xref: /titanic_44/usr/src/uts/common/fs/zfs/spa_misc.c (revision a547be5daca7e465ca82df6d179f6b1f8e0cda72)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 #include <sys/zfs_context.h>
26 #include <sys/spa_impl.h>
27 #include <sys/zio.h>
28 #include <sys/zio_checksum.h>
29 #include <sys/zio_compress.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/zap.h>
33 #include <sys/zil.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/metaslab.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/txg.h>
38 #include <sys/avl.h>
39 #include <sys/unique.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/dsl_dir.h>
42 #include <sys/dsl_prop.h>
43 #include <sys/dsl_scan.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/arc.h>
47 #include <sys/ddt.h>
48 #include "zfs_prop.h"
49 
50 /*
51  * SPA locking
52  *
53  * There are four basic locks for managing spa_t structures:
54  *
55  * spa_namespace_lock (global mutex)
56  *
57  *	This lock must be acquired to do any of the following:
58  *
59  *		- Lookup a spa_t by name
60  *		- Add or remove a spa_t from the namespace
61  *		- Increase spa_refcount from non-zero
62  *		- Check if spa_refcount is zero
63  *		- Rename a spa_t
64  *		- add/remove/attach/detach devices
65  *		- Held for the duration of create/destroy/import/export
66  *
67  *	It does not need to handle recursion.  A create or destroy may
68  *	reference objects (files or zvols) in other pools, but by
69  *	definition they must have an existing reference, and will never need
70  *	to lookup a spa_t by name.
71  *
72  * spa_refcount (per-spa refcount_t protected by mutex)
73  *
74  *	This reference count keep track of any active users of the spa_t.  The
75  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
76  *	the refcount is never really 'zero' - opening a pool implicitly keeps
77  *	some references in the DMU.  Internally we check against spa_minref, but
78  *	present the image of a zero/non-zero value to consumers.
79  *
80  * spa_config_lock[] (per-spa array of rwlocks)
81  *
82  *	This protects the spa_t from config changes, and must be held in
83  *	the following circumstances:
84  *
85  *		- RW_READER to perform I/O to the spa
86  *		- RW_WRITER to change the vdev config
87  *
88  * The locking order is fairly straightforward:
89  *
90  *		spa_namespace_lock	->	spa_refcount
91  *
92  *	The namespace lock must be acquired to increase the refcount from 0
93  *	or to check if it is zero.
94  *
95  *		spa_refcount		->	spa_config_lock[]
96  *
97  *	There must be at least one valid reference on the spa_t to acquire
98  *	the config lock.
99  *
100  *		spa_namespace_lock	->	spa_config_lock[]
101  *
102  *	The namespace lock must always be taken before the config lock.
103  *
104  *
105  * The spa_namespace_lock can be acquired directly and is globally visible.
106  *
107  * The namespace is manipulated using the following functions, all of which
108  * require the spa_namespace_lock to be held.
109  *
110  *	spa_lookup()		Lookup a spa_t by name.
111  *
112  *	spa_add()		Create a new spa_t in the namespace.
113  *
114  *	spa_remove()		Remove a spa_t from the namespace.  This also
115  *				frees up any memory associated with the spa_t.
116  *
117  *	spa_next()		Returns the next spa_t in the system, or the
118  *				first if NULL is passed.
119  *
120  *	spa_evict_all()		Shutdown and remove all spa_t structures in
121  *				the system.
122  *
123  *	spa_guid_exists()	Determine whether a pool/device guid exists.
124  *
125  * The spa_refcount is manipulated using the following functions:
126  *
127  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
128  *				called with spa_namespace_lock held if the
129  *				refcount is currently zero.
130  *
131  *	spa_close()		Remove a reference from the spa_t.  This will
132  *				not free the spa_t or remove it from the
133  *				namespace.  No locking is required.
134  *
135  *	spa_refcount_zero()	Returns true if the refcount is currently
136  *				zero.  Must be called with spa_namespace_lock
137  *				held.
138  *
139  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
140  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
141  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
142  *
143  * To read the configuration, it suffices to hold one of these locks as reader.
144  * To modify the configuration, you must hold all locks as writer.  To modify
145  * vdev state without altering the vdev tree's topology (e.g. online/offline),
146  * you must hold SCL_STATE and SCL_ZIO as writer.
147  *
148  * We use these distinct config locks to avoid recursive lock entry.
149  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
150  * block allocations (SCL_ALLOC), which may require reading space maps
151  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
152  *
153  * The spa config locks cannot be normal rwlocks because we need the
154  * ability to hand off ownership.  For example, SCL_ZIO is acquired
155  * by the issuing thread and later released by an interrupt thread.
156  * They do, however, obey the usual write-wanted semantics to prevent
157  * writer (i.e. system administrator) starvation.
158  *
159  * The lock acquisition rules are as follows:
160  *
161  * SCL_CONFIG
162  *	Protects changes to the vdev tree topology, such as vdev
163  *	add/remove/attach/detach.  Protects the dirty config list
164  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
165  *
166  * SCL_STATE
167  *	Protects changes to pool state and vdev state, such as vdev
168  *	online/offline/fault/degrade/clear.  Protects the dirty state list
169  *	(spa_state_dirty_list) and global pool state (spa_state).
170  *
171  * SCL_ALLOC
172  *	Protects changes to metaslab groups and classes.
173  *	Held as reader by metaslab_alloc() and metaslab_claim().
174  *
175  * SCL_ZIO
176  *	Held by bp-level zios (those which have no io_vd upon entry)
177  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
178  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
179  *
180  * SCL_FREE
181  *	Protects changes to metaslab groups and classes.
182  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
183  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
184  *	blocks in zio_done() while another i/o that holds either
185  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
186  *
187  * SCL_VDEV
188  *	Held as reader to prevent changes to the vdev tree during trivial
189  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
190  *	other locks, and lower than all of them, to ensure that it's safe
191  *	to acquire regardless of caller context.
192  *
193  * In addition, the following rules apply:
194  *
195  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
196  *	The lock ordering is SCL_CONFIG > spa_props_lock.
