 
638 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
639 	svd->vdev_deflate_ratio = 0;
640 
641 	tvd->vdev_islog = svd->vdev_islog;
642 	svd->vdev_islog = 0;
643 }
644 
645 static void
646 vdev_top_update(vdev_t *tvd, vdev_t *vd)
647 {
648 	int c;
649 
650 	if (vd == NULL)
651 		return;
652 
653 	vd->vdev_top = tvd;
654 
655 	for (c = 0; c < vd->vdev_children; c++)
656 		vdev_top_update(tvd, vd->vdev_child[c]);
657 }
658 
659 /*
660  * Add a mirror/replacing vdev above an existing vdev.
661  */
662 vdev_t *
663 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
664 {
665 	spa_t *spa = cvd->vdev_spa;
666 	vdev_t *pvd = cvd->vdev_parent;
667 	vdev_t *mvd;
668 
669 	ASSERT(spa_config_held(spa, RW_WRITER));
670 
671 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
672 
673 	mvd->vdev_asize = cvd->vdev_asize;
674 	mvd->vdev_ashift = cvd->vdev_ashift;
675 	mvd->vdev_state = cvd->vdev_state;
676 
677 	vdev_remove_child(pvd, cvd);
678 	vdev_add_child(pvd, mvd);
679 	cvd->vdev_id = mvd->vdev_children;
680 	vdev_add_child(mvd, cvd);
681 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
682 
683 	if (mvd == mvd->vdev_top)
684 		vdev_top_transfer(cvd, mvd);
685 
686 	return (mvd);
687 }
688 
689 /*
690  * Remove a 1-way mirror/replacing vdev from the tree.
691  */
692 void
693 vdev_remove_parent(vdev_t *cvd)
694 {
695 	vdev_t *mvd = cvd->vdev_parent;
696 	vdev_t *pvd = mvd->vdev_parent;
697 
698 	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
699 
700 	ASSERT(mvd->vdev_children == 1);
701 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
702 	    mvd->vdev_ops == &vdev_replacing_ops ||
703 	    mvd->vdev_ops == &vdev_spare_ops);
704 	cvd->vdev_ashift = mvd->vdev_ashift;
705 
706 	vdev_remove_child(mvd, cvd);
707 	vdev_remove_child(pvd, mvd);
708 	cvd->vdev_id = mvd->vdev_id;
709 	vdev_add_child(pvd, cvd);
710 	/*
711 	 * If we created a new toplevel vdev, then we need to change the child's
712 	 * vdev GUID to match the old toplevel vdev.  Otherwise, we could have
713 	 * detached an offline device, and when we go to import the pool we'll
714 	 * think we have two toplevel vdevs, instead of a different version of
715 	 * the same toplevel vdev.
716 	 */
717 	if (cvd->vdev_top == cvd) {
718 		pvd->vdev_guid_sum -= cvd->vdev_guid;
719 		cvd->vdev_guid_sum -= cvd->vdev_guid;
720 		cvd->vdev_guid = mvd->vdev_guid;
721 		cvd->vdev_guid_sum += mvd->vdev_guid;
722 		pvd->vdev_guid_sum += cvd->vdev_guid;
723 	}
724 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
725 
726 	if (cvd == cvd->vdev_top)
727 		vdev_top_transfer(mvd, cvd);
728 
729 	ASSERT(mvd->vdev_children == 0);
730 	vdev_free(mvd);
731 }
732 
733 int
734 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
735 {
736 	spa_t *spa = vd->vdev_spa;
737 	objset_t *mos = spa->spa_meta_objset;
738 	metaslab_class_t *mc;
739 	uint64_t m;
740 	uint64_t oldc = vd->vdev_ms_count;
741 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
742 	metaslab_t **mspp;
743 	int error;
744 
745 	if (vd->vdev_ms_shift == 0)	/* not being allocated from yet */
746 		return (0);
747 
748 	dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc);
749 
750 	ASSERT(oldc <= newc);
751 
752 	if (vd->vdev_islog)
753 		mc = spa->spa_log_class;
754 	else
755 		mc = spa->spa_normal_class;
756 
757 	if (vd->vdev_mg == NULL)
758 		vd->vdev_mg = metaslab_group_create(mc, vd);
759 
760 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
761 
762 	if (oldc != 0) {
763 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
764 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
765 	}
766 
767 	vd->vdev_ms = mspp;
768 	vd->vdev_ms_count = newc;
769 
770 	for (m = oldc; m < newc; m++) {
771 		space_map_obj_t smo = { 0, 0, 0 };
772 		if (txg == 0) {
773 			uint64_t object = 0;
774 			error = dmu_read(mos, vd->vdev_ms_array,
775 			    m * sizeof (uint64_t), sizeof (uint64_t), &object);
776 			if (error)
777 				return (error);
778 			if (object != 0) {
779 				dmu_buf_t *db;
780 				error = dmu_bonus_hold(mos, object, FTAG, &db);
781 				if (error)
782 					return (error);
783 				ASSERT3U(db->db_size, >=, sizeof (smo));
784 				bcopy(db->db_data, &smo, sizeof (smo));
785 				ASSERT3U(smo.smo_object, ==, object);
786 				dmu_buf_rele(db, FTAG);
787 			}
788 		}
789 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
790 		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
791 	}
792 
793 	return (0);
794 }
795 
796 void
797 vdev_metaslab_fini(vdev_t *vd)
798 {
799 	uint64_t m;
800 	uint64_t count = vd->vdev_ms_count;
801 
802 	if (vd->vdev_ms != NULL) {
803 		for (m = 0; m < count; m++)
804 			if (vd->vdev_ms[m] != NULL)
805 				metaslab_fini(vd->vdev_ms[m]);
806 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
807 		vd->vdev_ms = NULL;
808 	}
809 }
810 
811 int
812 vdev_probe(vdev_t *vd)
813 {
814 	if (vd == NULL)
815 		return (EINVAL);
816 
817 	/*
818 	 * Right now we only support status checks on the leaf vdevs.
819 	 */
820 	if (vd->vdev_ops->vdev_op_leaf)
821 		return (vd->vdev_ops->vdev_op_probe(vd));
822 
823 	return (0);
824 }
825 
826 /*
827  * Prepare a virtual device for access.
