1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa_impl.h> 29 #include <sys/spa_boot.h> 30 #include <sys/zio.h> 31 #include <sys/zio_checksum.h> 32 #include <sys/zio_compress.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/zap.h> 36 #include <sys/zil.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/uberblock_impl.h> 40 #include <sys/txg.h> 41 #include <sys/avl.h> 42 #include <sys/unique.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_dir.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/dsl_scan.h> 47 #include <sys/fs/zfs.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/arc.h> 50 #include <sys/ddt.h> 51 #include "zfs_prop.h" 52 #include "zfeature_common.h" 53 54 /* 55 * SPA locking 56 * 57 * There are four basic locks for managing spa_t structures: 58 * 59 * spa_namespace_lock (global mutex) 60 * 61 * This lock must be acquired to do any of the following: 62 * 63 * - Lookup a spa_t by name 64 * - Add or remove a spa_t from the namespace 65 * - Increase spa_refcount from non-zero 66 * - Check if spa_refcount is zero 67 * - Rename a spa_t 68 * - add/remove/attach/detach devices 69 * - Held for the duration of create/destroy/import/export 70 * 71 * It does not need to handle recursion. A create or destroy may 72 * reference objects (files or zvols) in other pools, but by 73 * definition they must have an existing reference, and will never need 74 * to lookup a spa_t by name. 75 * 76 * spa_refcount (per-spa refcount_t protected by mutex) 77 * 78 * This reference count keep track of any active users of the spa_t. The 79 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 80 * the refcount is never really 'zero' - opening a pool implicitly keeps 81 * some references in the DMU. Internally we check against spa_minref, but 82 * present the image of a zero/non-zero value to consumers. 83 * 84 * spa_config_lock[] (per-spa array of rwlocks) 85 * 86 * This protects the spa_t from config changes, and must be held in 87 * the following circumstances: 88 * 89 * - RW_READER to perform I/O to the spa 90 * - RW_WRITER to change the vdev config 91 * 92 * The locking order is fairly straightforward: 93 * 94 * spa_namespace_lock -> spa_refcount 95 * 96 * The namespace lock must be acquired to increase the refcount from 0 97 * or to check if it is zero. 98 * 99 * spa_refcount -> spa_config_lock[] 100 * 101 * There must be at least one valid reference on the spa_t to acquire 102 * the config lock. 103 * 104 * spa_namespace_lock -> spa_config_lock[] 105 * 106 * The namespace lock must always be taken before the config lock. 107 * 108 * 109 * The spa_namespace_lock can be acquired directly and is globally visible. 110 * 111 * The namespace is manipulated using the following functions, all of which 112 * require the spa_namespace_lock to be held. 113 * 114 * spa_lookup() Lookup a spa_t by name. 115 * 116 * spa_add() Create a new spa_t in the namespace. 117 * 118 * spa_remove() Remove a spa_t from the namespace. This also 119 * frees up any memory associated with the spa_t. 120 * 121 * spa_next() Returns the next spa_t in the system, or the 122 * first if NULL is passed. 123 * 124 * spa_evict_all() Shutdown and remove all spa_t structures in 125 * the system. 126 * 127 * spa_guid_exists() Determine whether a pool/device guid exists. 128 * 129 * The spa_refcount is manipulated using the following functions: 130 * 131 * spa_open_ref() Adds a reference to the given spa_t. Must be 132 * called with spa_namespace_lock held if the 133 * refcount is currently zero. 134 * 135 * spa_close() Remove a reference from the spa_t. This will 136 * not free the spa_t or remove it from the 137 * namespace. No locking is required. 138 * 139 * spa_refcount_zero() Returns true if the refcount is currently 140 * zero. Must be called with spa_namespace_lock 141 * held. 142 * 143 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 144 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 145 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 146 * 147 * To read the configuration, it suffices to hold one of these locks as reader. 148 * To modify the configuration, you must hold all locks as writer. To modify 149 * vdev state without altering the vdev tree's topology (e.g. online/offline), 150 * you must hold SCL_STATE and SCL_ZIO as writer. 151 * 152 * We use these distinct config locks to avoid recursive lock entry. 153 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 154 * block allocations (SCL_ALLOC), which may require reading space maps 155 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 156 * 157 * The spa config locks cannot be normal rwlocks because we need the 158 * ability to hand off ownership. For example, SCL_ZIO is acquired 159 * by the issuing thread and later released by an interrupt thread. 160 * They do, however, obey the usual write-wanted semantics to prevent 161 * writer (i.e. system administrator) starvation. 162 * 163 * The lock acquisition rules are as follows: 164 * 165 * SCL_CONFIG 166 * Protects changes to the vdev tree topology, such as vdev 167 * add/remove/attach/detach. Protects the dirty config list 168 * (spa_config_dirty_list) and the set of spares and l2arc devices. 169 * 170 * SCL_STATE 171 * Protects changes to pool state and vdev state, such as vdev 172 * online/offline/fault/degrade/clear. Protects the dirty state list 173 * (spa_state_dirty_list) and global pool state (spa_state). 174 * 175 * SCL_ALLOC 176 * Protects changes to metaslab groups and classes. 177 * Held as reader by metaslab_alloc() and metaslab_claim(). 178 * 179 * SCL_ZIO 180 * Held by bp-level zios (those which have no io_vd upon entry) 181 * to prevent changes to the vdev tree. The bp-level zio implicitly 182 * protects all of its vdev child zios, which do not hold SCL_ZIO. 183 * 184 * SCL_FREE 185 * Protects changes to metaslab groups and classes. 186 * Held as reader by metaslab_free(). SCL_FREE is distinct from 187 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 188 * blocks in zio_done() while another i/o that holds either 189 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 190 * 191 * SCL_VDEV 192 * Held as reader to prevent changes to the vdev tree during trivial 193 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 194 * other locks, and lower than all of them, to ensure that it's safe 195 * to acquire regardless of caller context. 