197  *
198  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
199  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
200  *	or zio_write_phys() -- the caller must ensure that the config cannot
201  *	cannot change in the interim, and that the vdev cannot be reopened.
202  *	SCL_STATE as reader suffices for both.
203  *
204  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
205  *
206  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
207  *				for writing.
208  *
209  *	spa_vdev_exit()		Release the config lock, wait for all I/O
210  *				to complete, sync the updated configs to the
211  *				cache, and release the namespace lock.
212  *
213  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
214  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
215  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
216  *
217  * spa_rename() is also implemented within this file since is requires
218  * manipulation of the namespace.
219  */
220 
221 static avl_tree_t spa_namespace_avl;
222 kmutex_t spa_namespace_lock;
223 static kcondvar_t spa_namespace_cv;
224 static int spa_active_count;
225 int spa_max_replication_override = SPA_DVAS_PER_BP;
226 
227 static kmutex_t spa_spare_lock;
228 static avl_tree_t spa_spare_avl;
229 static kmutex_t spa_l2cache_lock;
230 static avl_tree_t spa_l2cache_avl;
231 
232 kmem_cache_t *spa_buffer_pool;
233 int spa_mode_global;
234 
235 #ifdef ZFS_DEBUG
236 /* Everything except dprintf is on by default in debug builds */
237 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
238 #else
239 int zfs_flags = 0;
240 #endif
241 
242 /*
243  * zfs_recover can be set to nonzero to attempt to recover from
244  * otherwise-fatal errors, typically caused by on-disk corruption.  When
245  * set, calls to zfs_panic_recover() will turn into warning messages.
246  */
247 int zfs_recover = 0;
248 
249 
250 /*
251  * ==========================================================================
252  * SPA config locking
253  * ==========================================================================
254  */
255 static void
256 spa_config_lock_init(spa_t *spa)
257 {
258 	for (int i = 0; i < SCL_LOCKS; i++) {
259 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
260 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
261 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
262 		refcount_create(&scl->scl_count);
263 		scl->scl_writer = NULL;
264 		scl->scl_write_wanted = 0;
265 	}
266 }
267 
268 static void
269 spa_config_lock_destroy(spa_t *spa)
270 {
271 	for (int i = 0; i < SCL_LOCKS; i++) {
272 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
273 		mutex_destroy(&scl->scl_lock);
274 		cv_destroy(&scl->scl_cv);
275 		refcount_destroy(&scl->scl_count);
276 		ASSERT(scl->scl_writer == NULL);
277 		ASSERT(scl->scl_write_wanted == 0);
278 	}
279 }
280 
281 int
282 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
283 {
284 	for (int i = 0; i < SCL_LOCKS; i++) {
285 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
286 		if (!(locks & (1 << i)))
287 			continue;
288 		mutex_enter(&scl->scl_lock);
289 		if (rw == RW_READER) {
290 			if (scl->scl_writer || scl->scl_write_wanted) {
291 				mutex_exit(&scl->scl_lock);
292 				spa_config_exit(spa, locks ^ (1 << i), tag);
293 				return (0);
294 			}
295 		} else {
296 			ASSERT(scl->scl_writer != curthread);
297 			if (!refcount_is_zero(&scl->scl_count)) {
298 				mutex_exit(&scl->scl_lock);
299 				spa_config_exit(spa, locks ^ (1 << i), tag);
300 				return (0);
301 			}
302 			scl->scl_writer = curthread;
303 		}
304 		(void) refcount_add(&scl->scl_count, tag);
305 		mutex_exit(&scl->scl_lock);
306 	}
307 	return (1);
308 }
309 
310 void
311 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
312 {
313 	int wlocks_held = 0;
314 
315 	for (int i = 0; i < SCL_LOCKS; i++) {
316 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
317 		if (scl->scl_writer == curthread)
318 			wlocks_held |= (1 << i);
319 		if (!(locks & (1 << i)))
320 			continue;
321 		mutex_enter(&scl->scl_lock);
322 		if (rw == RW_READER) {
323 			while (scl->scl_writer || scl->scl_write_wanted) {
324 				cv_wait(&scl->scl_cv, &scl->scl_lock);
325 			}
326 		} else {
327 			ASSERT(scl->scl_writer != curthread);
328 			while (!refcount_is_zero(&scl->scl_count)) {
329 				scl->scl_write_wanted++;
330 				cv_wait(&scl->scl_cv, &scl->scl_lock);
331 				scl->scl_write_wanted--;
332 			}
333 			scl->scl_writer = curthread;
334 		}
335 		(void) refcount_add(&scl->scl_count, tag);
336 		mutex_exit(&scl->scl_lock);
337 	}
338 	ASSERT(wlocks_held <= locks);
339 }
340 
341 void
342 spa_config_exit(spa_t *spa, int locks, void *tag)
343 {
344 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
345 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
346 		if (!(locks & (1 << i)))
347 			continue;
348 		mutex_enter(&scl->scl_lock);
349 		ASSERT(!refcount_is_zero(&scl->scl_count));
350 		if (refcount_remove(&scl->scl_count, tag) == 0) {
351 			ASSERT(scl->scl_writer == NULL ||
352 			    scl->scl_writer == curthread);
353 			scl->scl_writer = NULL;	/* OK in either case */
354 			cv_broadcast(&scl->scl_cv);
355 		}
356 		mutex_exit(&scl->scl_lock);
357 	}
358 }
359 
360 int
361 spa_config_held(spa_t *spa, int locks, krw_t rw)
362 {
363 	int locks_held = 0;
364 
365 	for (int i = 0; i < SCL_LOCKS; i++) {
366 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
367 		if (!(locks & (1 << i)))
368 			continue;
369 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
370 		    (rw == RW_WRITER && scl->scl_writer == curthread))
371 			locks_held |= 1 << i;
372 	}
373 
374 	return (locks_held);
375 }
376 
377 /*
378  * ==========================================================================
379  * SPA namespace functions
380  * ==========================================================================
381  */
382 
383 /*
384  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
385  * Returns NULL if no matching spa_t is found.
