1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa_impl.h> 30 #include <sys/zio.h> 31 #include <sys/zio_checksum.h> 32 #include <sys/zio_compress.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/zap.h> 36 #include <sys/zil.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/uberblock_impl.h> 40 #include <sys/txg.h> 41 #include <sys/avl.h> 42 #include <sys/unique.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_dir.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/fs/zfs.h> 47 48 /* 49 * SPA locking 50 * 51 * There are four basic locks for managing spa_t structures: 52 * 53 * spa_namespace_lock (global mutex) 54 * 55 * This lock must be acquired to do any of the following: 56 * 57 * - Lookup a spa_t by name 58 * - Add or remove a spa_t from the namespace 59 * - Increase spa_refcount from non-zero 60 * - Check if spa_refcount is zero 61 * - Rename a spa_t 62 * - add/remove/attach/detach devices 63 * - Held for the duration of create/destroy/import/export 64 * 65 * It does not need to handle recursion. A create or destroy may 66 * reference objects (files or zvols) in other pools, but by 67 * definition they must have an existing reference, and will never need 68 * to lookup a spa_t by name. 69 * 70 * spa_refcount (per-spa refcount_t protected by mutex) 71 * 72 * This reference count keep track of any active users of the spa_t. The 73 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 74 * the refcount is never really 'zero' - opening a pool implicitly keeps 75 * some references in the DMU. Internally we check against SPA_MINREF, but 76 * present the image of a zero/non-zero value to consumers. 77 * 78 * spa_config_lock (per-spa crazy rwlock) 79 * 80 * This SPA special is a recursive rwlock, capable of being acquired from 81 * asynchronous threads. It has protects the spa_t from config changes, 82 * and must be held in the following circumstances: 83 * 84 * - RW_READER to perform I/O to the spa 85 * - RW_WRITER to change the vdev config 86 * 87 * spa_config_cache_lock (per-spa mutex) 88 * 89 * This mutex prevents the spa_config nvlist from being updated. No 90 * other locks are required to obtain this lock, although implicitly you 91 * must have the namespace lock or non-zero refcount to have any kind 92 * of spa_t pointer at all. 93 * 94 * The locking order is fairly straightforward: 95 * 96 * spa_namespace_lock -> spa_refcount 97 * 98 * The namespace lock must be acquired to increase the refcount from 0 99 * or to check if it is zero. 100 * 101 * spa_refcount -> spa_config_lock 102 * 103 * There must be at least one valid reference on the spa_t to acquire 104 * the config lock. 105 * 106 * spa_namespace_lock -> spa_config_lock 107 * 108 * The namespace lock must always be taken before the config lock. 109 * 110 * 111 * The spa_namespace_lock and spa_config_cache_lock can be acquired directly and 112 * are globally visible. 113 * 114 * The namespace is manipulated using the following functions, all which require 115 * the spa_namespace_lock to be held. 116 * 117 * spa_lookup() Lookup a spa_t by name. 118 * 119 * spa_add() Create a new spa_t in the namespace. 120 * 121 * spa_remove() Remove a spa_t from the namespace. This also 122 * frees up any memory associated with the spa_t. 123 * 124 * spa_next() Returns the next spa_t in the system, or the 125 * first if NULL is passed. 126 * 127 * spa_evict_all() Shutdown and remove all spa_t structures in 128 * the system. 129 * 130 * spa_guid_exists() Determine whether a pool/device guid exists. 131 * 132 * The spa_refcount is manipulated using the following functions: 133 * 134 * spa_open_ref() Adds a reference to the given spa_t. Must be 135 * called with spa_namespace_lock held if the 136 * refcount is currently zero. 137 * 138 * spa_close() Remove a reference from the spa_t. This will 139 * not free the spa_t or remove it from the 140 * namespace. No locking is required. 