1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa_impl.h> 29 #include <sys/spa_boot.h> 30 #include <sys/zio.h> 31 #include <sys/zio_checksum.h> 32 #include <sys/zio_compress.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/zap.h> 36 #include <sys/zil.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/uberblock_impl.h> 40 #include <sys/txg.h> 41 #include <sys/avl.h> 42 #include <sys/unique.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_dir.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/dsl_scan.h> 47 #include <sys/fs/zfs.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/arc.h> 50 #include <sys/ddt.h> 51 #include "zfs_prop.h" 52 #include "zfeature_common.h" 53 54 /* 55 * SPA locking 56 * 57 * There are four basic locks for managing spa_t structures: 58 * 59 * spa_namespace_lock (global mutex) 60 * 61 * This lock must be acquired to do any of the following: 62 * 63 * - Lookup a spa_t by name 64 * - Add or remove a spa_t from the namespace 65 * - Increase spa_refcount from non-zero 66 * - Check if spa_refcount is zero 67 * - Rename a spa_t 68 * - add/remove/attach/detach devices 69 * - Held for the duration of create/destroy/import/export 70 * 71 * It does not need to handle recursion. A create or destroy may 72 * reference objects (files or zvols) in other pools, but by 73 * definition they must have an existing reference, and will never need 74 * to lookup a spa_t by name. 75 * 76 * spa_refcount (per-spa refcount_t protected by mutex) 77 * 78 * This reference count keep track of any active users of the spa_t. The 79 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 80 * the refcount is never really 'zero' - opening a pool implicitly keeps 81 * some references in the DMU. Internally we check against spa_minref, but 82 * present the image of a zero/non-zero value to consumers. 83 * 84 * spa_config_lock[] (per-spa array of rwlocks) 85 * 86 * This protects the spa_t from config changes, and must be held in 87 * the following circumstances: 88 * 89 * - RW_READER to perform I/O to the spa 90 * - RW_WRITER to change the vdev config 91 * 92 * The locking order is fairly straightforward: 93 * 94 * spa_namespace_lock -> spa_refcount 95 * 96 * The namespace lock must be acquired to increase the refcount from 0 97 * or to check if it is zero. 98 * 99 * spa_refcount -> spa_config_lock[] 100 * 101 * There must be at least one valid reference on the spa_t to acquire 102 * the config lock. 103 * 104 * spa_namespace_lock -> spa_config_lock[] 105 * 106 * The namespace lock must always be taken before the config lock. 107 * 108 * 109 * The spa_namespace_lock can be acquired directly and is globally visible. 110 * 111 * The namespace is manipulated using the following functions, all of which 112 * require the spa_namespace_lock to be held. 113 * 114 * spa_lookup() Lookup a spa_t by name. 115 * 116 * spa_add() Create a new spa_t in the namespace. 117 * 118 * spa_remove() Remove a spa_t from the namespace. This also 119 * frees up any memory associated with the spa_t. 120 * 121 * spa_next() Returns the next spa_t in the system, or the 122 * first if NULL is passed. 123 * 124 * spa_evict_all() Shutdown and remove all spa_t structures in 125 * the system. 126 * 127 * spa_guid_exists() Determine whether a pool/device guid exists. 128 * 129 * The spa_refcount is manipulated using the following functions: 130 * 131 * spa_open_ref() Adds a reference to the given spa_t. Must be 132 * called with spa_namespace_lock held if the 133 * refcount is currently zero. 134 * 135 * spa_close() Remove a reference from the spa_t. This will 136 * not free the spa_t or remove it from the 137 * namespace. No locking is required. 138 * 139 * spa_refcount_zero() Returns true if the refcount is currently 140 * zero. Must be called with spa_namespace_lock 141 * held. 142 * 143 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 144 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 145 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 146 * 147 * To read the configuration, it suffices to hold one of these locks as reader. 148 * To modify the configuration, you must hold all locks as writer. To modify 149 * vdev state without altering the vdev tree's topology (e.g. online/offline), 150 * you must hold SCL_STATE and SCL_ZIO as writer. 151 * 152 * We use these distinct config locks to avoid recursive lock entry. 153 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 154 * block allocations (SCL_ALLOC), which may require reading space maps 155 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 156 * 157 * The spa config locks cannot be normal rwlocks because we need the 158 * ability to hand off ownership. For example, SCL_ZIO is acquired 159 * by the issuing thread and later released by an interrupt thread. 160 * They do, however, obey the usual write-wanted semantics to prevent 161 * writer (i.e. system administrator) starvation. 162 * 163 * The lock acquisition rules are as follows: 164 * 165 * SCL_CONFIG 166 * Protects changes to the vdev tree topology, such as vdev 167 * add/remove/attach/detach. Protects the dirty config list 168 * (spa_config_dirty_list) and the set of spares and l2arc devices. 169 * 170 * SCL_STATE 171 * Protects changes to pool state and vdev state, such as vdev 172 * online/offline/fault/degrade/clear. Protects the dirty state list 173 * (spa_state_dirty_list) and global pool state (spa_state). 174 * 175 * SCL_ALLOC 176 * Protects changes to metaslab groups and classes. 177 * Held as reader by metaslab_alloc() and metaslab_claim(). 178 * 179 * SCL_ZIO 180 * Held by bp-level zios (those which have no io_vd upon entry) 181 * to prevent changes to the vdev tree. The bp-level zio implicitly 182 * protects all of its vdev child zios, which do not hold SCL_ZIO. 183 * 184 * SCL_FREE 185 * Protects changes to metaslab groups and classes. 186 * Held as reader by metaslab_free(). SCL_FREE is distinct from 187 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 188 * blocks in zio_done() while another i/o that holds either 189 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 190 * 191 * SCL_VDEV 192 * Held as reader to prevent changes to the vdev tree during trivial 193 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 194 * other locks, and lower than all of them, to ensure that it's safe 195 * to acquire regardless of caller context. 