1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Portions Copyright 2011 Martin Matuska 24 * Copyright (c) 2012 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/txg_impl.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_scan.h> 33 #include <sys/callb.h> 34 35 /* 36 * Pool-wide transaction groups. 37 */ 38 39 static void txg_sync_thread(dsl_pool_t *dp); 40 static void txg_quiesce_thread(dsl_pool_t *dp); 41 42 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */ 43 44 /* 45 * Prepare the txg subsystem. 46 */ 47 void 48 txg_init(dsl_pool_t *dp, uint64_t txg) 49 { 50 tx_state_t *tx = &dp->dp_tx; 51 int c; 52 bzero(tx, sizeof (tx_state_t)); 53 54 tx->tx_cpu = kmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP); 55 56 for (c = 0; c < max_ncpus; c++) { 57 int i; 58 59 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL); 60 for (i = 0; i < TXG_SIZE; i++) { 61 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT, 62 NULL); 63 list_create(&tx->tx_cpu[c].tc_callbacks[i], 64 sizeof (dmu_tx_callback_t), 65 offsetof(dmu_tx_callback_t, dcb_node)); 66 } 67 } 68 69 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL); 70 71 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL); 72 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL); 73 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL); 74 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL); 75 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL); 76 77 tx->tx_open_txg = txg; 78 } 79 80 /* 81 * Close down the txg subsystem. 82 */ 83 void 84 txg_fini(dsl_pool_t *dp) 85 { 86 tx_state_t *tx = &dp->dp_tx; 87 int c; 88 89 ASSERT(tx->tx_threads == 0); 90 91 mutex_destroy(&tx->tx_sync_lock); 92 93 cv_destroy(&tx->tx_sync_more_cv); 94 cv_destroy(&tx->tx_sync_done_cv); 95 cv_destroy(&tx->tx_quiesce_more_cv); 96 cv_destroy(&tx->tx_quiesce_done_cv); 97 cv_destroy(&tx->tx_exit_cv); 98 99 for (c = 0; c < max_ncpus; c++) { 100 int i; 101 102 mutex_destroy(&tx->tx_cpu[c].tc_lock); 103 for (i = 0; i < TXG_SIZE; i++) { 104 cv_destroy(&tx->tx_cpu[c].tc_cv[i]); 105 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]); 106 } 107 } 108 109 if (tx->tx_commit_cb_taskq != NULL) 110 taskq_destroy(tx->tx_commit_cb_taskq); 111 112 kmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t)); 113 114 bzero(tx, sizeof (tx_state_t)); 115 } 116 117 /* 118 * Start syncing transaction groups. 119 */ 120 void 121 txg_sync_start(dsl_pool_t *dp) 122 { 123 tx_state_t *tx = &dp->dp_tx; 124 125 mutex_enter(&tx->tx_sync_lock); 126 127 dprintf("pool %p\n", dp); 128 129 ASSERT(tx->tx_threads == 0); 130 131 tx->tx_threads = 2; 132 133 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread, 134 dp, 0, &p0, TS_RUN, minclsyspri); 135 136 /* 137 * The sync thread can need a larger-than-default stack size on 138 * 32-bit x86. This is due in part to nested pools and 139 * scrub_visitbp() recursion. 140 */ 141 tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread, 142 dp, 0, &p0, TS_RUN, minclsyspri); 143 144 mutex_exit(&tx->tx_sync_lock); 145 } 146 147 static void 148 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr) 149 { 150 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG); 151 mutex_enter(&tx->tx_sync_lock); 152 } 153 154 static void 155 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp) 156 { 157 ASSERT(*tpp != NULL); 158 *tpp = NULL; 159 tx->tx_threads--; 160 cv_broadcast(&tx->tx_exit_cv); 161 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */ 162 thread_exit(); 163 } 164 165 static void 166 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, uint64_t time) 167 { 168 CALLB_CPR_SAFE_BEGIN(cpr); 169 170 if (time) 171 (void) cv_timedwait(cv, &tx->tx_sync_lock, 172 ddi_get_lbolt() + time); 173 else 174 cv_wait(cv, &tx->tx_sync_lock); 175 176 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock); 177 } 178 179 /* 180 * Stop syncing transaction groups. 