1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/spa_impl.h> 28 #include <sys/zio.h> 29 #include <sys/zio_checksum.h> 30 #include <sys/zio_compress.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/zap.h> 34 #include <sys/zil.h> 35 #include <sys/vdev_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/uberblock_impl.h> 38 #include <sys/txg.h> 39 #include <sys/avl.h> 40 #include <sys/unique.h> 41 #include <sys/dsl_pool.h> 42 #include <sys/dsl_dir.h> 43 #include <sys/dsl_prop.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/metaslab_impl.h> 46 #include <sys/sunddi.h> 47 #include <sys/arc.h> 48 #include "zfs_prop.h" 49 50 /* 51 * SPA locking 52 * 53 * There are four basic locks for managing spa_t structures: 54 * 55 * spa_namespace_lock (global mutex) 56 * 57 * This lock must be acquired to do any of the following: 58 * 59 * - Lookup a spa_t by name 60 * - Add or remove a spa_t from the namespace 61 * - Increase spa_refcount from non-zero 62 * - Check if spa_refcount is zero 63 * - Rename a spa_t 64 * - add/remove/attach/detach devices 65 * - Held for the duration of create/destroy/import/export 66 * 67 * It does not need to handle recursion. A create or destroy may 68 * reference objects (files or zvols) in other pools, but by 69 * definition they must have an existing reference, and will never need 70 * to lookup a spa_t by name. 71 * 72 * spa_refcount (per-spa refcount_t protected by mutex) 73 * 74 * This reference count keep track of any active users of the spa_t. The 75 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 76 * the refcount is never really 'zero' - opening a pool implicitly keeps 77 * some references in the DMU. Internally we check against spa_minref, but 78 * present the image of a zero/non-zero value to consumers. 79 * 80 * spa_config_lock[] (per-spa array of rwlocks) 81 * 82 * This protects the spa_t from config changes, and must be held in 83 * the following circumstances: 84 * 85 * - RW_READER to perform I/O to the spa 86 * - RW_WRITER to change the vdev config 87 * 88 * The locking order is fairly straightforward: 89 * 90 * spa_namespace_lock -> spa_refcount 91 * 92 * The namespace lock must be acquired to increase the refcount from 0 93 * or to check if it is zero. 94 * 95 * spa_refcount -> spa_config_lock[] 96 * 97 * There must be at least one valid reference on the spa_t to acquire 98 * the config lock. 99 * 100 * spa_namespace_lock -> spa_config_lock[] 101 * 102 * The namespace lock must always be taken before the config lock. 103 * 104 * 105 * The spa_namespace_lock can be acquired directly and is globally visible. 106 * 107 * The namespace is manipulated using the following functions, all of which 108 * require the spa_namespace_lock to be held. 109 * 110 * spa_lookup() Lookup a spa_t by name. 111 * 112 * spa_add() Create a new spa_t in the namespace. 113 * 114 * spa_remove() Remove a spa_t from the namespace. This also 115 * frees up any memory associated with the spa_t. 116 * 117 * spa_next() Returns the next spa_t in the system, or the 118 * first if NULL is passed. 119 * 120 * spa_evict_all() Shutdown and remove all spa_t structures in 121 * the system. 122 * 123 * spa_guid_exists() Determine whether a pool/device guid exists. 124 * 125 * The spa_refcount is manipulated using the following functions: 126 * 127 * spa_open_ref() Adds a reference to the given spa_t. Must be 128 * called with spa_namespace_lock held if the 129 * refcount is currently zero. 130 * 131 * spa_close() Remove a reference from the spa_t. This will 132 * not free the spa_t or remove it from the 133 * namespace. No locking is required. 134 * 135 * spa_refcount_zero() Returns true if the refcount is currently 136 * zero. Must be called with spa_namespace_lock 137 * held. 138 * 139 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 140 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 141 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 142 * 143 * To read the configuration, it suffices to hold one of these locks as reader. 144 * To modify the configuration, you must hold all locks as writer. To modify 145 * vdev state without altering the vdev tree's topology (e.g. online/offline), 146 * you must hold SCL_STATE and SCL_ZIO as writer. 147 * 148 * We use these distinct config locks to avoid recursive lock entry. 149 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 150 * block allocations (SCL_ALLOC), which may require reading space maps 151 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 152 * 153 * The spa config locks cannot be normal rwlocks because we need the 154 * ability to hand off ownership. For example, SCL_ZIO is acquired 155 * by the issuing thread and later released by an interrupt thread. 156 * They do, however, obey the usual write-wanted semantics to prevent 157 * writer (i.e. system administrator) starvation. 158 * 159 * The lock acquisition rules are as follows: 160 * 161 * SCL_CONFIG 162 * Protects changes to the vdev tree topology, such as vdev 163 * add/remove/attach/detach. Protects the dirty config list 164 * (spa_config_dirty_list) and the set of spares and l2arc devices. 