141 * 142 * spa_refcount_zero() Returns true if the refcount is currently 143 * zero. Must be called with spa_namespace_lock 144 * held. 145 * 146 * The spa_config_lock is manipulated using the following functions: 147 * 148 * spa_config_enter() Acquire the config lock as RW_READER or 149 * RW_WRITER. At least one reference on the spa_t 150 * must exist. 151 * 152 * spa_config_exit() Release the config lock. 153 * 154 * spa_config_held() Returns true if the config lock is currently 155 * held in the given state. 156 * 157 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 158 * 159 * spa_vdev_enter() Acquire the namespace lock and the config lock 160 * for writing. 161 * 162 * spa_vdev_exit() Release the config lock, wait for all I/O 163 * to complete, sync the updated configs to the 164 * cache, and release the namespace lock. 165 * 166 * The spa_name() function also requires either the spa_namespace_lock 167 * or the spa_config_lock, as both are needed to do a rename. spa_rename() is 168 * also implemented within this file since is requires manipulation of the 169 * namespace. 170 */ 171 172 static avl_tree_t spa_namespace_avl; 173 kmutex_t spa_namespace_lock; 174 static kcondvar_t spa_namespace_cv; 175 176 kmem_cache_t *spa_buffer_pool; 177 int spa_mode; 178 179 #ifdef ZFS_DEBUG 180 int zfs_flags = ~0; 181 #else 182 int zfs_flags = 0; 183 #endif 184 185 #define SPA_MINREF 5 /* spa_refcnt for an open-but-idle pool */ 186 187 /* 188 * ========================================================================== 189 * SPA namespace functions 190 * ========================================================================== 191 */ 192 193 /* 194 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 195 * Returns NULL if no matching spa_t is found. 196 */ 197 spa_t * 198 spa_lookup(const char *name) 199 { 200 spa_t search, *spa; 201 avl_index_t where; 202 203 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 204 205 search.spa_name = (char *)name; 206 spa = avl_find(&spa_namespace_avl, &search, &where); 207 208 return (spa); 209 } 210 211 /* 212 * Create an uninitialized spa_t with the given name. Requires 213 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 214 * exist by calling spa_lookup() first. 215 */ 216 spa_t * 217 spa_add(const char *name) 218 { 219 spa_t *spa; 220 221 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 222 223 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 224 225 spa->spa_name = spa_strdup(name); 226 spa->spa_state = POOL_STATE_UNINITIALIZED; 227 spa->spa_freeze_txg = UINT64_MAX; 228 229 refcount_create(&spa->spa_refcount); 230 refcount_create(&spa->spa_config_lock.scl_count); 231 232 avl_add(&spa_namespace_avl, spa); 233 234 return (spa); 235 } 236 237 /* 238 * Removes a spa_t from the namespace, freeing up any memory used. Requires 239 * spa_namespace_lock. This is called only after the spa_t has been closed and 240 * deactivated. 241 */ 242 void 243 spa_remove(spa_t *spa) 244 { 245 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 246 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 247 ASSERT(spa->spa_scrub_thread == NULL); 248 249 avl_remove(&spa_namespace_avl, spa); 250 cv_broadcast(&spa_namespace_cv); 251 252 if (spa->spa_root) 253 spa_strfree(spa->spa_root); 254 255 if (spa->spa_name) 256 spa_strfree(spa->spa_name); 257 258 spa_config_set(spa, NULL); 259 260 refcount_destroy(&spa->spa_refcount); 261 refcount_destroy(&spa->spa_config_lock.scl_count); 262 263 kmem_free(spa, sizeof (spa_t)); 264 } 265 266 /* 267 * Given a pool, return the next pool