196 * 197 * In addition, the following rules apply: 198 * 199 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 200 * The lock ordering is SCL_CONFIG > spa_props_lock. 201 * 202 * (b) I/O operations on leaf vdevs. For any zio operation that takes 203 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 204 * or zio_write_phys() -- the caller must ensure that the config cannot 205 * cannot change in the interim, and that the vdev cannot be reopened. 206 * SCL_STATE as reader suffices for both. 207 * 208 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 209 * 210 * spa_vdev_enter() Acquire the namespace lock and the config lock 211 * for writing. 212 * 213 * spa_vdev_exit() Release the config lock, wait for all I/O 214 * to complete, sync the updated configs to the 215 * cache, and release the namespace lock. 216 * 217 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 218 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 219 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 220 * 221 * spa_rename() is also implemented within this file since it requires 222 * manipulation of the namespace. 223 */ 224 225 static avl_tree_t spa_namespace_avl; 226 kmutex_t spa_namespace_lock; 227 static kcondvar_t spa_namespace_cv; 228 static int spa_active_count; 229 int spa_max_replication_override = SPA_DVAS_PER_BP; 230 231 static kmutex_t spa_spare_lock; 232 static avl_tree_t spa_spare_avl; 233 static kmutex_t spa_l2cache_lock; 234 static avl_tree_t spa_l2cache_avl; 235 236 kmem_cache_t *spa_buffer_pool; 237 int spa_mode_global; 238 239 #ifdef ZFS_DEBUG 240 /* Everything except dprintf is on by default in debug builds */ 241 int zfs_flags = ~ZFS_DEBUG_DPRINTF; 242 #else 243 int zfs_flags = 0; 244 #endif 245 246 /* 247 * zfs_recover can be set to nonzero to attempt to recover from 248 * otherwise-fatal errors, typically caused by on-disk corruption. When 249 * set, calls to zfs_panic_recover() will turn into warning messages. 250 */ 251 int zfs_recover = 0; 252 253 extern int zfs_txg_synctime_ms; 254 255 /* 256 * Expiration time in units of zfs_txg_synctime_ms. This value has two 257 * meanings. First it is used to determine when the spa_deadman logic 258 * should fire. By default the spa_deadman will fire if spa_sync has 259 * not completed in 1000 * zfs_txg_synctime_ms (i.e. 1000 seconds). 260 * Secondly, the value determines if an I/O is considered "hung". 261 * Any I/O that has not completed in zfs_deadman_synctime is considered 262 * "hung" resulting in a system panic. 263 * 1000 zfs_txg_synctime_ms (i.e. 1000 seconds). 264 */ 265 uint64_t zfs_deadman_synctime = 1000ULL; 266 267 /* 268 * Override the zfs deadman behavior via /etc/system. By default the 269 * deadman is enabled except on VMware and sparc deployments. 270 */ 271 int zfs_deadman_enabled = -1; 272 273 274 /* 275 * ========================================================================== 276 * SPA config locking 277 * ========================================================================== 278 */ 279 static void 280 spa_config_lock_init(spa_t *spa) 281 { 282 for (int i = 0; i < SCL_LOCKS; i++) { 283 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 284 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 285 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 286 refcount_create(&scl->scl_count); 287 scl->scl_writer = NULL; 288 scl->scl_write_wanted = 0; 289 } 290 } 291 292 static void 293 spa_config_lock_destroy(spa_t *spa) 294 { 295 for (int i = 0; i < SCL_LOCKS; i++) { 296 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 297 mutex_destroy(&scl->scl_lock); 298 cv_destroy(&scl->scl_cv); 299 refcount_destroy(&scl->scl_count); 300 ASSERT(scl->scl_writer == NULL); 301 ASSERT(scl->scl_write_wanted == 0); 302 } 303 } 304 305 int 306 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 307 { 308 for (int i = 0; i < SCL_LOCKS; i++) { 309 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 310 if (!(locks & (1 << i))) 311 continue; 312 mutex_enter(&scl->scl_lock); 313 if (rw == RW_READER) { 314 if (scl->scl_writer || scl->scl_write_wanted) { 315 mutex_exit(&scl->scl_lock); 316 spa_config_exit(spa, locks ^ (1 << i), tag); 317 return (0); 318 } 319 } else { 320 ASSERT(scl->scl_writer != curthread); 321 if (!refcount_is_zero(&scl->scl_count)) { 322 mutex_exit(&scl->scl_lock); 323 spa_config_exit(spa, locks ^ (1 << i), tag); 324 return (0); 325 } 326 scl->scl_writer = curthread; 327 } 328 (void) refcount_add(&scl->scl_count, tag); 329 mutex_exit(&scl->scl_lock); 330 } 331 return (1); 332 } 333 334 void 335 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 336 { 337 int wlocks_held = 0; 338 339 for (int i = 0; i < SCL_LOCKS; i++) { 340 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 341 if (scl->scl_writer == curthread) 342 wlocks_held |= (1 << i); 343 if (!(locks & (1 << i))) 344 continue; 345 mutex_enter(&scl->scl_lock); 346 if (rw == RW_READER) { 347 while (scl->scl_writer || scl->scl_write_wanted) { 348 cv_wait(&scl->scl_cv, &scl->scl_lock); 349 } 350 } else { 351 ASSERT(scl->scl_writer != curthread); 352 while (!refcount_is_zero(&scl->scl_count)) { 353 scl->scl_write_wanted++; 354 cv_wait(&scl->scl_cv, &scl->scl_lock); 355 scl->scl_write_wanted--; 356 } 357 scl->scl_writer = curthread; 358 } 359 (void) refcount_add(&scl->scl_count, tag); 360 mutex_exit(&scl->scl_lock); 361 } 362 ASSERT(wlocks_held <= locks); 363 } 364 365 void 366 spa_config_exit(spa_t *spa, int locks, void *tag) 367 { 368 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 369 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 370 if (!(locks & (1 << i))) 371 continue; 372 mutex_enter(&scl->scl_lock); 373 ASSERT(!refcount_is_zero(&scl->scl_count)); 374 if (refcount_remove(&scl->scl_count, tag) == 0) { 375 ASSERT(scl->scl_writer == NULL || 376 scl->scl_writer == curthread); 377 scl->scl_writer = NULL; /* OK in either case */ 378 cv_broadcast(&scl->scl_cv); 379 } 380 mutex_exit(&scl->scl_lock); 381 } 382 } 383 384 int 385 spa_config_held(spa_t *spa, int locks, krw_t rw) 386 { 387 int locks_held = 0; 388 389 for (int i = 0; i < SCL_LOCKS; i++) { 390 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 391 if (!