1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/zfs_context.h> 30 #include <sys/fm/fs/zfs.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/vdev_impl.h> 36 #include <sys/uberblock_impl.h> 37 #include <sys/metaslab.h> 38 #include <sys/metaslab_impl.h> 39 #include <sys/space_map.h> 40 #include <sys/zio.h> 41 #include <sys/zap.h> 42 #include <sys/fs/zfs.h> 43 44 /* 45 * Virtual device management. 46 */ 47 48 static vdev_ops_t *vdev_ops_table[] = { 49 &vdev_root_ops, 50 &vdev_raidz_ops, 51 &vdev_mirror_ops, 52 &vdev_replacing_ops, 53 &vdev_spare_ops, 54 &vdev_disk_ops, 55 &vdev_file_ops, 56 &vdev_missing_ops, 57 NULL 58 }; 59 60 /* 61 * Given a vdev type, return the appropriate ops vector. 62 */ 63 static vdev_ops_t * 64 vdev_getops(const char *type) 65 { 66 vdev_ops_t *ops, **opspp; 67 68 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 69 if (strcmp(ops->vdev_op_type, type) == 0) 70 break; 71 72 return (ops); 73 } 74 75 /* 76 * Default asize function: return the MAX of psize with the asize of 77 * all children. This is what's used by anything other than RAID-Z. 78 */ 79 uint64_t 80 vdev_default_asize(vdev_t *vd, uint64_t psize) 81 { 82 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 83 uint64_t csize; 84 uint64_t c; 85 86 for (c = 0; c < vd->vdev_children; c++) { 87 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 88 asize = MAX(asize, csize); 89 } 90 91 return (asize); 92 } 93 94 /* 95 * Get the replaceable or attachable device size. 96 * If the parent is a mirror or raidz, the replaceable size is the minimum 97 * psize of all its children. For the rest, just return our own psize. 98 * 99 * e.g. 100 * psize rsize 101 * root - - 102 * mirror/raidz - - 103 * disk1 20g 20g 104 * disk2 40g 20g 105 * disk3 80g 80g 106 */ 107 uint64_t 108 vdev_get_rsize(vdev_t *vd) 109 { 110 vdev_t *pvd, *cvd; 111 uint64_t c, rsize; 112 113 pvd = vd->vdev_parent; 114 115 /* 116 * If our parent is NULL or the root, just return our own psize. 117 */ 118 if (pvd == NULL || pvd->vdev_parent == NULL) 119 return (vd->vdev_psize); 120 121 rsize = 0; 122 123 for (c = 0; c < pvd->vdev_children; c++) { 124 cvd = pvd->vdev_child[c]; 125 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1; 126 } 127 128 return (rsize); 129 } 130 131 vdev_t * 132 vdev_lookup_top(spa_t *spa, uint64_t vdev) 133 { 134 vdev_t *rvd = spa->spa_root_vdev; 135 136 if (vdev < rvd->vdev_children) 137 return (rvd->vdev_child[vdev]); 138 139 return (NULL); 140 } 141 142 vdev_t * 143 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 144 { 145 int c; 146 vdev_t *mvd; 147 148 if (vd->vdev_guid == guid) 149 return (vd); 150 151 for (c = 0; c < vd->vdev_children; c++) 152 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 153 NULL) 154 return (mvd); 155 156 return (NULL); 157 } 158 159 void 160 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 161 { 162 size_t oldsize, newsize; 163 uint64_t id = cvd->vdev_id; 164 vdev_t **newchild; 165 166 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 167 ASSERT(cvd->vdev_parent == NULL); 168 169 cvd->vdev_parent = pvd; 170 171 if (pvd == NULL) 172 return; 173 174 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 175 176 oldsize = pvd->vdev_children * sizeof (vdev_t *); 177 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 178 newsize = pvd->vdev_children * sizeof (vdev_t *); 179 180 newchild = kmem_zalloc(newsize, KM_SLEEP); 181 if (pvd->vdev_child != NULL) { 182 bcopy(pvd->vdev_child, newchild, oldsize); 183 kmem_free(pvd->vdev_child, oldsize); 184 } 185 186 pvd->vdev_child = newchild; 187 pvd->vdev_child[id] = cvd; 188 189 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 190 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 191 192 /* 193 * Walk up all ancestors to update guid sum. 194 */ 195 for (; pvd != NULL; pvd = pvd->vdev_parent) 196 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 197 } 198 199 void 200 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 201 { 202 int c; 203 uint_t id = cvd->vdev_id; 204 205 ASSERT(cvd->vdev_parent == pvd); 206 207 if (pvd == NULL) 208 return; 209 210 ASSERT(id < pvd->vdev_children); 211 ASSERT(pvd->vdev_child[id] == cvd); 212 213 pvd->vdev_child[id] = NULL; 214 cvd->vdev_parent = NULL; 215 216 for (c = 0; c < pvd->vdev_children; c++) 217 if (pvd->vdev_child[c]) 218 break; 219 220 if (c == pvd->vdev_children) { 221 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 222 pvd->vdev_child = NULL; 223 pvd->vdev_children = 0; 224 } 225 226 /* 227 * Walk up all ancestors to update guid sum. 228 */ 229 for (; pvd != NULL; pvd = pvd->vdev_parent) 230 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 231 } 232 233 /* 234 * Remove any holes in the child array. 235 */ 236 void 237 vdev_compact_children(vdev_t *pvd) 238 { 239 vdev_t **newchild, *cvd; 240 int oldc = pvd->vdev_children; 241 int newc, c; 242 243 ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER)); 244 245 for (c = newc = 0; c < oldc; c++) 246 if (pvd->vdev_child[c]) 247 newc++; 248 249 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 250 251 for (c = newc = 0; c < oldc; c++) { 252 if ((cvd = pvd->vdev_child[c]) != NULL) { 253 newchild[newc] = cvd; 254 cvd->vdev_id = newc++; 255 } 256 } 257 258 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 259 pvd->vdev_child = newchild; 260 pvd->vdev_children = newc; 261 } 262 263 /* 264 * Allocate and minimally initialize a vdev_t. 265 */ 266 static vdev_t * 267 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 268 { 269 vdev_t *vd; 270 271 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 272 273 if (spa->spa_root_vdev == NULL) { 274 ASSERT(ops == &vdev_root_ops); 275 spa->spa_root_vdev = vd; 276 } 277 278 if (guid == 0) { 279 if (spa->spa_root_vdev == vd) { 280 /* 281 * The root vdev's guid will also be the pool guid, 282 * which must be unique among all pools. 283 */ 284 while (guid == 0 || spa_guid_exists(guid, 0)) 285 guid = spa_get_random(-1ULL); 286 } else { 287 /* 288 * Any other vdev's guid must be unique within the pool. 289 */ 290 while (guid == 0 || 291 spa_guid_exists(spa_guid(spa), guid)) 292 guid = spa_get_random(-1ULL); 293 } 294 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 295 } 296 297 vd->vdev_spa = spa; 298 vd->vdev_id = id; 299 vd->vdev_guid = guid; 300 vd->vdev_guid_sum = guid; 301 vd->vdev_ops = ops; 302 vd->vdev_state = VDEV_STATE_CLOSED; 303 304 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 305 space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock); 306 space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock); 307 txg_list_create(&vd->vdev_ms_list, 308 offsetof(struct metaslab, ms_txg_node)); 309 txg_list_create(&vd->vdev_dtl_list, 310 offsetof(struct vdev, vdev_dtl_node)); 311 vd->vdev_stat.vs_timestamp = gethrtime(); 312 313 return (vd); 314 } 315 316 /* 317 * Free a vdev_t that has been removed from service. 