196 * 197 * In addition, the following rules apply: 198 * 199 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 200 * The lock ordering is SCL_CONFIG > spa_props_lock. 201 * 202 * (b) I/O operations on leaf vdevs. For any zio operation that takes 203 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 204 * or zio_write_phys() -- the caller must ensure that the config cannot 205 * cannot change in the interim, and that the vdev cannot be reopened. 206 * SCL_STATE as reader suffices for both. 207 * 208 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 209 * 210 * spa_vdev_enter() Acquire the namespace lock and the config lock 211 * for writing. 212 * 213 * spa_vdev_exit() Release the config lock, wait for all I/O 214 * to complete, sync the updated configs to the 215 * cache, and release the namespace lock. 216 * 217 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 218 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 219 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 220 * 221 * spa_rename() is also implemented within this file since it requires 222 * manipulation of the namespace. 223 */ 224 225 static avl_tree_t spa_namespace_avl; 226 kmutex_t spa_namespace_lock; 227 static kcondvar_t spa_namespace_cv; 228 static int spa_active_count; 229 int spa_max_replication_override = SPA_DVAS_PER_BP; 230 231 static kmutex_t spa_spare_lock; 232 static avl_tree_t spa_spare_avl; 233 static kmutex_t spa_l2cache_lock; 234 static avl_tree_t spa_l2cache_avl; 235 236 kmem_cache_t *spa_buffer_pool; 237 int spa_mode_global; 238 239 #ifdef ZFS_DEBUG 240 /* Everything except dprintf is on by default in debug builds */ 241 int zfs_flags = ~ZFS_DEBUG_DPRINTF; 242 #else 243 int zfs_flags = 0; 244 #endif 245 246 /* 247 * zfs_recover can be set to nonzero to attempt to recover from 248 * otherwise-fatal errors, typically caused by on-disk corruption. When 249 * set, calls to zfs_panic_recover() will turn into warning messages. 250 */ 251 int zfs_recover = 0; 252 253 extern int zfs_txg_synctime_ms; 254 255 /* 256 * Expiration time in units of zfs_txg_synctime_ms. This value has two 257 * meanings. First it is used to determine when the spa_deadman logic 258 * should fire. By default the spa_deadman will fire if spa_sync has 259 * not completed in 1000 * zfs_txg_synctime_ms (i.e. 1000 seconds). 260 * Secondly, the value determines if an I/O is considered "hung". 261 * Any I/O that has not completed in zfs_deadman_synctime is considered 262 * "hung" resulting in a system panic. 263 */ 264 uint64_t zfs_deadman_synctime = 1000ULL; 265 266 /* 267 * Override the zfs deadman behavior via /etc/system. By default the 268 * deadman is enabled except on VMware and sparc deployments. 269 */ 270 int zfs_deadman_enabled = -1; 271 272 273 /* 274 * ========================================================================== 275 * SPA config locking 276 * ========================================================================== 277 */ 278 static void 279 spa_config_lock_init(spa_t *spa) 280 { 281 for (int i = 0; i < SCL_LOCKS; i++) { 282 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 283 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 284 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 285 refcount_create(&scl->scl_count); 286 scl->scl_writer = NULL; 287 scl->scl_write_wanted = 0; 288 } 289 } 290 291 static void 292 spa_config_lock_destroy(spa_t *spa) 293 { 294 for (int i = 0; i < SCL_LOCKS; i++) { 295 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 296 mutex_destroy(&scl->scl_lock); 297 cv_destroy(&scl->scl_cv); 298 refcount_destroy(&scl->scl_count); 299 ASSERT(scl->scl_writer == NULL); 300 ASSERT(scl->scl_write_wanted == 0); 301 } 302 } 303 304 int 305 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 306 { 307 for (int i = 0; i < SCL_LOCKS; i++) { 308 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 309 if (!(locks & (1 << i))) 310 continue; 311 mutex_enter(&scl->scl_lock); 312 if (rw == RW_READER) { 313 if (scl->scl_writer || scl->scl_write_wanted) { 314 mutex_exit(&scl->scl_lock); 315 spa_config_exit(spa, locks ^ (1 << i), tag); 316 return (0); 317 } 318 } else { 319 ASSERT(scl->scl_writer != curthread); 320 if (!refcount_is_zero(&scl->scl_count)) { 321 mutex_exit(&scl->scl_lock); 322 spa_config_exit(spa, locks ^ (1 << i), tag); 323 return (0); 324 } 325 scl->scl_writer = curthread; 326 } 327 (void) refcount_add(&scl->scl_count, tag); 328 mutex_exit(&scl->scl_lock); 329 } 330 return (1); 331 } 332 333 void 334 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 335 { 336 int wlocks_held = 0; 337 338 for (int i = 0; i < SCL_LOCKS; i++) { 339 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 340 if (scl->scl_writer == curthread) 341 wlocks_held |= (1 << i); 342 if (!(locks & (1 << i))) 343 continue; 344 mutex_enter(&scl->scl_lock); 345 if (rw == RW_READER) { 346 while (scl->scl_writer || scl->scl_write_wanted) { 347 cv_wait(&scl->scl_cv, &scl->scl_lock); 348 } 349 } else { 350 ASSERT(scl->scl_writer != curthread); 351 while (!refcount_is_zero(&scl->scl_count)) { 352 scl->scl_write_wanted++; 353 cv_wait(&scl->scl_cv, &scl->scl_lock); 354 scl->scl_write_wanted--; 355 } 356 scl->scl_writer = curthread; 357 } 358 (void) refcount_add(&scl->scl_count, tag); 359 mutex_exit(&scl->scl_lock); 360 } 361 ASSERT(wlocks_held <= locks); 362 } 363 364 void 365 spa_config_exit(spa_t *spa, int locks, void *tag) 366 { 367 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 368 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 369 if (!(locks & (1 << i))) 370 continue; 371 mutex_enter(&scl->scl_lock); 372 ASSERT(!refcount_is_zero(&scl->scl_count)); 373 if (refcount_remove(&scl->scl_count, tag) == 0) { 374 ASSERT(scl->scl_writer == NULL || 375 scl->scl_writer == curthread); 376 scl->scl_writer = NULL; /* OK in either case */ 377 cv_broadcast(&scl->scl_cv); 378 } 379 mutex_exit(&scl->scl_lock); 380 } 381 } 382 383 int 384 spa_config_held(spa_t *spa, int locks, krw_t rw) 385 { 386 int locks_held = 0; 387 388 for (int i = 0; i < SCL_LOCKS; i++) { 389 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 390 if (!