(locks & (1 << i))) 392 continue; 393 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || 394 (rw == RW_WRITER && scl->scl_writer == curthread)) 395 locks_held |= 1 << i; 396 } 397 398 return (locks_held); 399 } 400 401 /* 402 * ========================================================================== 403 * SPA namespace functions 404 * ========================================================================== 405 */ 406 407 /* 408 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 409 * Returns NULL if no matching spa_t is found. 410 */ 411 spa_t * 412 spa_lookup(const char *name) 413 { 414 static spa_t search; /* spa_t is large; don't allocate on stack */ 415 spa_t *spa; 416 avl_index_t where; 417 char c; 418 char *cp; 419 420 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 421 422 /* 423 * If it's a full dataset name, figure out the pool name and 424 * just use that. 425 */ 426 cp = strpbrk(name, "/@"); 427 if (cp) { 428 c = *cp; 429 *cp = '\0'; 430 } 431 432 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 433 spa = avl_find(&spa_namespace_avl, &search, &where); 434 435 if (cp) 436 *cp = c; 437 438 return (spa); 439 } 440 441 /* 442 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 443 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 444 * looking for potentially hung I/Os. 445 */ 446 void 447 spa_deadman(void *arg) 448 { 449 spa_t *spa = arg; 450 451 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 452 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 453 ++spa->spa_deadman_calls); 454 if (zfs_deadman_enabled) 455 vdev_deadman(spa->spa_root_vdev); 456 } 457 458 /* 459 * Create an uninitialized spa_t with the given name. Requires 460 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 461 * exist by calling spa_lookup() first. 462 */ 463 spa_t * 464 spa_add(const char *name, nvlist_t *config, const char *altroot) 465 { 466 spa_t *spa; 467 spa_config_dirent_t *dp; 468 cyc_handler_t hdlr; 469 cyc_time_t when; 470 471 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 472 473 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 474 475 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 476 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 477 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 478 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 479 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 480 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 481 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 482 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 483 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 484 485 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 486 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 487 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 488 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 489 490 for (int t = 0; t < TXG_SIZE; t++) 491 bplist_create(&spa->spa_free_bplist[t]); 492 493 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 494 spa->spa_state = POOL_STATE_UNINITIALIZED; 495 spa->spa_freeze_txg = UINT64_MAX; 496 spa->spa_final_txg = UINT64_MAX; 497 spa->spa_load_max_txg = UINT64_MAX; 498 spa->spa_proc = &p0; 499 spa->spa_proc_state = SPA_PROC_NONE; 500 501 hdlr.cyh_func = spa_deadman; 502 hdlr.cyh_arg = spa; 503 hdlr.cyh_level = CY_LOW_LEVEL; 504 505 spa->spa_deadman_synctime = zfs_deadman_synctime * 506 zfs_txg_synctime_ms * MICROSEC; 507 508 /* 509 * This determines how often we need to check for hung I/Os after 510 * the cyclic has already fired. Since checking for hung I/Os is 511 * an expensive operation we don't want to check too frequently. 512 * Instead wait for 5 synctimes before checking again. 513 */ 514 when.cyt_interval = 5ULL * zfs_txg_synctime_ms * MICROSEC; 515 when.cyt_when = CY_INFINITY; 516 mutex_enter(&cpu_lock); 517 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when); 518 mutex_exit(&cpu_lock); 519 520 refcount_create(&spa->spa_refcount); 521 spa_config_lock_init(spa); 522 523 avl_add(&spa_namespace_avl, spa); 524 525 /* 526 * Set the alternate root, if there is one. 527 */ 528 if (altroot) { 529 spa->spa_root = spa_strdup(altroot); 530 spa_active_count++; 531 } 532 533 /* 534 * Every pool starts with the default cachefile 535 */ 536 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 537 offsetof(spa_config_dirent_t, scd_link)); 538 539 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 540 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 541 list_insert_head(&spa->spa_config_list, dp); 542 543 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 544 KM_SLEEP) == 0); 545 546 if (config != NULL) { 547 nvlist_t *features; 548 549 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 550 &features) == 0) { 551 VERIFY(nvlist_dup(features, &spa->spa_label_features, 552 0) == 0); 553 } 554 555 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 556 } 557 558 if (spa->spa_label_features == NULL) { 559 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 560 KM_SLEEP) == 0); 561 } 562 563 return (spa); 564 } 565 566 /* 567 * Removes a spa_t from the namespace, freeing up any memory used. Requires 568 * spa_namespace_lock. This is called only after the spa_t has been closed and 569 * deactivated. 