318 */ 319 static void 320 vdev_free_common(vdev_t *vd) 321 { 322 spa_t *spa = vd->vdev_spa; 323 324 if (vd->vdev_path) 325 spa_strfree(vd->vdev_path); 326 if (vd->vdev_devid) 327 spa_strfree(vd->vdev_devid); 328 329 if (vd->vdev_isspare) 330 spa_spare_remove(vd->vdev_guid); 331 332 txg_list_destroy(&vd->vdev_ms_list); 333 txg_list_destroy(&vd->vdev_dtl_list); 334 mutex_enter(&vd->vdev_dtl_lock); 335 space_map_unload(&vd->vdev_dtl_map); 336 space_map_destroy(&vd->vdev_dtl_map); 337 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 338 space_map_destroy(&vd->vdev_dtl_scrub); 339 mutex_exit(&vd->vdev_dtl_lock); 340 mutex_destroy(&vd->vdev_dtl_lock); 341 342 if (vd == spa->spa_root_vdev) 343 spa->spa_root_vdev = NULL; 344 345 kmem_free(vd, sizeof (vdev_t)); 346 } 347 348 /* 349 * Allocate a new vdev. The 'alloctype' is used to control whether we are 350 * creating a new vdev or loading an existing one - the behavior is slightly 351 * different for each case. 352 */ 353 int 354 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 355 int alloctype) 356 { 357 vdev_ops_t *ops; 358 char *type; 359 uint64_t guid = 0; 360 vdev_t *vd; 361 362 ASSERT(spa_config_held(spa, RW_WRITER)); 363 364 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 365 return (EINVAL); 366 367 if ((ops = vdev_getops(type)) == NULL) 368 return (EINVAL); 369 370 /* 371 * If this is a load, get the vdev guid from the nvlist. 372 * Otherwise, vdev_alloc_common() will generate one for us. 373 */ 374 if (alloctype == VDEV_ALLOC_LOAD) { 375 uint64_t label_id; 376 377 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 378 label_id != id) 379 return (EINVAL); 380 381 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 382 return (EINVAL); 383 } else if (alloctype == VDEV_ALLOC_SPARE) { 384 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 385 return (EINVAL); 386 } 387 388 /* 389 * The first allocated vdev must be of type 'root'. 390 */ 391 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 392 return (EINVAL); 393 394 vd = vdev_alloc_common(spa, id, guid, ops); 395 396 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 397 vd->vdev_path = spa_strdup(vd->vdev_path); 398 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 399 vd->vdev_devid = spa_strdup(vd->vdev_devid); 400 401 /* 402 * Set the nparity propery for RAID-Z vdevs. 403 */ 404 if (ops == &vdev_raidz_ops) { 405 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 406 &vd->vdev_nparity) == 0) { 407 /* 408 * Currently, we can only support 2 parity devices. 409 */ 410 if (vd->vdev_nparity > 2) 411 return (EINVAL); 412 /* 413 * Older versions can only support 1 parity device. 414 */ 415 if (vd->vdev_nparity == 2 && 416 spa_version(spa) < ZFS_VERSION_RAID6) 417 return (ENOTSUP); 418 419 } else { 420 /* 421 * We require the parity to be specified for SPAs that 422 * support multiple parity levels. 423 */ 424 if (spa_version(spa) >= ZFS_VERSION_RAID6) 425 return (EINVAL); 426 427 /* 428 * Otherwise, we default to 1 parity device for RAID-Z. 429 */ 430 vd->vdev_nparity = 1; 431 } 432 } else { 433 vd->vdev_nparity = 0; 434 } 435 436 /* 437 * Set the whole_disk property. If it's not specified, leave the value 438 * as -1. 439 */ 440 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 441 &vd->vdev_wholedisk) != 0) 442 vd->vdev_wholedisk = -1ULL; 443 444 /* 445 * Look for the 'not present' flag. This will only be set if the device 446 * was not present at the time of import. 447 */ 448 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 449 &vd->vdev_not_present); 450 451 /* 452 * Get the alignment requirement. 453 */ 454 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 455 456 /* 457 * Look for the 'is_spare' flag. If this is the case, then we are a 458 * repurposed hot spare. 459 */ 460 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 461 &vd->vdev_isspare); 462 if (vd->vdev_isspare) 463 spa_spare_add(vd->vdev_guid); 464 465 /* 466 * If we're a top-level vdev, try to load the allocation parameters. 467 */ 468 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 469 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 470 &vd->vdev_ms_array); 471 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 472 &vd->vdev_ms_shift); 473 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 474 &vd->vdev_asize); 475 } 476 477 /* 478 * If we're a leaf vdev, try to load the DTL object and offline state. 479 */ 480 if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) { 481 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 482 &vd->vdev_dtl.smo_object); 483 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 484 &vd->vdev_offline); 485 } 486 487 /* 488 * Add ourselves to the parent's list of children. 489 */ 490 vdev_add_child(parent, vd); 491 492 *vdp = vd; 493 494 return (0); 495 } 496 497 void 498 vdev_free(vdev_t *vd) 499 { 500 int c; 501 502 /* 503 * vdev_free() implies closing the vdev first. This is simpler than 504 * trying to ensure complicated semantics for all callers. 505 */ 506 vdev_close(vd); 507 508 ASSERT(!list_link_active(&vd->vdev_dirty_node)); 509 510 /* 511 * Free all children. 512 */ 513 for (c = 0; c < vd->vdev_children; c++) 514 vdev_free(vd->vdev_child[c]); 515 516 ASSERT(vd->vdev_child == NULL); 517 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 518 519 /* 520 * Discard allocation state. 