(locks & (1 << i))) 391 continue; 392 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || 393 (rw == RW_WRITER && scl->scl_writer == curthread)) 394 locks_held |= 1 << i; 395 } 396 397 return (locks_held); 398 } 399 400 /* 401 * ========================================================================== 402 * SPA namespace functions 403 * ========================================================================== 404 */ 405 406 /* 407 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 408 * Returns NULL if no matching spa_t is found. 409 */ 410 spa_t * 411 spa_lookup(const char *name) 412 { 413 static spa_t search; /* spa_t is large; don't allocate on stack */ 414 spa_t *spa; 415 avl_index_t where; 416 char c; 417 char *cp; 418 419 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 420 421 /* 422 * If it's a full dataset name, figure out the pool name and 423 * just use that. 424 */ 425 cp = strpbrk(name, "/@"); 426 if (cp) { 427 c = *cp; 428 *cp = '\0'; 429 } 430 431 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 432 spa = avl_find(&spa_namespace_avl, &search, &where); 433 434 if (cp) 435 *cp = c; 436 437 return (spa); 438 } 439 440 /* 441 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 442 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 443 * looking for potentially hung I/Os. 444 */ 445 void 446 spa_deadman(void *arg) 447 { 448 spa_t *spa = arg; 449 450 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 451 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 452 ++spa->spa_deadman_calls); 453 if (zfs_deadman_enabled) 454 vdev_deadman(spa->spa_root_vdev); 455 } 456 457 /* 458 * Create an uninitialized spa_t with the given name. Requires 459 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 460 * exist by calling spa_lookup() first. 461 */ 462 spa_t * 463 spa_add(const char *name, nvlist_t *config, const char *altroot) 464 { 465 spa_t *spa; 466 spa_config_dirent_t *dp; 467 cyc_handler_t hdlr; 468 cyc_time_t when; 469 470 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 471 472 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 473 474 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 475 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 476 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 477 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 478 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 479 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 480 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 481 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 482 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 483 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL); 484 485 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 486 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 487 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 488 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 489 490 for (int t = 0; t < TXG_SIZE; t++) 491 bplist_create(&spa->spa_free_bplist[t]); 492 493 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 494 spa->spa_state = POOL_STATE_UNINITIALIZED; 495 spa->spa_freeze_txg = UINT64_MAX; 496 spa->spa_final_txg = UINT64_MAX; 497 spa->spa_load_max_txg = UINT64_MAX; 498 spa->spa_proc = &p0; 499 spa->spa_proc_state = SPA_PROC_NONE; 500 501 hdlr.cyh_func = spa_deadman; 502 hdlr.cyh_arg = spa; 503 hdlr.cyh_level = CY_LOW_LEVEL; 504 505 spa->spa_deadman_synctime = zfs_deadman_synctime * 506 zfs_txg_synctime_ms * MICROSEC; 507 508 /* 509 * This determines how often we need to check for hung I/Os after 510 * the cyclic has already fired. Since checking for hung I/Os is 511 * an expensive operation we don't want to check too frequently. 512 * Instead wait for 5 synctimes before checking again. 513 */ 514 when.cyt_interval = 5ULL * zfs_txg_synctime_ms * MICROSEC; 515 when.cyt_when = CY_INFINITY; 516 mutex_enter(&cpu_lock); 517 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when); 518 mutex_exit(&cpu_lock); 519 520 refcount_create(&spa->spa_refcount); 521 spa_config_lock_init(spa); 522 523 avl_add(&spa_namespace_avl, spa); 524 525 /* 526 * Set the alternate root, if there is one. 527 */ 528 if (altroot) { 529 spa->spa_root = spa_strdup(altroot); 530 spa_active_count++; 531 } 532 533 /* 534 * Every pool starts with the default cachefile 535 */ 536 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 537 offsetof(spa_config_dirent_t, scd_link)); 538 539 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 540 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 541 list_insert_head(&spa->spa_config_list, dp); 542 543 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 544 KM_SLEEP) == 0); 545 546 if (config != NULL) { 547 nvlist_t *features; 548 549 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 550 &features) == 0) { 551 VERIFY(nvlist_dup(features, &spa->spa_label_features, 552 0) == 0); 553 } 554 555 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 556 } 557 558 if (spa->spa_label_features == NULL) { 559 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 560 KM_SLEEP) == 0); 561 } 562 563 spa->spa_iokstat = kstat_create("zfs", 0, name, 564 "disk", KSTAT_TYPE_IO, 1, 0); 565 if (spa->spa_iokstat) { 566 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock; 567 kstat_install(spa->spa_iokstat); 568 } 569 570 return (spa); 571 } 572 573 /* 574 * Removes a spa_t from the namespace, freeing up any memory used. Requires 575 * spa_namespace_lock. This is called only after the spa_t has been closed and 576 * deactivated. 