570 */ 571 void 572 spa_remove(spa_t *spa) 573 { 574 spa_config_dirent_t *dp; 575 576 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 577 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 578 579 nvlist_free(spa->spa_config_splitting); 580 581 avl_remove(&spa_namespace_avl, spa); 582 cv_broadcast(&spa_namespace_cv); 583 584 if (spa->spa_root) { 585 spa_strfree(spa->spa_root); 586 spa_active_count--; 587 } 588 589 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 590 list_remove(&spa->spa_config_list, dp); 591 if (dp->scd_path != NULL) 592 spa_strfree(dp->scd_path); 593 kmem_free(dp, sizeof (spa_config_dirent_t)); 594 } 595 596 list_destroy(&spa->spa_config_list); 597 598 nvlist_free(spa->spa_label_features); 599 nvlist_free(spa->spa_load_info); 600 spa_config_set(spa, NULL); 601 602 mutex_enter(&cpu_lock); 603 if (spa->spa_deadman_cycid != CYCLIC_NONE) 604 cyclic_remove(spa->spa_deadman_cycid); 605 mutex_exit(&cpu_lock); 606 spa->spa_deadman_cycid = CYCLIC_NONE; 607 608 refcount_destroy(&spa->spa_refcount); 609 610 spa_config_lock_destroy(spa); 611 612 for (int t = 0; t < TXG_SIZE; t++) 613 bplist_destroy(&spa->spa_free_bplist[t]); 614 615 cv_destroy(&spa->spa_async_cv); 616 cv_destroy(&spa->spa_proc_cv); 617 cv_destroy(&spa->spa_scrub_io_cv); 618 cv_destroy(&spa->spa_suspend_cv); 619 620 mutex_destroy(&spa->spa_async_lock); 621 mutex_destroy(&spa->spa_errlist_lock); 622 mutex_destroy(&spa->spa_errlog_lock); 623 mutex_destroy(&spa->spa_history_lock); 624 mutex_destroy(&spa->spa_proc_lock); 625 mutex_destroy(&spa->spa_props_lock); 626 mutex_destroy(&spa->spa_scrub_lock); 627 mutex_destroy(&spa->spa_suspend_lock); 628 mutex_destroy(&spa->spa_vdev_top_lock); 629 630 kmem_free(spa, sizeof (spa_t)); 631 } 632 633 /* 634 * Given a pool, return the next pool in the namespace, or NULL if there is 635 * none. If 'prev' is NULL, return the first pool. 636 */ 637 spa_t * 638 spa_next(spa_t *prev) 639 { 640 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 641 642 if (prev) 643 return (AVL_NEXT(&spa_namespace_avl, prev)); 644 else 645 return (avl_first(&spa_namespace_avl)); 646 } 647 648 /* 649 * ========================================================================== 650 * SPA refcount functions 651 * ========================================================================== 652 */ 653 654 /* 655 * Add a reference to the given spa_t. Must have at least one reference, or 656 * have the namespace lock held. 657 */ 658 void 659 spa_open_ref(spa_t *spa, void *tag) 660 { 661 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || 662 MUTEX_HELD(&spa_namespace_lock)); 663 (void) refcount_add(&spa->spa_refcount, tag); 664 } 665 666 /* 667 * Remove a reference to the given spa_t. Must have at least one reference, or 668 * have the namespace lock held. 669 */ 670 void 671 spa_close(spa_t *spa, void *tag) 672 { 673 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || 674 MUTEX_HELD(&spa_namespace_lock)); 675 (void) refcount_remove(&spa->spa_refcount, tag); 676 } 677 678 /* 679 * Check to see if the spa refcount is zero. Must be called with 680 * spa_namespace_lock held. We really compare against spa_minref, which is the 681 * number of references acquired when opening a pool 682 */ 683 boolean_t 684 spa_refcount_zero(spa_t *spa) 685 { 686 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 687 688 return (refcount_count(&spa->spa_refcount) == spa->spa_minref); 689 } 690 691 /* 692 * ========================================================================== 693 * SPA spare and l2cache tracking 694 * ========================================================================== 695 */ 696 697 /* 698 * Hot spares and cache devices are tracked using the same code below, 699 * for 'auxiliary' devices. 700 */ 701 702 typedef struct spa_aux { 703 uint64_t aux_guid; 704 uint64_t aux_pool; 705 avl_node_t aux_avl; 706 int aux_count; 707 } spa_aux_t; 708 709 static int 710 spa_aux_compare(const void *a, const void *b) 711 { 712 const spa_aux_t *sa = a; 713 const spa_aux_t *sb = b; 714 715 if (sa->aux_guid < sb->aux_guid) 716 return (-1); 717 else if (sa->aux_guid > sb->aux_guid) 718 return (1); 719 else 720 return (0); 721 } 722 723 void 724 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 725 { 726 avl_index_t where; 727 spa_aux_t search; 728 spa_aux_t *aux; 729 730 search.aux_guid = vd->vdev_guid; 731 if ((aux = avl_find(avl, &search, &where)) != NULL) { 732 aux->aux_count++; 733 } else { 734 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 735 aux->aux_guid = vd->vdev_guid; 736 aux->aux_count = 1; 737 avl_insert(avl, aux, where); 738 } 739 } 740 741 void 742 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 743 { 744 spa_aux_t search; 745 spa_aux_t *aux; 746 avl_index_t where; 747 748 search.aux_guid = vd->vdev_guid; 749 aux = avl_find(avl, &search, &where); 750 751 ASSERT(aux != NULL); 752 753 if (--aux->aux_count == 0) { 754 avl_remove(avl, aux); 755 kmem_free(aux, sizeof (spa_aux_t)); 756 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 757 aux->aux_pool = 0ULL; 758 } 759 } 760 761 boolean_t 762 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 763 { 764 spa_aux_t search, *found; 765 766 search.aux_guid = guid; 767 found = avl_find(avl, &search, NULL); 768 769 if (pool) { 770 if (found) 771 *pool = found->aux_pool; 772 else 773 *pool = 0ULL; 774 } 775 776 if (refcnt) { 777 if (found) 778 *refcnt = found->aux_count; 779 else 780 *refcnt = 0; 781 } 782 783 return (found != NULL); 784 } 785 786 void 787 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 788 { 789 spa_aux_t search, *found; 790 avl_index_t where; 791 792 search.aux_guid = vd->vdev_guid; 793 found = avl_find(avl, &search, &where); 794 ASSERT(found != NULL); 795 ASSERT(found->aux_pool == 0ULL); 796 797 found->aux_pool = spa_guid(vd->vdev_spa); 798 } 799 800 /* 801 * Spares are tracked globally due to the following constraints: 802 * 803 * - A spare may be part of multiple pools. 804 * - A spare may be added to a pool even if it's actively in use within 805 * another pool. 806 * - A spare in use in any pool can only be the source of a replacement if 807 * the target is a spare in the same pool. 808 * 809 * We keep track of all spares on the system through the use of a reference 810 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 811 * spare, then we bump the reference count in the AVL tree. In addition, we set 812 * the 'vdev_isspare' member to indicate that the device is a spare (active or 813 * inactive). When a spare is made active (used to replace a device in the 814 * pool), we also keep track of which pool its been made a part of. 815 * 816 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 817 * called under the spa_namespace lock as part of vdev reconfiguration. The 818 * separate spare lock exists for the status query path, which does not need to 819 * be completely consistent with respect to other vdev configuration changes. 