521 */ 522 if (vd == vd->vdev_top) 523 vdev_metaslab_fini(vd); 524 525 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 526 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 527 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 528 529 /* 530 * Remove this vdev from its parent's child list. 531 */ 532 vdev_remove_child(vd->vdev_parent, vd); 533 534 ASSERT(vd->vdev_parent == NULL); 535 536 vdev_free_common(vd); 537 } 538 539 /* 540 * Transfer top-level vdev state from svd to tvd. 541 */ 542 static void 543 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 544 { 545 spa_t *spa = svd->vdev_spa; 546 metaslab_t *msp; 547 vdev_t *vd; 548 int t; 549 550 ASSERT(tvd == tvd->vdev_top); 551 552 tvd->vdev_ms_array = svd->vdev_ms_array; 553 tvd->vdev_ms_shift = svd->vdev_ms_shift; 554 tvd->vdev_ms_count = svd->vdev_ms_count; 555 556 svd->vdev_ms_array = 0; 557 svd->vdev_ms_shift = 0; 558 svd->vdev_ms_count = 0; 559 560 tvd->vdev_mg = svd->vdev_mg; 561 tvd->vdev_ms = svd->vdev_ms; 562 563 svd->vdev_mg = NULL; 564 svd->vdev_ms = NULL; 565 566 if (tvd->vdev_mg != NULL) 567 tvd->vdev_mg->mg_vd = tvd; 568 569 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 570 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 571 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 572 573 svd->vdev_stat.vs_alloc = 0; 574 svd->vdev_stat.vs_space = 0; 575 svd->vdev_stat.vs_dspace = 0; 576 577 for (t = 0; t < TXG_SIZE; t++) { 578 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 579 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 580 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 581 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 582 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 583 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 584 } 585 586 if (list_link_active(&svd->vdev_dirty_node)) { 587 vdev_config_clean(svd); 588 vdev_config_dirty(tvd); 589 } 590 591 tvd->vdev_reopen_wanted = svd->vdev_reopen_wanted; 592 svd->vdev_reopen_wanted = 0; 593 594 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 595 svd->vdev_deflate_ratio = 0; 596 } 597 598 static void 599 vdev_top_update(vdev_t *tvd, vdev_t *vd) 600 { 601 int c; 602 603 if (vd == NULL) 604 return; 605 606 vd->vdev_top = tvd; 607 608 for (c = 0; c < vd->vdev_children; c++) 609 vdev_top_update(tvd, vd->vdev_child[c]); 610 } 611 612 /* 613 * Add a mirror/replacing vdev above an existing vdev. 614 */ 615 vdev_t * 616 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 617 { 618 spa_t *spa = cvd->vdev_spa; 619 vdev_t *pvd = cvd->vdev_parent; 620 vdev_t *mvd; 621 622 ASSERT(spa_config_held(spa, RW_WRITER)); 623 624 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 625 626 mvd->vdev_asize = cvd->vdev_asize; 627 mvd->vdev_ashift = cvd->vdev_ashift; 628 mvd->vdev_state = cvd->vdev_state; 629 630 vdev_remove_child(pvd, cvd); 631 vdev_add_child(pvd, mvd); 632 cvd->vdev_id = mvd->vdev_children; 633 vdev_add_child(mvd, cvd); 634 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 635 636 if (mvd == mvd->vdev_top) 637 vdev_top_transfer(cvd, mvd); 638 639 return (mvd); 640 } 641 642 /* 643 * Remove a 1-way mirror/replacing vdev from the tree. 644 */ 645 void 646 vdev_remove_parent(vdev_t *cvd) 647 { 648 vdev_t *mvd = cvd->vdev_parent; 649 vdev_t *pvd = mvd->vdev_parent; 650 651 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 652 653 ASSERT(mvd->vdev_children == 1); 654 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 655 mvd->vdev_ops == &vdev_replacing_ops || 656 mvd->vdev_ops == &vdev_spare_ops); 657 cvd->vdev_ashift = mvd->vdev_ashift; 658 659 vdev_remove_child(mvd, cvd); 660 vdev_remove_child(pvd, mvd); 661 cvd->vdev_id = mvd->vdev_id; 662 vdev_add_child(pvd, cvd); 663 /* 664 * If we created a new toplevel vdev, then we need to change the child's 665 * vdev GUID to match the old toplevel vdev. Otherwise, we could have 666 * detached an offline device, and when we go to import the pool we'll 667 * think we have two toplevel vdevs, instead of a different version of 668 * the same toplevel vdev. 669 */ 670 if (cvd->vdev_top == cvd) { 671 pvd->vdev_guid_sum -= cvd->vdev_guid; 672 cvd->vdev_guid_sum -= cvd->vdev_guid; 673 cvd->vdev_guid = mvd->vdev_guid; 674 cvd->vdev_guid_sum += mvd->vdev_guid; 675 pvd->vdev_guid_sum += cvd->vdev_guid; 676 } 677 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 678 679 if (cvd == cvd->vdev_top) 680 vdev_top_transfer(mvd, cvd); 681 682 ASSERT(mvd->vdev_children == 0); 683 vdev_free(mvd); 684 } 685 686 int 687 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 688 { 689 spa_t *spa = vd->vdev_spa; 690 objset_t *mos = spa->spa_meta_objset; 691 metaslab_class_t *mc = spa_metaslab_class_select(spa); 692 uint64_t m; 693 uint64_t oldc = vd->vdev_ms_count; 694 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 695 metaslab_t **mspp; 696 int error; 697 698 if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ 699 return (0); 700 701 dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc); 702 703 ASSERT(oldc <= newc); 704 705 if (vd->vdev_mg == NULL) 706 vd->vdev_mg = metaslab_group_create(mc, vd); 707 708 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 709 710 if (oldc != 0) { 711 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 712 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 713 } 714 715 vd->vdev_ms = mspp; 716 vd->vdev_ms_count = newc; 717 718 for (m = oldc; m < newc; m++) { 719 space_map_obj_t smo = { 0, 0, 0 }; 720 if (txg == 0) { 721 uint64_t object = 0; 722 error = dmu_read(mos, vd->vdev_ms_array, 723 m * sizeof (uint64_t), sizeof (uint64_t), &object); 724 if (error) 725 return (error); 726 if (object != 0) { 727 dmu_buf_t *db; 728 error = dmu_bonus_hold(mos, object, FTAG, &db); 729 if (error) 730 return (error); 731 ASSERT3U(db->db_size, ==, sizeof (smo)); 732 bcopy(db->db_data, &smo, db->db_size); 733 ASSERT3U(smo.smo_object, ==, object); 734 dmu_buf_rele(db, FTAG); 735 } 736 } 737 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 738 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 739 } 740 741 return (0); 742 } 743 744 void 745 vdev_metaslab_fini(vdev_t *vd) 746 { 747 uint64_t m; 748 uint64_t count = vd->vdev_ms_count; 749 750 if (vd->vdev_ms != NULL) { 751 for (m = 0; m < count; m++) 752 if (vd->vdev_ms[m] != NULL) 753 metaslab_fini(vd->vdev_ms[m]); 754 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 755 vd->vdev_ms = NULL; 756 } 757 } 758 759 /* 760 * Prepare a virtual device for access. 