828  */
829 int
830 vdev_open(vdev_t *vd)
831 {
832 	int error;
833 	int c;
834 	uint64_t osize = 0;
835 	uint64_t asize, psize;
836 	uint64_t ashift = 0;
837 
838 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
839 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
840 	    vd->vdev_state == VDEV_STATE_OFFLINE);
841 
842 	if (vd->vdev_fault_mode == VDEV_FAULT_COUNT)
843 		vd->vdev_fault_arg >>= 1;
844 	else
845 		vd->vdev_fault_mode = VDEV_FAULT_NONE;
846 
847 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
848 
849 	if (!vd->vdev_removed && vd->vdev_faulted) {
850 		ASSERT(vd->vdev_children == 0);
851 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
852 		    VDEV_AUX_ERR_EXCEEDED);
853 		return (ENXIO);
854 	} else if (vd->vdev_offline) {
855 		ASSERT(vd->vdev_children == 0);
856 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
857 		return (ENXIO);
858 	}
859 
860 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
861 
862 	if (zio_injection_enabled && error == 0)
863 		error = zio_handle_device_injection(vd, ENXIO);
864 
865 	if (error) {
866 		if (vd->vdev_removed &&
867 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
868 			vd->vdev_removed = B_FALSE;
869 
870 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
871 		    vd->vdev_stat.vs_aux);
872 		return (error);
873 	}
874 
875 	vd->vdev_removed = B_FALSE;
876 
877 	if (vd->vdev_degraded) {
878 		ASSERT(vd->vdev_children == 0);
879 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
880 		    VDEV_AUX_ERR_EXCEEDED);
881 	} else {
882 		vd->vdev_state = VDEV_STATE_HEALTHY;
883 	}
884 
885 	for (c = 0; c < vd->vdev_children; c++)
886 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
887 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
888 			    VDEV_AUX_NONE);
889 			break;
890 		}
891 
892 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
893 
894 	if (vd->vdev_children == 0) {
895 		if (osize < SPA_MINDEVSIZE) {
896 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
897 			    VDEV_AUX_TOO_SMALL);
898 			return (EOVERFLOW);
899 		}
900 		psize = osize;
901 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
902 	} else {
903 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
904 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
905 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
906 			    VDEV_AUX_TOO_SMALL);
907 			return (EOVERFLOW);
908 		}
909 		psize = 0;
910 		asize = osize;
911 	}
912 
913 	vd->vdev_psize = psize;
914 
915 	if (vd->vdev_asize == 0) {
916 		/*
917 		 * This is the first-ever open, so use the computed values.
918 		 * For testing purposes, a higher ashift can be requested.
919 		 */
920 		vd->vdev_asize = asize;
921 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
922 	} else {
923 		/*
924 		 * Make sure the alignment requirement hasn't increased.
925 		 */
926 		if (ashift > vd->vdev_top->vdev_ashift) {
927 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
928 			    VDEV_AUX_BAD_LABEL);
929 			return (EINVAL);
930 		}
931 
932 		/*
933 		 * Make sure the device hasn't shrunk.
934 		 */
935 		if (asize < vd->vdev_asize) {
936 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
937 			    VDEV_AUX_BAD_LABEL);
938 			return (EINVAL);
939 		}
940 
941 		/*
942 		 * If all children are healthy and the asize has increased,
943 		 * then we've experienced dynamic LUN growth.
944 		 */
945 		if (vd->vdev_state == VDEV_STATE_HEALTHY &&
946 		    asize > vd->vdev_asize) {
947 			vd->vdev_asize = asize;
948 		}
949 	}
950 
951 	/*
952 	 * Ensure we can issue some IO before declaring the
953 	 * vdev open for business.
954 	 */
955 	error = vdev_probe(vd);
956 	if (error) {
957 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
958 		    VDEV_AUX_OPEN_FAILED);
959 		return (error);
960 	}
961 
962 	/*
963 	 * If this is a top-level vdev, compute the raidz-deflation
964 	 * ratio.  Note, we hard-code in 128k (1<<17) because it is the
965 	 * current "typical" blocksize.  Even if SPA_MAXBLOCKSIZE
966 	 * changes, this algorithm must never change, or we will
967 	 * inconsistently account for existing bp's.
968 	 */
969 	if (vd->vdev_top == vd) {
970 		vd->vdev_deflate_ratio = (1<<17) /
971 		    (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
972 	}
973 
974 	/*
975 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
976 	 * resilver.  But don't do this if we are doing a reopen for a
977 	 * scrub, since this would just restart the scrub we are already
978 	 * doing.
979 	 */
980 	if (vd->vdev_children == 0 && !vd->vdev_spa->spa_scrub_reopen) {
981 		mutex_enter(&vd->vdev_dtl_lock);
982 		if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd))
983 			spa_async_request(vd->vdev_spa, SPA_ASYNC_RESILVER);
984 		mutex_exit(&vd->vdev_dtl_lock);
985 	}
986 
987 	return (0);
988 }
989 
990 /*
991  * Called once the vdevs are all opened, this routine validates the label
992  * contents.  This needs to be done before vdev_load() so that we don't
993  * inadvertently do repair I/Os to the wrong device.
994  *
995  * This function will only return failure if one of the vdevs indicates that it
996  * has since been destroyed or exported.  This is only possible if
997  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
998  * will be updated but the function will return 0.
999  */
1000 int
1001 vdev_validate(vdev_t *vd)
1002 {
1003 	spa_t *spa = vd->vdev_spa;
1004 	int c;
1005 	nvlist_t *label;
1006 	uint64_t guid;
1007 	uint64_t state;
1008 
1009 	for (c = 0; c < vd->vdev_children; c++)
1010 		if (vdev_validate(vd->vdev_child[c]) != 0)
1011 			return (EBADF);
1012 
1013 	/*
1014 	 * If the device has already failed, or was marked offline, don't do
1015 	 * any further validation.  Otherwise, label I/O will fail and we will
1016 	 * overwrite the previous state.
1017 	 */
1018 	if (vd->vdev_ops->vdev_op_leaf && !vdev_is_dead(vd)) {
1019 
1020 		if ((label = vdev_label_read_config(vd)) == NULL) {
1021 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1022 			    VDEV_AUX_BAD_LABEL);
1023 			return (0);
1024 		}
1025 
1026 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1027 		    &guid) != 0 || guid != spa_guid(spa)) {
1028 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1029 			    VDEV_AUX_CORRUPT_DATA);
1030 			nvlist_free(label);
1031 			return (0);
1032 		}
1033 
1034 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1035 		    &guid) != 0 || guid != vd->vdev_guid) {
1036 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1037 			    VDEV_AUX_CORRUPT_DATA);
1038 			nvlist_free(label);
1039 			return (0);
1040 		}
1041 
1042 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1043 		    &state) != 0) {
1044 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1045 			    VDEV_AUX_CORRUPT_DATA);
1046 			nvlist_free(label);
1047 			return (0);
1048 		}
1049 
1050 		nvlist_free(label);
1051 
1052 		if (spa->spa_load_state == SPA_LOAD_OPEN &&
1053 		    state != POOL_STATE_ACTIVE)
1054 			return (EBADF);
1055 
1056 		/*
1057 		 * If we were able to open and validate a vdev that was
1058 		 * previously marked permanently unavailable, clear that state
1059 		 * now.
1060 		 */
1061 		if (vd->vdev_not_present)
1062 			vd->vdev_not_present = 0;
1063 	}
1064 
1065 	return (0);
1066 }
1067 
1068 /*
1069  * Close a virtual device.
1070  */
1071 void
1072 vdev_close(vdev_t *vd)
1073 {
1074 	vd->vdev_ops->vdev_op_close(vd);
1075 
1076 	vdev_cache_purge(vd);
1077 
1078 	/*
1079 	 * We record the previous state before we close it, so  that if we are
1080 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1081 	 * it's still faulted.
1082 	 */
1083 	vd->vdev_prevstate = vd->vdev_state;
1084 
1085 	if (vd->vdev_offline)
1086 		vd->vdev_state = VDEV_STATE_OFFLINE;
1087 	else
1088 		vd->vdev_state = VDEV_STATE_CLOSED;
1089 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1090 }
1091 
1092 void
1093 vdev_reopen(vdev_t *vd)
1094 {
1095 	spa_t *spa = vd->vdev_spa;
1096 
1097 	ASSERT(spa_config_held(spa, RW_WRITER));
1098 
1099 	vdev_close(vd);
1100 	(void) vdev_open(vd);
1101 
1102 	/*
1103 	 * Call vdev_validate() here to make sure we have the same device.