165 * 166 * SCL_STATE 167 * Protects changes to pool state and vdev state, such as vdev 168 * online/offline/fault/degrade/clear. Protects the dirty state list 169 * (spa_state_dirty_list) and global pool state (spa_state). 170 * 171 * SCL_ALLOC 172 * Protects changes to metaslab groups and classes. 173 * Held as reader by metaslab_alloc() and metaslab_claim(). 174 * 175 * SCL_ZIO 176 * Held by bp-level zios (those which have no io_vd upon entry) 177 * to prevent changes to the vdev tree. The bp-level zio implicitly 178 * protects all of its vdev child zios, which do not hold SCL_ZIO. 179 * 180 * SCL_FREE 181 * Protects changes to metaslab groups and classes. 182 * Held as reader by metaslab_free(). SCL_FREE is distinct from 183 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 184 * blocks in zio_done() while another i/o that holds either 185 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 186 * 187 * SCL_VDEV 188 * Held as reader to prevent changes to the vdev tree during trivial 189 * inquiries such as bp_get_dasize(). SCL_VDEV is distinct from the 190 * other locks, and lower than all of them, to ensure that it's safe 191 * to acquire regardless of caller context. 192 * 193 * In addition, the following rules apply: 194 * 195 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 196 * The lock ordering is SCL_CONFIG > spa_props_lock. 197 * 198 * (b) I/O operations on leaf vdevs. For any zio operation that takes 199 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 200 * or zio_write_phys() -- the caller must ensure that the config cannot 201 * cannot change in the interim, and that the vdev cannot be reopened. 202 * SCL_STATE as reader suffices for both. 203 * 204 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 205 * 206 * spa_vdev_enter() Acquire the namespace lock and the config lock 207 * for writing. 208 * 209 * spa_vdev_exit() Release the config lock, wait for all I/O 210 * to complete, sync the updated configs to the 211 * cache, and release the namespace lock. 212 * 213 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 214 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 215 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 216 * 217 * spa_rename() is also implemented within this file since is requires 218 * manipulation of the namespace. 219 */ 220 221 static avl_tree_t spa_namespace_avl; 222 kmutex_t spa_namespace_lock; 223 static kcondvar_t spa_namespace_cv; 224 static int spa_active_count; 225 int spa_max_replication_override = SPA_DVAS_PER_BP; 226 227 static kmutex_t spa_spare_lock; 228 static avl_tree_t spa_spare_avl; 229 static kmutex_t spa_l2cache_lock; 230 static avl_tree_t spa_l2cache_avl; 231 232 kmem_cache_t *spa_buffer_pool; 233 int spa_mode_global; 234 235 #ifdef ZFS_DEBUG 236 /* Everything except dprintf is on by default in debug builds */ 237 int zfs_flags = ~ZFS_DEBUG_DPRINTF; 238 #else 239 int zfs_flags = 0; 240 #endif 241 242 /* 243 * zfs_recover can be set to nonzero to attempt to recover from 244 * otherwise-fatal errors, typically caused by on-disk corruption. When 245 * set, calls to zfs_panic_recover() will turn into warning messages. 246 */ 247 int zfs_recover = 0; 248 249 250 /* 251 * ========================================================================== 252 * SPA config locking 253 * ========================================================================== 254 */ 255 static void 256 spa_config_lock_init(spa_t *spa) 257 { 258 for (int i = 0; i < SCL_LOCKS; i++) { 259 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 260 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 261 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 262 refcount_create(&scl->scl_count); 263 scl->scl_writer = NULL; 264 scl->scl_write_wanted = 0; 265 } 266 } 267 268 static void 269 spa_config_lock_destroy(spa_t *spa) 270 { 271 for (int i = 0; i < SCL_LOCKS; i++) { 272 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 273 mutex_destroy(&scl->scl_lock); 274 cv_destroy(&scl->scl_cv); 275 refcount_destroy(&scl->scl_count); 276 ASSERT(scl->scl_writer == NULL); 277 ASSERT(scl->scl_write_wanted == 0); 278 } 279 } 280 281 int 282 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 283 { 284 for (int i = 0; i < SCL_LOCKS; i++) { 285 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 286 if (!(locks & (1 << i))) 287 continue; 288 mutex_enter(&scl->scl_lock); 289 if (rw == RW_READER) { 290 if (scl->scl_writer || scl->scl_write_wanted) { 291 mutex_exit(&scl->scl_lock); 292 spa_config_exit(spa, locks ^ (1 << i), tag); 293 return (0); 294 } 295 } else { 296 ASSERT(scl->scl_writer != curthread); 297 if (!refcount_is_zero(&scl->scl_count)) { 298 mutex_exit(&scl->scl_lock); 299 spa_config_exit(spa, locks ^ (1 << i), tag); 300 return (0); 301 } 302 scl->scl_writer = curthread; 303 } 304 (void) refcount_add(&scl->scl_count, tag); 305 mutex_exit(&scl->scl_lock); 306 } 307 return (1); 308 } 309 310 void 311 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 312 { 313 int wlocks_held = 0; 314 315 for (int i = 0; i < SCL_LOCKS; i++) { 316 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 317 if (scl->scl_writer == curthread) 318 wlocks_held |= (1 << i); 319 if (!