761 */ 762 int 763 vdev_open(vdev_t *vd) 764 { 765 int error; 766 vdev_knob_t *vk; 767 int c; 768 uint64_t osize = 0; 769 uint64_t asize, psize; 770 uint64_t ashift = 0; 771 772 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 773 vd->vdev_state == VDEV_STATE_CANT_OPEN || 774 vd->vdev_state == VDEV_STATE_OFFLINE); 775 776 if (vd->vdev_fault_mode == VDEV_FAULT_COUNT) 777 vd->vdev_fault_arg >>= 1; 778 else 779 vd->vdev_fault_mode = VDEV_FAULT_NONE; 780 781 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 782 783 for (vk = vdev_knob_next(NULL); vk != NULL; vk = vdev_knob_next(vk)) { 784 uint64_t *valp = (uint64_t *)((char *)vd + vk->vk_offset); 785 786 *valp = vk->vk_default; 787 *valp = MAX(*valp, vk->vk_min); 788 *valp = MIN(*valp, vk->vk_max); 789 } 790 791 if (vd->vdev_ops->vdev_op_leaf) { 792 vdev_cache_init(vd); 793 vdev_queue_init(vd); 794 vd->vdev_cache_active = B_TRUE; 795 } 796 797 if (vd->vdev_offline) { 798 ASSERT(vd->vdev_children == 0); 799 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 800 return (ENXIO); 801 } 802 803 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 804 805 if (zio_injection_enabled && error == 0) 806 error = zio_handle_device_injection(vd, ENXIO); 807 808 dprintf("%s = %d, osize %llu, state = %d\n", 809 vdev_description(vd), error, osize, vd->vdev_state); 810 811 if (error) { 812 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 813 vd->vdev_stat.vs_aux); 814 return (error); 815 } 816 817 vd->vdev_state = VDEV_STATE_HEALTHY; 818 819 for (c = 0; c < vd->vdev_children; c++) 820 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 821 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 822 VDEV_AUX_NONE); 823 break; 824 } 825 826 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 827 828 if (vd->vdev_children == 0) { 829 if (osize < SPA_MINDEVSIZE) { 830 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 831 VDEV_AUX_TOO_SMALL); 832 return (EOVERFLOW); 833 } 834 psize = osize; 835 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 836 } else { 837 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 838 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 839 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 840 VDEV_AUX_TOO_SMALL); 841 return (EOVERFLOW); 842 } 843 psize = 0; 844 asize = osize; 845 } 846 847 vd->vdev_psize = psize; 848 849 if (vd->vdev_asize == 0) { 850 /* 851 * This is the first-ever open, so use the computed values. 852 * For testing purposes, a higher ashift can be requested. 853 */ 854 vd->vdev_asize = asize; 855 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 856 } else { 857 /* 858 * Make sure the alignment requirement hasn't increased. 859 */ 860 if (ashift > vd->vdev_top->vdev_ashift) { 861 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 862 VDEV_AUX_BAD_LABEL); 863 return (EINVAL); 864 } 865 866 /* 867 * Make sure the device hasn't shrunk. 868 */ 869 if (asize < vd->vdev_asize) { 870 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 871 VDEV_AUX_BAD_LABEL); 872 return (EINVAL); 873 } 874 875 /* 876 * If all children are healthy and the asize has increased, 877 * then we've experienced dynamic LUN growth. 878 */ 879 if (vd->vdev_state == VDEV_STATE_HEALTHY && 880 asize > vd->vdev_asize) { 881 vd->vdev_asize = asize; 882 } 883 } 884 885 /* 886 * If this is a top-level vdev, compute the raidz-deflation 887 * ratio. Note, we hard-code in 128k (1<<17) because it is the 888 * current "typical" blocksize. Even if SPA_MAXBLOCKSIZE 889 * changes, this algorithm must never change, or we will 890 * inconsistently account for existing bp's. 891 */ 892 if (vd->vdev_top == vd) { 893 vd->vdev_deflate_ratio = (1<<17) / 894 (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT); 895 } 896 897 /* 898 * This allows the ZFS DE to close cases appropriately. If a device 899 * goes away and later returns, we want to close the associated case. 900 * But it's not enough to simply post this only when a device goes from 901 * CANT_OPEN -> HEALTHY. If we reboot the system and the device is 902 * back, we also need to close the case (otherwise we will try to replay 903 * it). So we have to post this notifier every time. Since this only 904 * occurs during pool open or error recovery, this should not be an 905 * issue. 906 */ 907 zfs_post_ok(vd->vdev_spa, vd); 908 909 return (0); 910 } 911 912 /* 913 * Called once the vdevs are all opened, this routine validates the label 914 * contents. This needs to be done before vdev_load() so that we don't 915 * inadvertently do repair I/Os to the wrong device, and so that vdev_reopen() 916 * won't succeed if the device has been changed underneath. 917 * 918 * This function will only return failure if one of the vdevs indicates that it 919 * has since been destroyed or exported. This is only possible if 920 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 921 * will be updated but the function will return 0. 922 */ 923 int 924 vdev_validate(vdev_t *vd) 925 { 926 spa_t *spa = vd->vdev_spa; 927 int c; 928 nvlist_t *label; 929 uint64_t guid; 930 uint64_t state; 931 932 for (c = 0; c < vd->vdev_children; c++) 933 if (vdev_validate(vd->vdev_child[c]) != 0) 934 return (-1); 935 936 if (vd->vdev_ops->vdev_op_leaf) { 937 938 if ((label = vdev_label_read_config(vd)) == NULL) { 939 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 940 VDEV_AUX_BAD_LABEL); 941 return (0); 942 } 943 944 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 945 &guid) != 0 || guid != spa_guid(spa)) { 946 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 947 VDEV_AUX_CORRUPT_DATA); 948 nvlist_free(label); 949 return (0); 950 } 951 952 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 953 &guid) != 0 || guid != vd->vdev_guid) { 954 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 955 VDEV_AUX_CORRUPT_DATA); 956 nvlist_free(label); 957 return (0); 958 } 959 960 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 961 &state) != 0) { 962 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 963 VDEV_AUX_CORRUPT_DATA); 964 nvlist_free(label); 965 return (0); 966 } 967 968 nvlist_free(label); 969 970 if (spa->spa_load_state == SPA_LOAD_OPEN && 971 state != POOL_STATE_ACTIVE) 972 return (-1); 973 } 974 975 /* 976 * If we were able to open and validate a vdev that was previously 977 * marked permanently unavailable, clear that state now. 978 */ 979 if (vd->vdev_not_present) 980 vd->vdev_not_present = 0; 981 982 return (0); 983 } 984 985 /* 986 * Close a virtual device. 987 */ 988 void 989 vdev_close(vdev_t *vd) 990 { 991 vd->vdev_ops->vdev_op_close(vd); 992 993 if (vd->vdev_cache_active) { 994 vdev_cache_fini(vd); 995 vdev_queue_fini(vd); 996 vd->vdev_cache_active = B_FALSE; 997 } 998 999 /* 1000 * We record the previous state before we close it, so that if we are 1001 * doing a reopen(), we don't generate FMA ereports if we notice that 1002 * it's still faulted. 1003 */ 1004 vd->vdev_prevstate = vd->vdev_state; 1005 1006 if (vd->vdev_offline) 1007 vd->vdev_state = VDEV_STATE_OFFLINE; 1008 else 1009 vd->vdev_state = VDEV_STATE_CLOSED; 1010 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1011 } 1012 1013 void 1014 vdev_reopen(vdev_t *vd) 1015 { 1016 spa_t *spa = vd->vdev_spa; 1017 1018 ASSERT(spa_config_held(spa, RW_WRITER)); 1019 1020 vdev_close(vd); 1021 (void) vdev_open(vd); 1022 1023 /* 1024 * Reassess root vdev's health. 