577 */ 578 void 579 spa_remove(spa_t *spa) 580 { 581 spa_config_dirent_t *dp; 582 583 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 584 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 585 586 nvlist_free(spa->spa_config_splitting); 587 588 avl_remove(&spa_namespace_avl, spa); 589 cv_broadcast(&spa_namespace_cv); 590 591 if (spa->spa_root) { 592 spa_strfree(spa->spa_root); 593 spa_active_count--; 594 } 595 596 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 597 list_remove(&spa->spa_config_list, dp); 598 if (dp->scd_path != NULL) 599 spa_strfree(dp->scd_path); 600 kmem_free(dp, sizeof (spa_config_dirent_t)); 601 } 602 603 list_destroy(&spa->spa_config_list); 604 605 nvlist_free(spa->spa_label_features); 606 nvlist_free(spa->spa_load_info); 607 spa_config_set(spa, NULL); 608 609 mutex_enter(&cpu_lock); 610 if (spa->spa_deadman_cycid != CYCLIC_NONE) 611 cyclic_remove(spa->spa_deadman_cycid); 612 mutex_exit(&cpu_lock); 613 spa->spa_deadman_cycid = CYCLIC_NONE; 614 615 refcount_destroy(&spa->spa_refcount); 616 617 spa_config_lock_destroy(spa); 618 619 kstat_delete(spa->spa_iokstat); 620 spa->spa_iokstat = NULL; 621 622 for (int t = 0; t < TXG_SIZE; t++) 623 bplist_destroy(&spa->spa_free_bplist[t]); 624 625 cv_destroy(&spa->spa_async_cv); 626 cv_destroy(&spa->spa_proc_cv); 627 cv_destroy(&spa->spa_scrub_io_cv); 628 cv_destroy(&spa->spa_suspend_cv); 629 630 mutex_destroy(&spa->spa_async_lock); 631 mutex_destroy(&spa->spa_errlist_lock); 632 mutex_destroy(&spa->spa_errlog_lock); 633 mutex_destroy(&spa->spa_history_lock); 634 mutex_destroy(&spa->spa_proc_lock); 635 mutex_destroy(&spa->spa_props_lock); 636 mutex_destroy(&spa->spa_scrub_lock); 637 mutex_destroy(&spa->spa_suspend_lock); 638 mutex_destroy(&spa->spa_vdev_top_lock); 639 mutex_destroy(&spa->spa_iokstat_lock); 640 641 kmem_free(spa, sizeof (spa_t)); 642 } 643 644 /* 645 * Given a pool, return the next pool in the namespace, or NULL if there is 646 * none. If 'prev' is NULL, return the first pool. 647 */ 648 spa_t * 649 spa_next(spa_t *prev) 650 { 651 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 652 653 if (prev) 654 return (AVL_NEXT(&spa_namespace_avl, prev)); 655 else 656 return (avl_first(&spa_namespace_avl)); 657 } 658 659 /* 660 * ========================================================================== 661 * SPA refcount functions 662 * ========================================================================== 663 */ 664 665 /* 666 * Add a reference to the given spa_t. Must have at least one reference, or 667 * have the namespace lock held. 668 */ 669 void 670 spa_open_ref(spa_t *spa, void *tag) 671 { 672 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || 673 MUTEX_HELD(&spa_namespace_lock)); 674 (void) refcount_add(&spa->spa_refcount, tag); 675 } 676 677 /* 678 * Remove a reference to the given spa_t. Must have at least one reference, or 679 * have the namespace lock held. 680 */ 681 void 682 spa_close(spa_t *spa, void *tag) 683 { 684 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || 685 MUTEX_HELD(&spa_namespace_lock)); 686 (void) refcount_remove(&spa->spa_refcount, tag); 687 } 688 689 /* 690 * Check to see if the spa refcount is zero. Must be called with 691 * spa_namespace_lock held. We really compare against spa_minref, which is the 692 * number of references acquired when opening a pool 693 */ 694 boolean_t 695 spa_refcount_zero(spa_t *spa) 696 { 697 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 698 699 return (refcount_count(&spa->spa_refcount) == spa->spa_minref); 700 } 701 702 /* 703 * ========================================================================== 704 * SPA spare and l2cache tracking 705 * ========================================================================== 706 */ 707 708 /* 709 * Hot spares and cache devices are tracked using the same code below, 710 * for 'auxiliary' devices. 711 */ 712 713 typedef struct spa_aux { 714 uint64_t aux_guid; 715 uint64_t aux_pool; 716 avl_node_t aux_avl; 717 int aux_count; 718 } spa_aux_t; 719 720 static int 721 spa_aux_compare(const void *a, const void *b) 722 { 723 const spa_aux_t *sa = a; 724 const spa_aux_t *sb = b; 725 726 if (sa->aux_guid < sb->aux_guid) 727 return (-1); 728 else if (sa->aux_guid > sb->aux_guid) 729 return (1); 730 else 731 return (0); 732 } 733 734 void 735 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 736 { 737 avl_index_t where; 738 spa_aux_t search; 739 spa_aux_t *aux; 740 741 search.aux_guid = vd->vdev_guid; 742 if ((aux = avl_find(avl, &search, &where)) != NULL) { 743 aux->aux_count++; 744 } else { 745 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 746 aux->aux_guid = vd->vdev_guid; 747 aux->aux_count = 1; 748 avl_insert(avl, aux, where); 749 } 750 } 751 752 void 753 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 754 { 755 spa_aux_t search; 756 spa_aux_t *aux; 757 avl_index_t where; 758 759 search.aux_guid = vd->vdev_guid; 760 aux = avl_find(avl, &search, &where); 761 762 ASSERT(aux != NULL); 763 764 if (--aux->aux_count == 0) { 765 avl_remove(avl, aux); 766 kmem_free(aux, sizeof (spa_aux_t)); 767 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 768 aux->aux_pool = 0ULL; 769 } 770 } 771 772 boolean_t 773 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 774 { 775 spa_aux_t search, *found; 776 777 search.aux_guid = guid; 778 found = avl_find(avl, &search, NULL); 779 780 if (pool) { 781 if (found) 782 *pool = found->aux_pool; 783 else 784 *pool = 0ULL; 785 } 786 787 if (refcnt) { 788 if (found) 789 *refcnt = found->aux_count; 790 else 791 *refcnt = 0; 792 } 793 794 return (found != NULL); 795 } 796 797 void 798 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 799 { 800 spa_aux_t search, *found; 801 avl_index_t where; 802 803 search.aux_guid = vd->vdev_guid; 804 found = avl_find(avl, &search, &where); 805 ASSERT(found != NULL); 806 ASSERT(found->aux_pool == 0ULL); 807 808 found->aux_pool = spa_guid(vd->vdev_spa); 809 } 810 811 /* 812 * Spares are tracked globally due to the following constraints: 813 * 814 * - A spare may be part of multiple pools. 815 * - A spare may be added to a pool even if it's actively in use within 816 * another pool. 817 * - A spare in use in any pool can only be the source of a replacement if 818 * the target is a spare in the same pool. 819 * 820 * We keep track of all spares on the system through the use of a reference 821 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 822 * spare, then we bump the reference count in the AVL tree. In addition, we set 823 * the 'vdev_isspare' member to indicate that the device is a spare (active or 824 * inactive). When a spare is made active (used to replace a device in the 825 * pool), we also keep track of which pool its been made a part of. 826 * 827 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 828 * called under the spa_namespace lock as part of vdev reconfiguration. The 829 * separate spare lock exists for the status query path, which does not need to 830 * be completely consistent with respect to other vdev configuration changes. 