820 */ 821 822 static int 823 spa_spare_compare(const void *a, const void *b) 824 { 825 return (spa_aux_compare(a, b)); 826 } 827 828 void 829 spa_spare_add(vdev_t *vd) 830 { 831 mutex_enter(&spa_spare_lock); 832 ASSERT(!vd->vdev_isspare); 833 spa_aux_add(vd, &spa_spare_avl); 834 vd->vdev_isspare = B_TRUE; 835 mutex_exit(&spa_spare_lock); 836 } 837 838 void 839 spa_spare_remove(vdev_t *vd) 840 { 841 mutex_enter(&spa_spare_lock); 842 ASSERT(vd->vdev_isspare); 843 spa_aux_remove(vd, &spa_spare_avl); 844 vd->vdev_isspare = B_FALSE; 845 mutex_exit(&spa_spare_lock); 846 } 847 848 boolean_t 849 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 850 { 851 boolean_t found; 852 853 mutex_enter(&spa_spare_lock); 854 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 855 mutex_exit(&spa_spare_lock); 856 857 return (found); 858 } 859 860 void 861 spa_spare_activate(vdev_t *vd) 862 { 863 mutex_enter(&spa_spare_lock); 864 ASSERT(vd->vdev_isspare); 865 spa_aux_activate(vd, &spa_spare_avl); 866 mutex_exit(&spa_spare_lock); 867 } 868 869 /* 870 * Level 2 ARC devices are tracked globally for the same reasons as spares. 871 * Cache devices currently only support one pool per cache device, and so 872 * for these devices the aux reference count is currently unused beyond 1. 873 */ 874 875 static int 876 spa_l2cache_compare(const void *a, const void *b) 877 { 878 return (spa_aux_compare(a, b)); 879 } 880 881 void 882 spa_l2cache_add(vdev_t *vd) 883 { 884 mutex_enter(&spa_l2cache_lock); 885 ASSERT(!vd->vdev_isl2cache); 886 spa_aux_add(vd, &spa_l2cache_avl); 887 vd->vdev_isl2cache = B_TRUE; 888 mutex_exit(&spa_l2cache_lock); 889 } 890 891 void 892 spa_l2cache_remove(vdev_t *vd) 893 { 894 mutex_enter(&spa_l2cache_lock); 895 ASSERT(vd->vdev_isl2cache); 896 spa_aux_remove(vd, &spa_l2cache_avl); 897 vd->vdev_isl2cache = B_FALSE; 898 mutex_exit(&spa_l2cache_lock); 899 } 900 901 boolean_t 902 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 903 { 904 boolean_t found; 905 906 mutex_enter(&spa_l2cache_lock); 907 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 908 mutex_exit(&spa_l2cache_lock); 909 910 return (found); 911 } 912 913 void 914 spa_l2cache_activate(vdev_t *vd) 915 { 916 mutex_enter(&spa_l2cache_lock); 917 ASSERT(vd->vdev_isl2cache); 918 spa_aux_activate(vd, &spa_l2cache_avl); 919 mutex_exit(&spa_l2cache_lock); 920 } 921 922 /* 923 * ========================================================================== 924 * SPA vdev locking 925 * ========================================================================== 926 */ 927 928 /* 929 * Lock the given spa_t for the purpose of adding or removing a vdev. 930 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 931 * It returns the next transaction group for the spa_t. 932 */ 933 uint64_t 934 spa_vdev_enter(spa_t *spa) 935 { 936 mutex_enter(&spa->spa_vdev_top_lock); 937 mutex_enter(&spa_namespace_lock); 938 return (spa_vdev_config_enter(spa)); 939 } 940 941 /* 942 * Internal implementation for spa_vdev_enter(). Used when a vdev 943 * operation requires multiple syncs (i.e. removing a device) while 944 * keeping the spa_namespace_lock held. 945 */ 946 uint64_t 947 spa_vdev_config_enter(spa_t *spa) 948 { 949 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 950 951 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 952 953 return (spa_last_synced_txg(spa) + 1); 954 } 955 956 /* 957 * Used in combination with spa_vdev_config_enter() to allow the syncing 958 * of multiple transactions without releasing the spa_namespace_lock. 959 */ 960 void 961 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 962 { 963 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 964 965 int config_changed = B_FALSE; 966 967 ASSERT(txg > spa_last_synced_txg(spa)); 968 969 spa->spa_pending_vdev = NULL; 970 971 /* 972 * Reassess the DTLs. 973 */ 974 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 975 976 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 977 config_changed = B_TRUE; 978 spa->spa_config_generation++; 979 } 980 981 /* 982 * Verify the metaslab classes. 983 */ 984 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 985 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 986 987 spa_config_exit(spa, SCL_ALL, spa); 988 989 /* 990 * Panic the system if the specified tag requires it. This 991 * is useful for ensuring that configurations are updated 992 * transactionally. 993 */ 994 if (zio_injection_enabled) 995 zio_handle_panic_injection(spa, tag, 0); 996 997 /* 998 * Note: this txg_wait_synced() is important because it ensures 999 * that there won't be more than one config change per txg. 1000 * This allows us to use the txg as the generation number. 1001 */ 1002 if (error == 0) 1003 txg_wait_synced(spa->spa_dsl_pool, txg); 1004 1005 if (vd != NULL) { 1006 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0); 1007 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1008 vdev_free(vd); 1009 spa_config_exit(spa, SCL_ALL, spa); 1010 } 1011 1012 /* 1013 * If the config changed, update the config cache. 1014 */ 1015 if (config_changed) 1016 spa_config_sync(spa, B_FALSE, B_TRUE); 1017 } 1018 1019 /* 1020 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1021 * locking of spa_vdev_enter(), we also want make sure the transactions have 1022 * synced to disk, and then update the global configuration cache with the new 1023 * information. 1024 */ 1025 int 1026 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1027 { 1028 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1029 mutex_exit(&spa_namespace_lock); 1030 mutex_exit(&spa->spa_vdev_top_lock); 1031 1032 return (error); 1033 } 1034 1035 /* 1036 * Lock the given spa_t for the purpose of changing vdev state. 