1025 */ 1026 vdev_propagate_state(spa->spa_root_vdev); 1027 } 1028 1029 int 1030 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1031 { 1032 int error; 1033 1034 /* 1035 * Normally, partial opens (e.g. of a mirror) are allowed. 1036 * For a create, however, we want to fail the request if 1037 * there are any components we can't open. 1038 */ 1039 error = vdev_open(vd); 1040 1041 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1042 vdev_close(vd); 1043 return (error ? error : ENXIO); 1044 } 1045 1046 /* 1047 * Recursively initialize all labels. 1048 */ 1049 if ((error = vdev_label_init(vd, txg, isreplacing)) != 0) { 1050 vdev_close(vd); 1051 return (error); 1052 } 1053 1054 return (0); 1055 } 1056 1057 /* 1058 * The is the latter half of vdev_create(). It is distinct because it 1059 * involves initiating transactions in order to do metaslab creation. 1060 * For creation, we want to try to create all vdevs at once and then undo it 1061 * if anything fails; this is much harder if we have pending transactions. 1062 */ 1063 void 1064 vdev_init(vdev_t *vd, uint64_t txg) 1065 { 1066 /* 1067 * Aim for roughly 200 metaslabs per vdev. 1068 */ 1069 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1070 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1071 1072 /* 1073 * Initialize the vdev's metaslabs. This can't fail because 1074 * there's nothing to read when creating all new metaslabs. 1075 */ 1076 VERIFY(vdev_metaslab_init(vd, txg) == 0); 1077 } 1078 1079 void 1080 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1081 { 1082 ASSERT(vd == vd->vdev_top); 1083 ASSERT(ISP2(flags)); 1084 1085 if (flags & VDD_METASLAB) 1086 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1087 1088 if (flags & VDD_DTL) 1089 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1090 1091 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1092 } 1093 1094 void 1095 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size) 1096 { 1097 mutex_enter(sm->sm_lock); 1098 if (!space_map_contains(sm, txg, size)) 1099 space_map_add(sm, txg, size); 1100 mutex_exit(sm->sm_lock); 1101 } 1102 1103 int 1104 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size) 1105 { 1106 int dirty; 1107 1108 /* 1109 * Quick test without the lock -- covers the common case that 1110 * there are no dirty time segments. 1111 */ 1112 if (sm->sm_space == 0) 1113 return (0); 1114 1115 mutex_enter(sm->sm_lock); 1116 dirty = space_map_contains(sm, txg, size); 1117 mutex_exit(sm->sm_lock); 1118 1119 return (dirty); 1120 } 1121 1122 /* 1123 * Reassess DTLs after a config change or scrub completion. 1124 */ 1125 void 1126 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1127 { 1128 spa_t *spa = vd->vdev_spa; 1129 int c; 1130 1131 ASSERT(spa_config_held(spa, RW_WRITER)); 1132 1133 if (vd->vdev_children == 0) { 1134 mutex_enter(&vd->vdev_dtl_lock); 1135 /* 1136 * We're successfully scrubbed everything up to scrub_txg. 1137 * Therefore, excise all old DTLs up to that point, then 1138 * fold in the DTLs for everything we couldn't scrub. 1139 */ 1140 if (scrub_txg != 0) { 1141 space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg); 1142 space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub); 1143 } 1144 if (scrub_done) 1145 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1146 mutex_exit(&vd->vdev_dtl_lock); 1147 if (txg != 0) 1148 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1149 return; 1150 } 1151 1152 /* 1153 * Make sure the DTLs are always correct under the scrub lock. 1154 */ 1155 if (vd == spa->spa_root_vdev) 1156 mutex_enter(&spa->spa_scrub_lock); 1157 1158 mutex_enter(&vd->vdev_dtl_lock); 1159 space_map_vacate(&vd->vdev_dtl_map, NULL, NULL); 1160 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1161 mutex_exit(&vd->vdev_dtl_lock); 1162 1163 for (c = 0; c < vd->vdev_children; c++) { 1164 vdev_t *cvd = vd->vdev_child[c]; 1165 vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done); 1166 mutex_enter(&vd->vdev_dtl_lock); 1167 space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map); 1168 space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub); 1169 mutex_exit(&vd->vdev_dtl_lock); 1170 } 1171 1172 if (vd == spa->spa_root_vdev) 1173 mutex_exit(&spa->spa_scrub_lock); 1174 } 1175 1176 static int 1177 vdev_dtl_load(vdev_t *vd) 1178 { 1179 spa_t *spa = vd->vdev_spa; 1180 space_map_obj_t *smo = &vd->vdev_dtl; 1181 objset_t *mos = spa->spa_meta_objset; 1182 dmu_buf_t *db; 1183 int error; 1184 1185 ASSERT(vd->vdev_children == 0); 1186 1187 if (smo->smo_object == 0) 1188 return (0); 1189 1190 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1191 return (error); 1192 1193 ASSERT3U(db->db_size, ==, sizeof (*smo)); 1194 bcopy(db->db_data, smo, db->db_size); 1195 dmu_buf_rele(db, FTAG); 1196 1197 mutex_enter(&vd->vdev_dtl_lock); 1198 error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos); 1199 mutex_exit(&vd->vdev_dtl_lock); 1200 1201 return (error); 1202 } 1203 1204 void 1205 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1206 { 1207 spa_t *spa = vd->vdev_spa; 1208 space_map_obj_t *smo = &vd->vdev_dtl; 1209 space_map_t *sm = &vd->vdev_dtl_map; 1210 objset_t *mos = spa->spa_meta_objset; 1211 space_map_t smsync; 1212 kmutex_t smlock; 1213 dmu_buf_t *db; 1214 dmu_tx_t *tx; 1215 1216 dprintf("%s in txg %llu pass %d\n", 1217 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1218 1219 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1220 1221 if (vd->vdev_detached) { 1222 if (smo->smo_object != 0) { 1223 int err = dmu_object_free(mos, smo->smo_object, tx); 1224 ASSERT3U(err, ==, 0); 1225 smo->smo_object = 0; 1226 } 1227 dmu_tx_commit(tx); 1228 dprintf("detach %s committed in txg %llu\n", 1229 vdev_description(vd), txg); 1230 return; 1231 } 1232 1233 if (smo->smo_object == 0) { 1234 ASSERT(smo->smo_objsize == 0); 1235 ASSERT(smo->smo_alloc == 0); 1236 smo->smo_object = dmu_object_alloc(mos, 1237 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1238 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1239 ASSERT(smo->smo_object != 0); 1240 vdev_config_dirty(vd->vdev_top); 1241 } 1242 1243 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1244 1245 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1246 &smlock); 1247 1248 mutex_enter(&smlock); 1249 1250 mutex_enter(&vd->vdev_dtl_lock); 1251 space_map_walk(sm, space_map_add, &smsync); 1252 mutex_exit(&vd->vdev_dtl_lock); 1253 1254 space_map_truncate(smo, mos, tx); 1255 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1256 1257 space_map_destroy(&smsync); 1258 1259 mutex_exit(&smlock); 1260 mutex_destroy(&smlock); 1261 1262 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1263 dmu_buf_will_dirty(db, tx); 1264 ASSERT3U(db->db_size, ==, sizeof (*smo)); 1265 bcopy(smo, db->db_data, db->db_size); 1266 dmu_buf_rele(db, FTAG); 1267 1268 dmu_tx_commit(tx); 1269 } 1270 1271 void 1272 vdev_load(vdev_t *vd) 1273 { 1274 int c; 1275 1276 /* 1277 * Recursively load all children. 