1104 	 * Otherwise, a device with an invalid label could be successfully
1105 	 * opened in response to vdev_reopen().
1106 	 */
1107 	if (vd->vdev_aux) {
1108 		(void) vdev_validate_aux(vd);
1109 		if (!vdev_is_dead(vd) &&
1110 		    !l2arc_vdev_present(vd)) {
1111 			uint64_t size = vdev_get_rsize(vd);
1112 			l2arc_add_vdev(spa, vd,
1113 			    VDEV_LABEL_START_SIZE,
1114 			    size - VDEV_LABEL_START_SIZE);
1115 		}
1116 	} else {
1117 		(void) vdev_validate(vd);
1118 	}
1119 
1120 	/*
1121 	 * Reassess parent vdev's health.
1122 	 */
1123 	vdev_propagate_state(vd);
1124 }
1125 
1126 int
1127 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1128 {
1129 	int error;
1130 
1131 	/*
1132 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1133 	 * For a create, however, we want to fail the request if
1134 	 * there are any components we can't open.
1135 	 */
1136 	error = vdev_open(vd);
1137 
1138 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1139 		vdev_close(vd);
1140 		return (error ? error : ENXIO);
1141 	}
1142 
1143 	/*
1144 	 * Recursively initialize all labels.
1145 	 */
1146 	if ((error = vdev_label_init(vd, txg, isreplacing ?
1147 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1148 		vdev_close(vd);
1149 		return (error);
1150 	}
1151 
1152 	return (0);
1153 }
1154 
1155 /*
1156  * The is the latter half of vdev_create().  It is distinct because it
1157  * involves initiating transactions in order to do metaslab creation.
1158  * For creation, we want to try to create all vdevs at once and then undo it
1159  * if anything fails; this is much harder if we have pending transactions.
1160  */
1161 void
1162 vdev_init(vdev_t *vd, uint64_t txg)
1163 {
1164 	/*
1165 	 * Aim for roughly 200 metaslabs per vdev.
1166 	 */
1167 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1168 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1169 
1170 	/*
1171 	 * Initialize the vdev's metaslabs.  This can't fail because
1172 	 * there's nothing to read when creating all new metaslabs.
1173 	 */
1174 	VERIFY(vdev_metaslab_init(vd, txg) == 0);
1175 }
1176 
1177 void
1178 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1179 {
1180 	ASSERT(vd == vd->vdev_top);
1181 	ASSERT(ISP2(flags));
1182 
1183 	if (flags & VDD_METASLAB)
1184 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1185 
1186 	if (flags & VDD_DTL)
1187 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1188 
1189 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1190 }
1191 
1192 void
1193 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size)
1194 {
1195 	mutex_enter(sm->sm_lock);
1196 	if (!space_map_contains(sm, txg, size))
1197 		space_map_add(sm, txg, size);
1198 	mutex_exit(sm->sm_lock);
1199 }
1200 
1201 int
1202 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size)
1203 {
1204 	int dirty;
1205 
1206 	/*
1207 	 * Quick test without the lock -- covers the common case that
1208 	 * there are no dirty time segments.
1209 	 */
1210 	if (sm->sm_space == 0)
1211 		return (0);
1212 
1213 	mutex_enter(sm->sm_lock);
1214 	dirty = space_map_contains(sm, txg, size);
1215 	mutex_exit(sm->sm_lock);
1216 
1217 	return (dirty);
1218 }
1219 
1220 /*
1221  * Reassess DTLs after a config change or scrub completion.
1222  */
1223 void
1224 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1225 {
1226 	spa_t *spa = vd->vdev_spa;
1227 	int c;
1228 
1229 	ASSERT(spa_config_held(spa, RW_READER));
1230 
1231 	if (vd->vdev_children == 0) {
1232 		mutex_enter(&vd->vdev_dtl_lock);
1233 		if (scrub_txg != 0 &&
1234 		    (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1235 			/* XXX should check scrub_done? */
1236 			/*
1237 			 * We completed a scrub up to scrub_txg.  If we
1238 			 * did it without rebooting, then the scrub dtl
1239 			 * will be valid, so excise the old region and
1240 			 * fold in the scrub dtl.  Otherwise, leave the
1241 			 * dtl as-is if there was an error.
1242 			 */
1243 			space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg);
1244 			space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub);
1245 		}
1246 		if (scrub_done)
1247 			space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1248 		mutex_exit(&vd->vdev_dtl_lock);
1249 
1250 		if (txg != 0)
1251 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1252 		return;
1253 	}
1254 
1255 	/*
1256 	 * Make sure the DTLs are always correct under the scrub lock.
1257 	 */
1258 	if (vd == spa->spa_root_vdev)
1259 		mutex_enter(&spa->spa_scrub_lock);
1260 
1261 	mutex_enter(&vd->vdev_dtl_lock);
1262 	space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
1263 	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1264 	mutex_exit(&vd->vdev_dtl_lock);
1265 
1266 	for (c = 0; c < vd->vdev_children; c++) {
1267 		vdev_t *cvd = vd->vdev_child[c];
1268 		vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done);
1269 		mutex_enter(&vd->vdev_dtl_lock);
1270 		space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map);
1271 		space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub);
1272 		mutex_exit(&vd->vdev_dtl_lock);
1273 	}
1274 
1275 	if (vd == spa->spa_root_vdev)
1276 		mutex_exit(&spa->spa_scrub_lock);
1277 }
1278 
1279 static int
1280 vdev_dtl_load(vdev_t *vd)
1281 {
1282 	spa_t *spa = vd->vdev_spa;
1283 	space_map_obj_t *smo = &vd->vdev_dtl;
1284 	objset_t *mos = spa->spa_meta_objset;
1285 	dmu_buf_t *db;
1286 	int error;
1287 
1288 	ASSERT(vd->vdev_children == 0);
1289 
1290 	if (smo->smo_object == 0)
1291 		return (0);
1292 
1293 	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1294 		return (error);
1295 
1296 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1297 	bcopy(db->db_data, smo, sizeof (*smo));
1298 	dmu_buf_rele(db, FTAG);
1299 
1300 	mutex_enter(&vd->vdev_dtl_lock);
1301 	error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos);
1302 	mutex_exit(&vd->vdev_dtl_lock);
1303 
1304 	return (error);
1305 }
1306 
1307 void
1308 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1309 {
1310 	spa_t *spa = vd->vdev_spa;
1311 	space_map_obj_t *smo = &vd->vdev_dtl;
1312 	space_map_t *sm = &vd->vdev_dtl_map;
1313 	objset_t *mos = spa->spa_meta_objset;
1314 	space_map_t smsync;
1315 	kmutex_t smlock;
1316 	dmu_buf_t *db;
1317 	dmu_tx_t *tx;
1318 
1319 	dprintf("%s in txg %llu pass %d\n",
1320 	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1321 
1322 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1323 
1324 	if (vd->vdev_detached) {
1325 		if (smo->smo_object != 0) {
1326 			int err = dmu_object_free(mos, smo->smo_object, tx);
1327 			ASSERT3U(err, ==, 0);
1328 			smo->smo_object = 0;
1329 		}
1330 		dmu_tx_commit(tx);
1331 		dprintf("detach %s committed in txg %llu\n",
1332 		    vdev_description(vd), txg);
1333 		return;
1334 	}
1335 
1336 	if (smo->smo_object == 0) {
1337 		ASSERT(smo->smo_objsize == 0);
1338 		ASSERT(smo->smo_alloc == 0);
1339 		smo->smo_object = dmu_object_alloc(mos,
1340 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1341 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1342 		ASSERT(smo->smo_object != 0);
1343 		vdev_config_dirty(vd->vdev_top);
1344 	}
1345 
1346 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1347 
1348 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1349 	    &smlock);
1350 
1351 	mutex_enter(&smlock);
1352 
1353 	mutex_enter(&vd->vdev_dtl_lock);
1354 	space_map_walk(sm, space_map_add, &smsync);
1355 	mutex_exit(&vd->vdev_dtl_lock);
1356 
1357 	space_map_truncate(smo, mos, tx);
1358 	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1359 
1360 	space_map_destroy(&smsync);
1361 
1362 	mutex_exit(&smlock);
1363 	mutex_destroy(&smlock);
1364 
1365 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1366 	dmu_buf_will_dirty(db, tx);
1367 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1368 	bcopy(smo, db->db_data, sizeof (*smo));
1369 	dmu_buf_rele(db, FTAG);
1370 
1371 	dmu_tx_commit(tx);
1372 }
1373 
1374 /*
1375  * Determine if resilver is needed, and if so the txg range.