in the namespace, or NULL if there is 268 * none. If 'prev' is NULL, return the first pool. 269 */ 270 spa_t * 271 spa_next(spa_t *prev) 272 { 273 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 274 275 if (prev) 276 return (AVL_NEXT(&spa_namespace_avl, prev)); 277 else 278 return (avl_first(&spa_namespace_avl)); 279 } 280 281 /* 282 * ========================================================================== 283 * SPA refcount functions 284 * ========================================================================== 285 */ 286 287 /* 288 * Add a reference to the given spa_t. Must have at least one reference, or 289 * have the namespace lock held. 290 */ 291 void 292 spa_open_ref(spa_t *spa, void *tag) 293 { 294 ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF || 295 MUTEX_HELD(&spa_namespace_lock)); 296 297 (void) refcount_add(&spa->spa_refcount, tag); 298 } 299 300 /* 301 * Remove a reference to the given spa_t. Must have at least one reference, or 302 * have the namespace lock held. 303 */ 304 void 305 spa_close(spa_t *spa, void *tag) 306 { 307 ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF || 308 MUTEX_HELD(&spa_namespace_lock)); 309 310 (void) refcount_remove(&spa->spa_refcount, tag); 311 } 312 313 /* 314 * Check to see if the spa refcount is zero. Must be called with 315 * spa_namespace_lock held. We really compare against SPA_MINREF, which is the 316 * number of references acquired when opening a pool 317 */ 318 boolean_t 319 spa_refcount_zero(spa_t *spa) 320 { 321 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 322 323 return (refcount_count(&spa->spa_refcount) == SPA_MINREF); 324 } 325 326 /* 327 * ========================================================================== 328 * SPA config locking 329 * ========================================================================== 330 */ 331 332 /* 333 * Acquire the config lock. The config lock is a special rwlock that allows for 334 * recursive enters. Because these enters come from the same thread as well as 335 * asynchronous threads working on behalf of the owner, we must unilaterally 336 * allow all reads access as long at least one reader is held (even if a write 337 * is requested). This has the side effect of write starvation, but write locks 338 * are extremely rare, and a solution to this problem would be significantly 339 * more complex (if even possible). 340 * 341 * We would like to assert that the namespace lock isn't held, but this is a 342 * valid use during create. 343 */ 344 void 345 spa_config_enter(spa_t *spa, krw_t rw, void *tag) 346 { 347 spa_config_lock_t *scl = &spa->spa_config_lock; 348 349 mutex_enter(&scl->scl_lock); 350 351 if (scl->scl_writer != curthread) { 352 if (rw == RW_READER) { 353 while (scl->scl_writer != NULL) 354 cv_wait(&scl->scl_cv, &scl->scl_lock); 355 } else { 356 while (scl->scl_writer != NULL || 357 !refcount_is_zero(&scl->scl_count)) 358 cv_wait(&scl->scl_cv, &scl->scl_lock); 359 scl->scl_writer = curthread; 360 } 361 } 362 363 (void) refcount_add(&scl->scl_count, tag); 364 365 mutex_exit(&scl->scl_lock); 366 } 367 368 /* 369 * Release the spa config lock, notifying any waiters in the process. 370 */ 371 void 372 spa_config_exit(spa_t *spa, void *tag) 373 { 374 spa_config_lock_t *scl = &spa->spa_config_lock; 375 376 mutex_enter(&scl->scl_lock); 377 378 ASSERT(!refcount_is_zero(&scl->scl_count)); 379 if (refcount_remove(&scl->scl_count, tag) == 0) { 380 cv_broadcast(&scl->scl_cv); 381 scl->scl_writer = NULL; /* OK in either case */ 382 } 383 384 mutex_exit(&scl->scl_lock); 385 } 386 387 /* 388 * Returns true if the config lock is held in the given manner. 