1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa_impl.h> 30 #include <sys/zio.h> 31 #include <sys/zio_checksum.h> 32 #include <sys/zio_compress.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/zap.h> 36 #include <sys/zil.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/uberblock_impl.h> 40 #include <sys/txg.h> 41 #include <sys/avl.h> 42 #include <sys/unique.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_dir.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/fs/zfs.h> 47 #include <sys/metaslab_impl.h> 48 #include "zfs_prop.h" 49 50 /* 51 * SPA locking 52 * 53 * There are four basic locks for managing spa_t structures: 54 * 55 * spa_namespace_lock (global mutex) 56 * 57 * This lock must be acquired to do any of the following: 58 * 59 * - Lookup a spa_t by name 60 * - Add or remove a spa_t from the namespace 61 * - Increase spa_refcount from non-zero 62 * - Check if spa_refcount is zero 63 * - Rename a spa_t 64 * - add/remove/attach/detach devices 65 * - Held for the duration of create/destroy/import/export 66 * 67 * It does not need to handle recursion. A create or destroy may 68 * reference objects (files or zvols) in other pools, but by 69 * definition they must have an existing reference, and will never need 70 * to lookup a spa_t by name. 71 * 72 * spa_refcount (per-spa refcount_t protected by mutex) 73 * 74 * This reference count keep track of any active users of the spa_t. The 75 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 76 * the refcount is never really 'zero' - opening a pool implicitly keeps 77 * some references in the DMU. Internally we check against SPA_MINREF, but 78 * present the image of a zero/non-zero value to consumers. 79 * 80 * spa_config_lock (per-spa read-priority rwlock) 81 * 82 * This protects the spa_t from config changes, and must be held in 83 * the following circumstances: 84 * 85 * - RW_READER to perform I/O to the spa 86 * - RW_WRITER to change the vdev config 87 * 88 * spa_config_cache_lock (per-spa mutex) 89 * 90 * This mutex prevents the spa_config nvlist from being updated. No 91 * other locks are required to obtain this lock, although implicitly you 92 * must have the namespace lock or non-zero refcount to have any kind 93 * of spa_t pointer at all. 94 * 95 * The locking order is fairly straightforward: 96 * 97 * spa_namespace_lock -> spa_refcount 98 * 99 * The namespace lock must be acquired to increase the refcount from 0 100 * or to check if it is zero. 101 * 102 * spa_refcount -> spa_config_lock 103 * 104 * There must be at least one valid reference on the spa_t to acquire 105 * the config lock. 106 * 107 * spa_namespace_lock -> spa_config_lock 108 * 109 * The namespace lock must always be taken before the config lock. 110 * 111 * 112 * The spa_namespace_lock and spa_config_cache_lock can be acquired directly and 113 * are globally visible. 114 * 115 * The namespace is manipulated using the following functions, all which require 116 * the spa_namespace_lock to be held. 117 * 118 * spa_lookup() Lookup a spa_t by name. 119 * 120 * spa_add() Create a new spa_t in the namespace. 121 * 122 * spa_remove() Remove a spa_t from the namespace. This also 123 * frees up any memory associated with the spa_t. 124 * 125 * spa_next() Returns the next spa_t in the system, or the 126 * first if NULL is passed. 127 * 128 * spa_evict_all() Shutdown and remove all spa_t structures in 129 * the system. 130 * 131 * spa_guid_exists() Determine whether a pool/device guid exists. 132 * 133 * The spa_refcount is manipulated using the following functions: 134 * 135 * spa_open_ref() Adds a reference to the given spa_t. Must be 136 * called with spa_namespace_lock held if the 137 * refcount is currently zero. 138 * 139 * spa_close() Remove a reference from the spa_t. This will 140 * not free the spa_t or remove it from the 141 * namespace. No locking is required. 