1278 */ 1279 for (c = 0; c < vd->vdev_children; c++) 1280 vdev_load(vd->vdev_child[c]); 1281 1282 /* 1283 * If this is a top-level vdev, initialize its metaslabs. 1284 */ 1285 if (vd == vd->vdev_top && 1286 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1287 vdev_metaslab_init(vd, 0) != 0)) 1288 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1289 VDEV_AUX_CORRUPT_DATA); 1290 1291 /* 1292 * If this is a leaf vdev, load its DTL. 1293 */ 1294 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1295 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1296 VDEV_AUX_CORRUPT_DATA); 1297 } 1298 1299 /* 1300 * This special case of vdev_spare() is used for hot spares. It's sole purpose 1301 * it to set the vdev state for the associated vdev. To do this, we make sure 1302 * that we can open the underlying device, then try to read the label, and make 1303 * sure that the label is sane and that it hasn't been repurposed to another 1304 * pool. 1305 */ 1306 int 1307 vdev_validate_spare(vdev_t *vd) 1308 { 1309 nvlist_t *label; 1310 uint64_t guid, version; 1311 uint64_t state; 1312 1313 if ((label = vdev_label_read_config(vd)) == NULL) { 1314 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1315 VDEV_AUX_CORRUPT_DATA); 1316 return (-1); 1317 } 1318 1319 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1320 version > ZFS_VERSION || 1321 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1322 guid != vd->vdev_guid || 1323 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1324 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1325 VDEV_AUX_CORRUPT_DATA); 1326 nvlist_free(label); 1327 return (-1); 1328 } 1329 1330 /* 1331 * We don't actually check the pool state here. If it's in fact in 1332 * use by another pool, we update this fact on the fly when requested. 1333 */ 1334 nvlist_free(label); 1335 return (0); 1336 } 1337 1338 void 1339 vdev_sync_done(vdev_t *vd, uint64_t txg) 1340 { 1341 metaslab_t *msp; 1342 1343 dprintf("%s txg %llu\n", vdev_description(vd), txg); 1344 1345 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1346 metaslab_sync_done(msp, txg); 1347 } 1348 1349 void 1350 vdev_sync(vdev_t *vd, uint64_t txg) 1351 { 1352 spa_t *spa = vd->vdev_spa; 1353 vdev_t *lvd; 1354 metaslab_t *msp; 1355 dmu_tx_t *tx; 1356 1357 dprintf("%s txg %llu pass %d\n", 1358 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1359 1360 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 1361 ASSERT(vd == vd->vdev_top); 1362 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1363 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1364 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1365 ASSERT(vd->vdev_ms_array != 0); 1366 vdev_config_dirty(vd); 1367 dmu_tx_commit(tx); 1368 } 1369 1370 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1371 metaslab_sync(msp, txg); 1372 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 1373 } 1374 1375 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1376 vdev_dtl_sync(lvd, txg); 1377 1378 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1379 } 1380 1381 uint64_t 1382 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1383 { 1384 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1385 } 1386 1387 void 1388 vdev_io_start(zio_t *zio) 1389 { 1390 zio->io_vd->vdev_ops->vdev_op_io_start(zio); 1391 } 1392 1393 void 1394 vdev_io_done(zio_t *zio) 1395 { 1396 zio->io_vd->vdev_ops->vdev_op_io_done(zio); 1397 } 1398 1399 const char * 1400 vdev_description(vdev_t *vd) 1401 { 1402 if (vd == NULL || vd->vdev_ops == NULL) 1403 return ("<unknown>"); 1404 1405 if (vd->vdev_path != NULL) 1406 return (vd->vdev_path); 1407 1408 if (vd->vdev_parent == NULL) 1409 return (spa_name(vd->vdev_spa)); 1410 1411 return (vd->vdev_ops->vdev_op_type); 1412 } 1413 1414 int 1415 vdev_online(spa_t *spa, uint64_t guid) 1416 { 1417 vdev_t *rvd, *vd; 1418 uint64_t txg; 1419 1420 txg = spa_vdev_enter(spa); 1421 1422 rvd = spa->spa_root_vdev; 1423 1424 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 1425 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1426 1427 if (!vd->vdev_ops->vdev_op_leaf) 1428 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1429 1430 dprintf("ONLINE: %s\n", vdev_description(vd)); 1431 1432 vd->vdev_offline = B_FALSE; 1433 vd->vdev_tmpoffline = B_FALSE; 1434 vdev_reopen(vd->vdev_top); 1435 1436 vdev_config_dirty(vd->vdev_top); 1437 1438 (void) spa_vdev_exit(spa, NULL, txg, 0); 1439 1440 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 1441 1442 return (0); 1443 } 1444 1445 int 1446 vdev_offline(spa_t *spa, uint64_t guid, int istmp) 1447 { 1448 vdev_t *rvd, *vd; 1449 uint64_t txg; 1450 1451 txg = spa_vdev_enter(spa); 1452 1453 rvd = spa->spa_root_vdev; 1454 1455 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 1456 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1457 1458 if (!vd->vdev_ops->vdev_op_leaf) 1459 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1460 1461 dprintf("OFFLINE: %s\n", vdev_description(vd)); 1462 1463 /* 1464 * If the device isn't already offline, try to offline it. 1465 */ 1466 if (!vd->vdev_offline) { 1467 /* 1468 * If this device's top-level vdev has a non-empty DTL, 1469 * don't allow the device to be offlined. 1470 * 1471 * XXX -- make this more precise by allowing the offline 1472 * as long as the remaining devices don't have any DTL holes. 1473 */ 1474 if (vd->vdev_top->vdev_dtl_map.sm_space != 0) 1475 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1476 1477 /* 1478 * Offline this device and reopen its top-level vdev. 1479 * If this action results in the top-level vdev becoming 1480 * unusable, undo it and fail the request. 