1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa_impl.h> 30 #include <sys/zio.h> 31 #include <sys/zio_checksum.h> 32 #include <sys/zio_compress.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/zap.h> 36 #include <sys/zil.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/uberblock_impl.h> 40 #include <sys/txg.h> 41 #include <sys/avl.h> 42 #include <sys/unique.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_dir.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/fs/zfs.h> 47 #include <sys/metaslab_impl.h> 48 #include "zfs_prop.h" 49 50 /* 51 * SPA locking 52 * 53 * There are four basic locks for managing spa_t structures: 54 * 55 * spa_namespace_lock (global mutex) 56 * 57 * This lock must be acquired to do any of the following: 58 * 59 * - Lookup a spa_t by name 60 * - Add or remove a spa_t from the namespace 61 * - Increase spa_refcount from non-zero 62 * - Check if spa_refcount is zero 63 * - Rename a spa_t 64 * - add/remove/attach/detach devices 65 * - Held for the duration of create/destroy/import/export 66 * 67 * It does not need to handle recursion. A create or destroy may 68 * reference objects (files or zvols) in other pools, but by 69 * definition they must have an existing reference, and will never need 70 * to lookup a spa_t by name. 71 * 72 * spa_refcount (per-spa refcount_t protected by mutex) 73 * 74 * This reference count keep track of any active users of the spa_t. The 75 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 76 * the refcount is never really 'zero' - opening a pool implicitly keeps 77 * some references in the DMU. Internally we check against SPA_MINREF, but 78 * present the image of a zero/non-zero value to consumers. 79 * 80 * spa_config_lock (per-spa read-priority rwlock) 81 * 82 * This protects the spa_t from config changes, and must be held in 83 * the following circumstances: 84 * 85 * - RW_READER to perform I/O to the spa 86 * - RW_WRITER to change the vdev config 87 * 88 * spa_config_cache_lock (per-spa mutex) 89 * 90 * This mutex prevents the spa_config nvlist from being updated. No 91 * other locks are required to obtain this lock, although implicitly you 92 * must have the namespace lock or non-zero refcount to have any kind 93 * of spa_t pointer at all. 94 * 95 * The locking order is fairly straightforward: 96 * 97 * spa_namespace_lock -> spa_refcount 98 * 99 * The namespace lock must be acquired to increase the refcount from 0 100 * or to check if it is zero. 101 * 102 * spa_refcount -> spa_config_lock 103 * 104 * There must be at least one valid reference on the spa_t to acquire 105 * the config lock. 106 * 107 * spa_namespace_lock -> spa_config_lock 108 * 109 * The namespace lock must always be taken before the config lock. 110 * 111 * 112 * The spa_namespace_lock and spa_config_cache_lock can be acquired directly and 113 * are globally visible. 114 * 115 * The namespace is manipulated using the following functions, all which require 116 * the spa_namespace_lock to be held. 117 * 118 * spa_lookup() Lookup a spa_t by name. 119 * 120 * spa_add() Create a new spa_t in the namespace. 121 * 122 * spa_remove() Remove a spa_t from the namespace. This also 123 * frees up any memory associated with the spa_t. 124 * 125 * spa_next() Returns the next spa_t in the system, or the 126 * first if NULL is passed. 127 * 128 * spa_evict_all() Shutdown and remove all spa_t structures in 129 * the system. 130 * 131 * spa_guid_exists() Determine whether a pool/device guid exists. 132 * 133 * The spa_refcount is manipulated using the following functions: 134 * 135 * spa_open_ref() Adds a reference to the given spa_t. Must be 136 * called with spa_namespace_lock held if the 137 * refcount is currently zero. 138 * 139 * spa_close() Remove a reference from the spa_t. This will 140 * not free the spa_t or remove it from the 141 * namespace. No locking is required. 142 * 143 * spa_refcount_zero() Returns true if the refcount is currently 144 * zero. Must be called with spa_namespace_lock 145 * held. 146 * 147 * The spa_config_lock is a form of rwlock. It must be held as RW_READER 148 * to perform I/O to the pool, and as RW_WRITER to change the vdev config. 149 * The spa_config_lock is manipulated with spa_config_{enter,exit,held}(). 