1376  */
1377 boolean_t
1378 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1379 {
1380 	boolean_t needed = B_FALSE;
1381 	uint64_t thismin = UINT64_MAX;
1382 	uint64_t thismax = 0;
1383 
1384 	if (vd->vdev_children == 0) {
1385 		mutex_enter(&vd->vdev_dtl_lock);
1386 		if (vd->vdev_dtl_map.sm_space != 0 && vdev_writeable(vd)) {
1387 			space_seg_t *ss;
1388 
1389 			ss = avl_first(&vd->vdev_dtl_map.sm_root);
1390 			thismin = ss->ss_start - 1;
1391 			ss = avl_last(&vd->vdev_dtl_map.sm_root);
1392 			thismax = ss->ss_end;
1393 			needed = B_TRUE;
1394 		}
1395 		mutex_exit(&vd->vdev_dtl_lock);
1396 	} else {
1397 		int c;
1398 		for (c = 0; c < vd->vdev_children; c++) {
1399 			vdev_t *cvd = vd->vdev_child[c];
1400 			uint64_t cmin, cmax;
1401 
1402 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1403 				thismin = MIN(thismin, cmin);
1404 				thismax = MAX(thismax, cmax);
1405 				needed = B_TRUE;
1406 			}
1407 		}
1408 	}
1409 
1410 	if (needed && minp) {
1411 		*minp = thismin;
1412 		*maxp = thismax;
1413 	}
1414 	return (needed);
1415 }
1416 
1417 void
1418 vdev_load(vdev_t *vd)
1419 {
1420 	int c;
1421 
1422 	/*
1423 	 * Recursively load all children.
1424 	 */
1425 	for (c = 0; c < vd->vdev_children; c++)
1426 		vdev_load(vd->vdev_child[c]);
1427 
1428 	/*
1429 	 * If this is a top-level vdev, initialize its metaslabs.
1430 	 */
1431 	if (vd == vd->vdev_top &&
1432 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1433 	    vdev_metaslab_init(vd, 0) != 0))
1434 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1435 		    VDEV_AUX_CORRUPT_DATA);
1436 
1437 	/*
1438 	 * If this is a leaf vdev, load its DTL.
1439 	 */
1440 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1441 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1442 		    VDEV_AUX_CORRUPT_DATA);
1443 }
1444 
1445 /*
1446  * The special vdev case is used for hot spares and l2cache devices.  Its
1447  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1448  * we make sure that we can open the underlying device, then try to read the
1449  * label, and make sure that the label is sane and that it hasn't been
1450  * repurposed to another pool.
1451  */
1452 int
1453 vdev_validate_aux(vdev_t *vd)
1454 {
1455 	nvlist_t *label;
1456 	uint64_t guid, version;
1457 	uint64_t state;
1458 
1459 	if (vdev_is_dead(vd))
1460 		return (0);
1461 
1462 	if ((label = vdev_label_read_config(vd)) == NULL) {
1463 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1464 		    VDEV_AUX_CORRUPT_DATA);
1465 		return (-1);
1466 	}
1467 
1468 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1469 	    version > SPA_VERSION ||
1470 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1471 	    guid != vd->vdev_guid ||
1472 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1473 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1474 		    VDEV_AUX_CORRUPT_DATA);
1475 		nvlist_free(label);
1476 		return (-1);
1477 	}
1478 
1479 	/*
1480 	 * We don't actually check the pool state here.  If it's in fact in
1481 	 * use by another pool, we update this fact on the fly when requested.
1482 	 */
1483 	nvlist_free(label);
1484 	return (0);
1485 }
1486 
1487 void
1488 vdev_sync_done(vdev_t *vd, uint64_t txg)
1489 {
1490 	metaslab_t *msp;
1491 
1492 	dprintf("%s txg %llu\n", vdev_description(vd), txg);
1493 
1494 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1495 		metaslab_sync_done(msp, txg);
1496 }
1497 
1498 void
1499 vdev_sync(vdev_t *vd, uint64_t txg)
1500 {
1501 	spa_t *spa = vd->vdev_spa;
1502 	vdev_t *lvd;
1503 	metaslab_t *msp;
1504 	dmu_tx_t *tx;
1505 
1506 	dprintf("%s txg %llu pass %d\n",
1507 	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1508 
1509 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1510 		ASSERT(vd == vd->vdev_top);
1511 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1512 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1513 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1514 		ASSERT(vd->vdev_ms_array != 0);
1515 		vdev_config_dirty(vd);
1516 		dmu_tx_commit(tx);
1517 	}
1518 
1519 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1520 		metaslab_sync(msp, txg);
1521 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1522 	}
1523 
1524 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1525 		vdev_dtl_sync(lvd, txg);
1526 
1527 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1528 }
1529 
1530 uint64_t
1531 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1532 {
1533 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
1534 }
1535 
1536 const char *
1537 vdev_description(vdev_t *vd)
1538 {
1539 	if (vd == NULL || vd->vdev_ops == NULL)
1540 		return ("<unknown>");
1541 
1542 	if (vd->vdev_path != NULL)
1543 		return (vd->vdev_path);
1544 
1545 	if (vd->vdev_parent == NULL)
1546 		return (spa_name(vd->vdev_spa));
1547 
1548 	return (vd->vdev_ops->vdev_op_type);
1549 }
1550 
1551 /*
1552  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
1553  * not be opened, and no I/O is attempted.