181 */ 182 void 183 txg_sync_stop(dsl_pool_t *dp) 184 { 185 tx_state_t *tx = &dp->dp_tx; 186 187 dprintf("pool %p\n", dp); 188 /* 189 * Finish off any work in progress. 190 */ 191 ASSERT(tx->tx_threads == 2); 192 193 /* 194 * We need to ensure that we've vacated the deferred space_maps. 195 */ 196 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE); 197 198 /* 199 * Wake all sync threads and wait for them to die. 200 */ 201 mutex_enter(&tx->tx_sync_lock); 202 203 ASSERT(tx->tx_threads == 2); 204 205 tx->tx_exiting = 1; 206 207 cv_broadcast(&tx->tx_quiesce_more_cv); 208 cv_broadcast(&tx->tx_quiesce_done_cv); 209 cv_broadcast(&tx->tx_sync_more_cv); 210 211 while (tx->tx_threads != 0) 212 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock); 213 214 tx->tx_exiting = 0; 215 216 mutex_exit(&tx->tx_sync_lock); 217 } 218 219 uint64_t 220 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th) 221 { 222 tx_state_t *tx = &dp->dp_tx; 223 tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID]; 224 uint64_t txg; 225 226 mutex_enter(&tc->tc_lock); 227 228 txg = tx->tx_open_txg; 229 tc->tc_count[txg & TXG_MASK]++; 230 231 th->th_cpu = tc; 232 th->th_txg = txg; 233 234 return (txg); 235 } 236 237 void 238 txg_rele_to_quiesce(txg_handle_t *th) 239 { 240 tx_cpu_t *tc = th->th_cpu; 241 242 mutex_exit(&tc->tc_lock); 243 } 244 245 void 246 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks) 247 { 248 tx_cpu_t *tc = th->th_cpu; 249 int g = th->th_txg & TXG_MASK; 250 251 mutex_enter(&tc->tc_lock); 252 list_move_tail(&tc->tc_callbacks[g], tx_callbacks); 253 mutex_exit(&tc->tc_lock); 254 } 255 256 void 257 txg_rele_to_sync(txg_handle_t *th) 258 { 259 tx_cpu_t *tc = th->th_cpu; 260 int g = th->th_txg & TXG_MASK; 261 262 mutex_enter(&tc->tc_lock); 263 ASSERT(tc->tc_count[g] != 0); 264 if (--tc->tc_count[g] == 0) 265 cv_broadcast(&tc->tc_cv[g]); 266 mutex_exit(&tc->tc_lock); 267 268 th->th_cpu = NULL; /* defensive */ 269 } 270 271 static void 272 txg_quiesce(dsl_pool_t *dp, uint64_t txg) 273 { 274 tx_state_t *tx = &dp->dp_tx; 275 int g = txg & TXG_MASK; 276 int c; 277 278 /* 279 * Grab all tx_cpu locks so nobody else can get into this txg. 280 */ 281 for (c = 0; c < max_ncpus; c++) 282 mutex_enter(&tx->tx_cpu[c].tc_lock); 283 284 ASSERT(txg == tx->tx_open_txg); 285 tx->tx_open_txg++; 286 287 /* 288 * Now that we've incremented tx_open_txg, we can let threads 289 * enter the next transaction group. 290 */ 291 for (c = 0; c < max_ncpus; c++) 292 mutex_exit(&tx->tx_cpu[c].tc_lock); 293 294 /* 295 * Quiesce the transaction group by waiting for everyone to txg_exit(). 296 */ 297 for (c = 0; c < max_ncpus; c++) { 298 tx_cpu_t *tc = &tx->tx_cpu[c]; 299 mutex_enter(&tc->tc_lock); 300 while (tc->tc_count[g] != 0) 301 cv_wait(&tc->tc_cv[g], &tc->tc_lock); 302 mutex_exit(&tc->tc_lock); 303 } 304 } 305 306 static void 307 txg_do_callbacks(list_t *cb_list) 308 { 309 dmu_tx_do_callbacks(cb_list, 0); 310 311 list_destroy(cb_list); 312 313 kmem_free(cb_list, sizeof (list_t)); 314 } 315 316 /* 317 * Dispatch the commit callbacks registered on this txg to worker threads. 