(locks & (1 << i))) 320 continue; 321 mutex_enter(&scl->scl_lock); 322 if (rw == RW_READER) { 323 while (scl->scl_writer || scl->scl_write_wanted) { 324 cv_wait(&scl->scl_cv, &scl->scl_lock); 325 } 326 } else { 327 ASSERT(scl->scl_writer != curthread); 328 while (!refcount_is_zero(&scl->scl_count)) { 329 scl->scl_write_wanted++; 330 cv_wait(&scl->scl_cv, &scl->scl_lock); 331 scl->scl_write_wanted--; 332 } 333 scl->scl_writer = curthread; 334 } 335 (void) refcount_add(&scl->scl_count, tag); 336 mutex_exit(&scl->scl_lock); 337 } 338 ASSERT(wlocks_held <= locks); 339 } 340 341 void 342 spa_config_exit(spa_t *spa, int locks, void *tag) 343 { 344 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 345 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 346 if (!(locks & (1 << i))) 347 continue; 348 mutex_enter(&scl->scl_lock); 349 ASSERT(!refcount_is_zero(&scl->scl_count)); 350 if (refcount_remove(&scl->scl_count, tag) == 0) { 351 ASSERT(scl->scl_writer == NULL || 352 scl->scl_writer == curthread); 353 scl->scl_writer = NULL; /* OK in either case */ 354 cv_broadcast(&scl->scl_cv); 355 } 356 mutex_exit(&scl->scl_lock); 357 } 358 } 359 360 int 361 spa_config_held(spa_t *spa, int locks, krw_t rw) 362 { 363 int locks_held = 0; 364 365 for (int i = 0; i < SCL_LOCKS; i++) { 366 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 367 if (!(locks & (1 << i))) 368 continue; 369 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || 370 (rw == RW_WRITER && scl->scl_writer == curthread)) 371 locks_held |= 1 << i; 372 } 373 374 return (locks_held); 375 } 376 377 /* 378 * ========================================================================== 379 * SPA namespace functions 380 * ========================================================================== 381 */ 382 383 /* 384 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 385 * Returns NULL if no matching spa_t is found. 386 */ 387 spa_t * 388 spa_lookup(const char *name) 389 { 390 static spa_t search; /* spa_t is large; don't allocate on stack */ 391 spa_t *spa; 392 avl_index_t where; 393 char c; 394 char *cp; 395 396 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 397 398 /* 399 * If it's a full dataset name, figure out the pool name and 400 * just use that. 401 */ 402 cp = strpbrk(name, "/@"); 403 if (cp) { 404 c = *cp; 405 *cp = '\0'; 406 } 407 408 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 409 spa = avl_find(&spa_namespace_avl, &search, &where); 410 411 if (cp) 412 *cp = c; 413 414 return (spa); 415 } 416 417 /* 418 * Create an uninitialized spa_t with the given name. Requires 419 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 420 * exist by calling spa_lookup() first. 421 */ 422 spa_t * 423 spa_add(const char *name, nvlist_t *config, const char *altroot) 424 { 425 spa_t *spa; 426 spa_config_dirent_t *dp; 427 428 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 429 430 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 431 432 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 433 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 434 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 435 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 436 mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL); 437 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 438 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 439 440 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 441 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 442 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 443 444 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 445 spa->spa_state = POOL_STATE_UNINITIALIZED; 446 spa->spa_freeze_txg = UINT64_MAX; 447 spa->spa_final_txg = UINT64_MAX; 448 spa->spa_load_max_txg = UINT64_MAX; 449 450 refcount_create(&spa->spa_refcount); 451 spa_config_lock_init(spa); 452 453 avl_add(&spa_namespace_avl, spa); 454 455 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 456 457 /* 458 * Set the alternate root, if there is one. 459 */ 460 if (altroot) { 461 spa->spa_root = spa_strdup(altroot); 462 spa_active_count++; 463 } 464 465 /* 466 * Every pool starts with the default cachefile 467 */ 468 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 469 offsetof(spa_config_dirent_t, scd_link)); 470 471 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 472 dp->scd_path = spa_strdup(spa_config_path); 473 list_insert_head(&spa->spa_config_list, dp); 474 475 if (config != NULL) 476 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 477 478 return (spa); 479 } 480 481 /* 482 * Removes a spa_t from the namespace, freeing up any memory used. Requires 483 * spa_namespace_lock. This is called only after the spa_t has been closed and 484 * deactivated. 