389 */ 390 boolean_t 391 spa_config_held(spa_t *spa, krw_t rw) 392 { 393 spa_config_lock_t *scl = &spa->spa_config_lock; 394 boolean_t held; 395 396 mutex_enter(&scl->scl_lock); 397 if (rw == RW_WRITER) 398 held = (scl->scl_writer == curthread); 399 else 400 held = !refcount_is_zero(&scl->scl_count); 401 mutex_exit(&scl->scl_lock); 402 403 return (held); 404 } 405 406 /* 407 * ========================================================================== 408 * SPA vdev locking 409 * ========================================================================== 410 */ 411 412 /* 413 * Lock the given spa_t for the purpose of adding or removing a vdev. 414 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 415 * It returns the next transaction group for the spa_t. 416 */ 417 uint64_t 418 spa_vdev_enter(spa_t *spa) 419 { 420 /* 421 * Suspend scrub activity while we mess with the config. 422 */ 423 spa_scrub_suspend(spa); 424 425 if (spa->spa_root_vdev != NULL) /* not spa_create() */ 426 mutex_enter(&spa_namespace_lock); 427 428 spa_config_enter(spa, RW_WRITER, spa); 429 430 return (spa_last_synced_txg(spa) + 1); 431 } 432 433 /* 434 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 435 * locking of spa_vdev_enter(), we also want make sure the transactions have 436 * synced to disk, and then update the global configuration cache with the new 437 * information. 438 */ 439 int 440 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 441 { 442 vdev_t *rvd = spa->spa_root_vdev; 443 uint64_t next_txg = spa_last_synced_txg(spa) + 1; 444 int config_changed = B_FALSE; 445 446 /* 447 * Usually txg == next_txg, but spa_vdev_attach() 448 * actually needs to wait for the open txg to sync. 449 */ 450 ASSERT(txg >= next_txg); 451 452 /* 453 * Reassess the DTLs. 454 */ 455 if (rvd != NULL) 456 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 457 458 /* 459 * If the config changed, update the in-core cached copy 460 * and notify the scrub thread that it must restart. 461 */ 462 if (error == 0 && !list_is_empty(&spa->spa_dirty_list)) { 463 config_changed = B_TRUE; 464 spa_config_set(spa, spa_config_generate(spa, rvd, next_txg, 0)); 465 spa_scrub_restart(spa, next_txg); 466 } 467 468 spa_config_exit(spa, spa); 469 470 /* 471 * Allow scrubbing to resume. 472 */ 473 spa_scrub_resume(spa); 474 475 if (vd == rvd) /* spa_create() */ 476 return (error); 477 478 /* 479 * Note: this txg_wait_synced() is important because it ensures 480 * that there won't be more than one config change per txg. 481 * This allows us to use the txg as the generation number. 482 */ 483 if (error == 0) 484 txg_wait_synced(spa->spa_dsl_pool, txg); 485 486 if (vd != NULL) { 487 ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0); 488 vdev_free(vd); 489 } 490 491 /* 492 * If the config changed, update the config cache. 493 */ 494 if (config_changed) 495 spa_config_sync(); 496 497 mutex_exit(&spa_namespace_lock); 498 499 return (error); 500 } 501 502 /* 503 * ========================================================================== 504 * Miscellaneous functions 505 * ========================================================================== 506 */ 507 508 /* 509 * Rename a spa_t. 510 */ 511 int 512 spa_rename(const char *name, const char *newname) 513 { 514 spa_t *spa; 515 uint64_t txg; 516 int err; 517 518 /* 519 * Lookup the spa_t and grab the config lock for writing. We need to 520 * actually open the pool so that we can sync out the necessary labels. 521 * It's OK to call spa_open() with the namespace lock held because we 522 * allow recursive calls for other reasons. 