150 * 151 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 152 * 153 * spa_vdev_enter() Acquire the namespace lock and the config lock 154 * for writing. 155 * 156 * spa_vdev_exit() Release the config lock, wait for all I/O 157 * to complete, sync the updated configs to the 158 * cache, and release the namespace lock. 159 * 160 * The spa_name() function also requires either the spa_namespace_lock 161 * or the spa_config_lock, as both are needed to do a rename. spa_rename() is 162 * also implemented within this file since is requires manipulation of the 163 * namespace. 164 */ 165 166 static avl_tree_t spa_namespace_avl; 167 kmutex_t spa_namespace_lock; 168 static kcondvar_t spa_namespace_cv; 169 static int spa_active_count; 170 int spa_max_replication_override = SPA_DVAS_PER_BP; 171 172 static kmutex_t spa_spare_lock; 173 static avl_tree_t spa_spare_avl; 174 static kmutex_t spa_l2cache_lock; 175 static avl_tree_t spa_l2cache_avl; 176 177 kmem_cache_t *spa_buffer_pool; 178 int spa_mode; 179 180 #ifdef ZFS_DEBUG 181 /* Everything except dprintf is on by default in debug builds */ 182 int zfs_flags = ~ZFS_DEBUG_DPRINTF; 183 #else 184 int zfs_flags = 0; 185 #endif 186 187 /* 188 * zfs_recover can be set to nonzero to attempt to recover from 189 * otherwise-fatal errors, typically caused by on-disk corruption. When 190 * set, calls to zfs_panic_recover() will turn into warning messages. 191 */ 192 int zfs_recover = 0; 193 194 #define SPA_MINREF 5 /* spa_refcnt for an open-but-idle pool */ 195 196 /* 197 * ========================================================================== 198 * SPA config locking 199 * ========================================================================== 200 */ 201 static void 202 spa_config_lock_init(spa_config_lock_t *scl) 203 { 204 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 205 scl->scl_writer = NULL; 206 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 207 refcount_create(&scl->scl_count); 208 } 209 210 static void 211 spa_config_lock_destroy(spa_config_lock_t *scl) 212 { 213 mutex_destroy(&scl->scl_lock); 214 ASSERT(scl->scl_writer == NULL); 215 cv_destroy(&scl->scl_cv); 216 refcount_destroy(&scl->scl_count); 217 } 218 219 void 220 spa_config_enter(spa_t *spa, krw_t rw, void *tag) 221 { 222 spa_config_lock_t *scl = &spa->spa_config_lock; 223 224 mutex_enter(&scl->scl_lock); 225 226 if (rw == RW_READER) { 227 while (scl->scl_writer != NULL && scl->scl_writer != curthread) 228 cv_wait(&scl->scl_cv, &scl->scl_lock); 229 } else { 230 while (!refcount_is_zero(&scl->scl_count) && 231 scl->scl_writer != curthread) 232 cv_wait(&scl->scl_cv, &scl->scl_lock); 233 scl->scl_writer = curthread; 234 } 235 236 (void) refcount_add(&scl->scl_count, tag); 237 238 mutex_exit(&scl->scl_lock); 239 } 240 241 void 242 spa_config_exit(spa_t *spa, void *tag) 243 { 244 spa_config_lock_t *scl = &spa->spa_config_lock; 245 246 mutex_enter(&scl->scl_lock); 247 248 ASSERT(!refcount_is_zero(&scl->scl_count)); 249 250 if (refcount_remove(&scl->scl_count, tag) == 0) { 251 cv_broadcast(&scl->scl_cv); 252 ASSERT(scl->scl_writer == NULL || scl->scl_writer == curthread); 253 scl->scl_writer = NULL; /* OK in either case */ 254 } 255 256 mutex_exit(&scl->scl_lock); 257 } 258 259 boolean_t 260 spa_config_held(spa_t *spa, krw_t rw) 261 { 262 spa_config_lock_t *scl = &spa->spa_config_lock; 263 264 if (rw == RW_READER) 265 return (!refcount_is_zero(&scl->scl_count)); 266 else 267 return (scl->scl_writer == curthread); 268 } 269 270 /* 271 * ========================================================================== 272 * SPA namespace functions 273 * ========================================================================== 274 */ 275 276 /* 277 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 278 * Returns NULL if no matching spa_t is found. 279 */ 280 spa_t * 281 spa_lookup(const char *name) 282 { 283 spa_t search, *spa; 284 avl_index_t where; 285 char c; 286 char *cp; 287 288 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 289 290 /* 291 * If it's a full dataset name, figure out the pool name and 292 * just use that. 293 */ 294 cp = strpbrk(name, "/@"); 295 if (cp) { 296 c = *cp; 297 *cp = '\0'; 298 } 299 300 search.spa_name = (char *)name; 301 spa = avl_find(&spa_namespace_avl, &search, &where); 302 303 if (cp) 304 *cp = c; 305 306 return (spa); 307 } 308 309 /* 310 * Create an uninitialized spa_t with the given name. Requires 311 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 312 * exist by calling spa_lookup() first. 