142 * 143 * spa_refcount_zero() Returns true if the refcount is currently 144 * zero. Must be called with spa_namespace_lock 145 * held. 146 * 147 * The spa_config_lock is manipulated using the following functions: 148 * 149 * spa_config_enter() Acquire the config lock as RW_READER or 150 * RW_WRITER. At least one reference on the spa_t 151 * must exist. 152 * 153 * spa_config_exit() Release the config lock. 154 * 155 * spa_config_held() Returns true if the config lock is currently 156 * held in the given state. 157 * 158 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 159 * 160 * spa_vdev_enter() Acquire the namespace lock and the config lock 161 * for writing. 162 * 163 * spa_vdev_exit() Release the config lock, wait for all I/O 164 * to complete, sync the updated configs to the 165 * cache, and release the namespace lock. 166 * 167 * The spa_name() function also requires either the spa_namespace_lock 168 * or the spa_config_lock, as both are needed to do a rename. spa_rename() is 169 * also implemented within this file since is requires manipulation of the 170 * namespace. 171 */ 172 173 static avl_tree_t spa_namespace_avl; 174 kmutex_t spa_namespace_lock; 175 static kcondvar_t spa_namespace_cv; 176 static int spa_active_count; 177 int spa_max_replication_override = SPA_DVAS_PER_BP; 178 179 static kmutex_t spa_spare_lock; 180 static avl_tree_t spa_spare_avl; 181 182 kmem_cache_t *spa_buffer_pool; 183 int spa_mode; 184 185 #ifdef ZFS_DEBUG 186 /* Everything except dprintf is on by default in debug builds */ 187 int zfs_flags = ~ZFS_DEBUG_DPRINTF; 188 #else 189 int zfs_flags = 0; 190 #endif 191 192 /* 193 * zfs_recover can be set to nonzero to attempt to recover from 194 * otherwise-fatal errors, typically caused by on-disk corruption. When 195 * set, calls to zfs_panic_recover() will turn into warning messages. 196 */ 197 int zfs_recover = 0; 198 199 #define SPA_MINREF 5 /* spa_refcnt for an open-but-idle pool */ 200 201 /* 202 * ========================================================================== 203 * SPA namespace functions 204 * ========================================================================== 205 */ 206 207 /* 208 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 209 * Returns NULL if no matching spa_t is found. 210 */ 211 spa_t * 212 spa_lookup(const char *name) 213 { 214 spa_t search, *spa; 215 avl_index_t where; 216 char c; 217 char *cp; 218 219 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 220 221 /* 222 * If it's a full dataset name, figure out the pool name and 223 * just use that. 224 */ 225 cp = strpbrk(name, "/@"); 226 if (cp) { 227 c = *cp; 228 *cp = '\0'; 229 } 230 231 search.spa_name = (char *)name; 232 spa = avl_find(&spa_namespace_avl, &search, &where); 233 234 if (cp) 235 *cp = c; 236 237 return (spa); 238 } 239 240 /* 241 * Create an uninitialized spa_t with the given name. Requires 242 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 243 * exist by calling spa_lookup() first. 244 */ 245 spa_t * 246 spa_add(const char *name, const char *altroot) 247 { 248 spa_t *spa; 249 250 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 251 252 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 253 254 spa->spa_name = spa_strdup(name); 255 spa->spa_state = POOL_STATE_UNINITIALIZED; 256 spa->spa_freeze_txg = UINT64_MAX; 257 spa->spa_final_txg = UINT64_MAX; 258 259 refcount_create(&spa->spa_refcount); 260 rprw_init(&spa->spa_config_lock); 261 262 avl_add(&spa_namespace_avl, spa); 263 264 /* 265 * Set the alternate root, if there is one. 266 */ 267 if (altroot) { 268 spa->spa_root = spa_strdup(altroot); 269 spa_active_count++; 270 } 271 272 return (spa); 273 } 274 275 /* 276 * Removes a spa_t from the namespace, freeing up any memory used. Requires 277 * spa_namespace_lock. This is called only after the spa_t has been closed and 278 * deactivated. 