523 */ 524 mutex_enter(&spa_namespace_lock); 525 if ((err = spa_open(name, &spa, FTAG)) != 0) { 526 mutex_exit(&spa_namespace_lock); 527 return (err); 528 } 529 530 spa_config_enter(spa, RW_WRITER, FTAG); 531 532 avl_remove(&spa_namespace_avl, spa); 533 spa_strfree(spa->spa_name); 534 spa->spa_name = spa_strdup(newname); 535 avl_add(&spa_namespace_avl, spa); 536 537 /* 538 * Sync all labels to disk with the new names by marking the root vdev 539 * dirty and waiting for it to sync. It will pick up the new pool name 540 * during the sync. 541 */ 542 vdev_config_dirty(spa->spa_root_vdev); 543 txg = spa_last_synced_txg(spa) + 1; 544 545 spa_config_set(spa, spa_config_generate(spa, NULL, txg, 0)); 546 547 spa_config_exit(spa, FTAG); 548 549 txg_wait_synced(spa->spa_dsl_pool, txg); 550 551 /* 552 * Sync the updated config cache. 553 */ 554 spa_config_sync(); 555 556 spa_close(spa, FTAG); 557 558 mutex_exit(&spa_namespace_lock); 559 560 return (0); 561 } 562 563 564 /* 565 * Determine whether a pool with given pool_guid exists. If device_guid is 566 * non-zero, determine whether the pool exists *and* contains a device with the 567 * specified device_guid. 568 */ 569 boolean_t 570 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 571 { 572 spa_t *spa; 573 avl_tree_t *t = &spa_namespace_avl; 574 575 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 576 577 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 578 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 579 continue; 580 if (spa->spa_root_vdev == NULL) 581 continue; 582 if (spa_guid(spa) == pool_guid && (device_guid == 0 || 583 vdev_lookup_by_guid(spa->spa_root_vdev, device_guid))) 584 break; 585 } 586 587 return (spa != NULL); 588 } 589 590 char * 591 spa_strdup(const char *s) 592 { 593 size_t len; 594 char *new; 595 596 len = strlen(s); 597 new = kmem_alloc(len + 1, KM_SLEEP); 598 bcopy(s, new, len); 599 new[len] = '\0'; 600 601 return (new); 602 } 603 604 void 605 spa_strfree(char *s) 606 { 607 kmem_free(s, strlen(s) + 1); 608 } 609 610 uint64_t 611 spa_get_random(uint64_t range) 612 { 613 uint64_t r; 614 615 ASSERT(range != 0); 616 617 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 618 619 return (r % range); 620 } 621 622 void 623 sprintf_blkptr(char *buf, int len, blkptr_t *bp) 624 { 625 /* XXBP - Need to see if we want all DVAs or not */ 626 dva_t *dva = BP_IDENTITY(bp); 627 628 if (bp == NULL) { 629 (void) snprintf(buf, len, "<NULL>"); 630 return; 631 } 632 633 if (BP_IS_HOLE(bp)) { 634 (void) snprintf(buf, len, "<hole>"); 635 return; 636 } 637 638 (void) snprintf(buf, len, "[L%llu %s] vdev=%llu offset=%llx " 639 "size=%llxL/%llxP/%llxA %s %s %s %s " 640 "birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx", 641 (u_longlong_t)BP_GET_LEVEL(bp), 642 dmu_ot[BP_GET_TYPE(bp)].ot_name, 643 (u_longlong_t)DVA_GET_VDEV(dva), 644 (u_longlong_t)DVA_GET_OFFSET(dva), 645 (u_longlong_t)BP_GET_LSIZE(bp), 646 (u_longlong_t)BP_GET_PSIZE(bp), 647 (u_longlong_t)DVA_GET_ASIZE(dva), 648 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name, 649 zio_compress_table[BP_GET_COMPRESS(bp)].ci_name, 650 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", 651 DVA_GET_GANG(dva) == 0 ? "contiguous" : "gang", 652 (u_longlong_t)bp->blk_birth, 653 (u_longlong_t)bp->blk_fill, 654 (u_longlong_t)bp->blk_cksum.zc_word[0], 655 (u_longlong_t)bp->blk_cksum.zc_word[1], 656 (u_longlong_t)bp->blk_cksum.zc_word[2], 657 (u_longlong_t)bp->blk_cksum.zc_word[3]); 658 } 659 660 void 661 spa_freeze(spa_t *spa) 662 { 663 uint64_t freeze_txg = 0; 664 665 spa_config_enter(spa, RW_WRITER, FTAG); 666 if (spa->spa_freeze_txg == UINT64_MAX) { 667 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 668 spa->spa_freeze_txg = freeze_txg; 669 } 670 spa_config_exit(spa, FTAG); 671 if (freeze_txg != 0) 672 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 673 } 674 675 /* 676 * ========================================================================== 677 * Accessor functions 