313 */ 314 spa_t * 315 spa_add(const char *name, const char *altroot) 316 { 317 spa_t *spa; 318 spa_config_dirent_t *dp; 319 320 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 321 322 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 323 324 rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL); 325 326 mutex_init(&spa->spa_uberblock_lock, NULL, MUTEX_DEFAULT, NULL); 327 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 328 mutex_init(&spa->spa_config_cache_lock, NULL, MUTEX_DEFAULT, NULL); 329 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 330 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 331 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 332 mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL); 333 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 334 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 335 336 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 337 cv_init(&spa->spa_scrub_cv, NULL, CV_DEFAULT, NULL); 338 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 339 340 spa->spa_name = spa_strdup(name); 341 spa->spa_state = POOL_STATE_UNINITIALIZED; 342 spa->spa_freeze_txg = UINT64_MAX; 343 spa->spa_final_txg = UINT64_MAX; 344 345 refcount_create(&spa->spa_refcount); 346 spa_config_lock_init(&spa->spa_config_lock); 347 348 avl_add(&spa_namespace_avl, spa); 349 350 mutex_init(&spa->spa_zio_lock, NULL, MUTEX_DEFAULT, NULL); 351 352 /* 353 * Set the alternate root, if there is one. 354 */ 355 if (altroot) { 356 spa->spa_root = spa_strdup(altroot); 357 spa_active_count++; 358 } 359 360 /* 361 * Every pool starts with the default cachefile 362 */ 363 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 364 offsetof(spa_config_dirent_t, scd_link)); 365 366 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 367 dp->scd_path = spa_strdup(spa_config_path); 368 list_insert_head(&spa->spa_config_list, dp); 369 370 return (spa); 371 } 372 373 /* 374 * Removes a spa_t from the namespace, freeing up any memory used. Requires 375 * spa_namespace_lock. This is called only after the spa_t has been closed and 376 * deactivated. 377 */ 378 void 379 spa_remove(spa_t *spa) 380 { 381 spa_config_dirent_t *dp; 382 383 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 384 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 385 ASSERT(spa->spa_scrub_thread == NULL); 386 387 avl_remove(&spa_namespace_avl, spa); 388 cv_broadcast(&spa_namespace_cv); 389 390 if (spa->spa_root) { 391 spa_strfree(spa->spa_root); 392 spa_active_count--; 393 } 394 395 if (spa->spa_name) 396 spa_strfree(spa->spa_name); 397 398 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 399 list_remove(&spa->spa_config_list, dp); 400 if (dp->scd_path != NULL) 401 spa_strfree(dp->scd_path); 402 kmem_free(dp, sizeof (spa_config_dirent_t)); 403 } 404 405 list_destroy(&spa->spa_config_list); 406 407 spa_config_set(spa, NULL); 408 409 refcount_destroy(&spa->spa_refcount); 410 411 spa_config_lock_destroy(&spa->spa_config_lock); 412 413 rw_destroy(&spa->spa_traverse_lock); 414 415 cv_destroy(&spa->spa_async_cv); 416 cv_destroy(&spa->spa_scrub_cv); 417 cv_destroy(&spa->spa_scrub_io_cv); 418 419 mutex_destroy(&spa->spa_uberblock_lock); 420 mutex_destroy(&spa->spa_async_lock); 421 mutex_destroy(&spa->spa_config_cache_lock); 422 mutex_destroy(&spa->spa_scrub_lock); 423 mutex_destroy(&spa->spa_errlog_lock); 424 mutex_destroy(&spa->spa_errlist_lock); 425 mutex_destroy(&spa->spa_sync_bplist.bpl_lock); 426 mutex_destroy(&spa->spa_history_lock); 427 mutex_destroy(&spa->spa_props_lock); 428 mutex_destroy(&spa->spa_zio_lock); 429 430 kmem_free(spa, sizeof (spa_t)); 431 } 432 433 /* 434 * Given a pool, return the next pool in the namespace, or NULL if there is 435 * none. If 'prev' is NULL, return the first pool. 436 */ 437 spa_t * 438 spa_next(spa_t *prev) 439 { 440 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 441 442 if (prev) 443 return (AVL_NEXT(&spa_namespace_avl, prev)); 444 else 445 return (avl_first(&spa_namespace_avl)); 446 } 447 448 /* 449 * ========================================================================== 450 * SPA refcount functions 451 * ========================================================================== 452 */ 453 454 /* 455 * Add a reference to the given spa_t. Must have at least one reference, or 456 * have the namespace lock held. 457 */ 458 void 459 spa_open_ref(spa_t *spa, void *tag) 460 { 461 ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF || 462 MUTEX_HELD(&spa_namespace_lock)); 463 464 (void) refcount_add(&spa->spa_refcount, tag); 465 } 466 467 /* 468 * Remove a reference to the given spa_t. Must have at least one reference, or 469 * have the namespace lock held. 470 */ 471 void 472 spa_close(spa_t *spa, void *tag) 473 { 474 ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF || 475 MUTEX_HELD(&spa_namespace_lock)); 476 477 (void) refcount_remove(&spa->spa_refcount, tag); 478 } 479 480 /* 481 * Check to see if the spa refcount is zero. Must be called with 482 * spa_namespace_lock held. We really compare against SPA_MINREF, which is the 483 * number of references acquired when opening a pool 484 */ 485 boolean_t 486 spa_refcount_zero(spa_t *spa) 487 { 488 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 489 490 return (refcount_count(&spa->spa_refcount) == SPA_MINREF); 491 } 492 493 /* 494 * ========================================================================== 495 * SPA spare and l2cache tracking 496 * ========================================================================== 497 */ 498 499 /* 500 * Hot spares and cache devices are tracked using the same code below, 501 * for 'auxiliary' devices. 502 */ 503 504 typedef struct spa_aux { 505 uint64_t aux_guid; 506 uint64_t aux_pool; 507 avl_node_t aux_avl; 508 int aux_count; 509 } spa_aux_t; 510 511 static int 512 spa_aux_compare(const void *a, const void *b) 513 { 514 const spa_aux_t *sa = a; 515 const spa_aux_t *sb = b; 516 517 if (sa->aux_guid < sb->aux_guid) 518 return (-1); 519 else if (sa->aux_guid > sb->aux_guid) 520 return (1); 521 else 522 return (0); 523 } 524 525 void 526 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 527 { 528 avl_index_t where; 529 spa_aux_t search; 530 spa_aux_t *aux; 531 532 search.aux_guid = vd->vdev_guid; 533 if ((aux = avl_find(avl, &search, &where)) != NULL) { 534 aux->aux_count++; 535 } else { 536 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 537 aux->aux_guid = vd->vdev_guid; 538 aux->aux_count = 1; 539 avl_insert(avl, aux, where); 540 } 541 } 542 543 void 544 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 545 { 546 spa_aux_t search; 547 spa_aux_t *aux; 548 avl_index_t where; 549 550 search.aux_guid = vd->vdev_guid; 551 aux = avl_find(avl, &search, &where); 552 553 ASSERT(aux != NULL); 554 555 if (--aux->aux_count == 0) { 556 avl_remove(avl, aux); 557 kmem_free(aux, sizeof (spa_aux_t)); 558 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 559 aux->aux_pool = 0ULL; 560 } 561 } 562 563 boolean_t 564 spa_aux_exists(uint64_t guid, uint64_t *pool, avl_tree_t *avl) 565 { 566 spa_aux_t search, *found; 567 avl_index_t where; 568 569 search.aux_guid = guid; 570 found = avl_find(avl, &search, &where); 571 572 if (pool) { 573 if (found) 574 *pool = found->aux_pool; 575 else 576 *pool = 0ULL; 577 } 578 579 return (found != NULL); 580 } 581 582 void 583 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 584 { 585 spa_aux_t search, *found; 586 avl_index_t where; 587 588 search.aux_guid = vd->vdev_guid; 589 found = avl_find(avl, &search, &where); 590 ASSERT(found != NULL); 591 ASSERT(found->aux_pool == 0ULL); 592 593 found->aux_pool = spa_guid(vd->vdev_spa); 594 } 595 596 /* 597 * Spares are tracked globally due to the following constraints: 598 * 599 * - A spare may be part of multiple pools. 600 * - A spare may be added to a pool even if it's actively in use within 601 * another pool. 602 * - A spare in use in any pool can only be the source of a replacement if 603 * the target is a spare in the same pool. 604 * 605 * We keep track of all spares on the system through the use of a reference 606 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 607 * spare, then we bump the reference count in the AVL tree. In addition, we set 608 * the 'vdev_isspare' member to indicate that the device is a spare (active or 609 * inactive). When a spare is made active (used to replace a device in the 610 * pool), we also keep track of which pool its been made a part of. 611 * 612 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 613 * called under the spa_namespace lock as part of vdev reconfiguration. The 614 * separate spare lock exists for the status query path, which does not need to 615 * be completely consistent with respect to other vdev configuration changes. 