485 */ 486 void 487 spa_remove(spa_t *spa) 488 { 489 spa_config_dirent_t *dp; 490 491 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 492 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 493 494 avl_remove(&spa_namespace_avl, spa); 495 cv_broadcast(&spa_namespace_cv); 496 497 if (spa->spa_root) { 498 spa_strfree(spa->spa_root); 499 spa_active_count--; 500 } 501 502 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 503 list_remove(&spa->spa_config_list, dp); 504 if (dp->scd_path != NULL) 505 spa_strfree(dp->scd_path); 506 kmem_free(dp, sizeof (spa_config_dirent_t)); 507 } 508 509 list_destroy(&spa->spa_config_list); 510 511 spa_config_set(spa, NULL); 512 513 refcount_destroy(&spa->spa_refcount); 514 515 spa_config_lock_destroy(spa); 516 517 cv_destroy(&spa->spa_async_cv); 518 cv_destroy(&spa->spa_scrub_io_cv); 519 cv_destroy(&spa->spa_suspend_cv); 520 521 mutex_destroy(&spa->spa_async_lock); 522 mutex_destroy(&spa->spa_scrub_lock); 523 mutex_destroy(&spa->spa_errlog_lock); 524 mutex_destroy(&spa->spa_errlist_lock); 525 mutex_destroy(&spa->spa_sync_bplist.bpl_lock); 526 mutex_destroy(&spa->spa_history_lock); 527 mutex_destroy(&spa->spa_props_lock); 528 mutex_destroy(&spa->spa_suspend_lock); 529 530 kmem_free(spa, sizeof (spa_t)); 531 } 532 533 /* 534 * Given a pool, return the next pool in the namespace, or NULL if there is 535 * none. If 'prev' is NULL, return the first pool. 536 */ 537 spa_t * 538 spa_next(spa_t *prev) 539 { 540 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 541 542 if (prev) 543 return (AVL_NEXT(&spa_namespace_avl, prev)); 544 else 545 return (avl_first(&spa_namespace_avl)); 546 } 547 548 /* 549 * ========================================================================== 550 * SPA refcount functions 551 * ========================================================================== 552 */ 553 554 /* 555 * Add a reference to the given spa_t. Must have at least one reference, or 556 * have the namespace lock held. 557 */ 558 void 559 spa_open_ref(spa_t *spa, void *tag) 560 { 561 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || 562 MUTEX_HELD(&spa_namespace_lock)); 563 (void) refcount_add(&spa->spa_refcount, tag); 564 } 565 566 /* 567 * Remove a reference to the given spa_t. Must have at least one reference, or 568 * have the namespace lock held. 569 */ 570 void 571 spa_close(spa_t *spa, void *tag) 572 { 573 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || 574 MUTEX_HELD(&spa_namespace_lock)); 575 (void) refcount_remove(&spa->spa_refcount, tag); 576 } 577 578 /* 579 * Check to see if the spa refcount is zero. Must be called with 580 * spa_namespace_lock held. We really compare against spa_minref, which is the 581 * number of references acquired when opening a pool 582 */ 583 boolean_t 584 spa_refcount_zero(spa_t *spa) 585 { 586 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 587 588 return (refcount_count(&spa->spa_refcount) == spa->spa_minref); 589 } 590 591 /* 592 * ========================================================================== 593 * SPA spare and l2cache tracking 594 * ========================================================================== 595 */ 596 597 /* 598 * Hot spares and cache devices are tracked using the same code below, 599 * for 'auxiliary' devices. 600 */ 601 602 typedef struct spa_aux { 603 uint64_t aux_guid; 604 uint64_t aux_pool; 605 avl_node_t aux_avl; 606 int aux_count; 607 } spa_aux_t; 608 609 static int 610 spa_aux_compare(const void *a, const void *b) 611 { 612 const spa_aux_t *sa = a; 613 const spa_aux_t *sb = b; 614 615 if (sa->aux_guid < sb->aux_guid) 616 return (-1); 617 else if (sa->aux_guid > sb->aux_guid) 618 return (1); 619 else 620 return (0); 621 } 622 623 void 624 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 625 { 626 avl_index_t where; 627 spa_aux_t search; 628 spa_aux_t *aux; 629 630 search.aux_guid = vd->vdev_guid; 631 if ((aux = avl_find(avl, &search, &where)) != NULL) { 632 aux->aux_count++; 633 } else { 634 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 635 aux->aux_guid = vd->vdev_guid; 636 aux->aux_count = 1; 637 avl_insert(avl, aux, where); 638 } 639 } 640 641 void 642 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 643 { 644 spa_aux_t search; 645 spa_aux_t *aux; 646 avl_index_t where; 647 648 search.aux_guid = vd->vdev_guid; 649 aux = avl_find(avl, &search, &where); 650 651 ASSERT(aux != NULL); 652 653 if (--aux->aux_count == 0) { 654 avl_remove(avl, aux); 655 kmem_free(aux, sizeof (spa_aux_t)); 656 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 657 aux->aux_pool = 0ULL; 658 } 659 } 660 661 boolean_t 662 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 663 { 664 spa_aux_t search, *found; 665 666 search.aux_guid = guid; 667 found = avl_find(avl, &search, NULL); 668 669 if (pool) { 670 if (found) 671 *pool = found->aux_pool; 672 else 673 *pool = 0ULL; 674 } 675 676 if (refcnt) { 677 if (found) 678 *refcnt = found->aux_count; 679 else 680 *refcnt = 0; 681 } 682 683 return (found != NULL); 684 } 685 686 void 687 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 688 { 689 spa_aux_t search, *found; 690 avl_index_t where; 691 692 search.aux_guid = vd->vdev_guid; 693 found = avl_find(avl, &search, &where); 694 ASSERT(found != NULL); 695 ASSERT(found->aux_pool == 0ULL); 696 697 found->aux_pool = spa_guid(vd->vdev_spa); 698 } 699 700 /* 701 * Spares are tracked globally due to the following constraints: 702 * 703 * - A spare may be part of multiple pools. 