678 * ========================================================================== 679 */ 680 681 krwlock_t * 682 spa_traverse_rwlock(spa_t *spa) 683 { 684 return (&spa->spa_traverse_lock); 685 } 686 687 int 688 spa_traverse_wanted(spa_t *spa) 689 { 690 return (spa->spa_traverse_wanted); 691 } 692 693 dsl_pool_t * 694 spa_get_dsl(spa_t *spa) 695 { 696 return (spa->spa_dsl_pool); 697 } 698 699 blkptr_t * 700 spa_get_rootblkptr(spa_t *spa) 701 { 702 return (&spa->spa_ubsync.ub_rootbp); 703 } 704 705 void 706 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 707 { 708 spa->spa_uberblock.ub_rootbp = *bp; 709 } 710 711 void 712 spa_altroot(spa_t *spa, char *buf, size_t buflen) 713 { 714 if (spa->spa_root == NULL) 715 buf[0] = '\0'; 716 else 717 (void) strncpy(buf, spa->spa_root, buflen); 718 } 719 720 int 721 spa_sync_pass(spa_t *spa) 722 { 723 return (spa->spa_sync_pass); 724 } 725 726 char * 727 spa_name(spa_t *spa) 728 { 729 /* 730 * Accessing the name requires holding either the namespace lock or the 731 * config lock, both of which are required to do a rename. 732 */ 733 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 734 spa_config_held(spa, RW_READER) || spa_config_held(spa, RW_WRITER)); 735 736 return (spa->spa_name); 737 } 738 739 uint64_t 740 spa_guid(spa_t *spa) 741 { 742 return (spa->spa_root_vdev->vdev_guid); 743 } 744 745 uint64_t 746 spa_last_synced_txg(spa_t *spa) 747 { 748 return (spa->spa_ubsync.ub_txg); 749 } 750 751 uint64_t 752 spa_first_txg(spa_t *spa) 753 { 754 return (spa->spa_first_txg); 755 } 756 757 int 758 spa_state(spa_t *spa) 759 { 760 return (spa->spa_state); 761 } 762 763 uint64_t 764 spa_freeze_txg(spa_t *spa) 765 { 766 return (spa->spa_freeze_txg); 767 } 768 769 /* 770 * In the future, this may select among different metaslab classes 771 * depending on the zdp. For now, there's no such distinction. 772 */ 773 metaslab_class_t * 774 spa_metaslab_class_select(spa_t *spa) 775 { 776 return (spa->spa_normal_class); 777 } 778 779 /* 780 * Return pool-wide allocated space. 781 */ 782 uint64_t 783 spa_get_alloc(spa_t *spa) 784 { 785 return (spa->spa_root_vdev->vdev_stat.vs_alloc); 786 } 787 788 /* 789 * Return pool-wide allocated space. 790 */ 791 uint64_t 792 spa_get_space(spa_t *spa) 793 { 794 return (spa->spa_root_vdev->vdev_stat.vs_space); 795 } 796 797 /* ARGSUSED */ 798 uint64_t 799 spa_get_asize(spa_t *spa, uint64_t lsize) 800 { 801 /* 802 * For now, the worst case is 512-byte RAID-Z blocks, in which 803 * case the space requirement is exactly 2x; so just assume that. 804 */ 805 return (lsize << 1); 806 } 807 808 /* 809 * ========================================================================== 810 * Initialization and Termination 811 * ========================================================================== 812 */ 813 814 static int 815 spa_name_compare(const void *a1, const void *a2) 816 { 817 const spa_t *s1 = a1; 818 const spa_t *s2 = a2; 819 int s; 820 821 s = strcmp(s1->spa_name, s2->spa_name); 822 if (s > 0) 823 return (1); 824 if (s < 0) 825 return (-1); 826 return (0); 827 } 828 829 void 830 spa_init(int mode) 831 { 832 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 833 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 834 835 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 836 offsetof(spa_t, spa_avl)); 837 838 spa_mode = mode; 839 840 refcount_init(); 841 unique_init(); 842 zio_init(); 843 dmu_init(); 844 zil_init(); 845 spa_config_load(); 846 } 847 848 void 849 spa_fini(void) 850 { 851 spa_evict_all(); 852 853 zil_fini(); 854 dmu_fini(); 855 zio_fini(); 856 refcount_fini(); 857 858 avl_destroy(&spa_namespace_avl); 859 860 cv_destroy(&spa_namespace_cv); 861 mutex_destroy(&spa_namespace_lock); 862 } 863