1554  */
1555 int
1556 vdev_fault(spa_t *spa, uint64_t guid)
1557 {
1558 	vdev_t *vd;
1559 	uint64_t txg;
1560 
1561 	/*
1562 	 * Disregard a vdev fault request if the pool has
1563 	 * experienced a complete failure.
1564 	 *
1565 	 * XXX - We do this here so that we don't hold the
1566 	 * spa_namespace_lock in the event that we can't get
1567 	 * the RW_WRITER spa_config_lock.
1568 	 */
1569 	if (spa_state(spa) == POOL_STATE_IO_FAILURE)
1570 		return (EIO);
1571 
1572 	txg = spa_vdev_enter(spa);
1573 
1574 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1575 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1576 	if (!vd->vdev_ops->vdev_op_leaf)
1577 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1578 
1579 	/*
1580 	 * Faulted state takes precedence over degraded.
1581 	 */
1582 	vd->vdev_faulted = 1ULL;
1583 	vd->vdev_degraded = 0ULL;
1584 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED,
1585 	    VDEV_AUX_ERR_EXCEEDED);
1586 
1587 	/*
1588 	 * If marking the vdev as faulted cause the toplevel vdev to become
1589 	 * unavailable, then back off and simply mark the vdev as degraded
1590 	 * instead.
1591 	 */
1592 	if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1593 		vd->vdev_degraded = 1ULL;
1594 		vd->vdev_faulted = 0ULL;
1595 
1596 		/*
1597 		 * If we reopen the device and it's not dead, only then do we
1598 		 * mark it degraded.
1599 		 */
1600 		vdev_reopen(vd);
1601 
1602 		if (vdev_readable(vd)) {
1603 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1604 			    VDEV_AUX_ERR_EXCEEDED);
1605 		}
1606 	}
1607 
1608 	vdev_config_dirty(vd->vdev_top);
1609 
1610 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1611 
1612 	return (0);
1613 }
1614 
1615 /*
1616  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
1617  * user that something is wrong.  The vdev continues to operate as normal as far
1618  * as I/O is concerned.
1619  */
1620 int
1621 vdev_degrade(spa_t *spa, uint64_t guid)
1622 {
1623 	vdev_t *vd;
1624 	uint64_t txg;
1625 
1626 	/*
1627 	 * Disregard a vdev fault request if the pool has
1628 	 * experienced a complete failure.
1629 	 *
1630 	 * XXX - We do this here so that we don't hold the
1631 	 * spa_namespace_lock in the event that we can't get
1632 	 * the RW_WRITER spa_config_lock.
1633 	 */
1634 	if (spa_state(spa) == POOL_STATE_IO_FAILURE)
1635 		return (EIO);
1636 
1637 	txg = spa_vdev_enter(spa);
1638 
1639 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1640 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1641 	if (!vd->vdev_ops->vdev_op_leaf)
1642 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1643 
1644 	/*
1645 	 * If the vdev is already faulted, then don't do anything.
1646 	 */
1647 	if (vd->vdev_faulted || vd->vdev_degraded) {
1648 		(void) spa_vdev_exit(spa, NULL, txg, 0);
1649 		return (0);
1650 	}
1651 
1652 	vd->vdev_degraded = 1ULL;
1653 	if (!vdev_is_dead(vd))
1654 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1655 		    VDEV_AUX_ERR_EXCEEDED);
1656 	vdev_config_dirty(vd->vdev_top);
1657 
1658 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1659 
1660 	return (0);
1661 }
1662 
1663 /*
1664  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
1665  * any attached spare device should be detached when the device finishes
1666  * resilvering.  Second, the online should be treated like a 'test' online case,
1667  * so no FMA events are generated if the device fails to open.
1668  */
1669 int
1670 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags,
1671     vdev_state_t *newstate)
1672 {
1673 	vdev_t *vd;
1674 	uint64_t txg;
1675 
1676 	/*
1677 	 * Disregard a vdev fault request if the pool has
1678 	 * experienced a complete failure.
1679 	 *
1680 	 * XXX - We do this here so that we don't hold the
1681 	 * spa_namespace_lock in the event that we can't get
1682 	 * the RW_WRITER spa_config_lock.
1683 	 */
1684 	if (spa_state(spa) == POOL_STATE_IO_FAILURE)
1685 		return (EIO);
1686 
1687 	txg = spa_vdev_enter(spa);
1688 
1689 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1690 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1691 
1692 	if (!vd->vdev_ops->vdev_op_leaf)
1693 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1694 
1695 	vd->vdev_offline = B_FALSE;
1696 	vd->vdev_tmpoffline = B_FALSE;
1697 	vd->vdev_checkremove = (flags & ZFS_ONLINE_CHECKREMOVE) ?
1698 	    B_TRUE : B_FALSE;
1699 	vd->vdev_forcefault = (flags & ZFS_ONLINE_FORCEFAULT) ?
1700 	    B_TRUE : B_FALSE;
1701 	vdev_reopen(vd->vdev_top);
1702 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
1703 
1704 	if (newstate)
1705 		*newstate = vd->vdev_state;
1706 	if ((flags & ZFS_ONLINE_UNSPARE) &&
1707 	    !vdev_is_dead(vd) && vd->vdev_parent &&
1708 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1709 	    vd->vdev_parent->vdev_child[0] == vd)
1710 		vd->vdev_unspare = B_TRUE;
1711 
1712 	vdev_config_dirty(vd->vdev_top);
1713 
1714 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1715 
1716 	/*
1717 	 * Must hold spa_namespace_lock in order to post resilver sysevent
1718 	 * w/pool name.
1719 	 */
1720 	mutex_enter(&spa_namespace_lock);
1721 	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
1722 	mutex_exit(&spa_namespace_lock);
1723 
1724 	return (0);
1725 }
1726 
1727 int
1728 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1729 {
1730 	vdev_t *vd;
1731 	uint64_t txg;
1732 
1733 	/*
1734 	 * Disregard a vdev fault request if the pool has
1735 	 * experienced a complete failure.
1736 	 *
1737 	 * XXX - We do this here so that we don't hold the
1738 	 * spa_namespace_lock in the event that we can't get
1739 	 * the RW_WRITER spa_config_lock.
1740 	 */
1741 	if (spa_state(spa) == POOL_STATE_IO_FAILURE)
1742 		return (EIO);
1743 
1744 	txg = spa_vdev_enter(spa);
1745 
1746 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1747 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1748 
1749 	if (!vd->vdev_ops->vdev_op_leaf)
1750 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1751 
1752 	/*
1753 	 * If the device isn't already offline, try to offline it.
1754 	 */
1755 	if (!vd->vdev_offline) {
1756 		/*
1757 		 * If this device's top-level vdev has a non-empty DTL,
1758 		 * don't allow the device to be offlined.
1759 		 *
1760 		 * XXX -- make this more precise by allowing the offline
1761 		 * as long as the remaining devices don't have any DTL holes.
1762 		 */
1763 		if (vd->vdev_top->vdev_dtl_map.sm_space != 0)
1764 			return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1765 
1766 		/*
1767 		 * Offline this device and reopen its top-level vdev.
1768 		 * If this action results in the top-level vdev becoming
1769 		 * unusable, undo it and fail the request.