704 * - A spare may be added to a pool even if it's actively in use within 705 * another pool. 706 * - A spare in use in any pool can only be the source of a replacement if 707 * the target is a spare in the same pool. 708 * 709 * We keep track of all spares on the system through the use of a reference 710 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 711 * spare, then we bump the reference count in the AVL tree. In addition, we set 712 * the 'vdev_isspare' member to indicate that the device is a spare (active or 713 * inactive). When a spare is made active (used to replace a device in the 714 * pool), we also keep track of which pool its been made a part of. 715 * 716 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 717 * called under the spa_namespace lock as part of vdev reconfiguration. The 718 * separate spare lock exists for the status query path, which does not need to 719 * be completely consistent with respect to other vdev configuration changes. 720 */ 721 722 static int 723 spa_spare_compare(const void *a, const void *b) 724 { 725 return (spa_aux_compare(a, b)); 726 } 727 728 void 729 spa_spare_add(vdev_t *vd) 730 { 731 mutex_enter(&spa_spare_lock); 732 ASSERT(!vd->vdev_isspare); 733 spa_aux_add(vd, &spa_spare_avl); 734 vd->vdev_isspare = B_TRUE; 735 mutex_exit(&spa_spare_lock); 736 } 737 738 void 739 spa_spare_remove(vdev_t *vd) 740 { 741 mutex_enter(&spa_spare_lock); 742 ASSERT(vd->vdev_isspare); 743 spa_aux_remove(vd, &spa_spare_avl); 744 vd->vdev_isspare = B_FALSE; 745 mutex_exit(&spa_spare_lock); 746 } 747 748 boolean_t 749 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 750 { 751 boolean_t found; 752 753 mutex_enter(&spa_spare_lock); 754 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 755 mutex_exit(&spa_spare_lock); 756 757 return (found); 758 } 759 760 void 761 spa_spare_activate(vdev_t *vd) 762 { 763 mutex_enter(&spa_spare_lock); 764 ASSERT(vd->vdev_isspare); 765 spa_aux_activate(vd, &spa_spare_avl); 766 mutex_exit(&spa_spare_lock); 767 } 768 769 /* 770 * Level 2 ARC devices are tracked globally for the same reasons as spares. 771 * Cache devices currently only support one pool per cache device, and so 772 * for these devices the aux reference count is currently unused beyond 1. 773 */ 774 775 static int 776 spa_l2cache_compare(const void *a, const void *b) 777 { 778 return (spa_aux_compare(a, b)); 779 } 780 781 void 782 spa_l2cache_add(vdev_t *vd) 783 { 784 mutex_enter(&spa_l2cache_lock); 785 ASSERT(!vd->vdev_isl2cache); 786 spa_aux_add(vd, &spa_l2cache_avl); 787 vd->vdev_isl2cache = B_TRUE; 788 mutex_exit(&spa_l2cache_lock); 789 } 790 791 void 792 spa_l2cache_remove(vdev_t *vd) 793 { 794 mutex_enter(&spa_l2cache_lock); 795 ASSERT(vd->vdev_isl2cache); 796 spa_aux_remove(vd, &spa_l2cache_avl); 797 vd->vdev_isl2cache = B_FALSE; 798 mutex_exit(&spa_l2cache_lock); 799 } 800 801 boolean_t 802 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 803 { 804 boolean_t found; 805 806 mutex_enter(&spa_l2cache_lock); 807 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 808 mutex_exit(&spa_l2cache_lock); 809 810 return (found); 811 } 812 813 void 814 spa_l2cache_activate(vdev_t *vd) 815 { 816 mutex_enter(&spa_l2cache_lock); 817 ASSERT(vd->vdev_isl2cache); 818 spa_aux_activate(vd, &spa_l2cache_avl); 819 mutex_exit(&spa_l2cache_lock); 820 } 821 822 void 823 spa_l2cache_space_update(vdev_t *vd, int64_t space, int64_t alloc) 824 { 825 vdev_space_update(vd, space, alloc, 0, B_FALSE); 826 } 827 828 /* 829 * ========================================================================== 830 * SPA vdev locking 831 * ========================================================================== 832 */ 833 834 /* 835 * Lock the given spa_t for the purpose of adding or removing a vdev. 836 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 837 * It returns the next transaction group for the spa_t. 838 */ 839 uint64_t 840 spa_vdev_enter(spa_t *spa) 841 { 842 mutex_enter(&spa_namespace_lock); 843 return (spa_vdev_config_enter(spa)); 844 } 845 846 /* 847 * Internal implementation for spa_vdev_enter(). Used when a vdev 848 * operation requires multiple syncs (i.e. removing a device) while 849 * keeping the spa_namespace_lock held. 850 */ 851 uint64_t 852 spa_vdev_config_enter(spa_t *spa) 853 { 854 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 855 856 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 857 858 return (spa_last_synced_txg(spa) + 1); 859 } 860 861 /* 862 * Used in combination with spa_vdev_config_enter() to allow the syncing 863 * of multiple transactions without releasing the spa_namespace_lock. 864 */ 865 void 866 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 867 { 868 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 869 870 int config_changed = B_FALSE; 871 872 ASSERT(txg > spa_last_synced_txg(spa)); 873 874 spa->spa_pending_vdev = NULL; 875 876 /* 877 * Reassess the DTLs. 878 */ 879 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 880 881 /* 882 * If the config changed, notify the scrub thread that it must restart. 