831 */ 832 833 static int 834 spa_spare_compare(const void *a, const void *b) 835 { 836 return (spa_aux_compare(a, b)); 837 } 838 839 void 840 spa_spare_add(vdev_t *vd) 841 { 842 mutex_enter(&spa_spare_lock); 843 ASSERT(!vd->vdev_isspare); 844 spa_aux_add(vd, &spa_spare_avl); 845 vd->vdev_isspare = B_TRUE; 846 mutex_exit(&spa_spare_lock); 847 } 848 849 void 850 spa_spare_remove(vdev_t *vd) 851 { 852 mutex_enter(&spa_spare_lock); 853 ASSERT(vd->vdev_isspare); 854 spa_aux_remove(vd, &spa_spare_avl); 855 vd->vdev_isspare = B_FALSE; 856 mutex_exit(&spa_spare_lock); 857 } 858 859 boolean_t 860 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 861 { 862 boolean_t found; 863 864 mutex_enter(&spa_spare_lock); 865 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 866 mutex_exit(&spa_spare_lock); 867 868 return (found); 869 } 870 871 void 872 spa_spare_activate(vdev_t *vd) 873 { 874 mutex_enter(&spa_spare_lock); 875 ASSERT(vd->vdev_isspare); 876 spa_aux_activate(vd, &spa_spare_avl); 877 mutex_exit(&spa_spare_lock); 878 } 879 880 /* 881 * Level 2 ARC devices are tracked globally for the same reasons as spares. 882 * Cache devices currently only support one pool per cache device, and so 883 * for these devices the aux reference count is currently unused beyond 1. 884 */ 885 886 static int 887 spa_l2cache_compare(const void *a, const void *b) 888 { 889 return (spa_aux_compare(a, b)); 890 } 891 892 void 893 spa_l2cache_add(vdev_t *vd) 894 { 895 mutex_enter(&spa_l2cache_lock); 896 ASSERT(!vd->vdev_isl2cache); 897 spa_aux_add(vd, &spa_l2cache_avl); 898 vd->vdev_isl2cache = B_TRUE; 899 mutex_exit(&spa_l2cache_lock); 900 } 901 902 void 903 spa_l2cache_remove(vdev_t *vd) 904 { 905 mutex_enter(&spa_l2cache_lock); 906 ASSERT(vd->vdev_isl2cache); 907 spa_aux_remove(vd, &spa_l2cache_avl); 908 vd->vdev_isl2cache = B_FALSE; 909 mutex_exit(&spa_l2cache_lock); 910 } 911 912 boolean_t 913 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 914 { 915 boolean_t found; 916 917 mutex_enter(&spa_l2cache_lock); 918 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 919 mutex_exit(&spa_l2cache_lock); 920 921 return (found); 922 } 923 924 void 925 spa_l2cache_activate(vdev_t *vd) 926 { 927 mutex_enter(&spa_l2cache_lock); 928 ASSERT(vd->vdev_isl2cache); 929 spa_aux_activate(vd, &spa_l2cache_avl); 930 mutex_exit(&spa_l2cache_lock); 931 } 932 933 /* 934 * ========================================================================== 935 * SPA vdev locking 936 * ========================================================================== 937 */ 938 939 /* 940 * Lock the given spa_t for the purpose of adding or removing a vdev. 941 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 942 * It returns the next transaction group for the spa_t. 943 */ 944 uint64_t 945 spa_vdev_enter(spa_t *spa) 946 { 947 mutex_enter(&spa->spa_vdev_top_lock); 948 mutex_enter(&spa_namespace_lock); 949 return (spa_vdev_config_enter(spa)); 950 } 951 952 /* 953 * Internal implementation for spa_vdev_enter(). Used when a vdev 954 * operation requires multiple syncs (i.e. removing a device) while 955 * keeping the spa_namespace_lock held. 956 */ 957 uint64_t 958 spa_vdev_config_enter(spa_t *spa) 959 { 960 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 961 962 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 963 964 return (spa_last_synced_txg(spa) + 1); 965 } 966 967 /* 968 * Used in combination with spa_vdev_config_enter() to allow the syncing 969 * of multiple transactions without releasing the spa_namespace_lock. 970 */ 971 void 972 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 973 { 974 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 975 976 int config_changed = B_FALSE; 977 978 ASSERT(txg > spa_last_synced_txg(spa)); 979 980 spa->spa_pending_vdev = NULL; 981 982 /* 983 * Reassess the DTLs. 984 */ 985 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 986 987 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 988 config_changed = B_TRUE; 989 spa->spa_config_generation++; 990 } 991 992 /* 993 * Verify the metaslab classes. 994 */ 995 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 996 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 997 998 spa_config_exit(spa, SCL_ALL, spa); 999 1000 /* 1001 * Panic the system if the specified tag requires it. This 1002 * is useful for ensuring that configurations are updated 1003 * transactionally. 1004 */ 1005 if (zio_injection_enabled) 1006 zio_handle_panic_injection(spa, tag, 0); 1007 1008 /* 1009 * Note: this txg_wait_synced() is important because it ensures 1010 * that there won't be more than one config change per txg. 1011 * This allows us to use the txg as the generation number. 1012 */ 1013 if (error == 0) 1014 txg_wait_synced(spa->spa_dsl_pool, txg); 1015 1016 if (vd != NULL) { 1017 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0); 1018 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1019 vdev_free(vd); 1020 spa_config_exit(spa, SCL_ALL, spa); 1021 } 1022 1023 /* 1024 * If the config changed, update the config cache. 1025 */ 1026 if (config_changed) 1027 spa_config_sync(spa, B_FALSE, B_TRUE); 1028 } 1029 1030 /* 1031 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1032 * locking of spa_vdev_enter(), we also want make sure the transactions have 1033 * synced to disk, and then update the global configuration cache with the new 1034 * information. 1035 */ 1036 int 1037 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1038 { 1039 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1040 mutex_exit(&spa_namespace_lock); 1041 mutex_exit(&spa->spa_vdev_top_lock); 1042 1043 return (error); 1044 } 1045 1046 /* 1047 * Lock the given spa_t for the purpose of changing vdev state. 