318 */ 319 static void 320 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg) 321 { 322 int c; 323 tx_state_t *tx = &dp->dp_tx; 324 list_t *cb_list; 325 326 for (c = 0; c < max_ncpus; c++) { 327 tx_cpu_t *tc = &tx->tx_cpu[c]; 328 /* No need to lock tx_cpu_t at this point */ 329 330 int g = txg & TXG_MASK; 331 332 if (list_is_empty(&tc->tc_callbacks[g])) 333 continue; 334 335 if (tx->tx_commit_cb_taskq == NULL) { 336 /* 337 * Commit callback taskq hasn't been created yet. 338 */ 339 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb", 340 max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2, 341 TASKQ_PREPOPULATE); 342 } 343 344 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 345 list_create(cb_list, sizeof (dmu_tx_callback_t), 346 offsetof(dmu_tx_callback_t, dcb_node)); 347 348 list_move_tail(&tc->tc_callbacks[g], cb_list); 349 350 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *) 351 txg_do_callbacks, cb_list, TQ_SLEEP); 352 } 353 } 354 355 static void 356 txg_sync_thread(dsl_pool_t *dp) 357 { 358 spa_t *spa = dp->dp_spa; 359 tx_state_t *tx = &dp->dp_tx; 360 callb_cpr_t cpr; 361 uint64_t start, delta; 362 363 txg_thread_enter(tx, &cpr); 364 365 start = delta = 0; 366 for (;;) { 367 uint64_t timer, timeout = zfs_txg_timeout * hz; 368 uint64_t txg; 369 370 /* 371 * We sync when we're scanning, there's someone waiting 372 * on us, or the quiesce thread has handed off a txg to 373 * us, or we have reached our timeout. 374 */ 375 timer = (delta >= timeout ? 0 : timeout - delta); 376 while (!dsl_scan_active(dp->dp_scan) && 377 !tx->tx_exiting && timer > 0 && 378 tx->tx_synced_txg >= tx->tx_sync_txg_waiting && 379 tx->tx_quiesced_txg == 0) { 380 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n", 381 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 382 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer); 383 delta = ddi_get_lbolt() - start; 384 timer = (delta > timeout ? 0 : timeout - delta); 385 } 386 387 /* 388 * Wait until the quiesce thread hands off a txg to us, 389 * prompting it to do so if necessary. 390 */ 391 while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) { 392 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1) 393 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1; 394 cv_broadcast(&tx->tx_quiesce_more_cv); 395 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0); 396 } 397 398 if (tx->tx_exiting) 399 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread); 400 401 /* 402 * Consume the quiesced txg which has been handed off to 403 * us. This may cause the quiescing thread to now be 404 * able to quiesce another txg, so we must signal it. 405 */ 406 txg = tx->tx_quiesced_txg; 407 tx->tx_quiesced_txg = 0; 408 tx->tx_syncing_txg = txg; 409 cv_broadcast(&tx->tx_quiesce_more_cv); 410 411 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 412 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 413 mutex_exit(&tx->tx_sync_lock); 414 415 start = ddi_get_lbolt(); 416 spa_sync(spa, txg); 417 delta = ddi_get_lbolt() - start; 418 419 mutex_enter(&tx->tx_sync_lock); 420 tx->tx_synced_txg = txg; 421 tx->tx_syncing_txg = 0; 422 cv_broadcast(&tx->tx_sync_done_cv); 423 424 /* 425 * Dispatch commit callbacks to worker threads. 426 */ 427 txg_dispatch_callbacks(dp, txg); 428 } 429 } 430 431 static void 432 txg_quiesce_thread(dsl_pool_t *dp) 433 { 434 tx_state_t *tx = &dp->dp_tx; 435 callb_cpr_t cpr; 436 437 txg_thread_enter(tx, &cpr); 438 439 for (;;) { 440 uint64_t txg; 441 442 /* 443 * We quiesce when there's someone waiting on us. 444 * However, we can only have one txg in "quiescing" or 445 * "quiesced, waiting to sync" state. So we wait until 446 * the "quiesced, waiting to sync" txg has been consumed 447 * by the sync thread. 