883 */ 884 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 885 dsl_pool_scrub_restart(spa->spa_dsl_pool); 886 config_changed = B_TRUE; 887 spa->spa_config_generation++; 888 } 889 890 /* 891 * Verify the metaslab classes. 892 */ 893 ASSERT(metaslab_class_validate(spa->spa_normal_class) == 0); 894 ASSERT(metaslab_class_validate(spa->spa_log_class) == 0); 895 896 spa_config_exit(spa, SCL_ALL, spa); 897 898 /* 899 * Panic the system if the specified tag requires it. This 900 * is useful for ensuring that configurations are updated 901 * transactionally. 902 */ 903 if (zio_injection_enabled) 904 zio_handle_panic_injection(spa, tag); 905 906 /* 907 * Note: this txg_wait_synced() is important because it ensures 908 * that there won't be more than one config change per txg. 909 * This allows us to use the txg as the generation number. 910 */ 911 if (error == 0) 912 txg_wait_synced(spa->spa_dsl_pool, txg); 913 914 if (vd != NULL) { 915 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0); 916 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 917 vdev_free(vd); 918 spa_config_exit(spa, SCL_ALL, spa); 919 } 920 921 /* 922 * If the config changed, update the config cache. 923 */ 924 if (config_changed) 925 spa_config_sync(spa, B_FALSE, B_TRUE); 926 } 927 928 /* 929 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 930 * locking of spa_vdev_enter(), we also want make sure the transactions have 931 * synced to disk, and then update the global configuration cache with the new 932 * information. 933 */ 934 int 935 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 936 { 937 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 938 mutex_exit(&spa_namespace_lock); 939 940 return (error); 941 } 942 943 /* 944 * Lock the given spa_t for the purpose of changing vdev state. 945 */ 946 void 947 spa_vdev_state_enter(spa_t *spa, int oplocks) 948 { 949 int locks = SCL_STATE_ALL | oplocks; 950 951 spa_config_enter(spa, locks, spa, RW_WRITER); 952 spa->spa_vdev_locks = locks; 953 } 954 955 int 956 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 957 { 958 if (vd != NULL) { 959 vdev_state_dirty(vd->vdev_top); 960 spa->spa_config_generation++; 961 } 962 963 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 964 spa_config_exit(spa, spa->spa_vdev_locks, spa); 965 966 /* 967 * If anything changed, wait for it to sync. This ensures that, 968 * from the system administrator's perspective, zpool(1M) commands 969 * are synchronous. This is important for things like zpool offline: 970 * when the command completes, you expect no further I/O from ZFS. 971 */ 972 if (vd != NULL) 973 txg_wait_synced(spa->spa_dsl_pool, 0); 974 975 return (error); 976 } 977 978 /* 979 * ========================================================================== 980 * Miscellaneous functions 981 * ========================================================================== 982 */ 983 984 /* 985 * Rename a spa_t. 986 */ 987 int 988 spa_rename(const char *name, const char *newname) 989 { 990 spa_t *spa; 991 int err; 992 993 /* 994 * Lookup the spa_t and grab the config lock for writing. We need to 995 * actually open the pool so that we can sync out the necessary labels. 996 * It's OK to call spa_open() with the namespace lock held because we 997 * allow recursive calls for other reasons. 998 */ 999 mutex_enter(&spa_namespace_lock); 1000 if ((err = spa_open(name, &spa, FTAG)) != 0) { 1001 mutex_exit(&spa_namespace_lock); 1002 return (err); 1003 } 1004 1005 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1006 1007 avl_remove(&spa_namespace_avl, spa); 1008 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); 1009 avl_add(&spa_namespace_avl, spa); 1010 1011 /* 1012 * Sync all labels to disk with the new names by marking the root vdev 1013 * dirty and waiting for it to sync. It will pick up the new pool name 1014 * during the sync. 1015 */ 1016 vdev_config_dirty(spa->spa_root_vdev); 1017 1018 spa_config_exit(spa, SCL_ALL, FTAG); 1019 1020 txg_wait_synced(spa->spa_dsl_pool, 0); 1021 1022 /* 1023 * Sync the updated config cache. 1024 */ 1025 spa_config_sync(spa, B_FALSE, B_TRUE); 1026 1027 spa_close(spa, FTAG); 1028 1029 mutex_exit(&spa_namespace_lock); 1030 1031 return (0); 1032 } 1033 1034 1035 /* 1036 * Determine whether a pool with given pool_guid exists. If device_guid is 1037 * non-zero, determine whether the pool exists *and* contains a device with the 1038 * specified device_guid. 1039 */ 1040 boolean_t 1041 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1042 { 1043 spa_t *spa; 1044 avl_tree_t *t = &spa_namespace_avl; 1045 1046 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1047 1048 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1049 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1050 continue; 1051 if (spa->spa_root_vdev == NULL) 1052 continue; 1053 if (spa_guid(spa) == pool_guid) { 1054 if (device_guid == 0) 1055 break; 1056 1057 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1058 device_guid) != NULL) 1059 break; 1060 1061 /* 1062 * Check any devices we may be in the process of adding. 