1770 		 */
1771 		vd->vdev_offline = B_TRUE;
1772 		vdev_reopen(vd->vdev_top);
1773 		if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1774 			vd->vdev_offline = B_FALSE;
1775 			vdev_reopen(vd->vdev_top);
1776 			return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1777 		}
1778 	}
1779 
1780 	vd->vdev_tmpoffline = (flags & ZFS_OFFLINE_TEMPORARY) ?
1781 	    B_TRUE : B_FALSE;
1782 
1783 	vdev_config_dirty(vd->vdev_top);
1784 
1785 	return (spa_vdev_exit(spa, NULL, txg, 0));
1786 }
1787 
1788 /*
1789  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
1790  * vdev_offline(), we assume the spa config is locked.  We also clear all
1791  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
1792  * If reopen is specified then attempt to reopen the vdev if the vdev is
1793  * faulted or degraded.
1794  */
1795 void
1796 vdev_clear(spa_t *spa, vdev_t *vd, boolean_t reopen_wanted)
1797 {
1798 	int c;
1799 
1800 	if (vd == NULL)
1801 		vd = spa->spa_root_vdev;
1802 
1803 	vd->vdev_stat.vs_read_errors = 0;
1804 	vd->vdev_stat.vs_write_errors = 0;
1805 	vd->vdev_stat.vs_checksum_errors = 0;
1806 	vd->vdev_is_failing = B_FALSE;
1807 
1808 	for (c = 0; c < vd->vdev_children; c++)
1809 		vdev_clear(spa, vd->vdev_child[c], reopen_wanted);
1810 
1811 	/*
1812 	 * If we're in the FAULTED state or have experienced failed I/O, then
1813 	 * clear the persistent state and attempt to reopen the device.  We
1814 	 * also mark the vdev config dirty, so that the new faulted state is
1815 	 * written out to disk.
1816 	 */
1817 	if (reopen_wanted && (vd->vdev_faulted || vd->vdev_degraded ||
1818 	    vd->vdev_stat.vs_aux == VDEV_AUX_IO_FAILURE)) {
1819 		boolean_t resilver = (vd->vdev_faulted || vd->vdev_degraded);
1820 
1821 		vd->vdev_faulted = vd->vdev_degraded = 0;
1822 		vdev_reopen(vd);
1823 		vdev_config_dirty(vd->vdev_top);
1824 
1825 		if (resilver && vd->vdev_aux == NULL && !vdev_is_dead(vd))
1826 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1827 
1828 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
1829 	}
1830 }
1831 
1832 int
1833 vdev_readable(vdev_t *vd)
1834 {
1835 	/* XXPOLICY */
1836 	return (!vdev_is_dead(vd));
1837 }
1838 
1839 int
1840 vdev_writeable(vdev_t *vd)
1841 {
1842 	return (!vdev_is_dead(vd) && !vd->vdev_is_failing);
1843 }
1844 
1845 int
1846 vdev_is_dead(vdev_t *vd)
1847 {
1848 	/*
1849 	 * If the vdev experienced I/O failures, then the vdev is marked
1850 	 * as faulted (VDEV_STATE_FAULTED) for status output and FMA; however,
1851 	 * we need to allow access to the vdev for resumed I/Os (see
1852 	 * zio_vdev_resume_io() ).
1853 	 */
1854 	return (vd->vdev_state < VDEV_STATE_DEGRADED &&
1855 	    vd->vdev_stat.vs_aux != VDEV_AUX_IO_FAILURE);
1856 }
1857 
1858 int
1859 vdev_error_inject(vdev_t *vd, zio_t *zio)
1860 {
1861 	int error = 0;
1862 
1863 	if (vd->vdev_fault_mode == VDEV_FAULT_NONE)
1864 		return (0);
1865 
1866 	if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0)
1867 		return (0);
1868 
1869 	switch (vd->vdev_fault_mode) {
1870 	case VDEV_FAULT_RANDOM:
1871 		if (spa_get_random(vd->vdev_fault_arg) == 0)
1872 			error = EIO;
1873 		break;
1874 
1875 	case VDEV_FAULT_COUNT:
1876 		if ((int64_t)--vd->vdev_fault_arg <= 0)
1877 			vd->vdev_fault_mode = VDEV_FAULT_NONE;
1878 		error = EIO;
1879 		break;
1880 	}
1881 
1882 	return (error);
1883 }
1884 
1885 /*
1886  * Get statistics for the given vdev.
1887  */
1888 void
1889 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
1890 {
1891 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
1892 	int c, t;
1893 
1894 	mutex_enter(&vd->vdev_stat_lock);
1895 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
1896 	vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
1897 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
1898 	vs->vs_state = vd->vdev_state;
1899 	vs->vs_rsize = vdev_get_rsize(vd);
1900 	mutex_exit(&vd->vdev_stat_lock);
1901 
1902 	/*
1903 	 * If we're getting stats on the root vdev, aggregate the I/O counts
1904 	 * over all top-level vdevs (i.e. the direct children of the root).
1905 	 */
1906 	if (vd == rvd) {
1907 		for (c = 0; c < rvd->vdev_children; c++) {
1908 			vdev_t *cvd = rvd->vdev_child[c];
1909 			vdev_stat_t *cvs = &cvd->vdev_stat;
1910 
1911 			mutex_enter(&vd->vdev_stat_lock);
1912 			for (t = 0; t < ZIO_TYPES; t++) {
1913 				vs->vs_ops[t] += cvs->vs_ops[t];
1914 				vs->vs_bytes[t] += cvs->vs_bytes[t];
1915 			}
1916 			vs->vs_read_errors += cvs->vs_read_errors;
1917 			vs->vs_write_errors += cvs->vs_write_errors;
1918 			vs->vs_checksum_errors += cvs->vs_checksum_errors;
1919 			vs->vs_scrub_examined += cvs->vs_scrub_examined;
1920 			mutex_exit(&vd->vdev_stat_lock);
1921 		}
1922 	}
1923 }
1924 
1925 void
1926 vdev_clear_stats(vdev_t *vd)
1927 {
1928 	mutex_enter(&vd->vdev_stat_lock);
1929 	vd->vdev_stat.vs_space = 0;
1930 	vd->vdev_stat.vs_dspace = 0;
1931 	vd->vdev_stat.vs_alloc = 0;
1932 	mutex_exit(&vd->vdev_stat_lock);
1933 }
1934 
1935 void
1936 vdev_stat_update(zio_t *zio)
1937 {
1938 	vdev_t *vd = zio->io_vd;
1939 	vdev_t *pvd;
1940 	uint64_t txg = zio->io_txg;
1941 	vdev_stat_t *vs = &vd->vdev_stat;
1942 	zio_type_t type = zio->io_type;
1943 	int flags = zio->io_flags;
1944 
1945 	if (zio->io_error == 0) {
1946 		if (!(flags & ZIO_FLAG_IO_BYPASS)) {
1947 			mutex_enter(&vd->vdev_stat_lock);
1948 			vs->vs_ops[type]++;
1949 			vs->vs_bytes[type] += zio->io_size;
1950 			mutex_exit(&vd->vdev_stat_lock);
1951 		}
1952 		if ((flags & ZIO_FLAG_IO_REPAIR) &&
1953 		    zio->io_delegate_list == NULL) {
1954 			mutex_enter(&vd->vdev_stat_lock);
1955 			if (flags & ZIO_FLAG_SCRUB_THREAD)
1956 				vs->vs_scrub_repaired += zio->io_size;
1957 			else
1958 				vs->vs_self_healed += zio->io_size;
1959 			mutex_exit(&vd->vdev_stat_lock);
1960 		}
1961 		return;
1962 	}
1963 
1964 	if (flags & ZIO_FLAG_SPECULATIVE)
1965 		return;
1966 
1967 	if (vdev_readable(vd)) {
1968 		mutex_enter(&vd->vdev_stat_lock);
1969 		if (type == ZIO_TYPE_READ) {
1970 			if (zio->io_error == ECKSUM)
1971 				vs->vs_checksum_errors++;
1972 			else
1973 				vs->vs_read_errors++;
1974 		}
1975 		if (type == ZIO_TYPE_WRITE)
1976 			vs->vs_write_errors++;
1977 		mutex_exit(&vd->vdev_stat_lock);
1978 	}
1979 
1980 	if (type == ZIO_TYPE_WRITE) {
1981 		if (txg == 0 || vd->vdev_children != 0)
1982 			return;
1983 		if (flags & ZIO_FLAG_SCRUB_THREAD) {
1984 			ASSERT(flags & ZIO_FLAG_IO_REPAIR);
1985 			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1986 				vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1);
1987 		}
1988 		if (!(flags & ZIO_FLAG_IO_REPAIR)) {
1989 			if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1))
1990 				return;
1991 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1992 			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1993 				vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1);
1994 		}
1995 	}
1996 }
1997 
1998 void
1999 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2000 {
2001 	int c;
2002 	vdev_stat_t *vs = &vd->vdev_stat;
2003 
2004 	for (c = 0; c < vd->vdev_children; c++)
2005 		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2006 
2007 	mutex_enter(&vd->vdev_stat_lock);
2008 
2009 	if (type == POOL_SCRUB_NONE) {
2010 		/*
2011 		 * Update completion and end time.  Leave everything else alone
2012 		 * so we can report what happened during the previous scrub.