279 */ 280 void 281 spa_remove(spa_t *spa) 282 { 283 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 284 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 285 ASSERT(spa->spa_scrub_thread == NULL); 286 287 avl_remove(&spa_namespace_avl, spa); 288 cv_broadcast(&spa_namespace_cv); 289 290 if (spa->spa_root) { 291 spa_strfree(spa->spa_root); 292 spa_active_count--; 293 } 294 295 if (spa->spa_name) 296 spa_strfree(spa->spa_name); 297 298 spa_config_set(spa, NULL); 299 300 refcount_destroy(&spa->spa_refcount); 301 302 rprw_destroy(&spa->spa_config_lock); 303 304 mutex_destroy(&spa->spa_sync_bplist.bpl_lock); 305 mutex_destroy(&spa->spa_errlist_lock); 306 mutex_destroy(&spa->spa_errlog_lock); 307 mutex_destroy(&spa->spa_scrub_lock); 308 mutex_destroy(&spa->spa_config_cache_lock); 309 mutex_destroy(&spa->spa_async_lock); 310 mutex_destroy(&spa->spa_history_lock); 311 mutex_destroy(&spa->spa_props_lock); 312 313 kmem_free(spa, sizeof (spa_t)); 314 } 315 316 /* 317 * Given a pool, return the next pool in the namespace, or NULL if there is 318 * none. If 'prev' is NULL, return the first pool. 319 */ 320 spa_t * 321 spa_next(spa_t *prev) 322 { 323 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 324 325 if (prev) 326 return (AVL_NEXT(&spa_namespace_avl, prev)); 327 else 328 return (avl_first(&spa_namespace_avl)); 329 } 330 331 /* 332 * ========================================================================== 333 * SPA refcount functions 334 * ========================================================================== 335 */ 336 337 /* 338 * Add a reference to the given spa_t. Must have at least one reference, or 339 * have the namespace lock held. 340 */ 341 void 342 spa_open_ref(spa_t *spa, void *tag) 343 { 344 ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF || 345 MUTEX_HELD(&spa_namespace_lock)); 346 347 (void) refcount_add(&spa->spa_refcount, tag); 348 } 349 350 /* 351 * Remove a reference to the given spa_t. Must have at least one reference, or 352 * have the namespace lock held. 353 */ 354 void 355 spa_close(spa_t *spa, void *tag) 356 { 357 ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF || 358 MUTEX_HELD(&spa_namespace_lock)); 359 360 (void) refcount_remove(&spa->spa_refcount, tag); 361 } 362 363 /* 364 * Check to see if the spa refcount is zero. Must be called with 365 * spa_namespace_lock held. We really compare against SPA_MINREF, which is the 366 * number of references acquired when opening a pool 367 */ 368 boolean_t 369 spa_refcount_zero(spa_t *spa) 370 { 371 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 372 373 return (refcount_count(&spa->spa_refcount) == SPA_MINREF); 374 } 375 376 /* 377 * ========================================================================== 378 * SPA spare tracking 379 * ========================================================================== 380 */ 381 382 /* 383 * Spares are tracked globally due to the following constraints: 384 * 385 * - A spare may be part of multiple pools. 386 * - A spare may be added to a pool even if it's actively in use within 387 * another pool. 388 * - A spare in use in any pool can only be the source of a replacement if 389 * the target is a spare in the same pool. 390 * 391 * We keep track of all spares on the system through the use of a reference 392 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 393 * spare, then we bump the reference count in the AVL tree. In addition, we set 394 * the 'vdev_isspare' member to indicate that the device is a spare (active or 395 * inactive). When a spare is made active (used to replace a device in the 396 * pool), we also keep track of which pool its been made a part of. 397 * 398 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 399 * called under the spa_namespace lock as part of vdev reconfiguration. The 400 * separate spare lock exists for the status query path, which does not need to 401 * be completely consistent with respect to other vdev configuration changes. 