1037 */ 1038 void 1039 spa_vdev_state_enter(spa_t *spa, int oplocks) 1040 { 1041 int locks = SCL_STATE_ALL | oplocks; 1042 1043 /* 1044 * Root pools may need to read of the underlying devfs filesystem 1045 * when opening up a vdev. Unfortunately if we're holding the 1046 * SCL_ZIO lock it will result in a deadlock when we try to issue 1047 * the read from the root filesystem. Instead we "prefetch" 1048 * the associated vnodes that we need prior to opening the 1049 * underlying devices and cache them so that we can prevent 1050 * any I/O when we are doing the actual open. 1051 */ 1052 if (spa_is_root(spa)) { 1053 int low = locks & ~(SCL_ZIO - 1); 1054 int high = locks & ~low; 1055 1056 spa_config_enter(spa, high, spa, RW_WRITER); 1057 vdev_hold(spa->spa_root_vdev); 1058 spa_config_enter(spa, low, spa, RW_WRITER); 1059 } else { 1060 spa_config_enter(spa, locks, spa, RW_WRITER); 1061 } 1062 spa->spa_vdev_locks = locks; 1063 } 1064 1065 int 1066 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1067 { 1068 boolean_t config_changed = B_FALSE; 1069 1070 if (vd != NULL || error == 0) 1071 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 1072 0, 0, B_FALSE); 1073 1074 if (vd != NULL) { 1075 vdev_state_dirty(vd->vdev_top); 1076 config_changed = B_TRUE; 1077 spa->spa_config_generation++; 1078 } 1079 1080 if (spa_is_root(spa)) 1081 vdev_rele(spa->spa_root_vdev); 1082 1083 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1084 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1085 1086 /* 1087 * If anything changed, wait for it to sync. This ensures that, 1088 * from the system administrator's perspective, zpool(1M) commands 1089 * are synchronous. This is important for things like zpool offline: 1090 * when the command completes, you expect no further I/O from ZFS. 1091 */ 1092 if (vd != NULL) 1093 txg_wait_synced(spa->spa_dsl_pool, 0); 1094 1095 /* 1096 * If the config changed, update the config cache. 1097 */ 1098 if (config_changed) { 1099 mutex_enter(&spa_namespace_lock); 1100 spa_config_sync(spa, B_FALSE, B_TRUE); 1101 mutex_exit(&spa_namespace_lock); 1102 } 1103 1104 return (error); 1105 } 1106 1107 /* 1108 * ========================================================================== 1109 * Miscellaneous functions 1110 * ========================================================================== 1111 */ 1112 1113 void 1114 spa_activate_mos_feature(spa_t *spa, const char *feature) 1115 { 1116 (void) nvlist_add_boolean(spa->spa_label_features, feature); 1117 vdev_config_dirty(spa->spa_root_vdev); 1118 } 1119 1120 void 1121 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1122 { 1123 (void) nvlist_remove_all(spa->spa_label_features, feature); 1124 vdev_config_dirty(spa->spa_root_vdev); 1125 } 1126 1127 /* 1128 * Rename a spa_t. 1129 */ 1130 int 1131 spa_rename(const char *name, const char *newname) 1132 { 1133 spa_t *spa; 1134 int err; 1135 1136 /* 1137 * Lookup the spa_t and grab the config lock for writing. We need to 1138 * actually open the pool so that we can sync out the necessary labels. 1139 * It's OK to call spa_open() with the namespace lock held because we 1140 * allow recursive calls for other reasons. 1141 */ 1142 mutex_enter(&spa_namespace_lock); 1143 if ((err = spa_open(name, &spa, FTAG)) != 0) { 1144 mutex_exit(&spa_namespace_lock); 1145 return (err); 1146 } 1147 1148 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1149 1150 avl_remove(&spa_namespace_avl, spa); 1151 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); 1152 avl_add(&spa_namespace_avl, spa); 1153 1154 /* 1155 * Sync all labels to disk with the new names by marking the root vdev 1156 * dirty and waiting for it to sync. It will pick up the new pool name 1157 * during the sync. 1158 */ 1159 vdev_config_dirty(spa->spa_root_vdev); 1160 1161 spa_config_exit(spa, SCL_ALL, FTAG); 1162 1163 txg_wait_synced(spa->spa_dsl_pool, 0); 1164 1165 /* 1166 * Sync the updated config cache. 1167 */ 1168 spa_config_sync(spa, B_FALSE, B_TRUE); 1169 1170 spa_close(spa, FTAG); 1171 1172 mutex_exit(&spa_namespace_lock); 1173 1174 return (0); 1175 } 1176 1177 /* 1178 * Return the spa_t associated with given pool_guid, if it exists. If 1179 * device_guid is non-zero, determine whether the pool exists *and* contains 1180 * a device with the specified device_guid. 1181 */ 1182 spa_t * 1183 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1184 { 1185 spa_t *spa; 1186 avl_tree_t *t = &spa_namespace_avl; 1187 1188 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1189 1190 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1191 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1192 continue; 1193 if (spa->spa_root_vdev == NULL) 1194 continue; 1195 if (spa_guid(spa) == pool_guid) { 1196 if (device_guid == 0) 1197 break; 1198 1199 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1200 device_guid) != NULL) 1201 break; 1202 1203 /* 1204 * Check any devices we may be in the process of adding. 1205 */ 1206 if (spa->spa_pending_vdev) { 1207 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1208 device_guid) != NULL) 1209 break; 1210 } 1211 } 1212 } 1213 1214 return (spa); 1215 } 1216 1217 /* 1218 * Determine whether a pool with the given pool_guid exists. 1219 */ 1220 boolean_t 1221 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1222 { 1223 return (spa_by_guid(pool_guid, device_guid) != NULL); 1224 } 1225 1226 char * 1227 spa_strdup(const char *s) 1228 { 1229 size_t len; 1230 char *new; 1231 1232 len = strlen(s); 1233 new = kmem_alloc(len + 1, KM_SLEEP); 1234 bcopy(s, new, len); 1235 new[len] = '\0'; 1236 1237 return (new); 1238 } 1239 1240 void 1241 spa_strfree(char *s) 1242 { 1243 kmem_free(s, strlen(s) + 1); 1244 } 1245 1246 uint64_t 1247 spa_get_random(uint64_t range) 1248 { 1249 uint64_t r; 1250 1251 ASSERT(range != 0); 1252 1253 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1254 1255 return (r % range); 1256 } 1257 1258 uint64_t 1259 spa_generate_guid(spa_t *spa) 1260 { 1261 uint64_t guid = spa_get_random(-1ULL); 1262 1263 if (spa != NULL) { 1264 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1265 guid = spa_get_random(-1ULL); 1266 } else { 1267 while (guid == 0 || spa_guid_exists(guid, 0)) 1268 guid = spa_get_random(-1ULL); 1269 } 1270 1271 return (guid); 1272 } 1273 1274 void 1275 sprintf_blkptr(char *buf, const blkptr_t *bp) 1276 { 1277 char type[256]; 1278 char *checksum = NULL; 1279 char *compress = NULL; 1280 1281 if (bp != NULL) { 1282 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1283 dmu_object_byteswap_t bswap = 1284 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1285 (void) snprintf(type, sizeof (type), "bswap %s %s", 1286 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1287 "metadata" : "data", 1288 dmu_ot_byteswap[bswap].ob_name); 1289 } else { 1290 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1291 sizeof (type)); 1292 } 1293 checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1294 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1295 } 1296 1297 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress); 1298 } 1299 1300 void 1301 spa_freeze(spa_t *spa) 1302 { 1303 uint64_t freeze_txg = 0; 1304 1305 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1306 if (spa->spa_freeze_txg == UINT64_MAX) { 1307 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1308 spa->spa_freeze_txg = freeze_txg; 1309 } 1310 spa_config_exit(spa, SCL_ALL, FTAG); 1311 if (freeze_txg != 0) 1312 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1313 } 1314 1315 void 1316 zfs_panic_recover(const char *fmt, ...) 