2013 		 */
2014 		vs->vs_scrub_complete = complete;
2015 		vs->vs_scrub_end = gethrestime_sec();
2016 	} else {
2017 		vs->vs_scrub_type = type;
2018 		vs->vs_scrub_complete = 0;
2019 		vs->vs_scrub_examined = 0;
2020 		vs->vs_scrub_repaired = 0;
2021 		vs->vs_scrub_start = gethrestime_sec();
2022 		vs->vs_scrub_end = 0;
2023 	}
2024 
2025 	mutex_exit(&vd->vdev_stat_lock);
2026 }
2027 
2028 /*
2029  * Update the in-core space usage stats for this vdev and the root vdev.
2030  */
2031 void
2032 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
2033     boolean_t update_root)
2034 {
2035 	int64_t dspace_delta = space_delta;
2036 	spa_t *spa = vd->vdev_spa;
2037 	vdev_t *rvd = spa->spa_root_vdev;
2038 
2039 	ASSERT(vd == vd->vdev_top);
2040 
2041 	/*
2042 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2043 	 * factor.  We must calculate this here and not at the root vdev
2044 	 * because the root vdev's psize-to-asize is simply the max of its
2045 	 * childrens', thus not accurate enough for us.
2046 	 */
2047 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2048 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2049 	    vd->vdev_deflate_ratio;
2050 
2051 	mutex_enter(&vd->vdev_stat_lock);
2052 	vd->vdev_stat.vs_space += space_delta;
2053 	vd->vdev_stat.vs_alloc += alloc_delta;
2054 	vd->vdev_stat.vs_dspace += dspace_delta;
2055 	mutex_exit(&vd->vdev_stat_lock);
2056 
2057 	if (update_root) {
2058 		ASSERT(rvd == vd->vdev_parent);
2059 		ASSERT(vd->vdev_ms_count != 0);
2060 
2061 		/*
2062 		 * Don't count non-normal (e.g. intent log) space as part of
2063 		 * the pool's capacity.
2064 		 */
2065 		if (vd->vdev_mg->mg_class != spa->spa_normal_class)
2066 			return;
2067 
2068 		mutex_enter(&rvd->vdev_stat_lock);
2069 		rvd->vdev_stat.vs_space += space_delta;
2070 		rvd->vdev_stat.vs_alloc += alloc_delta;
2071 		rvd->vdev_stat.vs_dspace += dspace_delta;
2072 		mutex_exit(&rvd->vdev_stat_lock);
2073 	}
2074 }
2075 
2076 /*
2077  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2078  * so that it will be written out next time the vdev configuration is synced.
2079  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2080  */
2081 void
2082 vdev_config_dirty(vdev_t *vd)
2083 {
2084 	spa_t *spa = vd->vdev_spa;
2085 	vdev_t *rvd = spa->spa_root_vdev;
2086 	int c;
2087 
2088 	/*
2089 	 * If this is an aux vdev (as with l2cache devices), then we update the
2090 	 * vdev config manually and set the sync flag.
2091 	 */
2092 	if (vd->vdev_aux != NULL) {
2093 		spa_aux_vdev_t *sav = vd->vdev_aux;
2094 		nvlist_t **aux;
2095 		uint_t naux;
2096 
2097 		for (c = 0; c < sav->sav_count; c++) {
2098 			if (sav->sav_vdevs[c] == vd)
2099 				break;
2100 		}
2101 
2102 		ASSERT(c < sav->sav_count);
2103 		sav->sav_sync = B_TRUE;
2104 
2105 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2106 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) == 0);
2107 
2108 		ASSERT(c < naux);
2109 
2110 		/*
2111 		 * Setting the nvlist in the middle if the array is a little
2112 		 * sketchy, but it will work.
2113 		 */
2114 		nvlist_free(aux[c]);
2115 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2116 
2117 		return;
2118 	}
2119 
2120 	/*
2121 	 * The dirty list is protected by the config lock.  The caller must
2122 	 * either hold the config lock as writer, or must be the sync thread
2123 	 * (which holds the lock as reader).  There's only one sync thread,
2124 	 * so this is sufficient to ensure mutual exclusion.
2125 	 */
2126 	ASSERT(spa_config_held(spa, RW_WRITER) ||
2127 	    dsl_pool_sync_context(spa_get_dsl(spa)));
2128 
2129 	if (vd == rvd) {
2130 		for (c = 0; c < rvd->vdev_children; c++)
2131 			vdev_config_dirty(rvd->vdev_child[c]);
2132 	} else {
2133 		ASSERT(vd == vd->vdev_top);
2134 
2135 		if (!list_link_active(&vd->vdev_dirty_node))
2136 			list_insert_head(&spa->spa_dirty_list, vd);
2137 	}
2138 }
2139 
2140 void
2141 vdev_config_clean(vdev_t *vd)
2142 {
2143 	spa_t *spa = vd->vdev_spa;
2144 
2145 	ASSERT(spa_config_held(spa, RW_WRITER) ||
2146 	    dsl_pool_sync_context(spa_get_dsl(spa)));
2147 
2148 	ASSERT(list_link_active(&vd->vdev_dirty_node));
2149 	list_remove(&spa->spa_dirty_list, vd);
2150 }
2151 
2152 /*
2153  * Propagate vdev state up from children to parent.