386  */
387 spa_t *
388 spa_lookup(const char *name)
389 {
390 	static spa_t search;	/* spa_t is large; don't allocate on stack */
391 	spa_t *spa;
392 	avl_index_t where;
393 	char c;
394 	char *cp;
395 
396 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
397 
398 	/*
399 	 * If it's a full dataset name, figure out the pool name and
400 	 * just use that.
401 	 */
402 	cp = strpbrk(name, "/@");
403 	if (cp) {
404 		c = *cp;
405 		*cp = '\0';
406 	}
407 
408 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
409 	spa = avl_find(&spa_namespace_avl, &search, &where);
410 
411 	if (cp)
412 		*cp = c;
413 
414 	return (spa);
415 }
416 
417 /*
418  * Create an uninitialized spa_t with the given name.  Requires
419  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
420  * exist by calling spa_lookup() first.
421  */
422 spa_t *
423 spa_add(const char *name, nvlist_t *config, const char *altroot)
424 {
425 	spa_t *spa;
426 	spa_config_dirent_t *dp;
427 
428 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
429 
430 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
431 
432 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
433 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
434 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
435 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
436 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
437 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
438 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
439 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
440 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
441 
442 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
443 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
444 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
445 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
446 
447 	for (int t = 0; t < TXG_SIZE; t++)
448 		bplist_create(&spa->spa_free_bplist[t]);
449 
450 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
451 	spa->spa_state = POOL_STATE_UNINITIALIZED;
452 	spa->spa_freeze_txg = UINT64_MAX;
453 	spa->spa_final_txg = UINT64_MAX;
454 	spa->spa_load_max_txg = UINT64_MAX;
455 	spa->spa_proc = &p0;
456 	spa->spa_proc_state = SPA_PROC_NONE;
457 
458 	refcount_create(&spa->spa_refcount);
459 	spa_config_lock_init(spa);
460 
461 	avl_add(&spa_namespace_avl, spa);
462 
463 	/*
464 	 * Set the alternate root, if there is one.
465 	 */
466 	if (altroot) {
467 		spa->spa_root = spa_strdup(altroot);
468 		spa_active_count++;
469 	}
470 
471 	/*
472 	 * Every pool starts with the default cachefile
473 	 */
474 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
475 	    offsetof(spa_config_dirent_t, scd_link));
476 
477 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
478 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
479 	list_insert_head(&spa->spa_config_list, dp);
480 
481 	if (config != NULL)
482 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
483 
484 	return (spa);
485 }
486 
487 /*
488  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
489  * spa_namespace_lock.  This is called only after the spa_t has been closed and
490  * deactivated.
491  */
492 void
493 spa_remove(spa_t *spa)
494 {
495 	spa_config_dirent_t *dp;
496 
497 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
498 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
499 
500 	nvlist_free(spa->spa_config_splitting);
501 
502 	avl_remove(&spa_namespace_avl, spa);
503 	cv_broadcast(&spa_namespace_cv);
504 
505 	if (spa->spa_root) {
506 		spa_strfree(spa->spa_root);
507 		spa_active_count--;
508 	}
509 
510 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
511 		list_remove(&spa->spa_config_list, dp);
512 		if (dp->scd_path != NULL)
513 			spa_strfree(dp->scd_path);
514 		kmem_free(dp, sizeof (spa_config_dirent_t));
515 	}
516 
517 	list_destroy(&spa->spa_config_list);
518 
519 	spa_config_set(spa, NULL);
520 
521 	refcount_destroy(&spa->spa_refcount);
522 
523 	spa_config_lock_destroy(spa);
524 
525 	for (int t = 0; t < TXG_SIZE; t++)
526 		bplist_destroy(&spa->spa_free_bplist[t]);
527 
528 	cv_destroy(&spa->spa_async_cv);
529 	cv_destroy(&spa->spa_proc_cv);
530 	cv_destroy(&spa->spa_scrub_io_cv);
531 	cv_destroy(&spa->spa_suspend_cv);
532 
533 	mutex_destroy(&spa->spa_async_lock);
534 	mutex_destroy(&spa->spa_errlist_lock);
535 	mutex_destroy(&spa->spa_errlog_lock);
536 	mutex_destroy(&spa->spa_history_lock);
537 	mutex_destroy(&spa->spa_proc_lock);
538 	mutex_destroy(&spa->spa_props_lock);
539 	mutex_destroy(&spa->spa_scrub_lock);
540 	mutex_destroy(&spa->spa_suspend_lock);
541 	mutex_destroy(&spa->spa_vdev_top_lock);
542 
543 	kmem_free(spa, sizeof (spa_t));
544 }
545 
546 /*
547  * Given a pool, return the next pool in the namespace, or NULL if there is
548  * none.  If 'prev' is NULL, return the first pool.
549  */
550 spa_t *
551 spa_next(spa_t *prev)
552 {
553 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
554 
555 	if (prev)
556 		return (AVL_NEXT(&spa_namespace_avl, prev));
557 	else
558 		return (avl_first(&spa_namespace_avl));
559 }
560 
561 /*
562  * ==========================================================================
563  * SPA refcount functions
564  * ==========================================================================
565  */
566 
567 /*
568  * Add a reference to the given spa_t.  Must have at least one reference, or
569  * have the namespace lock held.
570  */
571 void
572 spa_open_ref(spa_t *spa, void *tag)
573 {
574 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
575 	    MUTEX_HELD(&spa_namespace_lock));
576 	(void) refcount_add(&spa->spa_refcount, tag);
577 }
578 
579 /*
580  * Remove a reference to the given spa_t.  Must have at least one reference, or
581  * have the namespace lock held.