1481 */ 1482 vd->vdev_offline = B_TRUE; 1483 vdev_reopen(vd->vdev_top); 1484 if (vdev_is_dead(vd->vdev_top)) { 1485 vd->vdev_offline = B_FALSE; 1486 vdev_reopen(vd->vdev_top); 1487 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1488 } 1489 } 1490 1491 vd->vdev_tmpoffline = istmp; 1492 1493 vdev_config_dirty(vd->vdev_top); 1494 1495 return (spa_vdev_exit(spa, NULL, txg, 0)); 1496 } 1497 1498 /* 1499 * Clear the error counts associated with this vdev. Unlike vdev_online() and 1500 * vdev_offline(), we assume the spa config is locked. We also clear all 1501 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 1502 */ 1503 void 1504 vdev_clear(spa_t *spa, vdev_t *vd) 1505 { 1506 int c; 1507 1508 if (vd == NULL) 1509 vd = spa->spa_root_vdev; 1510 1511 vd->vdev_stat.vs_read_errors = 0; 1512 vd->vdev_stat.vs_write_errors = 0; 1513 vd->vdev_stat.vs_checksum_errors = 0; 1514 1515 for (c = 0; c < vd->vdev_children; c++) 1516 vdev_clear(spa, vd->vdev_child[c]); 1517 } 1518 1519 int 1520 vdev_is_dead(vdev_t *vd) 1521 { 1522 return (vd->vdev_state <= VDEV_STATE_CANT_OPEN); 1523 } 1524 1525 int 1526 vdev_error_inject(vdev_t *vd, zio_t *zio) 1527 { 1528 int error = 0; 1529 1530 if (vd->vdev_fault_mode == VDEV_FAULT_NONE) 1531 return (0); 1532 1533 if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0) 1534 return (0); 1535 1536 switch (vd->vdev_fault_mode) { 1537 case VDEV_FAULT_RANDOM: 1538 if (spa_get_random(vd->vdev_fault_arg) == 0) 1539 error = EIO; 1540 break; 1541 1542 case VDEV_FAULT_COUNT: 1543 if ((int64_t)--vd->vdev_fault_arg <= 0) 1544 vd->vdev_fault_mode = VDEV_FAULT_NONE; 1545 error = EIO; 1546 break; 1547 } 1548 1549 if (error != 0) { 1550 dprintf("returning %d for type %d on %s state %d offset %llx\n", 1551 error, zio->io_type, vdev_description(vd), 1552 vd->vdev_state, zio->io_offset); 1553 } 1554 1555 return (error); 1556 } 1557 1558 /* 1559 * Get statistics for the given vdev. 1560 */ 1561 void 1562 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 1563 { 1564 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 1565 int c, t; 1566 1567 mutex_enter(&vd->vdev_stat_lock); 1568 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 1569 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 1570 vs->vs_state = vd->vdev_state; 1571 vs->vs_rsize = vdev_get_rsize(vd); 1572 mutex_exit(&vd->vdev_stat_lock); 1573 1574 /* 1575 * If we're getting stats on the root vdev, aggregate the I/O counts 1576 * over all top-level vdevs (i.e. the direct children of the root). 1577 */ 1578 if (vd == rvd) { 1579 for (c = 0; c < rvd->vdev_children; c++) { 1580 vdev_t *cvd = rvd->vdev_child[c]; 1581 vdev_stat_t *cvs = &cvd->vdev_stat; 1582 1583 mutex_enter(&vd->vdev_stat_lock); 1584 for (t = 0; t < ZIO_TYPES; t++) { 1585 vs->vs_ops[t] += cvs->vs_ops[t]; 1586 vs->vs_bytes[t] += cvs->vs_bytes[t]; 1587 } 1588 vs->vs_read_errors += cvs->vs_read_errors; 1589 vs->vs_write_errors += cvs->vs_write_errors; 1590 vs->vs_checksum_errors += cvs->vs_checksum_errors; 1591 vs->vs_scrub_examined += cvs->vs_scrub_examined; 1592 vs->vs_scrub_errors += cvs->vs_scrub_errors; 1593 mutex_exit(&vd->vdev_stat_lock); 1594 } 1595 } 1596 } 1597 1598 void 1599 vdev_stat_update(zio_t *zio) 1600 { 1601 vdev_t *vd = zio->io_vd; 1602 vdev_t *pvd; 1603 uint64_t txg = zio->io_txg; 1604 vdev_stat_t *vs = &vd->vdev_stat; 1605 zio_type_t type = zio->io_type; 1606 int flags = zio->io_flags; 1607 1608 if (zio->io_error == 0) { 1609 if (!(flags & ZIO_FLAG_IO_BYPASS)) { 1610 mutex_enter(&vd->vdev_stat_lock); 1611 vs->vs_ops[type]++; 1612 vs->vs_bytes[type] += zio->io_size; 1613 mutex_exit(&vd->vdev_stat_lock); 1614 } 1615 if ((flags & ZIO_FLAG_IO_REPAIR) && 1616 zio->io_delegate_list == NULL) { 1617 mutex_enter(&vd->vdev_stat_lock); 1618 if (flags & ZIO_FLAG_SCRUB_THREAD) 1619 vs->vs_scrub_repaired += zio->io_size; 1620 else 1621 vs->vs_self_healed += zio->io_size; 1622 mutex_exit(&vd->vdev_stat_lock); 1623 } 1624 return; 1625 } 1626 1627 if (flags & ZIO_FLAG_SPECULATIVE) 1628 return; 1629 1630 if (!vdev_is_dead(vd)) { 1631 mutex_enter(&vd->vdev_stat_lock); 1632 if (type == ZIO_TYPE_READ) { 1633 if (zio->io_error == ECKSUM) 1634 vs->vs_checksum_errors++; 1635 else 1636 vs->vs_read_errors++; 1637 } 1638 if (type == ZIO_TYPE_WRITE) 1639 vs->vs_write_errors++; 1640 mutex_exit(&vd->vdev_stat_lock); 1641 } 1642 1643 if (type == ZIO_TYPE_WRITE) { 1644 if (txg == 0 || vd->vdev_children != 0) 1645 return; 1646 if (flags & ZIO_FLAG_SCRUB_THREAD) { 1647 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 1648 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1649 vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1); 1650 } 1651 if (!(flags & ZIO_FLAG_IO_REPAIR)) { 1652 if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1)) 1653 return; 1654 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1655 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1656 vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1); 1657 } 1658 } 1659 } 1660 1661 void 1662 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 1663 { 1664 int c; 1665 vdev_stat_t *vs = &vd->vdev_stat; 1666 1667 for (c = 0; c < vd->vdev_children; c++) 1668 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 1669 1670 mutex_enter(&vd->vdev_stat_lock); 1671 1672 if (type == POOL_SCRUB_NONE) { 1673 /* 1674 * Update completion and end time. Leave everything else alone 1675 * so we can report what happened during the previous scrub. 1676 */ 1677 vs->vs_scrub_complete = complete; 1678 vs->vs_scrub_end = gethrestime_sec(); 1679 } else { 1680 vs->vs_scrub_type = type; 1681 vs->vs_scrub_complete = 0; 1682 vs->vs_scrub_examined = 0; 1683 vs->vs_scrub_repaired = 0; 1684 vs->vs_scrub_errors = 0; 1685 vs->vs_scrub_start = gethrestime_sec(); 1686 vs->vs_scrub_end = 0; 1687 } 1688 1689 mutex_exit(&vd->vdev_stat_lock); 1690 } 1691 1692 /* 1693 * Update the in-core space usage stats for this vdev and the root vdev. 1694 */ 1695 void 1696 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta) 1697 { 1698 ASSERT(vd == vd->vdev_top); 1699 int64_t dspace_delta = space_delta; 1700 1701 do { 1702 if (vd->vdev_ms_count) { 1703 /* 1704 * If this is a top-level vdev, apply the 1705 * inverse of its psize-to-asize (ie. RAID-Z) 1706 * space-expansion factor. We must calculate 1707 * this here and not at the root vdev because 1708 * the root vdev's psize-to-asize is simply the 1709 * max of its childrens', thus not accurate 1710 * enough for us. 1711 */ 1712 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 1713 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 1714 vd->vdev_deflate_ratio; 1715 } 1716 1717 mutex_enter(&vd->vdev_stat_lock); 1718 vd->vdev_stat.vs_space += space_delta; 1719 vd->vdev_stat.vs_alloc += alloc_delta; 1720 vd->vdev_stat.vs_dspace += dspace_delta; 1721 mutex_exit(&vd->vdev_stat_lock); 1722 } while ((vd = vd->vdev_parent) != NULL); 1723 } 1724 1725 /* 1726 * Various knobs to tune a vdev. 1727 */ 1728 static