402 */ 403 404 typedef struct spa_spare { 405 uint64_t spare_guid; 406 uint64_t spare_pool; 407 avl_node_t spare_avl; 408 int spare_count; 409 } spa_spare_t; 410 411 static int 412 spa_spare_compare(const void *a, const void *b) 413 { 414 const spa_spare_t *sa = a; 415 const spa_spare_t *sb = b; 416 417 if (sa->spare_guid < sb->spare_guid) 418 return (-1); 419 else if (sa->spare_guid > sb->spare_guid) 420 return (1); 421 else 422 return (0); 423 } 424 425 void 426 spa_spare_add(vdev_t *vd) 427 { 428 avl_index_t where; 429 spa_spare_t search; 430 spa_spare_t *spare; 431 432 mutex_enter(&spa_spare_lock); 433 ASSERT(!vd->vdev_isspare); 434 435 search.spare_guid = vd->vdev_guid; 436 if ((spare = avl_find(&spa_spare_avl, &search, &where)) != NULL) { 437 spare->spare_count++; 438 } else { 439 spare = kmem_zalloc(sizeof (spa_spare_t), KM_SLEEP); 440 spare->spare_guid = vd->vdev_guid; 441 spare->spare_count = 1; 442 avl_insert(&spa_spare_avl, spare, where); 443 } 444 vd->vdev_isspare = B_TRUE; 445 446 mutex_exit(&spa_spare_lock); 447 } 448 449 void 450 spa_spare_remove(vdev_t *vd) 451 { 452 spa_spare_t search; 453 spa_spare_t *spare; 454 avl_index_t where; 455 456 mutex_enter(&spa_spare_lock); 457 458 search.spare_guid = vd->vdev_guid; 459 spare = avl_find(&spa_spare_avl, &search, &where); 460 461 ASSERT(vd->vdev_isspare); 462 ASSERT(spare != NULL); 463 464 if (--spare->spare_count == 0) { 465 avl_remove(&spa_spare_avl, spare); 466 kmem_free(spare, sizeof (spa_spare_t)); 467 } else if (spare->spare_pool == spa_guid(vd->vdev_spa)) { 468 spare->spare_pool = 0ULL; 469 } 470 471 vd->vdev_isspare = B_FALSE; 472 mutex_exit(&spa_spare_lock); 473 } 474 475 boolean_t 476 spa_spare_exists(uint64_t guid, uint64_t *pool) 477 { 478 spa_spare_t search, *found; 479 avl_index_t where; 480 481 mutex_enter(&spa_spare_lock); 482 483 search.spare_guid = guid; 484 found = avl_find(&spa_spare_avl, &search, &where); 485 486 if (pool) { 487 if (found) 488 *pool = found->spare_pool; 489 else 490 *pool = 0ULL; 491 } 492 493 mutex_exit(&spa_spare_lock); 494 495 return (found != NULL); 496 } 497 498 void 499 spa_spare_activate(vdev_t *vd) 500 { 501 spa_spare_t search, *found; 502 avl_index_t where; 503 504 mutex_enter(&spa_spare_lock); 505 ASSERT(vd->vdev_isspare); 506 507 search.spare_guid = vd->vdev_guid; 508 found = avl_find(&spa_spare_avl, &search, &where); 509 ASSERT(found != NULL); 510 ASSERT(found->spare_pool == 0ULL); 511 512 found->spare_pool = spa_guid(vd->vdev_spa); 513 mutex_exit(&spa_spare_lock); 514 } 515 516 /* 517 * ========================================================================== 518 * SPA config locking 519 * ========================================================================== 520 */ 521 void 522 spa_config_enter(spa_t *spa, krw_t rw, void *tag) 523 { 524 rprw_enter(&spa->spa_config_lock, rw, tag); 525 } 526 527 void 528 spa_config_exit(spa_t *spa, void *tag) 529 { 530 rprw_exit(&spa->spa_config_lock, tag); 531 } 532 533 boolean_t 534 spa_config_held(spa_t *spa, krw_t rw) 535 { 536 return (rprw_held(&spa->spa_config_lock, rw)); 537 } 538 539 /* 540 * ========================================================================== 541 * SPA vdev locking 542 * ========================================================================== 543 */ 544 545 /* 546 * Lock the given spa_t for the purpose of adding or removing a vdev. 547 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 548 * It returns the next transaction group for the spa_t. 549 */ 550 uint64_t 551 spa_vdev_enter(spa_t *spa) 552 { 553 mutex_enter(&spa_namespace_lock); 554 555 /* 556 * Suspend scrub activity while we mess with the config. We must do 557 * this after acquiring the namespace lock to avoid a 3-way deadlock 558 * with spa_scrub_stop() and the scrub thread. 559 */ 560 spa_scrub_suspend(spa); 561 562 spa_config_enter(spa, RW_WRITER, spa); 563 564 return (spa_last_synced_txg(spa) + 1); 565 } 566 567 /* 568 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 569 * locking of spa_vdev_enter(), we also want make sure the transactions have 570 * synced to disk, and then update the global configuration cache with the new 571 * information. 