448 */ 449 while (!tx->tx_exiting && 450 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting || 451 tx->tx_quiesced_txg != 0)) 452 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0); 453 454 if (tx->tx_exiting) 455 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread); 456 457 txg = tx->tx_open_txg; 458 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 459 txg, tx->tx_quiesce_txg_waiting, 460 tx->tx_sync_txg_waiting); 461 mutex_exit(&tx->tx_sync_lock); 462 txg_quiesce(dp, txg); 463 mutex_enter(&tx->tx_sync_lock); 464 465 /* 466 * Hand this txg off to the sync thread. 467 */ 468 dprintf("quiesce done, handing off txg %llu\n", txg); 469 tx->tx_quiesced_txg = txg; 470 cv_broadcast(&tx->tx_sync_more_cv); 471 cv_broadcast(&tx->tx_quiesce_done_cv); 472 } 473 } 474 475 /* 476 * Delay this thread by 'ticks' if we are still in the open transaction 477 * group and there is already a waiting txg quiesing or quiesced. Abort 478 * the delay if this txg stalls or enters the quiesing state. 479 */ 480 void 481 txg_delay(dsl_pool_t *dp, uint64_t txg, int ticks) 482 { 483 tx_state_t *tx = &dp->dp_tx; 484 clock_t timeout = ddi_get_lbolt() + ticks; 485 486 /* don't delay if this txg could transition to quiesing immediately */ 487 if (tx->tx_open_txg > txg || 488 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1) 489 return; 490 491 mutex_enter(&tx->tx_sync_lock); 492 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) { 493 mutex_exit(&tx->tx_sync_lock); 494 return; 495 } 496 497 while (ddi_get_lbolt() < timeout && 498 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) 499 (void) cv_timedwait(&tx->tx_quiesce_more_cv, &tx->tx_sync_lock, 500 timeout); 501 502 mutex_exit(&tx->tx_sync_lock); 503 } 504 505 void 506 txg_wait_synced(dsl_pool_t *dp, uint64_t txg) 507 { 508 tx_state_t *tx = &dp->dp_tx; 509 510 mutex_enter(&tx->tx_sync_lock); 511 ASSERT(tx->tx_threads == 2); 512 if (txg == 0) 513 txg = tx->tx_open_txg + TXG_DEFER_SIZE; 514 if (tx->tx_sync_txg_waiting < txg) 515 tx->tx_sync_txg_waiting = txg; 516 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 517 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 518 while (tx->tx_synced_txg < txg) { 519 dprintf("broadcasting sync more " 520 "tx_synced=%llu waiting=%llu dp=%p\n", 521 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 522 cv_broadcast(&tx->tx_sync_more_cv); 523 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock); 524 } 525 mutex_exit(&tx->tx_sync_lock); 526 } 527 528 void 529 txg_wait_open(dsl_pool_t *dp, uint64_t txg) 530 { 531 tx_state_t *tx = &dp->dp_tx; 532 533 mutex_enter(&tx->tx_sync_lock); 534 ASSERT(tx->tx_threads == 2); 535 if (txg == 0) 536 txg = tx->tx_open_txg + 1; 537 if (tx->tx_quiesce_txg_waiting < txg) 538 tx->tx_quiesce_txg_waiting = txg; 539 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 540 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 541 while (tx->tx_open_txg < txg) { 542 cv_broadcast(&tx->tx_quiesce_more_cv); 543 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock); 544 } 545 mutex_exit(&tx->tx_sync_lock); 546 } 547 548 boolean_t 549 txg_stalled(dsl_pool_t *dp) 550 { 551 tx_state_t *tx = &dp->dp_tx; 552 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg); 553 } 554 555 boolean_t 556 txg_sync_waiting(dsl_pool_t *dp) 557 { 558 tx_state_t *tx = &dp->dp_tx; 559 560 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting || 561 tx->tx_quiesced_txg != 0); 562 } 563 564 /* 565 * Per-txg object lists. 