1317 { 1318 va_list adx; 1319 1320 va_start(adx, fmt); 1321 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1322 va_end(adx); 1323 } 1324 1325 /* 1326 * This is a stripped-down version of strtoull, suitable only for converting 1327 * lowercase hexidecimal numbers that don't overflow. 1328 */ 1329 uint64_t 1330 strtonum(const char *str, char **nptr) 1331 { 1332 uint64_t val = 0; 1333 char c; 1334 int digit; 1335 1336 while ((c = *str) != '\0') { 1337 if (c >= '0' && c <= '9') 1338 digit = c - '0'; 1339 else if (c >= 'a' && c <= 'f') 1340 digit = 10 + c - 'a'; 1341 else 1342 break; 1343 1344 val *= 16; 1345 val += digit; 1346 1347 str++; 1348 } 1349 1350 if (nptr) 1351 *nptr = (char *)str; 1352 1353 return (val); 1354 } 1355 1356 /* 1357 * ========================================================================== 1358 * Accessor functions 1359 * ========================================================================== 1360 */ 1361 1362 boolean_t 1363 spa_shutting_down(spa_t *spa) 1364 { 1365 return (spa->spa_async_suspended); 1366 } 1367 1368 dsl_pool_t * 1369 spa_get_dsl(spa_t *spa) 1370 { 1371 return (spa->spa_dsl_pool); 1372 } 1373 1374 boolean_t 1375 spa_is_initializing(spa_t *spa) 1376 { 1377 return (spa->spa_is_initializing); 1378 } 1379 1380 blkptr_t * 1381 spa_get_rootblkptr(spa_t *spa) 1382 { 1383 return (&spa->spa_ubsync.ub_rootbp); 1384 } 1385 1386 void 1387 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1388 { 1389 spa->spa_uberblock.ub_rootbp = *bp; 1390 } 1391 1392 void 1393 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1394 { 1395 if (spa->spa_root == NULL) 1396 buf[0] = '\0'; 1397 else 1398 (void) strncpy(buf, spa->spa_root, buflen); 1399 } 1400 1401 int 1402 spa_sync_pass(spa_t *spa) 1403 { 1404 return (spa->spa_sync_pass); 1405 } 1406 1407 char * 1408 spa_name(spa_t *spa) 1409 { 1410 return (spa->spa_name); 1411 } 1412 1413 uint64_t 1414 spa_guid(spa_t *spa) 1415 { 1416 dsl_pool_t *dp = spa_get_dsl(spa); 1417 uint64_t guid; 1418 1419 /* 1420 * If we fail to parse the config during spa_load(), we can go through 1421 * the error path (which posts an ereport) and end up here with no root 1422 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1423 * this case. 1424 */ 1425 if (spa->spa_root_vdev == NULL) 1426 return (spa->spa_config_guid); 1427 1428 guid = spa->spa_last_synced_guid != 0 ? 1429 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1430 1431 /* 1432 * Return the most recently synced out guid unless we're 1433 * in syncing context. 1434 */ 1435 if (dp && dsl_pool_sync_context(dp)) 1436 return (spa->spa_root_vdev->vdev_guid); 1437 else 1438 return (guid); 1439 } 1440 1441 uint64_t 1442 spa_load_guid(spa_t *spa) 1443 { 1444 /* 1445 * This is a GUID that exists solely as a reference for the 1446 * purposes of the arc. It is generated at load time, and 1447 * is never written to persistent storage. 1448 */ 1449 return (spa->spa_load_guid); 1450 } 1451 1452 uint64_t 1453 spa_last_synced_txg(spa_t *spa) 1454 { 1455 return (spa->spa_ubsync.ub_txg); 1456 } 1457 1458 uint64_t 1459 spa_first_txg(spa_t *spa) 1460 { 1461 return (spa->spa_first_txg); 1462 } 1463 1464 uint64_t 1465 spa_syncing_txg(spa_t *spa) 1466 { 1467 return (spa->spa_syncing_txg); 1468 } 1469 1470 pool_state_t 1471 spa_state(spa_t *spa) 1472 { 1473 return (spa->spa_state); 1474 } 1475 1476 spa_load_state_t 1477 spa_load_state(spa_t *spa) 1478 { 1479 return (spa->spa_load_state); 1480 } 1481 1482 uint64_t 1483 spa_freeze_txg(spa_t *spa) 1484 { 1485 return (spa->spa_freeze_txg); 1486 } 1487 1488 /* ARGSUSED */ 1489 uint64_t 1490 spa_get_asize(spa_t *spa, uint64_t lsize) 1491 { 1492 /* 1493 * The worst case is single-sector max-parity RAID-Z blocks, in which 1494 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 1495 * times the size; so just assume that. Add to this the fact that 1496 * we can have up to 3 DVAs per bp, and one more factor of 2 because 1497 * the block may be dittoed with up to 3 DVAs by ddt_sync(). 1498 */ 1499 return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2); 1500 } 1501 1502 uint64_t 1503 spa_get_dspace(spa_t *spa) 1504 { 1505 return (spa->spa_dspace); 1506 } 1507 1508 void 1509 spa_update_dspace(spa_t *spa) 1510 { 1511 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1512 ddt_get_dedup_dspace(spa); 1513 } 1514 1515 /* 1516 * Return the failure mode that has been set to this pool. The default 1517 * behavior will be to block all I/Os when a complete failure occurs. 1518 */ 1519 uint8_t 1520 spa_get_failmode(spa_t *spa) 1521 { 1522 return (spa->spa_failmode); 1523 } 1524 1525 boolean_t 1526 spa_suspended(spa_t *spa) 1527 { 1528 return (spa->spa_suspended); 1529 } 1530 1531 uint64_t 1532 spa_version(spa_t *spa) 1533 { 1534 return (spa->spa_ubsync.ub_version); 1535 } 1536 1537 boolean_t 1538 spa_deflate(spa_t *spa) 1539 { 1540 return (spa->spa_deflate); 1541 } 1542 1543 metaslab_class_t * 1544 spa_normal_class(spa_t *spa) 1545 { 1546 return (spa->spa_normal_class); 1547 } 1548 1549 metaslab_class_t * 1550 spa_log_class(spa_t *spa) 1551 { 1552 return (spa->spa_log_class); 1553 } 1554 1555 int 1556 spa_max_replication(spa_t *spa) 1557 { 1558 /* 1559 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1560 * handle BPs with more than one DVA allocated. Set our max 1561 * replication level accordingly. 