582  */
583 void
584 spa_close(spa_t *spa, void *tag)
585 {
586 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
587 	    MUTEX_HELD(&spa_namespace_lock));
588 	(void) refcount_remove(&spa->spa_refcount, tag);
589 }
590 
591 /*
592  * Check to see if the spa refcount is zero.  Must be called with
593  * spa_namespace_lock held.  We really compare against spa_minref, which is the
594  * number of references acquired when opening a pool
595  */
596 boolean_t
597 spa_refcount_zero(spa_t *spa)
598 {
599 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
600 
601 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
602 }
603 
604 /*
605  * ==========================================================================
606  * SPA spare and l2cache tracking
607  * ==========================================================================
608  */
609 
610 /*
611  * Hot spares and cache devices are tracked using the same code below,
612  * for 'auxiliary' devices.
613  */
614 
615 typedef struct spa_aux {
616 	uint64_t	aux_guid;
617 	uint64_t	aux_pool;
618 	avl_node_t	aux_avl;
619 	int		aux_count;
620 } spa_aux_t;
621 
622 static int
623 spa_aux_compare(const void *a, const void *b)
624 {
625 	const spa_aux_t *sa = a;
626 	const spa_aux_t *sb = b;
627 
628 	if (sa->aux_guid < sb->aux_guid)
629 		return (-1);
630 	else if (sa->aux_guid > sb->aux_guid)
631 		return (1);
632 	else
633 		return (0);
634 }
635 
636 void
637 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
638 {
639 	avl_index_t where;
640 	spa_aux_t search;
641 	spa_aux_t *aux;
642 
643 	search.aux_guid = vd->vdev_guid;
644 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
645 		aux->aux_count++;
646 	} else {
647 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
648 		aux->aux_guid = vd->vdev_guid;
649 		aux->aux_count = 1;
650 		avl_insert(avl, aux, where);
651 	}
652 }
653 
654 void
655 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
656 {
657 	spa_aux_t search;
658 	spa_aux_t *aux;
659 	avl_index_t where;
660 
661 	search.aux_guid = vd->vdev_guid;
662 	aux = avl_find(avl, &search, &where);
663 
664 	ASSERT(aux != NULL);
665 
666 	if (--aux->aux_count == 0) {
667 		avl_remove(avl, aux);
668 		kmem_free(aux, sizeof (spa_aux_t));
669 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
670 		aux->aux_pool = 0ULL;
671 	}
672 }
673 
674 boolean_t
675 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
676 {
677 	spa_aux_t search, *found;
678 
679 	search.aux_guid = guid;
680 	found = avl_find(avl, &search, NULL);
681 
682 	if (pool) {
683 		if (found)
684 			*pool = found->aux_pool;
685 		else
686 			*pool = 0ULL;
687 	}
688 
689 	if (refcnt) {
690 		if (found)
691 			*refcnt = found->aux_count;
692 		else
693 			*refcnt = 0;
694 	}
695 
696 	return (found != NULL);
697 }
698 
699 void
700 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
701 {
702 	spa_aux_t search, *found;
703 	avl_index_t where;
704 
705 	search.aux_guid = vd->vdev_guid;
706 	found = avl_find(avl, &search, &where);
707 	ASSERT(found != NULL);
708 	ASSERT(found->aux_pool == 0ULL);
709 
710 	found->aux_pool = spa_guid(vd->vdev_spa);
711 }
712 
713 /*
714  * Spares are tracked globally due to the following constraints:
715  *
716  * 	- A spare may be part of multiple pools.
717  * 	- A spare may be added to a pool even if it's actively in use within
718  *	  another pool.
719  * 	- A spare in use in any pool can only be the source of a replacement if
720  *	  the target is a spare in the same pool.
721  *
722  * We keep track of all spares on the system through the use of a reference
723  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
724  * spare, then we bump the reference count in the AVL tree.  In addition, we set
725  * the 'vdev_isspare' member to indicate that the device is a spare (active or
726  * inactive).  When a spare is made active (used to replace a device in the
727  * pool), we also keep track of which pool its been made a part of.
728  *
729  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
730  * called under the spa_namespace lock as part of vdev reconfiguration.  The
731  * separate spare lock exists for the status query path, which does not need to
732  * be completely consistent with respect to other vdev configuration changes.
733  */
734 
735 static int
736 spa_spare_compare(const void *a, const void *b)
737 {
738 	return (spa_aux_compare(a, b));
739 }
740 
741 void
742 spa_spare_add(vdev_t *vd)
743 {
744 	mutex_enter(&spa_spare_lock);
745 	ASSERT(!vd->vdev_isspare);
746 	spa_aux_add(vd, &spa_spare_avl);
747 	vd->vdev_isspare = B_TRUE;
748 	mutex_exit(&spa_spare_lock);
749 }
750 
751 void
752 spa_spare_remove(vdev_t *vd)
753 {
754 	mutex_enter(&spa_spare_lock);
755 	ASSERT(vd->vdev_isspare);
756 	spa_aux_remove(vd, &spa_spare_avl);
757 	vd->vdev_isspare = B_FALSE;
758 	mutex_exit(&spa_spare_lock);
759 }
760 
761 boolean_t
762 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
763 {
764 	boolean_t found;
765 
766 	mutex_enter(&spa_spare_lock);
767 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
768 	mutex_exit(&spa_spare_lock);
769 
770 	return (found);
771 }
772 
773 void
774 spa_spare_activate(vdev_t *vd)
775 {
776 	mutex_enter(&spa_spare_lock);
777 	ASSERT(vd->vdev_isspare);
778 	spa_aux_activate(vd, &spa_spare_avl);
779 	mutex_exit(&spa_spare_lock);
780 }
781 
782 /*
783  * Level 2 ARC devices are tracked globally for the same reasons as spares.
784  * Cache devices currently only support one pool per cache device, and so
785  * for these devices the aux reference count is currently unused beyond 1.