566 */ 567 void 568 txg_list_create(txg_list_t *tl, size_t offset) 569 { 570 int t; 571 572 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL); 573 574 tl->tl_offset = offset; 575 576 for (t = 0; t < TXG_SIZE; t++) 577 tl->tl_head[t] = NULL; 578 } 579 580 void 581 txg_list_destroy(txg_list_t *tl) 582 { 583 int t; 584 585 for (t = 0; t < TXG_SIZE; t++) 586 ASSERT(txg_list_empty(tl, t)); 587 588 mutex_destroy(&tl->tl_lock); 589 } 590 591 boolean_t 592 txg_list_empty(txg_list_t *tl, uint64_t txg) 593 { 594 return (tl->tl_head[txg & TXG_MASK] == NULL); 595 } 596 597 /* 598 * Add an entry to the list. 599 * Returns 0 if it's a new entry, 1 if it's already there. 600 */ 601 int 602 txg_list_add(txg_list_t *tl, void *p, uint64_t txg) 603 { 604 int t = txg & TXG_MASK; 605 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 606 int already_on_list; 607 608 mutex_enter(&tl->tl_lock); 609 already_on_list = tn->tn_member[t]; 610 if (!already_on_list) { 611 tn->tn_member[t] = 1; 612 tn->tn_next[t] = tl->tl_head[t]; 613 tl->tl_head[t] = tn; 614 } 615 mutex_exit(&tl->tl_lock); 616 617 return (already_on_list); 618 } 619 620 /* 621 * Add an entry to the end of the list (walks list to find end). 622 * Returns 0 if it's a new entry, 1 if it's already there. 623 */ 624 int 625 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg) 626 { 627 int t = txg & TXG_MASK; 628 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 629 int already_on_list; 630 631 mutex_enter(&tl->tl_lock); 632 already_on_list = tn->tn_member[t]; 633 if (!already_on_list) { 634 txg_node_t **tp; 635 636 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t]) 637 continue; 638 639 tn->tn_member[t] = 1; 640 tn->tn_next[t] = NULL; 641 *tp = tn; 642 } 643 mutex_exit(&tl->tl_lock); 644 645 return (already_on_list); 646 } 647 648 /* 649 * Remove the head of the list and return it. 650 */ 651 void * 652 txg_list_remove(txg_list_t *tl, uint64_t txg) 653 { 654 int t = txg & TXG_MASK; 655 txg_node_t *tn; 656 void *p = NULL; 657 658 mutex_enter(&tl->tl_lock); 659 if ((tn = tl->tl_head[t]) != NULL) { 660 p = (char *)tn - tl->tl_offset; 661 tl->tl_head[t] = tn->tn_next[t]; 662 tn->tn_next[t] = NULL; 663 tn->tn_member[t] = 0; 664 } 665 mutex_exit(&tl->tl_lock); 666 667 return (p); 668 } 669 670 /* 671 * Remove a specific item from the list and return it. 672 */ 673 void * 674 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg) 675 { 676 int t = txg & TXG_MASK; 677 txg_node_t *tn, **tp; 678 679 mutex_enter(&tl->tl_lock); 680 681 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) { 682 if ((char *)tn - tl->tl_offset == p) { 683 *tp = tn->tn_next[t]; 684 tn->tn_next[t] = NULL; 685 tn->tn_member[t] = 0; 686 mutex_exit(&tl->tl_lock); 687 return (p); 688 } 689 } 690 691 mutex_exit(&tl->tl_lock); 692 693 return (NULL); 694 } 695 696 int 697 txg_list_member(txg_list_t *tl, void *p, uint64_t txg) 698 { 699 int t = txg & TXG_MASK; 700 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 701 702 return (tn->tn_member[t]); 703 } 704 705 /* 706 * Walk a txg list -- only safe if you know it's not changing. 707 */ 708 void * 709 txg_list_head(txg_list_t *tl, uint64_t txg) 710 { 711 int t = txg & TXG_MASK; 712 txg_node_t *tn = tl->tl_head[t]; 713 714 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 715 } 716 717 void * 718 txg_list_next(txg_list_t *tl, void *p, uint64_t txg) 719 { 720 int t = txg & TXG_MASK; 721 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 722 723 tn = tn->tn_next[t]; 724 725 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 726 } 727