616 */ 617 618 static int 619 spa_spare_compare(const void *a, const void *b) 620 { 621 return (spa_aux_compare(a, b)); 622 } 623 624 void 625 spa_spare_add(vdev_t *vd) 626 { 627 mutex_enter(&spa_spare_lock); 628 ASSERT(!vd->vdev_isspare); 629 spa_aux_add(vd, &spa_spare_avl); 630 vd->vdev_isspare = B_TRUE; 631 mutex_exit(&spa_spare_lock); 632 } 633 634 void 635 spa_spare_remove(vdev_t *vd) 636 { 637 mutex_enter(&spa_spare_lock); 638 ASSERT(vd->vdev_isspare); 639 spa_aux_remove(vd, &spa_spare_avl); 640 vd->vdev_isspare = B_FALSE; 641 mutex_exit(&spa_spare_lock); 642 } 643 644 boolean_t 645 spa_spare_exists(uint64_t guid, uint64_t *pool) 646 { 647 boolean_t found; 648 649 mutex_enter(&spa_spare_lock); 650 found = spa_aux_exists(guid, pool, &spa_spare_avl); 651 mutex_exit(&spa_spare_lock); 652 653 return (found); 654 } 655 656 void 657 spa_spare_activate(vdev_t *vd) 658 { 659 mutex_enter(&spa_spare_lock); 660 ASSERT(vd->vdev_isspare); 661 spa_aux_activate(vd, &spa_spare_avl); 662 mutex_exit(&spa_spare_lock); 663 } 664 665 /* 666 * Level 2 ARC devices are tracked globally for the same reasons as spares. 667 * Cache devices currently only support one pool per cache device, and so 668 * for these devices the aux reference count is currently unused beyond 1. 669 */ 670 671 static int 672 spa_l2cache_compare(const void *a, const void *b) 673 { 674 return (spa_aux_compare(a, b)); 675 } 676 677 void 678 spa_l2cache_add(vdev_t *vd) 679 { 680 mutex_enter(&spa_l2cache_lock); 681 ASSERT(!vd->vdev_isl2cache); 682 spa_aux_add(vd, &spa_l2cache_avl); 683 vd->vdev_isl2cache = B_TRUE; 684 mutex_exit(&spa_l2cache_lock); 685 } 686 687 void 688 spa_l2cache_remove(vdev_t *vd) 689 { 690 mutex_enter(&spa_l2cache_lock); 691 ASSERT(vd->vdev_isl2cache); 692 spa_aux_remove(vd, &spa_l2cache_avl); 693 vd->vdev_isl2cache = B_FALSE; 694 mutex_exit(&spa_l2cache_lock); 695 } 696 697 boolean_t 698 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 699 { 700 boolean_t found; 701 702 mutex_enter(&spa_l2cache_lock); 703 found = spa_aux_exists(guid, pool, &spa_l2cache_avl); 704 mutex_exit(&spa_l2cache_lock); 705 706 return (found); 707 } 708 709 void 710 spa_l2cache_activate(vdev_t *vd) 711 { 712 mutex_enter(&spa_l2cache_lock); 713 ASSERT(vd->vdev_isl2cache); 714 spa_aux_activate(vd, &spa_l2cache_avl); 715 mutex_exit(&spa_l2cache_lock); 716 } 717 718 void 719 spa_l2cache_space_update(vdev_t *vd, int64_t space, int64_t alloc) 720 { 721 vdev_space_update(vd, space, alloc, B_FALSE); 722 } 723 724 /* 725 * ========================================================================== 726 * SPA vdev locking 727 * ========================================================================== 728 */ 729 730 /* 731 * Lock the given spa_t for the purpose of adding or removing a vdev. 732 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 733 * It returns the next transaction group for the spa_t. 734 */ 735 uint64_t 736 spa_vdev_enter(spa_t *spa) 737 { 738 mutex_enter(&spa_namespace_lock); 739 740 /* 741 * Suspend scrub activity while we mess with the config. We must do 742 * this after acquiring the namespace lock to avoid a 3-way deadlock 743 * with spa_scrub_stop() and the scrub thread. 744 */ 745 spa_scrub_suspend(spa); 746 747 spa_config_enter(spa, RW_WRITER, spa); 748 749 return (spa_last_synced_txg(spa) + 1); 750 } 751 752 /* 753 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 754 * locking of spa_vdev_enter(), we also want make sure the transactions have 755 * synced to disk, and then update the global configuration cache with the new 756 * information. 757 */ 758 int 759 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 760 { 761 int config_changed = B_FALSE; 762 763 ASSERT(txg > spa_last_synced_txg(spa)); 764 765 /* 766 * Reassess the DTLs. 767 */ 768 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 769 770 /* 771 * If the config changed, notify the scrub thread that it must restart. 