786  */
787 
788 static int
789 spa_l2cache_compare(const void *a, const void *b)
790 {
791 	return (spa_aux_compare(a, b));
792 }
793 
794 void
795 spa_l2cache_add(vdev_t *vd)
796 {
797 	mutex_enter(&spa_l2cache_lock);
798 	ASSERT(!vd->vdev_isl2cache);
799 	spa_aux_add(vd, &spa_l2cache_avl);
800 	vd->vdev_isl2cache = B_TRUE;
801 	mutex_exit(&spa_l2cache_lock);
802 }
803 
804 void
805 spa_l2cache_remove(vdev_t *vd)
806 {
807 	mutex_enter(&spa_l2cache_lock);
808 	ASSERT(vd->vdev_isl2cache);
809 	spa_aux_remove(vd, &spa_l2cache_avl);
810 	vd->vdev_isl2cache = B_FALSE;
811 	mutex_exit(&spa_l2cache_lock);
812 }
813 
814 boolean_t
815 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
816 {
817 	boolean_t found;
818 
819 	mutex_enter(&spa_l2cache_lock);
820 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
821 	mutex_exit(&spa_l2cache_lock);
822 
823 	return (found);
824 }
825 
826 void
827 spa_l2cache_activate(vdev_t *vd)
828 {
829 	mutex_enter(&spa_l2cache_lock);
830 	ASSERT(vd->vdev_isl2cache);
831 	spa_aux_activate(vd, &spa_l2cache_avl);
832 	mutex_exit(&spa_l2cache_lock);
833 }
834 
835 /*
836  * ==========================================================================
837  * SPA vdev locking
838  * ==========================================================================
839  */
840 
841 /*
842  * Lock the given spa_t for the purpose of adding or removing a vdev.
843  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
844  * It returns the next transaction group for the spa_t.
845  */
846 uint64_t
847 spa_vdev_enter(spa_t *spa)
848 {
849 	mutex_enter(&spa->spa_vdev_top_lock);
850 	mutex_enter(&spa_namespace_lock);
851 	return (spa_vdev_config_enter(spa));
852 }
853 
854 /*
855  * Internal implementation for spa_vdev_enter().  Used when a vdev
856  * operation requires multiple syncs (i.e. removing a device) while
857  * keeping the spa_namespace_lock held.
858  */
859 uint64_t
860 spa_vdev_config_enter(spa_t *spa)
861 {
862 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
863 
864 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
865 
866 	return (spa_last_synced_txg(spa) + 1);
867 }
868 
869 /*
870  * Used in combination with spa_vdev_config_enter() to allow the syncing
871  * of multiple transactions without releasing the spa_namespace_lock.
872  */
873 void
874 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
875 {
876 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
877 
878 	int config_changed = B_FALSE;
879 
880 	ASSERT(txg > spa_last_synced_txg(spa));
881 
882 	spa->spa_pending_vdev = NULL;
883 
884 	/*
885 	 * Reassess the DTLs.
886 	 */
887 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
888 
889 	/*
890 	 * If the config changed, notify the scrub that it must restart.
891 	 * This will initiate a resilver if needed.
892 	 */
893 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
894 		config_changed = B_TRUE;
895 		spa->spa_config_generation++;
896 	}
897 
898 	/*
899 	 * Verify the metaslab classes.
900 	 */
901 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
902 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
903 
904 	spa_config_exit(spa, SCL_ALL, spa);
905 
906 	/*
907 	 * Panic the system if the specified tag requires it.  This
908 	 * is useful for ensuring that configurations are updated
909 	 * transactionally.
910 	 */
911 	if (zio_injection_enabled)
912 		zio_handle_panic_injection(spa, tag, 0);
913 
914 	/*
915 	 * Note: this txg_wait_synced() is important because it ensures
916 	 * that there won't be more than one config change per txg.
917 	 * This allows us to use the txg as the generation number.
918 	 */
919 	if (error == 0)
920 		txg_wait_synced(spa->spa_dsl_pool, txg);
921 
922 	if (vd != NULL) {
923 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
924 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
925 		vdev_free(vd);
926 		spa_config_exit(spa, SCL_ALL, spa);
927 	}
928 
929 	/*
930 	 * If the config changed, update the config cache.
931 	 */
932 	if (config_changed)
933 		spa_config_sync(spa, B_FALSE, B_TRUE);
934 }
935 
936 /*
937  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
938  * locking of spa_vdev_enter(), we also want make sure the transactions have
939  * synced to disk, and then update the global configuration cache with the new
940  * information.
941  */
942 int
943 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
944 {
945 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
946 	mutex_exit(&spa_namespace_lock);
947 	mutex_exit(&spa->spa_vdev_top_lock);
948 
949 	return (error);
950 }
951 
952 /*
953  * Lock the given spa_t for the purpose of changing vdev state.
954  */
955 void
956 spa_vdev_state_enter(spa_t *spa, int oplocks)
957 {
958 	int locks = SCL_STATE_ALL | oplocks;
959 
960 	/*
961 	 * Root pools may need to read of the underlying devfs filesystem
962 	 * when opening up a vdev.  Unfortunately if we're holding the
963 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
964 	 * the read from the root filesystem.  Instead we "prefetch"
965 	 * the associated vnodes that we need prior to opening the
966 	 * underlying devices and cache them so that we can prevent
967 	 * any I/O when we are doing the actual open.
968 	 */
969 	if (spa_is_root(spa)) {
970 		int low = locks & ~(SCL_ZIO - 1);
971 		int high = locks & ~low;
972 
973 		spa_config_enter(spa, high, spa, RW_WRITER);
974 		vdev_hold(spa->spa_root_vdev);
975 		spa_config_enter(spa, low, spa, RW_WRITER);
976 	} else {
977 		spa_config_enter(spa, locks, spa, RW_WRITER);
978 	}
979 	spa->spa_vdev_locks = locks;
980 }
981 
982 int
983 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
984 {
985 	boolean_t config_changed = B_FALSE;
986 
987 	if (vd != NULL || error == 0)
988 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
989 		    0, 0, B_FALSE);
990 
991 	if (vd != NULL) {
992 		vdev_state_dirty(vd->vdev_top);
993 		config_changed = B_TRUE;
994 		spa->spa_config_generation++;
995 	}
996 
997 	if (spa_is_root(spa))
998 		vdev_rele(spa->spa_root_vdev);
999 
1000 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1001 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1002 
1003 	/*
1004 	 * If anything changed, wait for it to sync.  This ensures that,
1005 	 * from the system administrator's perspective, zpool(1M) commands
1006 	 * are synchronous.  This is important for things like zpool offline:
1007 	 * when the command completes, you expect no further I/O from ZFS.