1063 */ 1064 if (spa->spa_pending_vdev) { 1065 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1066 device_guid) != NULL) 1067 break; 1068 } 1069 } 1070 } 1071 1072 return (spa != NULL); 1073 } 1074 1075 char * 1076 spa_strdup(const char *s) 1077 { 1078 size_t len; 1079 char *new; 1080 1081 len = strlen(s); 1082 new = kmem_alloc(len + 1, KM_SLEEP); 1083 bcopy(s, new, len); 1084 new[len] = '\0'; 1085 1086 return (new); 1087 } 1088 1089 void 1090 spa_strfree(char *s) 1091 { 1092 kmem_free(s, strlen(s) + 1); 1093 } 1094 1095 uint64_t 1096 spa_get_random(uint64_t range) 1097 { 1098 uint64_t r; 1099 1100 ASSERT(range != 0); 1101 1102 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1103 1104 return (r % range); 1105 } 1106 1107 void 1108 sprintf_blkptr(char *buf, int len, const blkptr_t *bp) 1109 { 1110 int d; 1111 1112 if (bp == NULL) { 1113 (void) snprintf(buf, len, "<NULL>"); 1114 return; 1115 } 1116 1117 if (BP_IS_HOLE(bp)) { 1118 (void) snprintf(buf, len, "<hole>"); 1119 return; 1120 } 1121 1122 (void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ", 1123 (u_longlong_t)BP_GET_LEVEL(bp), 1124 BP_GET_TYPE(bp) < DMU_OT_NUMTYPES ? 1125 dmu_ot[BP_GET_TYPE(bp)].ot_name : "UNKNOWN", 1126 (u_longlong_t)BP_GET_LSIZE(bp), 1127 (u_longlong_t)BP_GET_PSIZE(bp)); 1128 1129 for (d = 0; d < BP_GET_NDVAS(bp); d++) { 1130 const dva_t *dva = &bp->blk_dva[d]; 1131 (void) snprintf(buf + strlen(buf), len - strlen(buf), 1132 "DVA[%d]=<%llu:%llx:%llx> ", d, 1133 (u_longlong_t)DVA_GET_VDEV(dva), 1134 (u_longlong_t)DVA_GET_OFFSET(dva), 1135 (u_longlong_t)DVA_GET_ASIZE(dva)); 1136 } 1137 1138 (void) snprintf(buf + strlen(buf), len - strlen(buf), 1139 "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx", 1140 BP_GET_CHECKSUM(bp) < ZIO_CHECKSUM_FUNCTIONS ? 1141 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name : "UNKNOWN", 1142 BP_GET_COMPRESS(bp) < ZIO_COMPRESS_FUNCTIONS ? 1143 zio_compress_table[BP_GET_COMPRESS(bp)].ci_name : "UNKNOWN", 1144 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", 1145 BP_IS_GANG(bp) ? "gang" : "contiguous", 1146 (u_longlong_t)bp->blk_birth, 1147 (u_longlong_t)bp->blk_fill, 1148 (u_longlong_t)bp->blk_cksum.zc_word[0], 1149 (u_longlong_t)bp->blk_cksum.zc_word[1], 1150 (u_longlong_t)bp->blk_cksum.zc_word[2], 1151 (u_longlong_t)bp->blk_cksum.zc_word[3]); 1152 } 1153 1154 void 1155 spa_freeze(spa_t *spa) 1156 { 1157 uint64_t freeze_txg = 0; 1158 1159 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1160 if (spa->spa_freeze_txg == UINT64_MAX) { 1161 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1162 spa->spa_freeze_txg = freeze_txg; 1163 } 1164 spa_config_exit(spa, SCL_ALL, FTAG); 1165 if (freeze_txg != 0) 1166 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1167 } 1168 1169 void 1170 zfs_panic_recover(const char *fmt, ...) 1171 { 1172 va_list adx; 1173 1174 va_start(adx, fmt); 1175 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1176 va_end(adx); 1177 } 1178 1179 /* 1180 * ========================================================================== 1181 * Accessor functions 1182 * ========================================================================== 1183 */ 1184 1185 boolean_t 1186 spa_shutting_down(spa_t *spa) 1187 { 1188 return (spa->spa_async_suspended); 1189 } 1190 1191 dsl_pool_t * 1192 spa_get_dsl(spa_t *spa) 1193 { 1194 return (spa->spa_dsl_pool); 1195 } 1196 1197 blkptr_t * 1198 spa_get_rootblkptr(spa_t *spa) 1199 { 1200 return (&spa->spa_ubsync.ub_rootbp); 1201 } 1202 1203 void 1204 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1205 { 1206 spa->spa_uberblock.ub_rootbp = *bp; 1207 } 1208 1209 void 1210 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1211 { 1212 if (spa->spa_root == NULL) 1213 buf[0] = '\0'; 1214 else 1215 (void) strncpy(buf, spa->spa_root, buflen); 1216 } 1217 1218 int 1219 spa_sync_pass(spa_t *spa) 1220 { 1221 return (spa->spa_sync_pass); 1222 } 1223 1224 char * 1225 spa_name(spa_t *spa) 1226 { 1227 return (spa->spa_name); 1228 } 1229 1230 uint64_t 1231 spa_guid(spa_t *spa) 1232 { 1233 /* 1234 * If we fail to parse the config during spa_load(), we can go through 1235 * the error path (which posts an ereport) and end up here with no root 1236 * vdev. We stash the original pool guid in 'spa_load_guid' to handle 1237 * this case. 1238 */ 1239 if (spa->spa_root_vdev != NULL) 1240 return (spa->spa_root_vdev->vdev_guid); 1241 else 1242 return (spa->spa_load_guid); 1243 } 1244 1245 uint64_t 1246 spa_last_synced_txg(spa_t *spa) 1247 { 1248 return (spa->spa_ubsync.ub_txg); 1249 } 1250 1251 uint64_t 1252 spa_first_txg(spa_t *spa) 1253 { 1254 return (spa->spa_first_txg); 1255 } 1256 1257 pool_state_t 1258 spa_state(spa_t *spa) 1259 { 1260 return (spa->spa_state); 1261 } 1262 1263 uint64_t 1264 spa_freeze_txg(spa_t *spa) 1265 { 1266 return (spa->spa_freeze_txg); 1267 } 1268 1269 /* 1270 * Return how much space is allocated in the pool (ie. sum of all asize) 1271 */ 1272 uint64_t 1273 spa_get_alloc(spa_t *spa) 1274 { 1275 return (spa->spa_root_vdev->vdev_stat.vs_alloc); 1276 } 1277 1278 /* 1279 * Return how much (raid-z