1048 */ 1049 void 1050 spa_vdev_state_enter(spa_t *spa, int oplocks) 1051 { 1052 int locks = SCL_STATE_ALL | oplocks; 1053 1054 /* 1055 * Root pools may need to read of the underlying devfs filesystem 1056 * when opening up a vdev. Unfortunately if we're holding the 1057 * SCL_ZIO lock it will result in a deadlock when we try to issue 1058 * the read from the root filesystem. Instead we "prefetch" 1059 * the associated vnodes that we need prior to opening the 1060 * underlying devices and cache them so that we can prevent 1061 * any I/O when we are doing the actual open. 1062 */ 1063 if (spa_is_root(spa)) { 1064 int low = locks & ~(SCL_ZIO - 1); 1065 int high = locks & ~low; 1066 1067 spa_config_enter(spa, high, spa, RW_WRITER); 1068 vdev_hold(spa->spa_root_vdev); 1069 spa_config_enter(spa, low, spa, RW_WRITER); 1070 } else { 1071 spa_config_enter(spa, locks, spa, RW_WRITER); 1072 } 1073 spa->spa_vdev_locks = locks; 1074 } 1075 1076 int 1077 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1078 { 1079 boolean_t config_changed = B_FALSE; 1080 1081 if (vd != NULL || error == 0) 1082 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 1083 0, 0, B_FALSE); 1084 1085 if (vd != NULL) { 1086 vdev_state_dirty(vd->vdev_top); 1087 config_changed = B_TRUE; 1088 spa->spa_config_generation++; 1089 } 1090 1091 if (spa_is_root(spa)) 1092 vdev_rele(spa->spa_root_vdev); 1093 1094 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1095 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1096 1097 /* 1098 * If anything changed, wait for it to sync. This ensures that, 1099 * from the system administrator's perspective, zpool(1M) commands 1100 * are synchronous. This is important for things like zpool offline: 1101 * when the command completes, you expect no further I/O from ZFS. 1102 */ 1103 if (vd != NULL) 1104 txg_wait_synced(spa->spa_dsl_pool, 0); 1105 1106 /* 1107 * If the config changed, update the config cache. 1108 */ 1109 if (config_changed) { 1110 mutex_enter(&spa_namespace_lock); 1111 spa_config_sync(spa, B_FALSE, B_TRUE); 1112 mutex_exit(&spa_namespace_lock); 1113 } 1114 1115 return (error); 1116 } 1117 1118 /* 1119 * ========================================================================== 1120 * Miscellaneous functions 1121 * ========================================================================== 1122 */ 1123 1124 void 1125 spa_activate_mos_feature(spa_t *spa, const char *feature) 1126 { 1127 (void) nvlist_add_boolean(spa->spa_label_features, feature); 1128 vdev_config_dirty(spa->spa_root_vdev); 1129 } 1130 1131 void 1132 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1133 { 1134 (void) nvlist_remove_all(spa->spa_label_features, feature); 1135 vdev_config_dirty(spa->spa_root_vdev); 1136 } 1137 1138 /* 1139 * Rename a spa_t. 1140 */ 1141 int 1142 spa_rename(const char *name, const char *newname) 1143 { 1144 spa_t *spa; 1145 int err; 1146 1147 /* 1148 * Lookup the spa_t and grab the config lock for writing. We need to 1149 * actually open the pool so that we can sync out the necessary labels. 1150 * It's OK to call spa_open() with the namespace lock held because we 1151 * allow recursive calls for other reasons. 1152 */ 1153 mutex_enter(&spa_namespace_lock); 1154 if ((err = spa_open(name, &spa, FTAG)) != 0) { 1155 mutex_exit(&spa_namespace_lock); 1156 return (err); 1157 } 1158 1159 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1160 1161 avl_remove(&spa_namespace_avl, spa); 1162 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); 1163 avl_add(&spa_namespace_avl, spa); 1164 1165 /* 1166 * Sync all labels to disk with the new names by marking the root vdev 1167 * dirty and waiting for it to sync. It will pick up the new pool name 1168 * during the sync. 1169 */ 1170 vdev_config_dirty(spa->spa_root_vdev); 1171 1172 spa_config_exit(spa, SCL_ALL, FTAG); 1173 1174 txg_wait_synced(spa->spa_dsl_pool, 0); 1175 1176 /* 1177 * Sync the updated config cache. 1178 */ 1179 spa_config_sync(spa, B_FALSE, B_TRUE); 1180 1181 spa_close(spa, FTAG); 1182 1183 mutex_exit(&spa_namespace_lock); 1184 1185 return (0); 1186 } 1187 1188 /* 1189 * Return the spa_t associated with given pool_guid, if it exists. If 1190 * device_guid is non-zero, determine whether the pool exists *and* contains 1191 * a device with the specified device_guid. 1192 */ 1193 spa_t * 1194 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1195 { 1196 spa_t *spa; 1197 avl_tree_t *t = &spa_namespace_avl; 1198 1199 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1200 1201 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1202 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1203 continue; 1204 if (spa->spa_root_vdev == NULL) 1205 continue; 1206 if (spa_guid(spa) == pool_guid) { 1207 if (device_guid == 0) 1208 break; 1209 1210 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1211 device_guid) != NULL) 1212 break; 1213 1214 /* 1215 * Check any devices we may be in the process of adding. 1216 */ 1217 if (spa->spa_pending_vdev) { 1218 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1219 device_guid) != NULL) 1220 break; 1221 } 1222 } 1223 } 1224 1225 return (spa); 1226 } 1227 1228 /* 1229 * Determine whether a pool with the given pool_guid exists. 1230 */ 1231 boolean_t 1232 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1233 { 1234 return (spa_by_guid(pool_guid, device_guid) != NULL); 1235 } 1236 1237 char * 1238 spa_strdup(const char *s) 1239 { 1240 size_t len; 1241 char *new; 1242 1243 len = strlen(s); 1244 new = kmem_alloc(len + 1, KM_SLEEP); 1245 bcopy(s, new, len); 1246 new[len] = '\0'; 1247 1248 return (new); 1249 } 1250 1251 void 1252 spa_strfree(char *s) 1253 { 1254 kmem_free(s, strlen(s) + 1); 1255 } 1256 1257 uint64_t 1258 spa_get_random(uint64_t range) 1259 { 1260 uint64_t r; 1261 1262 ASSERT(range != 0); 1263 1264 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1265 1266 return (r % range); 1267 } 1268 1269 uint64_t 1270 spa_generate_guid(spa_t *spa) 1271 { 1272 uint64_t guid = spa_get_random(-1ULL); 1273 1274 if (spa != NULL) { 1275 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1276 guid = spa_get_random(-1ULL); 1277 } else { 1278 while (guid == 0 || spa_guid_exists(guid, 0)) 1279 guid = spa_get_random(-1ULL); 1280 } 1281 1282 return (guid); 1283 } 1284 1285 void 1286 sprintf_blkptr(char *buf, const blkptr_t *bp) 1287 { 1288 char type[256]; 1289 char *checksum = NULL; 1290 char *compress = NULL; 1291 1292 if (bp != NULL) { 1293 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1294 dmu_object_byteswap_t bswap = 1295 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1296 (void) snprintf(type, sizeof (type), "bswap %s %s", 1297 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1298 "metadata" : "data", 1299 dmu_ot_byteswap[bswap].ob_name); 1300 } else { 1301 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1302 sizeof (type)); 1303 } 1304 checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1305 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1306 } 1307 1308 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress); 1309 } 1310 1311 void 1312 spa_freeze(spa_t *spa) 1313 { 1314 uint64_t freeze_txg = 0; 1315 1316 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1317 if (spa->spa_freeze_txg == UINT64_MAX) { 1318 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1319 spa->spa_freeze_txg = freeze_txg; 1320 } 1321 spa_config_exit(spa, SCL_ALL, FTAG); 1322 if (freeze_txg != 0) 1323 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1324 } 1325 1326 void 1327 zfs_panic_recover(const char *fmt, ...) 