1008 	 */
1009 	if (vd != NULL)
1010 		txg_wait_synced(spa->spa_dsl_pool, 0);
1011 
1012 	/*
1013 	 * If the config changed, update the config cache.
1014 	 */
1015 	if (config_changed) {
1016 		mutex_enter(&spa_namespace_lock);
1017 		spa_config_sync(spa, B_FALSE, B_TRUE);
1018 		mutex_exit(&spa_namespace_lock);
1019 	}
1020 
1021 	return (error);
1022 }
1023 
1024 /*
1025  * ==========================================================================
1026  * Miscellaneous functions
1027  * ==========================================================================
1028  */
1029 
1030 /*
1031  * Rename a spa_t.
1032  */
1033 int
1034 spa_rename(const char *name, const char *newname)
1035 {
1036 	spa_t *spa;
1037 	int err;
1038 
1039 	/*
1040 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1041 	 * actually open the pool so that we can sync out the necessary labels.
1042 	 * It's OK to call spa_open() with the namespace lock held because we
1043 	 * allow recursive calls for other reasons.
1044 	 */
1045 	mutex_enter(&spa_namespace_lock);
1046 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1047 		mutex_exit(&spa_namespace_lock);
1048 		return (err);
1049 	}
1050 
1051 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1052 
1053 	avl_remove(&spa_namespace_avl, spa);
1054 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1055 	avl_add(&spa_namespace_avl, spa);
1056 
1057 	/*
1058 	 * Sync all labels to disk with the new names by marking the root vdev
1059 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1060 	 * during the sync.
1061 	 */
1062 	vdev_config_dirty(spa->spa_root_vdev);
1063 
1064 	spa_config_exit(spa, SCL_ALL, FTAG);
1065 
1066 	txg_wait_synced(spa->spa_dsl_pool, 0);
1067 
1068 	/*
1069 	 * Sync the updated config cache.
1070 	 */
1071 	spa_config_sync(spa, B_FALSE, B_TRUE);
1072 
1073 	spa_close(spa, FTAG);
1074 
1075 	mutex_exit(&spa_namespace_lock);
1076 
1077 	return (0);
1078 }
1079 
1080 /*
1081  * Determine whether a pool with given pool_guid exists.  If device_guid is
1082  * non-zero, determine whether the pool exists *and* contains a device with the
1083  * specified device_guid.
1084  */
1085 boolean_t
1086 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1087 {
1088 	spa_t *spa;
1089 	avl_tree_t *t = &spa_namespace_avl;
1090 
1091 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1092 
1093 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1094 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1095 			continue;
1096 		if (spa->spa_root_vdev == NULL)
1097 			continue;
1098 		if (spa_guid(spa) == pool_guid) {
1099 			if (device_guid == 0)
1100 				break;
1101 
1102 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1103 			    device_guid) != NULL)
1104 				break;
1105 
1106 			/*
1107 			 * Check any devices we may be in the process of adding.
1108 			 */
1109 			if (spa->spa_pending_vdev) {
1110 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1111 				    device_guid) != NULL)
1112 					break;
1113 			}
1114 		}
1115 	}
1116 
1117 	return (spa != NULL);
1118 }
1119 
1120 char *
1121 spa_strdup(const char *s)
1122 {
1123 	size_t len;
1124 	char *new;
1125 
1126 	len = strlen(s);
1127 	new = kmem_alloc(len + 1, KM_SLEEP);
1128 	bcopy(s, new, len);
1129 	new[len] = '\0';
1130 
1131 	return (new);
1132 }
1133 
1134 void
1135 spa_strfree(char *s)
1136 {
1137 	kmem_free(s, strlen(s) + 1);
1138 }
1139 
1140 uint64_t
1141 spa_get_random(uint64_t range)
1142 {
1143 	uint64_t r;
1144 
1145 	ASSERT(range != 0);
1146 
1147 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1148 
1149 	return (r % range);
1150 }
1151 
1152 uint64_t
1153 spa_generate_guid(spa_t *spa)
1154 {
1155 	uint64_t guid = spa_get_random(-1ULL);
1156 
1157 	if (spa != NULL) {
1158 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1159 			guid = spa_get_random(-1ULL);
1160 	} else {
1161 		while (guid == 0 || spa_guid_exists(guid, 0))
1162 			guid = spa_get_random(-1ULL);
1163 	}
1164 
1165 	return (guid);
1166 }
1167 
1168 void
1169 sprintf_blkptr(char *buf, const blkptr_t *bp)
1170 {
1171 	char *type = NULL;
1172 	char *checksum = NULL;
1173 	char *compress = NULL;
1174 
1175 	if (bp != NULL) {
1176 		type = dmu_ot[BP_GET_TYPE(bp)].ot_name;
1177 		checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1178 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1179 	}
1180 
1181 	SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress);
1182 }
1183 
1184 void
1185 spa_freeze(spa_t *spa)
1186 {
1187 	uint64_t freeze_txg = 0;
1188 
1189 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1190 	if (spa->spa_freeze_txg == UINT64_MAX) {
1191 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1192 		spa->spa_freeze_txg = freeze_txg;
1193 	}
1194 	spa_config_exit(spa, SCL_ALL, FTAG);
1195 	if (freeze_txg != 0)
1196 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1197 }
1198 
1199 void
1200 zfs_panic_recover(const char *fmt, ...)
1201 {
1202 	va_list adx;
1203 
1204 	va_start(adx, fmt);
1205 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1206 	va_end(adx);
1207 }
1208 
1209 /*
1210  * This is a stripped-down version of strtoull, suitable only for converting
1211  * lowercase hexidecimal numbers that don't overflow.