572 */ 573 int 574 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 575 { 576 int config_changed = B_FALSE; 577 578 ASSERT(txg > spa_last_synced_txg(spa)); 579 580 /* 581 * Reassess the DTLs. 582 */ 583 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 584 585 /* 586 * If the config changed, notify the scrub thread that it must restart. 587 */ 588 if (error == 0 && !list_is_empty(&spa->spa_dirty_list)) { 589 config_changed = B_TRUE; 590 spa_scrub_restart(spa, txg); 591 } 592 593 spa_config_exit(spa, spa); 594 595 /* 596 * Allow scrubbing to resume. 597 */ 598 spa_scrub_resume(spa); 599 600 /* 601 * Note: this txg_wait_synced() is important because it ensures 602 * that there won't be more than one config change per txg. 603 * This allows us to use the txg as the generation number. 604 */ 605 if (error == 0) 606 txg_wait_synced(spa->spa_dsl_pool, txg); 607 608 if (vd != NULL) { 609 ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0); 610 vdev_free(vd); 611 } 612 613 /* 614 * If the config changed, update the config cache. 615 */ 616 if (config_changed) 617 spa_config_sync(); 618 619 mutex_exit(&spa_namespace_lock); 620 621 return (error); 622 } 623 624 /* 625 * ========================================================================== 626 * Miscellaneous functions 627 * ========================================================================== 628 */ 629 630 /* 631 * Rename a spa_t. 632 */ 633 int 634 spa_rename(const char *name, const char *newname) 635 { 636 spa_t *spa; 637 int err; 638 639 /* 640 * Lookup the spa_t and grab the config lock for writing. We need to 641 * actually open the pool so that we can sync out the necessary labels. 642 * It's OK to call spa_open() with the namespace lock held because we 643 * allow recursive calls for other reasons. 644 */ 645 mutex_enter(&spa_namespace_lock); 646 if ((err = spa_open(name, &spa, FTAG)) != 0) { 647 mutex_exit(&spa_namespace_lock); 648 return (err); 649 } 650 651 spa_config_enter(spa, RW_WRITER, FTAG); 652 653 avl_remove(&spa_namespace_avl, spa); 654 spa_strfree(spa->spa_name); 655 spa->spa_name = spa_strdup(newname); 656 avl_add(&spa_namespace_avl, spa); 657 658 /* 659 * Sync all labels to disk with the new names by marking the root vdev 660 * dirty and waiting for it to sync. It will pick up the new pool name 661 * during the sync. 662 */ 663 vdev_config_dirty(spa->spa_root_vdev); 664 665 spa_config_exit(spa, FTAG); 666 667 txg_wait_synced(spa->spa_dsl_pool, 0); 668 669 /* 670 * Sync the updated config cache. 671 */ 672 spa_config_sync(); 673 674 spa_close(spa, FTAG); 675 676 mutex_exit(&spa_namespace_lock); 677 678 return (0); 679 } 680 681 682 /* 683 * Determine whether a pool with given pool_guid exists. If device_guid is 684 * non-zero, determine whether the pool exists *and* contains a device with the 685 * specified device_guid. 686 */ 687 boolean_t 688 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 689 { 690 spa_t *spa; 691 avl_tree_t *t = &spa_namespace_avl; 692 693 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 694 695 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 696 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 697 continue; 698 if (spa->spa_root_vdev == NULL) 699 continue; 700 if (spa_guid(spa) == pool_guid) { 701 if (device_guid == 0) 702 break; 703 704 if (vdev_lookup_by_guid(spa->spa_root_vdev, 705 device_guid) != NULL) 706 break; 707 708 /* 709 * Check any devices we may be in the process of adding. 