inflated) space there is in the pool. 1280 */ 1281 uint64_t 1282 spa_get_space(spa_t *spa) 1283 { 1284 return (spa->spa_root_vdev->vdev_stat.vs_space); 1285 } 1286 1287 /* 1288 * Return the amount of raid-z-deflated space in the pool. 1289 */ 1290 uint64_t 1291 spa_get_dspace(spa_t *spa) 1292 { 1293 if (spa->spa_deflate) 1294 return (spa->spa_root_vdev->vdev_stat.vs_dspace); 1295 else 1296 return (spa->spa_root_vdev->vdev_stat.vs_space); 1297 } 1298 1299 /* 1300 * Return the amount of space deferred from freeing (in in-core maps only) 1301 */ 1302 uint64_t 1303 spa_get_defers(spa_t *spa) 1304 { 1305 return (spa->spa_root_vdev->vdev_stat.vs_defer); 1306 } 1307 1308 /* ARGSUSED */ 1309 uint64_t 1310 spa_get_asize(spa_t *spa, uint64_t lsize) 1311 { 1312 /* 1313 * For now, the worst case is 512-byte RAID-Z blocks, in which 1314 * case the space requirement is exactly 2x; so just assume that. 1315 * Add to this the fact that we can have up to 3 DVAs per bp, and 1316 * we have to multiply by a total of 6x. 1317 */ 1318 return (lsize * 6); 1319 } 1320 1321 /* 1322 * Return the failure mode that has been set to this pool. The default 1323 * behavior will be to block all I/Os when a complete failure occurs. 1324 */ 1325 uint8_t 1326 spa_get_failmode(spa_t *spa) 1327 { 1328 return (spa->spa_failmode); 1329 } 1330 1331 boolean_t 1332 spa_suspended(spa_t *spa) 1333 { 1334 return (spa->spa_suspended); 1335 } 1336 1337 uint64_t 1338 spa_version(spa_t *spa) 1339 { 1340 return (spa->spa_ubsync.ub_version); 1341 } 1342 1343 int 1344 spa_max_replication(spa_t *spa) 1345 { 1346 /* 1347 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1348 * handle BPs with more than one DVA allocated. Set our max 1349 * replication level accordingly. 1350 */ 1351 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1352 return (1); 1353 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1354 } 1355 1356 uint64_t 1357 bp_get_dasize(spa_t *spa, const blkptr_t *bp) 1358 { 1359 int sz = 0, i; 1360 1361 if (!spa->spa_deflate) 1362 return (BP_GET_ASIZE(bp)); 1363 1364 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1365 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 1366 vdev_t *vd = 1367 vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i])); 1368 if (vd) 1369 sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >> 1370 SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1371 } 1372 spa_config_exit(spa, SCL_VDEV, FTAG); 1373 return (sz); 1374 } 1375 1376 /* 1377 * ========================================================================== 1378 * Initialization and Termination 1379 * ========================================================================== 1380 */ 1381 1382 static int 1383 spa_name_compare(const void *a1, const void *a2) 1384 { 1385 const spa_t *s1 = a1; 1386 const spa_t *s2 = a2; 1387 int s; 1388 1389 s = strcmp(s1->spa_name, s2->spa_name); 1390 if (s > 0) 1391 return (1); 1392 if (s < 0) 1393 return (-1); 1394 return (0); 1395 } 1396 1397 int 1398 spa_busy(void) 1399 { 1400 return (spa_active_count); 1401 } 1402 1403 void 1404 spa_boot_init() 1405 { 1406 spa_config_load(); 1407 } 1408 1409 void 1410 spa_init(int mode) 1411 { 1412 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1413 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1414 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 1415 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1416 1417 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1418 offsetof(spa_t, spa_avl)); 1419 1420 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 1421 offsetof(spa_aux_t, aux_avl)); 1422 1423 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 1424 offsetof(spa_aux_t, aux_avl)); 1425 1426 spa_mode_global = mode; 1427 1428 refcount_init(); 1429 unique_init(); 1430 zio_init(); 1431 dmu_init(); 1432 zil_init(); 1433 vdev_cache_stat_init(); 1434 zfs_prop_init(); 1435 zpool_prop_init(); 1436 spa_config_load(); 1437 l2arc_start(); 1438 } 1439 1440 void 1441 spa_fini(void) 1442 { 1443 l2arc_stop(); 1444 1445 spa_evict_all(); 1446 1447 vdev_cache_stat_fini(); 1448 zil_fini(); 1449 dmu_fini(); 1450 zio_fini(); 1451 unique_fini(); 1452 refcount_fini(); 1453 1454 avl_destroy(&spa_namespace_avl); 1455 avl_destroy(&spa_spare_avl); 1456 avl_destroy(&spa_l2cache_avl); 1457 1458 cv_destroy(&spa_namespace_cv); 1459 mutex_destroy(&spa_namespace_lock); 1460 mutex_destroy(&spa_spare_lock); 1461 mutex_destroy(&spa_l2cache_lock); 1462 } 1463 1464 /* 1465 * Return whether this pool has slogs. No locking needed. 1466 * It's not a problem if the wrong answer is returned as it's only for 1467 * performance and not correctness 1468 */ 1469 boolean_t 1470 spa_has_slogs(spa_t *spa) 1471 { 1472 return (spa->spa_log_class->mc_rotor != NULL); 1473 } 1474 1475 /* 1476 * Return whether this pool is the root pool. 1477 */ 1478 boolean_t 1479 spa_is_root(spa_t *spa) 1480 { 1481 return (spa->spa_is_root); 1482 } 1483 1484 boolean_t 1485 spa_writeable(spa_t *spa) 1486 { 1487 return (!!(spa->spa_mode & FWRITE)); 1488 } 1489 1490 int 1491 spa_mode(spa_t *spa) 1492 { 1493 return (spa->spa_mode); 1494 } 1495