2154  */
2155 void
2156 vdev_propagate_state(vdev_t *vd)
2157 {
2158 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2159 	int degraded = 0, faulted = 0;
2160 	int corrupted = 0;
2161 	int c;
2162 	vdev_t *child;
2163 
2164 	if (vd->vdev_children > 0) {
2165 		for (c = 0; c < vd->vdev_children; c++) {
2166 			child = vd->vdev_child[c];
2167 
2168 			if ((vdev_is_dead(child) && !vdev_readable(child)) ||
2169 			    child->vdev_stat.vs_aux == VDEV_AUX_IO_FAILURE) {
2170 				/*
2171 				 * Root special: if there is a top-level log
2172 				 * device, treat the root vdev as if it were
2173 				 * degraded.
2174 				 */
2175 				if (child->vdev_islog && vd == rvd)
2176 					degraded++;
2177 				else
2178 					faulted++;
2179 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2180 				degraded++;
2181 			}
2182 
2183 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2184 				corrupted++;
2185 		}
2186 
2187 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2188 
2189 		/*
2190 		 * Root special: if there is a toplevel vdev that cannot be
2191 		 * opened due to corrupted metadata, then propagate the root
2192 		 * vdev's aux state as 'corrupt' rather than 'insufficient
2193 		 * replicas'.
2194 		 */
2195 		if (corrupted && vd == rvd &&
2196 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2197 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2198 			    VDEV_AUX_CORRUPT_DATA);
2199 	}
2200 
2201 	if (vd->vdev_parent)
2202 		vdev_propagate_state(vd->vdev_parent);
2203 }
2204 
2205 /*
2206  * Set a vdev's state.  If this is during an open, we don't update the parent
2207  * state, because we're in the process of opening children depth-first.
2208  * Otherwise, we propagate the change to the parent.
2209  *
2210  * If this routine places a device in a faulted state, an appropriate ereport is
2211  * generated.
2212  */
2213 void
2214 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2215 {
2216 	uint64_t save_state;
2217 	spa_t *spa = vd->vdev_spa;
2218 
2219 	if (state == vd->vdev_state) {
2220 		vd->vdev_stat.vs_aux = aux;
2221 		return;
2222 	}
2223 
2224 	save_state = vd->vdev_state;
2225 
2226 	vd->vdev_state = state;
2227 	vd->vdev_stat.vs_aux = aux;
2228 
2229 	/*
2230 	 * If we are setting the vdev state to anything but an open state, then
2231 	 * always close the underlying device.  Otherwise, we keep accessible
2232 	 * but invalid devices open forever.  We don't call vdev_close() itself,
2233 	 * because that implies some extra checks (offline, etc) that we don't
2234 	 * want here.  This is limited to leaf devices, because otherwise
2235 	 * closing the device will affect other children.
2236 	 */
2237 	if (!vdev_readable(vd) && vd->vdev_ops->vdev_op_leaf)
2238 		vd->vdev_ops->vdev_op_close(vd);
2239 
2240 	if (vd->vdev_removed &&
2241 	    state == VDEV_STATE_CANT_OPEN &&
2242 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2243 		/*
2244 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2245 		 * device was previously marked removed and someone attempted to
2246 		 * reopen it.  If this failed due to a nonexistent device, then
2247 		 * keep the device in the REMOVED state.  We also let this be if
2248 		 * it is one of our special test online cases, which is only
2249 		 * attempting to online the device and shouldn't generate an FMA
2250 		 * fault.
2251 		 */
2252 		vd->vdev_state = VDEV_STATE_REMOVED;
2253 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2254 	} else if (state == VDEV_STATE_REMOVED) {
2255 		/*
2256 		 * Indicate to the ZFS DE that this device has been removed, and
2257 		 * any recent errors should be ignored.
2258 		 */
2259 		zfs_post_remove(spa, vd);
2260 		vd->vdev_removed = B_TRUE;
2261 	} else if (state == VDEV_STATE_CANT_OPEN) {
2262 		/*
2263 		 * If we fail to open a vdev during an import, we mark it as
2264 		 * "not available", which signifies that it was never there to
2265 		 * begin with.  Failure to open such a device is not considered
2266 		 * an error.
2267 		 */
2268 		if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2269 		    !spa->spa_import_faulted &&
2270 		    vd->vdev_ops->vdev_op_leaf)
2271 			vd->vdev_not_present = 1;
2272 
2273 		/*
2274 		 * Post the appropriate ereport.  If the 'prevstate' field is
2275 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2276 		 * that this is part of a vdev_reopen().  In this case, we don't
2277 		 * want to post the ereport if the device was already in the
2278 		 * CANT_OPEN state beforehand.
2279 		 *
2280 		 * If the 'checkremove' flag is set, then this is an attempt to
2281 		 * online the device in response to an insertion event.  If we
2282 		 * hit this case, then we have detected an insertion event for a
2283 		 * faulted or offline device that wasn't in the removed state.
2284 		 * In this scenario, we don't post an ereport because we are
2285 		 * about to replace the device, or attempt an online with
2286 		 * vdev_forcefault, which will generate the fault for us.
2287 		 */
2288 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2289 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2290 		    vd != spa->spa_root_vdev) {
2291 			const char *class;
2292 
2293 			switch (aux) {
2294 			case VDEV_AUX_OPEN_FAILED:
2295 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2296 				break;
2297 			case VDEV_AUX_CORRUPT_DATA:
2298 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2299 				break;
2300 			case VDEV_AUX_NO_REPLICAS:
2301 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2302 				break;
2303 			case VDEV_AUX_BAD_GUID_SUM:
2304 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2305 				break;
2306 			case VDEV_AUX_TOO_SMALL:
2307 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2308 				break;
2309 			case VDEV_AUX_BAD_LABEL:
2310 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2311 				break;
2312 			default:
2313 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2314 			}
2315 
2316 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2317 		}
2318 
2319 		/* Erase any notion of persistent removed state */
2320 		vd->vdev_removed = B_FALSE;
2321 	} else {
2322 		vd->vdev_removed = B_FALSE;
2323 	}
2324 
2325 	if (!isopen)
2326 		vdev_propagate_state(vd);
2327 }
2328 
2329 /*
2330  * Check the vdev configuration to ensure that it's capable of supporting
2331  * a root pool. Currently, we do not support RAID-Z or partial configuration.
2332  * In addition, only a single top-level vdev is allowed and none of the leaves
2333  * can be wholedisks.
2334  */
2335 boolean_t
2336 vdev_is_bootable(vdev_t *vd)
2337 {
2338 	int c;
2339 
2340 	if (!vd->vdev_ops->vdev_op_leaf) {
2341 		char *vdev_type = vd->vdev_ops->vdev_op_type;
2342 
2343 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
2344 		    vd->vdev_children > 1) {
2345 			return (B_FALSE);
2346 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
2347 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
2348 			return (B_FALSE);
2349 		}
2350 	} else if (vd->vdev_wholedisk == 1) {
2351 		return (B_FALSE);
2352 	}
2353 
2354 	for (c = 0; c < vd->vdev_children; c++) {
2355 		if (!vdev_is_bootable(vd->vdev_child[c]))
2356 			return (B_FALSE);
2357 	}
2358 	return (B_TRUE);
2359 }
2360