710 */ 711 if (spa->spa_pending_vdev) { 712 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 713 device_guid) != NULL) 714 break; 715 } 716 } 717 } 718 719 return (spa != NULL); 720 } 721 722 char * 723 spa_strdup(const char *s) 724 { 725 size_t len; 726 char *new; 727 728 len = strlen(s); 729 new = kmem_alloc(len + 1, KM_SLEEP); 730 bcopy(s, new, len); 731 new[len] = '\0'; 732 733 return (new); 734 } 735 736 void 737 spa_strfree(char *s) 738 { 739 kmem_free(s, strlen(s) + 1); 740 } 741 742 uint64_t 743 spa_get_random(uint64_t range) 744 { 745 uint64_t r; 746 747 ASSERT(range != 0); 748 749 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 750 751 return (r % range); 752 } 753 754 void 755 sprintf_blkptr(char *buf, int len, const blkptr_t *bp) 756 { 757 int d; 758 759 if (bp == NULL) { 760 (void) snprintf(buf, len, "<NULL>"); 761 return; 762 } 763 764 if (BP_IS_HOLE(bp)) { 765 (void) snprintf(buf, len, "<hole>"); 766 return; 767 } 768 769 (void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ", 770 (u_longlong_t)BP_GET_LEVEL(bp), 771 dmu_ot[BP_GET_TYPE(bp)].ot_name, 772 (u_longlong_t)BP_GET_LSIZE(bp), 773 (u_longlong_t)BP_GET_PSIZE(bp)); 774 775 for (d = 0; d < BP_GET_NDVAS(bp); d++) { 776 const dva_t *dva = &bp->blk_dva[d]; 777 (void) snprintf(buf + strlen(buf), len - strlen(buf), 778 "DVA[%d]=<%llu:%llx:%llx> ", d, 779 (u_longlong_t)DVA_GET_VDEV(dva), 780 (u_longlong_t)DVA_GET_OFFSET(dva), 781 (u_longlong_t)DVA_GET_ASIZE(dva)); 782 } 783 784 (void) snprintf(buf + strlen(buf), len - strlen(buf), 785 "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx", 786 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name, 787 zio_compress_table[BP_GET_COMPRESS(bp)].ci_name, 788 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", 789 BP_IS_GANG(bp) ? "gang" : "contiguous", 790 (u_longlong_t)bp->blk_birth, 791 (u_longlong_t)bp->blk_fill, 792 (u_longlong_t)bp->blk_cksum.zc_word[0], 793 (u_longlong_t)bp->blk_cksum.zc_word[1], 794 (u_longlong_t)bp->blk_cksum.zc_word[2], 795 (u_longlong_t)bp->blk_cksum.zc_word[3]); 796 } 797 798 void 799 spa_freeze(spa_t *spa) 800 { 801 uint64_t freeze_txg = 0; 802 803 spa_config_enter(spa, RW_WRITER, FTAG); 804 if (spa->spa_freeze_txg == UINT64_MAX) { 805 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 806 spa->spa_freeze_txg = freeze_txg; 807 } 808 spa_config_exit(spa, FTAG); 809 if (freeze_txg != 0) 810 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 811 } 812 813 void 814 zfs_panic_recover(const char *fmt, ...) 815 { 816 va_list adx; 817 818 va_start(adx, fmt); 819 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 820 va_end(adx); 821 } 822 823 /* 824 * ========================================================================== 825 * Accessor functions 826 * ========================================================================== 827 */ 828 829 krwlock_t * 830 spa_traverse_rwlock(spa_t *spa) 831 { 832 return (&spa->spa_traverse_lock); 833 } 834 835 int 836 spa_traverse_wanted(spa_t *spa) 837 { 838 return (spa->spa_traverse_wanted); 839 } 840 841 dsl_pool_t * 842 spa_get_dsl(spa_t *spa) 843 { 844 return (spa->spa_dsl_pool); 845 } 846 847 blkptr_t * 848 spa_get_rootblkptr(spa_t *spa) 849 { 850 return (&spa->spa_ubsync.ub_rootbp); 851 } 852 853 void 854 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 855 { 856 spa->spa_uberblock.ub_rootbp = *bp; 857 } 858 859 void 860 spa_altroot(spa_t *spa, char *buf, size_t buflen) 861 { 862 if (spa->spa_root == NULL) 863 buf[0] = '\0'; 864 else 865 (void) strncpy(buf, spa->spa_root, buflen); 866 } 867 868 int 869 spa_sync_pass(spa_t *spa) 870 { 871 return (spa->spa_sync_pass); 872 } 873 874 char * 875 spa_name(spa_t *spa) 876 { 877 /* 878 * Accessing the name requires holding either the namespace lock or the 879 * config lock, both of which are required to do a rename. 880 */ 881 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 882 spa_config_held(spa, RW_READER) || spa_config_held(spa, RW_WRITER)); 883 884 return (spa->spa_name); 885 } 886 887 uint64_t 888 spa_guid(spa_t *spa) 889 { 890 /* 891 * If we fail to parse the config during spa_load(), we can go through 892 * the error path (which posts an ereport) and end up here with no root 893 * vdev. We stash the original pool guid in 'spa_load_guid' to handle 894 * this case. 895 */ 896 if (spa->spa_root_vdev != NULL) 897 return (spa->spa_root_vdev->vdev_guid); 898 else 899 return (spa->spa_load_guid); 900 } 901 902 uint64_t 903 spa_last_synced_txg(spa_t *spa) 904 { 905 return (spa->spa_ubsync.ub_txg); 906 } 907 908 