772 */ 773 if (error == 0 && !list_is_empty(&spa->spa_dirty_list)) { 774 config_changed = B_TRUE; 775 spa_scrub_restart(spa, txg); 776 } 777 778 spa_config_exit(spa, spa); 779 780 /* 781 * Allow scrubbing to resume. 782 */ 783 spa_scrub_resume(spa); 784 785 /* 786 * Note: this txg_wait_synced() is important because it ensures 787 * that there won't be more than one config change per txg. 788 * This allows us to use the txg as the generation number. 789 */ 790 if (error == 0) 791 txg_wait_synced(spa->spa_dsl_pool, txg); 792 793 if (vd != NULL) { 794 ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0); 795 vdev_free(vd); 796 } 797 798 /* 799 * If the config changed, update the config cache. 800 */ 801 if (config_changed) 802 spa_config_sync(spa, B_FALSE, B_TRUE); 803 804 mutex_exit(&spa_namespace_lock); 805 806 return (error); 807 } 808 809 /* 810 * ========================================================================== 811 * Miscellaneous functions 812 * ========================================================================== 813 */ 814 815 /* 816 * Rename a spa_t. 817 */ 818 int 819 spa_rename(const char *name, const char *newname) 820 { 821 spa_t *spa; 822 int err; 823 824 /* 825 * Lookup the spa_t and grab the config lock for writing. We need to 826 * actually open the pool so that we can sync out the necessary labels. 827 * It's OK to call spa_open() with the namespace lock held because we 828 * allow recursive calls for other reasons. 829 */ 830 mutex_enter(&spa_namespace_lock); 831 if ((err = spa_open(name, &spa, FTAG)) != 0) { 832 mutex_exit(&spa_namespace_lock); 833 return (err); 834 } 835 836 spa_config_enter(spa, RW_WRITER, FTAG); 837 838 avl_remove(&spa_namespace_avl, spa); 839 spa_strfree(spa->spa_name); 840 spa->spa_name = spa_strdup(newname); 841 avl_add(&spa_namespace_avl, spa); 842 843 /* 844 * Sync all labels to disk with the new names by marking the root vdev 845 * dirty and waiting for it to sync. It will pick up the new pool name 846 * during the sync. 847 */ 848 vdev_config_dirty(spa->spa_root_vdev); 849 850 spa_config_exit(spa, FTAG); 851 852 txg_wait_synced(spa->spa_dsl_pool, 0); 853 854 /* 855 * Sync the updated config cache. 856 */ 857 spa_config_sync(spa, B_FALSE, B_TRUE); 858 859 spa_close(spa, FTAG); 860 861 mutex_exit(&spa_namespace_lock); 862 863 return (0); 864 } 865 866 867 /* 868 * Determine whether a pool with given pool_guid exists. If device_guid is 869 * non-zero, determine whether the pool exists *and* contains a device with the 870 * specified device_guid. 871 */ 872 boolean_t 873 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 874 { 875 spa_t *spa; 876 avl_tree_t *t = &spa_namespace_avl; 877 878 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 879 880 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 881 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 882 continue; 883 if (spa->spa_root_vdev == NULL) 884 continue; 885 if (spa_guid(spa) == pool_guid) { 886 if (device_guid == 0) 887 break; 888 889 if (vdev_lookup_by_guid(spa->spa_root_vdev, 890 device_guid) != NULL) 891 break; 892 893 /* 894 * Check any devices we may be in the process of adding. 895 */ 896 if (spa->spa_pending_vdev) { 897 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 898 device_guid) != NULL) 899 break; 900 } 901 } 902 } 903 904 return (spa != NULL); 905 } 906 907 char * 908 spa_strdup(const char *s) 909 { 910 size_t len; 911 char *new; 912 913 len = strlen(s); 914 new = kmem_alloc(len + 1, KM_SLEEP); 915 bcopy(s, new, len); 916 new[len] = '\0'; 917 918 return (new); 919 } 920 921 void 922 spa_strfree(char *s) 923 { 924 kmem_free(s, strlen(s) + 1); 925 } 926 927 uint64_t 928 spa_get_random(uint64_t range) 929 { 930 uint64_t r; 931 932 ASSERT(range != 0); 933 934 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 935 936 return (r % range); 937 } 938 939 void 940 sprintf_blkptr(char *buf, int len, const blkptr_t *bp) 941 { 942 int d; 943 944 if (bp == NULL) { 945 (void) snprintf(buf, len, "<NULL>"); 946 return; 947 } 948 949 if (BP_IS_HOLE(bp)) { 950 (void) snprintf(buf, len, "<hole>"); 951 return; 952 } 953 954 (void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ", 955 (u_longlong_t)BP_GET_LEVEL(bp), 956 dmu_ot[BP_GET_TYPE(bp)].ot_name, 957 (u_longlong_t)BP_GET_LSIZE(bp), 958 (u_longlong_t)BP_GET_PSIZE(bp)); 959 960 for (d = 0; d < BP_GET_NDVAS(bp); d++) { 961 const dva_t *dva = &bp->blk_dva[d]; 962 (void) snprintf(buf + strlen(buf), len - strlen(buf), 963 "DVA[%d]=<%llu:%llx:%llx> ", d, 964 (u_longlong_t)DVA_GET_VDEV(dva), 965 (u_longlong_t)DVA_GET_OFFSET(dva), 966 (u_longlong_t)DVA_GET_ASIZE(dva)); 967 } 968 969 (void) snprintf(buf + strlen(buf), len - strlen(buf), 970 "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx", 971 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name, 972 zio_compress_table[BP_GET_COMPRESS(bp)].ci_name, 973 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", 974 BP_IS_GANG(bp) ? "gang" : "contiguous", 975 (u_longlong_t)bp->blk_birth, 976 (u_longlong_t)bp->blk_fill, 977 (u_longlong_t)bp->blk_cksum.zc_word[0], 978 (u_longlong_t)bp->blk_cksum.zc_word[1], 979 (u_longlong_t)bp->blk_cksum.zc_word[2], 980 (u_longlong_t)bp->blk_cksum.zc_word[3]); 981 } 982 983 void 984 spa_freeze(spa_t *spa) 985 { 986 uint64_t freeze_txg = 0; 987 988 spa_config_enter(spa, RW_WRITER, FTAG); 989 if (spa->spa_freeze_txg == UINT64_MAX) { 990 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 991 spa->spa_freeze_txg = freeze_txg; 992 } 993 spa_config_exit(spa, FTAG); 994 if (freeze_txg != 0) 995 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 996 } 997 998 void 999 zfs_panic_recover(const char *fmt, ...) 1000 { 1001 va_list adx; 1002 1003 va_start(adx, fmt); 1004 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1005 va_end(adx); 1006 } 1007 1008 /* 1009 * ========================================================================== 1010 * Accessor functions 1011 * ========================================================================== 1012 */ 1013 1014 krwlock_t * 1015 spa_traverse_rwlock(spa_t *spa) 1016 { 1017 return (&spa->spa_traverse_lock); 1018 } 1019 1020 int 1021 spa_traverse_wanted(spa_t *spa) 1022 { 1023 return (spa->spa_traverse_wanted); 1024 } 1025 1026 dsl_pool_t * 1027 spa_get_dsl(spa_t *spa) 1028 { 1029 return (spa->spa_dsl_pool); 1030 } 1031 1032 blkptr_t * 1033 spa_get_rootblkptr(spa_t *spa) 1034 { 1035 return (&spa->spa_ubsync.ub_rootbp); 1036 } 1037 1038 void 1039 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1040 { 1041 spa->spa_uberblock.ub_rootbp = *bp; 1042 } 1043 1044 void 1045 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1046 { 1047 if (spa->spa_root == NULL) 1048 buf[0] = '\0'; 1049 else 1050 (void) strncpy(buf, spa->spa_root, buflen); 1051 } 1052 1053 int 1054 spa_sync_pass(spa_t *spa) 1055 { 1056 return (spa->spa_sync_pass); 1057 } 1058 1059 char * 1060 spa_name(spa_t *spa) 1061 { 1062 /* 1063 * Accessing the name requires holding either the namespace lock or the 1064 * config lock, both of which are required to do a rename. 1065 */ 1066 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 1067 spa_config_held(spa, RW_READER)); 1068 1069 return (spa->spa_name); 1070 } 1071 1072 uint64_t 1073 spa_guid(spa_t *spa) 1074 { 1075 /* 1076 * If we fail to parse the config during spa_load(), we can go through 1077 * the error path (which posts an ereport) and end up here with no root 1078 * vdev. We stash the original pool guid in 'spa_load_guid' to handle 1079 * this case. 1080 */ 1081 if (spa->spa_root_vdev != NULL) 1082 return (spa->spa_root_vdev->vdev_guid); 1083 else 1084 return (spa->spa_load_guid); 1085 } 1086 1087 uint64_t 1088 spa_last_synced_txg(spa_t *spa) 1089 { 1090 return (spa->spa_ubsync.ub_txg); 1091 } 1092 1093 uint64_t 1094 spa_first_txg(spa_t *spa) 1095 { 1096 return (spa->spa_first_txg); 1097 } 1098 1099 int 1100 spa_state(spa_t *spa) 1101 { 1102 return (spa->spa_state); 1103 } 1104 1105 uint64_t 1106 spa_freeze_txg(spa_t *spa) 1107 { 1108 return (spa->spa_freeze_txg); 1109 } 1110 1111 /* 1112 * Return how much space is allocated in the pool (ie. sum of all asize) 1113 */ 1114 uint64_t 1115 spa_get_alloc(spa_t *spa) 1116 { 1117 return (spa->spa_root_vdev->vdev_stat.vs_alloc); 1118 } 1119 1120 /* 1121 * Return how much (raid-z inflated) space there is in the pool. 1122 */ 1123 uint64_t 1124 spa_get_space(spa_t *spa) 1125 { 1126 return (spa->spa_root_vdev->vdev_stat.vs_space); 1127 } 1128 1129 /* 1130 * Return the amount of raid-z-deflated space in the pool. 1131 */ 1132 uint64_t 1133 spa_get_dspace(spa_t *spa) 1134 { 1135 if (spa->spa_deflate) 1136 return (spa->spa_root_vdev->vdev_stat.vs_dspace); 1137 else 1138 return (spa->spa_root_vdev->vdev_stat.vs_space); 1139 } 1140 1141 /* ARGSUSED */ 1142 uint64_t 1143 spa_get_asize(spa_t *spa, uint64_t lsize) 1144 { 1145 /* 1146 * For now, the worst case is 512-byte RAID-Z blocks, in which 1147 * case the space requirement is exactly 2x; so just assume that. 1148 * Add to this the fact that we can have up to 3 DVAs per bp, and 1149 * we have to multiply by a total of 6x. 1150 */ 1151 return (lsize * 6); 1152 } 1153 1154 /* 1155 * Return the failure mode that has been set to this pool. The default 1156 * behavior will be to block all I/Os when a complete failure occurs. 1157 */ 1158 uint8_t 1159 spa_get_failmode(spa_t *spa) 1160 { 1161 return (spa->spa_failmode); 1162 } 1163 1164 uint64_t 1165 spa_version(spa_t *spa) 1166 { 1167 return (spa->spa_ubsync.ub_version); 1168 } 1169 1170 int 1171 spa_max_replication(spa_t *spa) 1172 { 1173 /* 1174 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1175 * handle BPs with more than one DVA allocated. Set our max 1176 * replication level accordingly. 1177 */ 1178 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1179 return (1); 1180 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1181 } 1182 1183 uint64_t 1184 bp_get_dasize(spa_t *spa, const blkptr_t *bp) 1185 { 1186 int sz = 0, i; 1187 1188 if (!spa->spa_deflate) 1189 return (BP_GET_ASIZE(bp)); 1190 1191 spa_config_enter(spa, RW_READER, FTAG); 1192 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 1193 vdev_t *vd = 1194 vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i])); 1195 if (vd) 1196 sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >> 1197 SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1198 } 1199 spa_config_exit(spa, FTAG); 1200 return (sz); 1201 } 1202 1203 /* 1204 * ========================================================================== 1205 * Initialization and Termination 1206 * ========================================================================== 1207 */ 1208 1209 static int 1210 spa_name_compare(const void *a1, const void *a2) 1211 { 1212 const spa_t *s1 = a1; 1213 const spa_t *s2 = a2; 1214 int s; 1215 1216 s = strcmp(s1->spa_name, s2->spa_name); 1217 if (s > 0) 1218 return (1); 1219 if (s < 0) 1220 return (-1); 1221 return (0); 1222 } 1223 1224 int 1225 spa_busy(void) 1226 { 1227 return (spa_active_count); 1228 } 1229 1230 void 1231 spa_boot_init() 1232 { 1233 spa_config_load(); 1234 } 1235 1236 void 1237 spa_init(int mode) 1238 { 1239 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1240 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1241 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 1242 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1243 1244 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1245 offsetof(spa_t, spa_avl)); 1246 1247 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 1248 offsetof(spa_aux_t, aux_avl)); 1249 1250 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 1251 offsetof(spa_aux_t, aux_avl)); 1252 1253 spa_mode = mode; 1254 1255 refcount_init(); 1256 unique_init(); 1257 zio_init(); 1258 dmu_init(); 1259 zil_init(); 1260 vdev_cache_stat_init(); 1261 zfs_prop_init(); 1262 zpool_prop_init(); 1263 spa_config_load(); 1264 } 1265 1266 void 1267 spa_fini(void) 1268 { 1269 spa_evict_all(); 1270 1271 vdev_cache_stat_fini(); 1272 zil_fini(); 1273 dmu_fini(); 1274 zio_fini(); 1275 unique_fini(); 1276 refcount_fini(); 1277 1278 avl_destroy(&spa_namespace_avl); 1279 avl_destroy(&spa_spare_avl); 1280 avl_destroy(&spa_l2cache_avl); 1281 1282 cv_destroy(&spa_namespace_cv); 1283 mutex_destroy(&spa_namespace_lock); 1284 mutex_destroy(&spa_spare_lock); 1285 mutex_destroy(&spa_l2cache_lock); 1286 } 1287 1288 /* 1289 * Return whether this pool has slogs. No locking needed. 1290 * It's not a problem if the wrong answer is returned as it's only for 1291 * performance and not correctness 1292 */ 1293 boolean_t 1294 spa_has_slogs(spa_t *spa) 1295 { 1296 return (spa->spa_log_class->mc_rotor != NULL); 1297 } 1298