1328 { 1329 va_list adx; 1330 1331 va_start(adx, fmt); 1332 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1333 va_end(adx); 1334 } 1335 1336 /* 1337 * This is a stripped-down version of strtoull, suitable only for converting 1338 * lowercase hexidecimal numbers that don't overflow. 1339 */ 1340 uint64_t 1341 strtonum(const char *str, char **nptr) 1342 { 1343 uint64_t val = 0; 1344 char c; 1345 int digit; 1346 1347 while ((c = *str) != '\0') { 1348 if (c >= '0' && c <= '9') 1349 digit = c - '0'; 1350 else if (c >= 'a' && c <= 'f') 1351 digit = 10 + c - 'a'; 1352 else 1353 break; 1354 1355 val *= 16; 1356 val += digit; 1357 1358 str++; 1359 } 1360 1361 if (nptr) 1362 *nptr = (char *)str; 1363 1364 return (val); 1365 } 1366 1367 /* 1368 * ========================================================================== 1369 * Accessor functions 1370 * ========================================================================== 1371 */ 1372 1373 boolean_t 1374 spa_shutting_down(spa_t *spa) 1375 { 1376 return (spa->spa_async_suspended); 1377 } 1378 1379 dsl_pool_t * 1380 spa_get_dsl(spa_t *spa) 1381 { 1382 return (spa->spa_dsl_pool); 1383 } 1384 1385 boolean_t 1386 spa_is_initializing(spa_t *spa) 1387 { 1388 return (spa->spa_is_initializing); 1389 } 1390 1391 blkptr_t * 1392 spa_get_rootblkptr(spa_t *spa) 1393 { 1394 return (&spa->spa_ubsync.ub_rootbp); 1395 } 1396 1397 void 1398 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1399 { 1400 spa->spa_uberblock.ub_rootbp = *bp; 1401 } 1402 1403 void 1404 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1405 { 1406 if (spa->spa_root == NULL) 1407 buf[0] = '\0'; 1408 else 1409 (void) strncpy(buf, spa->spa_root, buflen); 1410 } 1411 1412 int 1413 spa_sync_pass(spa_t *spa) 1414 { 1415 return (spa->spa_sync_pass); 1416 } 1417 1418 char * 1419 spa_name(spa_t *spa) 1420 { 1421 return (spa->spa_name); 1422 } 1423 1424 uint64_t 1425 spa_guid(spa_t *spa) 1426 { 1427 dsl_pool_t *dp = spa_get_dsl(spa); 1428 uint64_t guid; 1429 1430 /* 1431 * If we fail to parse the config during spa_load(), we can go through 1432 * the error path (which posts an ereport) and end up here with no root 1433 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1434 * this case. 1435 */ 1436 if (spa->spa_root_vdev == NULL) 1437 return (spa->spa_config_guid); 1438 1439 guid = spa->spa_last_synced_guid != 0 ? 1440 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1441 1442 /* 1443 * Return the most recently synced out guid unless we're 1444 * in syncing context. 1445 */ 1446 if (dp && dsl_pool_sync_context(dp)) 1447 return (spa->spa_root_vdev->vdev_guid); 1448 else 1449 return (guid); 1450 } 1451 1452 uint64_t 1453 spa_load_guid(spa_t *spa) 1454 { 1455 /* 1456 * This is a GUID that exists solely as a reference for the 1457 * purposes of the arc. It is generated at load time, and 1458 * is never written to persistent storage. 1459 */ 1460 return (spa->spa_load_guid); 1461 } 1462 1463 uint64_t 1464 spa_last_synced_txg(spa_t *spa) 1465 { 1466 return (spa->spa_ubsync.ub_txg); 1467 } 1468 1469 uint64_t 1470 spa_first_txg(spa_t *spa) 1471 { 1472 return (spa->spa_first_txg); 1473 } 1474 1475 uint64_t 1476 spa_syncing_txg(spa_t *spa) 1477 { 1478 return (spa->spa_syncing_txg); 1479 } 1480 1481 pool_state_t 1482 spa_state(spa_t *spa) 1483 { 1484 return (spa->spa_state); 1485 } 1486 1487 spa_load_state_t 1488 spa_load_state(spa_t *spa) 1489 { 1490 return (spa->spa_load_state); 1491 } 1492 1493 uint64_t 1494 spa_freeze_txg(spa_t *spa) 1495 { 1496 return (spa->spa_freeze_txg); 1497 } 1498 1499 /* ARGSUSED */ 1500 uint64_t 1501 spa_get_asize(spa_t *spa, uint64_t lsize) 1502 { 1503 /* 1504 * The worst case is single-sector max-parity RAID-Z blocks, in which 1505 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 1506 * times the size; so just assume that. Add to this the fact that 1507 * we can have up to 3 DVAs per bp, and one more factor of 2 because 1508 * the block may be dittoed with up to 3 DVAs by ddt_sync(). 1509 */ 1510 return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2); 1511 } 1512 1513 uint64_t 1514 spa_get_dspace(spa_t *spa) 1515 { 1516 return (spa->spa_dspace); 1517 } 1518 1519 void 1520 spa_update_dspace(spa_t *spa) 1521 { 1522 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1523 ddt_get_dedup_dspace(spa); 1524 } 1525 1526 /* 1527 * Return the failure mode that has been set to this pool. The default 1528 * behavior will be to block all I/Os when a complete failure occurs. 1529 */ 1530 uint8_t 1531 spa_get_failmode(spa_t *spa) 1532 { 1533 return (spa->spa_failmode); 1534 } 1535 1536 boolean_t 1537 spa_suspended(spa_t *spa) 1538 { 1539 return (spa->spa_suspended); 1540 } 1541 1542 uint64_t 1543 spa_version(spa_t *spa) 1544 { 1545 return (spa->spa_ubsync.ub_version); 1546 } 1547 1548 boolean_t 1549 spa_deflate(spa_t *spa) 1550 { 1551 return (spa->spa_deflate); 1552 } 1553 1554 metaslab_class_t * 1555 spa_normal_class(spa_t *spa) 1556 { 1557 return (spa->spa_normal_class); 1558 } 1559 1560 metaslab_class_t * 1561 spa_log_class(spa_t *spa) 1562 { 1563 return (spa->spa_log_class); 1564 } 1565 1566 int 1567 spa_max_replication(spa_t *spa) 1568 { 1569 /* 1570 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1571 * handle BPs with more than one DVA allocated. Set our max 1572 * replication level accordingly. 