uint64_t 909 spa_first_txg(spa_t *spa) 910 { 911 return (spa->spa_first_txg); 912 } 913 914 int 915 spa_state(spa_t *spa) 916 { 917 return (spa->spa_state); 918 } 919 920 uint64_t 921 spa_freeze_txg(spa_t *spa) 922 { 923 return (spa->spa_freeze_txg); 924 } 925 926 /* 927 * Return how much space is allocated in the pool (ie. sum of all asize) 928 */ 929 uint64_t 930 spa_get_alloc(spa_t *spa) 931 { 932 return (spa->spa_root_vdev->vdev_stat.vs_alloc); 933 } 934 935 /* 936 * Return how much (raid-z inflated) space there is in the pool. 937 */ 938 uint64_t 939 spa_get_space(spa_t *spa) 940 { 941 return (spa->spa_root_vdev->vdev_stat.vs_space); 942 } 943 944 /* 945 * Return the amount of raid-z-deflated space in the pool. 946 */ 947 uint64_t 948 spa_get_dspace(spa_t *spa) 949 { 950 if (spa->spa_deflate) 951 return (spa->spa_root_vdev->vdev_stat.vs_dspace); 952 else 953 return (spa->spa_root_vdev->vdev_stat.vs_space); 954 } 955 956 /* ARGSUSED */ 957 uint64_t 958 spa_get_asize(spa_t *spa, uint64_t lsize) 959 { 960 /* 961 * For now, the worst case is 512-byte RAID-Z blocks, in which 962 * case the space requirement is exactly 2x; so just assume that. 963 * Add to this the fact that we can have up to 3 DVAs per bp, and 964 * we have to multiply by a total of 6x. 965 */ 966 return (lsize * 6); 967 } 968 969 uint64_t 970 spa_version(spa_t *spa) 971 { 972 return (spa->spa_ubsync.ub_version); 973 } 974 975 int 976 spa_max_replication(spa_t *spa) 977 { 978 /* 979 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 980 * handle BPs with more than one DVA allocated. Set our max 981 * replication level accordingly. 982 */ 983 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 984 return (1); 985 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 986 } 987 988 uint64_t 989 bp_get_dasize(spa_t *spa, const blkptr_t *bp) 990 { 991 int sz = 0, i; 992 993 if (!spa->spa_deflate) 994 return (BP_GET_ASIZE(bp)); 995 996 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 997 vdev_t *vd = 998 vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i])); 999 sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >> SPA_MINBLOCKSHIFT) * 1000 vd->vdev_deflate_ratio; 1001 } 1002 return (sz); 1003 } 1004 1005 /* 1006 * ========================================================================== 1007 * Initialization and Termination 1008 * ========================================================================== 1009 */ 1010 1011 static int 1012 spa_name_compare(const void *a1, const void *a2) 1013 { 1014 const spa_t *s1 = a1; 1015 const spa_t *s2 = a2; 1016 int s; 1017 1018 s = strcmp(s1->spa_name, s2->spa_name); 1019 if (s > 0) 1020 return (1); 1021 if (s < 0) 1022 return (-1); 1023 return (0); 1024 } 1025 1026 int 1027 spa_busy(void) 1028 { 1029 return (spa_active_count); 1030 } 1031 1032 void 1033 spa_init(int mode) 1034 { 1035 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1036 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1037 1038 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1039 offsetof(spa_t, spa_avl)); 1040 1041 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_spare_t), 1042 offsetof(spa_spare_t, spare_avl)); 1043 1044 spa_mode = mode; 1045 1046 refcount_init(); 1047 unique_init(); 1048 zio_init(); 1049 dmu_init(); 1050 zil_init(); 1051 zfs_prop_init(); 1052 spa_config_load(); 1053 } 1054 1055 void 1056 spa_fini(void) 1057 { 1058 spa_evict_all(); 1059 1060 zil_fini(); 1061 dmu_fini(); 1062 zio_fini(); 1063 unique_fini(); 1064 refcount_fini(); 1065 1066 avl_destroy(&spa_namespace_avl); 1067 avl_destroy(&spa_spare_avl); 1068 1069 cv_destroy(&spa_namespace_cv); 1070 mutex_destroy(&spa_namespace_lock); 1071 } 1072 1073 /* 1074 * Return whether this pool has slogs. No locking needed. 1075 * It's not a problem if the wrong answer is returned as it's only for 1076 * performance and not correctness 1077 */ 1078 boolean_t 1079 spa_has_slogs(spa_t *spa) 1080 { 1081 return (spa->spa_log_class->mc_rotor != NULL); 1082 } 1083