1212  */
1213 uint64_t
1214 strtonum(const char *str, char **nptr)
1215 {
1216 	uint64_t val = 0;
1217 	char c;
1218 	int digit;
1219 
1220 	while ((c = *str) != '\0') {
1221 		if (c >= '0' && c <= '9')
1222 			digit = c - '0';
1223 		else if (c >= 'a' && c <= 'f')
1224 			digit = 10 + c - 'a';
1225 		else
1226 			break;
1227 
1228 		val *= 16;
1229 		val += digit;
1230 
1231 		str++;
1232 	}
1233 
1234 	if (nptr)
1235 		*nptr = (char *)str;
1236 
1237 	return (val);
1238 }
1239 
1240 /*
1241  * ==========================================================================
1242  * Accessor functions
1243  * ==========================================================================
1244  */
1245 
1246 boolean_t
1247 spa_shutting_down(spa_t *spa)
1248 {
1249 	return (spa->spa_async_suspended);
1250 }
1251 
1252 dsl_pool_t *
1253 spa_get_dsl(spa_t *spa)
1254 {
1255 	return (spa->spa_dsl_pool);
1256 }
1257 
1258 blkptr_t *
1259 spa_get_rootblkptr(spa_t *spa)
1260 {
1261 	return (&spa->spa_ubsync.ub_rootbp);
1262 }
1263 
1264 void
1265 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1266 {
1267 	spa->spa_uberblock.ub_rootbp = *bp;
1268 }
1269 
1270 void
1271 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1272 {
1273 	if (spa->spa_root == NULL)
1274 		buf[0] = '\0';
1275 	else
1276 		(void) strncpy(buf, spa->spa_root, buflen);
1277 }
1278 
1279 int
1280 spa_sync_pass(spa_t *spa)
1281 {
1282 	return (spa->spa_sync_pass);
1283 }
1284 
1285 char *
1286 spa_name(spa_t *spa)
1287 {
1288 	return (spa->spa_name);
1289 }
1290 
1291 uint64_t
1292 spa_guid(spa_t *spa)
1293 {
1294 	/*
1295 	 * If we fail to parse the config during spa_load(), we can go through
1296 	 * the error path (which posts an ereport) and end up here with no root
1297 	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
1298 	 * this case.
1299 	 */
1300 	if (spa->spa_root_vdev != NULL)
1301 		return (spa->spa_root_vdev->vdev_guid);
1302 	else
1303 		return (spa->spa_load_guid);
1304 }
1305 
1306 uint64_t
1307 spa_last_synced_txg(spa_t *spa)
1308 {
1309 	return (spa->spa_ubsync.ub_txg);
1310 }
1311 
1312 uint64_t
1313 spa_first_txg(spa_t *spa)
1314 {
1315 	return (spa->spa_first_txg);
1316 }
1317 
1318 uint64_t
1319 spa_syncing_txg(spa_t *spa)
1320 {
1321 	return (spa->spa_syncing_txg);
1322 }
1323 
1324 pool_state_t
1325 spa_state(spa_t *spa)
1326 {
1327 	return (spa->spa_state);
1328 }
1329 
1330 spa_load_state_t
1331 spa_load_state(spa_t *spa)
1332 {
1333 	return (spa->spa_load_state);
1334 }
1335 
1336 uint64_t
1337 spa_freeze_txg(spa_t *spa)
1338 {
1339 	return (spa->spa_freeze_txg);
1340 }
1341 
1342 /* ARGSUSED */
1343 uint64_t
1344 spa_get_asize(spa_t *spa, uint64_t lsize)
1345 {
1346 	/*
1347 	 * The worst case is single-sector max-parity RAID-Z blocks, in which
1348 	 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
1349 	 * times the size; so just assume that.  Add to this the fact that
1350 	 * we can have up to 3 DVAs per bp, and one more factor of 2 because
1351 	 * the block may be dittoed with up to 3 DVAs by ddt_sync().
1352 	 */
1353 	return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2);
1354 }
1355 
1356 uint64_t
1357 spa_get_dspace(spa_t *spa)
1358 {
1359 	return (spa->spa_dspace);
1360 }
1361 
1362 void
1363 spa_update_dspace(spa_t *spa)
1364 {
1365 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1366 	    ddt_get_dedup_dspace(spa);
1367 }
1368 
1369 /*
1370  * Return the failure mode that has been set to this pool. The default
1371  * behavior will be to block all I/Os when a complete failure occurs.
1372  */
1373 uint8_t
1374 spa_get_failmode(spa_t *spa)
1375 {
1376 	return (spa->spa_failmode);
1377 }
1378 
1379 boolean_t
1380 spa_suspended(spa_t *spa)
1381 {
1382 	return (spa->spa_suspended);
1383 }
1384 
1385 uint64_t
1386 spa_version(spa_t *spa)
1387 {
1388 	return (spa->spa_ubsync.ub_version);
1389 }
1390 
1391 boolean_t
1392 spa_deflate(spa_t *spa)
1393 {
1394 	return (spa->spa_deflate);
1395 }
1396 
1397 metaslab_class_t *
1398 spa_normal_class(spa_t *spa)
1399 {
1400 	return (spa->spa_normal_class);
1401 }
1402 
1403 metaslab_class_t *
1404 spa_log_class(spa_t *spa)
1405 {
1406 	return (spa->spa_log_class);
1407 }
1408 
1409 int
1410 spa_max_replication(spa_t *spa)
1411 {
1412 	/*
1413 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1414 	 * handle BPs with more than one DVA allocated.  Set our max
1415 	 * replication level accordingly.