1573 */ 1574 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1575 return (1); 1576 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1577 } 1578 1579 int 1580 spa_prev_software_version(spa_t *spa) 1581 { 1582 return (spa->spa_prev_software_version); 1583 } 1584 1585 uint64_t 1586 spa_deadman_synctime(spa_t *spa) 1587 { 1588 return (spa->spa_deadman_synctime); 1589 } 1590 1591 uint64_t 1592 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 1593 { 1594 uint64_t asize = DVA_GET_ASIZE(dva); 1595 uint64_t dsize = asize; 1596 1597 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1598 1599 if (asize != 0 && spa->spa_deflate) { 1600 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 1601 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1602 } 1603 1604 return (dsize); 1605 } 1606 1607 uint64_t 1608 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 1609 { 1610 uint64_t dsize = 0; 1611 1612 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1613 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1614 1615 return (dsize); 1616 } 1617 1618 uint64_t 1619 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 1620 { 1621 uint64_t dsize = 0; 1622 1623 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1624 1625 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1626 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1627 1628 spa_config_exit(spa, SCL_VDEV, FTAG); 1629 1630 return (dsize); 1631 } 1632 1633 /* 1634 * ========================================================================== 1635 * Initialization and Termination 1636 * ========================================================================== 1637 */ 1638 1639 static int 1640 spa_name_compare(const void *a1, const void *a2) 1641 { 1642 const spa_t *s1 = a1; 1643 const spa_t *s2 = a2; 1644 int s; 1645 1646 s = strcmp(s1->spa_name, s2->spa_name); 1647 if (s > 0) 1648 return (1); 1649 if (s < 0) 1650 return (-1); 1651 return (0); 1652 } 1653 1654 int 1655 spa_busy(void) 1656 { 1657 return (spa_active_count); 1658 } 1659 1660 void 1661 spa_boot_init() 1662 { 1663 spa_config_load(); 1664 } 1665 1666 void 1667 spa_init(int mode) 1668 { 1669 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1670 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1671 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 1672 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1673 1674 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1675 offsetof(spa_t, spa_avl)); 1676 1677 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 1678 offsetof(spa_aux_t, aux_avl)); 1679 1680 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 1681 offsetof(spa_aux_t, aux_avl)); 1682 1683 spa_mode_global = mode; 1684 1685 #ifdef _KERNEL 1686 spa_arch_init(); 1687 #else 1688 if (spa_mode_global != FREAD && dprintf_find_string("watch")) { 1689 arc_procfd = open("/proc/self/ctl", O_WRONLY); 1690 if (arc_procfd == -1) { 1691 perror("could not enable watchpoints: " 1692 "opening /proc/self/ctl failed: "); 1693 } else { 1694 arc_watch = B_TRUE; 1695 } 1696 } 1697 #endif 1698 1699 refcount_init(); 1700 unique_init(); 1701 space_map_init(); 1702 zio_init(); 1703 dmu_init(); 1704 zil_init(); 1705 vdev_cache_stat_init(); 1706 zfs_prop_init(); 1707 zpool_prop_init(); 1708 zpool_feature_init(); 1709 spa_config_load(); 1710 l2arc_start(); 1711 } 1712 1713 void 1714 spa_fini(void) 1715 { 1716 l2arc_stop(); 1717 1718 spa_evict_all(); 1719 1720 vdev_cache_stat_fini(); 1721 zil_fini(); 1722 dmu_fini(); 1723 zio_fini(); 1724 space_map_fini(); 1725 unique_fini(); 1726 refcount_fini(); 1727 1728 avl_destroy(&spa_namespace_avl); 1729 avl_destroy(&spa_spare_avl); 1730 avl_destroy(&spa_l2cache_avl); 1731 1732 cv_destroy(&spa_namespace_cv); 1733 mutex_destroy(&spa_namespace_lock); 1734 mutex_destroy(&spa_spare_lock); 1735 mutex_destroy(&spa_l2cache_lock); 1736 } 1737 1738 /* 1739 * Return whether this pool has slogs. No locking needed. 1740 * It's not a problem if the wrong answer is returned as it's only for 1741 * performance and not correctness 1742 */ 1743 boolean_t 1744 spa_has_slogs(spa_t *spa) 1745 { 1746 return (spa->spa_log_class->mc_rotor != NULL); 1747 } 1748 1749 spa_log_state_t 1750 spa_get_log_state(spa_t *spa) 1751 { 1752 return (spa->spa_log_state); 1753 } 1754 1755 void 1756 spa_set_log_state(spa_t *spa, spa_log_state_t state) 1757 { 1758 spa->spa_log_state = state; 1759 } 1760 1761 boolean_t 1762 spa_is_root(spa_t *spa) 1763 { 1764 return (spa->spa_is_root); 1765 } 1766 1767 boolean_t 1768 spa_writeable(spa_t *spa) 1769 { 1770 return (!!(spa->spa_mode & FWRITE)); 1771 } 1772 1773 int 1774 spa_mode(spa_t *spa) 1775 { 1776 return (spa->spa_mode); 1777 } 1778 1779 uint64_t 1780 spa_bootfs(spa_t *spa) 1781 { 1782 return (spa->spa_bootfs); 1783 } 1784 1785 uint64_t 1786 spa_delegation(spa_t *spa) 1787 { 1788 return (spa->spa_delegation); 1789 } 1790 1791 objset_t * 1792 spa_meta_objset(spa_t *spa) 1793 { 1794 return (spa->spa_meta_objset); 1795 } 1796 1797 enum zio_checksum 1798 spa_dedup_checksum(spa_t *spa) 1799 { 1800 return (spa->spa_dedup_checksum); 1801 } 1802 1803 /* 1804 * Reset pool scan stat per scan pass (or reboot). 1805 */ 1806 void 1807 spa_scan_stat_init(spa_t *spa) 1808 { 1809 /* data not stored on disk */ 1810 spa->spa_scan_pass_start = gethrestime_sec(); 1811 spa->spa_scan_pass_exam = 0; 1812 vdev_scan_stat_init(spa->spa_root_vdev); 1813 } 1814 1815 /* 1816 * Get scan stats for zpool status reports 1817 */ 1818 int 1819 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 1820 { 1821 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 1822 1823 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 1824 return (ENOENT); 1825 bzero(ps, sizeof (pool_scan_stat_t)); 1826 1827 /* data stored on disk */ 1828 ps->pss_func = scn->scn_phys.scn_func; 1829 ps->pss_start_time = scn->scn_phys.scn_start_time; 1830 ps->pss_end_time = scn->scn_phys.scn_end_time; 1831 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 1832 ps->pss_examined = scn->scn_phys.scn_examined; 1833 ps->pss_to_process = scn->scn_phys.scn_to_process; 1834 ps->pss_processed = scn->scn_phys.scn_processed; 1835 ps->pss_errors = scn->scn_phys.scn_errors; 1836 ps->pss_state = scn->scn_phys.scn_state; 1837 1838 /* data not stored on disk */ 1839 ps->pss_pass_start = spa->spa_scan_pass_start; 1840 ps->pss_pass_exam = spa->spa_scan_pass_exam; 1841 1842 return (0); 1843 } 1844 1845 boolean_t 1846 spa_debug_enabled(spa_t *spa) 1847 { 1848 return (spa->spa_debug); 1849 } 1850