vdev_knob_t vdev_knob[] = { 1729 { 1730 "cache_size", 1731 "size of the read-ahead cache", 1732 0, 1733 1ULL << 30, 1734 10ULL << 20, 1735 offsetof(struct vdev, vdev_cache.vc_size) 1736 }, 1737 { 1738 "cache_bshift", 1739 "log2 of cache blocksize", 1740 SPA_MINBLOCKSHIFT, 1741 SPA_MAXBLOCKSHIFT, 1742 16, 1743 offsetof(struct vdev, vdev_cache.vc_bshift) 1744 }, 1745 { 1746 "cache_max", 1747 "largest block size to cache", 1748 0, 1749 SPA_MAXBLOCKSIZE, 1750 1ULL << 14, 1751 offsetof(struct vdev, vdev_cache.vc_max) 1752 }, 1753 { 1754 "min_pending", 1755 "minimum pending I/Os to the disk", 1756 1, 1757 10000, 1758 2, 1759 offsetof(struct vdev, vdev_queue.vq_min_pending) 1760 }, 1761 { 1762 "max_pending", 1763 "maximum pending I/Os to the disk", 1764 1, 1765 10000, 1766 35, 1767 offsetof(struct vdev, vdev_queue.vq_max_pending) 1768 }, 1769 { 1770 "scrub_limit", 1771 "maximum scrub/resilver I/O queue", 1772 0, 1773 10000, 1774 70, 1775 offsetof(struct vdev, vdev_queue.vq_scrub_limit) 1776 }, 1777 { 1778 "agg_limit", 1779 "maximum size of aggregated I/Os", 1780 0, 1781 SPA_MAXBLOCKSIZE, 1782 SPA_MAXBLOCKSIZE, 1783 offsetof(struct vdev, vdev_queue.vq_agg_limit) 1784 }, 1785 { 1786 "time_shift", 1787 "deadline = pri + (lbolt >> time_shift)", 1788 0, 1789 63, 1790 4, 1791 offsetof(struct vdev, vdev_queue.vq_time_shift) 1792 }, 1793 { 1794 "ramp_rate", 1795 "exponential I/O issue ramp-up rate", 1796 1, 1797 10000, 1798 2, 1799 offsetof(struct vdev, vdev_queue.vq_ramp_rate) 1800 }, 1801 }; 1802 1803 vdev_knob_t * 1804 vdev_knob_next(vdev_knob_t *vk) 1805 { 1806 if (vk == NULL) 1807 return (vdev_knob); 1808 1809 if (++vk == vdev_knob + sizeof (vdev_knob) / sizeof (vdev_knob_t)) 1810 return (NULL); 1811 1812 return (vk); 1813 } 1814 1815 /* 1816 * Mark a top-level vdev's config as dirty, placing it on the dirty list 1817 * so that it will be written out next time the vdev configuration is synced. 1818 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 1819 */ 1820 void 1821 vdev_config_dirty(vdev_t *vd) 1822 { 1823 spa_t *spa = vd->vdev_spa; 1824 vdev_t *rvd = spa->spa_root_vdev; 1825 int c; 1826 1827 /* 1828 * The dirty list is protected by the config lock. The caller must 1829 * either hold the config lock as writer, or must be the sync thread 1830 * (which holds the lock as reader). There's only one sync thread, 1831 * so this is sufficient to ensure mutual exclusion. 1832 */ 1833 ASSERT(spa_config_held(spa, RW_WRITER) || 1834 dsl_pool_sync_context(spa_get_dsl(spa))); 1835 1836 if (vd == rvd) { 1837 for (c = 0; c < rvd->vdev_children; c++) 1838 vdev_config_dirty(rvd->vdev_child[c]); 1839 } else { 1840 ASSERT(vd == vd->vdev_top); 1841 1842 if (!list_link_active(&vd->vdev_dirty_node)) 1843 list_insert_head(&spa->spa_dirty_list, vd); 1844 } 1845 } 1846 1847 void 1848 vdev_config_clean(vdev_t *vd) 1849 { 1850 spa_t *spa = vd->vdev_spa; 1851 1852 ASSERT(spa_config_held(spa, RW_WRITER) || 1853 dsl_pool_sync_context(spa_get_dsl(spa))); 1854 1855 ASSERT(list_link_active(&vd->vdev_dirty_node)); 1856 list_remove(&spa->spa_dirty_list, vd); 1857 } 1858 1859 void 1860 vdev_propagate_state(vdev_t *vd) 1861 { 1862 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 1863 int degraded = 0, faulted = 0; 1864 int corrupted = 0; 1865 int c; 1866 vdev_t *child; 1867 1868 for (c = 0; c < vd->vdev_children; c++) { 1869 child = vd->vdev_child[c]; 1870 if (child->vdev_state <= VDEV_STATE_CANT_OPEN) 1871 faulted++; 1872 else if (child->vdev_state == VDEV_STATE_DEGRADED) 1873 degraded++; 1874 1875 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 1876 corrupted++; 1877 } 1878 1879 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 1880 1881 /* 1882 * Root special: if there is a toplevel vdev that cannot be 1883 * opened due to corrupted metadata, then propagate the root 1884 * vdev's aux state as 'corrupt' rather than 'insufficient 1885 * replicas'. 1886 */ 1887 if (corrupted && vd == rvd && rvd->vdev_state == VDEV_STATE_CANT_OPEN) 1888 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 1889 VDEV_AUX_CORRUPT_DATA); 1890 } 1891 1892 /* 1893 * Set a vdev's state. If this is during an open, we don't update the parent 1894 * state, because we're in the process of opening children depth-first. 1895 * Otherwise, we propagate the change to the parent. 1896 * 1897 * If this routine places a device in a faulted state, an appropriate ereport is 1898 * generated. 1899 */ 1900 void 1901 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 1902 { 1903 uint64_t save_state; 1904 1905 if (state == vd->vdev_state) { 1906 vd->vdev_stat.vs_aux = aux; 1907 return; 1908 } 1909 1910 save_state = vd->vdev_state; 1911 1912 vd->vdev_state = state; 1913 vd->vdev_stat.vs_aux = aux; 1914 1915 if (state == VDEV_STATE_CANT_OPEN) { 1916 /* 1917 * If we fail to open a vdev during an import, we mark it as 1918 * "not available", which signifies that it was never there to 1919 * begin with. Failure to open such a device is not considered 1920 * an error. 1921 */ 1922 if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT && 1923 vd->vdev_ops->vdev_op_leaf) 1924 vd->vdev_not_present = 1; 1925 1926 /* 1927 * Post the appropriate ereport. If the 'prevstate' field is 1928 * set to something other than VDEV_STATE_UNKNOWN, it indicates 1929 * that this is part of a vdev_reopen(). In this case, we don't 1930 * want to post the ereport if the device was already in the 1931 * CANT_OPEN state beforehand. 1932 */ 1933 if (vd->vdev_prevstate != state && !vd->vdev_not_present && 1934 vd != vd->vdev_spa->spa_root_vdev) { 1935 const char *class; 1936 1937 switch (aux) { 1938 case VDEV_AUX_OPEN_FAILED: 1939 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 1940 break; 1941 case VDEV_AUX_CORRUPT_DATA: 1942 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 1943 break; 1944 case VDEV_AUX_NO_REPLICAS: 1945 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 1946 break; 1947 case VDEV_AUX_BAD_GUID_SUM: 1948 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 1949 break; 1950 case VDEV_AUX_TOO_SMALL: 1951 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 1952 break; 1953 case VDEV_AUX_BAD_LABEL: 1954 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 1955 break; 1956 default: 1957 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 1958 } 1959 1960 zfs_ereport_post(class, vd->vdev_spa, 1961 vd, NULL, save_state, 0); 1962 } 1963 } 1964 1965 if (isopen) 1966 return; 1967 1968 if (vd->vdev_parent != NULL) 1969 vdev_propagate_state(vd->vdev_parent); 1970 } 1971