1416 	 */
1417 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1418 		return (1);
1419 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1420 }
1421 
1422 int
1423 spa_prev_software_version(spa_t *spa)
1424 {
1425 	return (spa->spa_prev_software_version);
1426 }
1427 
1428 uint64_t
1429 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1430 {
1431 	uint64_t asize = DVA_GET_ASIZE(dva);
1432 	uint64_t dsize = asize;
1433 
1434 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1435 
1436 	if (asize != 0 && spa->spa_deflate) {
1437 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1438 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1439 	}
1440 
1441 	return (dsize);
1442 }
1443 
1444 uint64_t
1445 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1446 {
1447 	uint64_t dsize = 0;
1448 
1449 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1450 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1451 
1452 	return (dsize);
1453 }
1454 
1455 uint64_t
1456 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1457 {
1458 	uint64_t dsize = 0;
1459 
1460 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1461 
1462 	for (int d = 0; d < SPA_DVAS_PER_BP; d++)
1463 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1464 
1465 	spa_config_exit(spa, SCL_VDEV, FTAG);
1466 
1467 	return (dsize);
1468 }
1469 
1470 /*
1471  * ==========================================================================
1472  * Initialization and Termination
1473  * ==========================================================================
1474  */
1475 
1476 static int
1477 spa_name_compare(const void *a1, const void *a2)
1478 {
1479 	const spa_t *s1 = a1;
1480 	const spa_t *s2 = a2;
1481 	int s;
1482 
1483 	s = strcmp(s1->spa_name, s2->spa_name);
1484 	if (s > 0)
1485 		return (1);
1486 	if (s < 0)
1487 		return (-1);
1488 	return (0);
1489 }
1490 
1491 int
1492 spa_busy(void)
1493 {
1494 	return (spa_active_count);
1495 }
1496 
1497 void
1498 spa_boot_init()
1499 {
1500 	spa_config_load();
1501 }
1502 
1503 void
1504 spa_init(int mode)
1505 {
1506 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1507 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1508 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1509 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1510 
1511 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1512 	    offsetof(spa_t, spa_avl));
1513 
1514 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1515 	    offsetof(spa_aux_t, aux_avl));
1516 
1517 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1518 	    offsetof(spa_aux_t, aux_avl));
1519 
1520 	spa_mode_global = mode;
1521 
1522 	refcount_init();
1523 	unique_init();
1524 	zio_init();
1525 	dmu_init();
1526 	zil_init();
1527 	vdev_cache_stat_init();
1528 	zfs_prop_init();
1529 	zpool_prop_init();
1530 	spa_config_load();
1531 	l2arc_start();
1532 }
1533 
1534 void
1535 spa_fini(void)
1536 {
1537 	l2arc_stop();
1538 
1539 	spa_evict_all();
1540 
1541 	vdev_cache_stat_fini();
1542 	zil_fini();
1543 	dmu_fini();
1544 	zio_fini();
1545 	unique_fini();
1546 	refcount_fini();
1547 
1548 	avl_destroy(&spa_namespace_avl);
1549 	avl_destroy(&spa_spare_avl);
1550 	avl_destroy(&spa_l2cache_avl);
1551 
1552 	cv_destroy(&spa_namespace_cv);
1553 	mutex_destroy(&spa_namespace_lock);
1554 	mutex_destroy(&spa_spare_lock);
1555 	mutex_destroy(&spa_l2cache_lock);
1556 }
1557 
1558 /*
1559  * Return whether this pool has slogs. No locking needed.
1560  * It's not a problem if the wrong answer is returned as it's only for
1561  * performance and not correctness
1562  */
1563 boolean_t
1564 spa_has_slogs(spa_t *spa)
1565 {
1566 	return (spa->spa_log_class->mc_rotor != NULL);
1567 }
1568 
1569 spa_log_state_t
1570 spa_get_log_state(spa_t *spa)
1571 {
1572 	return (spa->spa_log_state);
1573 }
1574 
1575 void
1576 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1577 {
1578 	spa->spa_log_state = state;
1579 }
1580 
1581 boolean_t
1582 spa_is_root(spa_t *spa)
1583 {
1584 	return (spa->spa_is_root);
1585 }
1586 
1587 boolean_t
1588 spa_writeable(spa_t *spa)
1589 {
1590 	return (!!(spa->spa_mode & FWRITE));
1591 }
1592 
1593 int
1594 spa_mode(spa_t *spa)
1595 {
1596 	return (spa->spa_mode);
1597 }
1598 
1599 uint64_t
1600 spa_bootfs(spa_t *spa)
1601 {
1602 	return (spa->spa_bootfs);
1603 }
1604 
1605 uint64_t
1606 spa_delegation(spa_t *spa)
1607 {
1608 	return (spa->spa_delegation);
1609 }
1610 
1611 objset_t *
1612 spa_meta_objset(spa_t *spa)
1613 {
1614 	return (spa->spa_meta_objset);
1615 }
1616 
1617 enum zio_checksum
1618 spa_dedup_checksum(spa_t *spa)
1619 {
1620 	return (spa->spa_dedup_checksum);
1621 }
1622 
1623 /*
1624  * Reset pool scan stat per scan pass (or reboot).
1625  */
1626 void
1627 spa_scan_stat_init(spa_t *spa)
1628 {
1629 	/* data not stored on disk */
1630 	spa->spa_scan_pass_start = gethrestime_sec();
1631 	spa->spa_scan_pass_exam = 0;
1632 	vdev_scan_stat_init(spa->spa_root_vdev);
1633 }
1634 
1635 /*
1636  * Get scan stats for zpool status reports
1637  */
1638 int
1639 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1640 {
1641 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1642 
1643 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1644 		return (ENOENT);
1645 	bzero(ps, sizeof (pool_scan_stat_t));
1646 
1647 	/* data stored on disk */
1648 	ps->pss_func = scn->scn_phys.scn_func;
1649 	ps->pss_start_time = scn->scn_phys.scn_start_time;
1650 	ps->pss_end_time = scn->scn_phys.scn_end_time;
1651 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1652 	ps->pss_examined = scn->scn_phys.scn_examined;
1653 	ps->pss_to_process = scn->scn_phys.scn_to_process;
1654 	ps->pss_processed = scn->scn_phys.scn_processed;
1655 	ps->pss_errors = scn->scn_phys.scn_errors;
1656 	ps->pss_state = scn->scn_phys.scn_state;
1657 
1658 	/* data not stored on disk */
1659 	ps->pss_pass_start = spa->spa_scan_pass_start;
1660 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
1661 
1662 	return (0);
1663 }
1664