1562 */ 1563 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1564 return (1); 1565 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1566 } 1567 1568 int 1569 spa_prev_software_version(spa_t *spa) 1570 { 1571 return (spa->spa_prev_software_version); 1572 } 1573 1574 uint64_t 1575 spa_deadman_synctime(spa_t *spa) 1576 { 1577 return (spa->spa_deadman_synctime); 1578 } 1579 1580 uint64_t 1581 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 1582 { 1583 uint64_t asize = DVA_GET_ASIZE(dva); 1584 uint64_t dsize = asize; 1585 1586 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1587 1588 if (asize != 0 && spa->spa_deflate) { 1589 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 1590 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1591 } 1592 1593 return (dsize); 1594 } 1595 1596 uint64_t 1597 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 1598 { 1599 uint64_t dsize = 0; 1600 1601 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1602 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1603 1604 return (dsize); 1605 } 1606 1607 uint64_t 1608 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 1609 { 1610 uint64_t dsize = 0; 1611 1612 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1613 1614 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1615 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1616 1617 spa_config_exit(spa, SCL_VDEV, FTAG); 1618 1619 return (dsize); 1620 } 1621 1622 /* 1623 * ========================================================================== 1624 * Initialization and Termination 1625 * ========================================================================== 1626 */ 1627 1628 static int 1629 spa_name_compare(const void *a1, const void *a2) 1630 { 1631 const spa_t *s1 = a1; 1632 const spa_t *s2 = a2; 1633 int s; 1634 1635 s = strcmp(s1->spa_name, s2->spa_name); 1636 if (s > 0) 1637 return (1); 1638 if (s < 0) 1639 return (-1); 1640 return (0); 1641 } 1642 1643 int 1644 spa_busy(void) 1645 { 1646 return (spa_active_count); 1647 } 1648 1649 void 1650 spa_boot_init() 1651 { 1652 spa_config_load(); 1653 } 1654 1655 void 1656 spa_init(int mode) 1657 { 1658 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1659 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1660 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 1661 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1662 1663 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1664 offsetof(spa_t, spa_avl)); 1665 1666 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 1667 offsetof(spa_aux_t, aux_avl)); 1668 1669 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 1670 offsetof(spa_aux_t, aux_avl)); 1671 1672 spa_mode_global = mode; 1673 1674 #ifdef _KERNEL 1675 spa_arch_init(); 1676 #else 1677 if (spa_mode_global != FREAD && dprintf_find_string("watch")) { 1678 arc_procfd = open("/proc/self/ctl", O_WRONLY); 1679 if (arc_procfd == -1) { 1680 perror("could not enable watchpoints: " 1681 "opening /proc/self/ctl failed: "); 1682 } else { 1683 arc_watch = B_TRUE; 1684 } 1685 } 1686 #endif 1687 1688 refcount_init(); 1689 unique_init(); 1690 zio_init(); 1691 dmu_init(); 1692 zil_init(); 1693 vdev_cache_stat_init(); 1694 zfs_prop_init(); 1695 zpool_prop_init(); 1696 zpool_feature_init(); 1697 spa_config_load(); 1698 l2arc_start(); 1699 } 1700 1701 void 1702 spa_fini(void) 1703 { 1704 l2arc_stop(); 1705 1706 spa_evict_all(); 1707 1708 vdev_cache_stat_fini(); 1709 zil_fini(); 1710 dmu_fini(); 1711 zio_fini(); 1712 unique_fini(); 1713 refcount_fini(); 1714 1715 avl_destroy(&spa_namespace_avl); 1716 avl_destroy(&spa_spare_avl); 1717 avl_destroy(&spa_l2cache_avl); 1718 1719 cv_destroy(&spa_namespace_cv); 1720 mutex_destroy(&spa_namespace_lock); 1721 mutex_destroy(&spa_spare_lock); 1722 mutex_destroy(&spa_l2cache_lock); 1723 } 1724 1725 /* 1726 * Return whether this pool has slogs. No locking needed. 1727 * It's not a problem if the wrong answer is returned as it's only for 1728 * performance and not correctness 1729 */ 1730 boolean_t 1731 spa_has_slogs(spa_t *spa) 1732 { 1733 return (spa->spa_log_class->mc_rotor != NULL); 1734 } 1735 1736 spa_log_state_t 1737 spa_get_log_state(spa_t *spa) 1738 { 1739 return (spa->spa_log_state); 1740 } 1741 1742 void 1743 spa_set_log_state(spa_t *spa, spa_log_state_t state) 1744 { 1745 spa->spa_log_state = state; 1746 } 1747 1748 boolean_t 1749 spa_is_root(spa_t *spa) 1750 { 1751 return (spa->spa_is_root); 1752 } 1753 1754 boolean_t 1755 spa_writeable(spa_t *spa) 1756 { 1757 return (!!(spa->spa_mode & FWRITE)); 1758 } 1759 1760 int 1761 spa_mode(spa_t *spa) 1762 { 1763 return (spa->spa_mode); 1764 } 1765 1766 uint64_t 1767 spa_bootfs(spa_t *spa) 1768 { 1769 return (spa->spa_bootfs); 1770 } 1771 1772 uint64_t 1773 spa_delegation(spa_t *spa) 1774 { 1775 return (spa->spa_delegation); 1776 } 1777 1778 objset_t * 1779 spa_meta_objset(spa_t *spa) 1780 { 1781 return (spa->spa_meta_objset); 1782 } 1783 1784 enum zio_checksum 1785 spa_dedup_checksum(spa_t *spa) 1786 { 1787 return (spa->spa_dedup_checksum); 1788 } 1789 1790 /* 1791 * Reset pool scan stat per scan pass (or reboot). 1792 */ 1793 void 1794 spa_scan_stat_init(spa_t *spa) 1795 { 1796 /* data not stored on disk */ 1797 spa->spa_scan_pass_start = gethrestime_sec(); 1798 spa->spa_scan_pass_exam = 0; 1799 vdev_scan_stat_init(spa->spa_root_vdev); 1800 } 1801 1802 /* 1803 * Get scan stats for zpool status reports 1804 */ 1805 int 1806 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 1807 { 1808 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 1809 1810 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 1811 return (ENOENT); 1812 bzero(ps, sizeof (pool_scan_stat_t)); 1813 1814 /* data stored on disk */ 1815 ps->pss_func = scn->scn_phys.scn_func; 1816 ps->pss_start_time = scn->scn_phys.scn_start_time; 1817 ps->pss_end_time = scn->scn_phys.scn_end_time; 1818 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 1819 ps->pss_examined = scn->scn_phys.scn_examined; 1820 ps->pss_to_process = scn->scn_phys.scn_to_process; 1821 ps->pss_processed = scn->scn_phys.scn_processed; 1822 ps->pss_errors = scn->scn_phys.scn_errors; 1823 ps->pss_state = scn->scn_phys.scn_state; 1824 1825 /* data not stored on disk */ 1826 ps->pss_pass_start = spa->spa_scan_pass_start; 1827 ps->pss_pass_exam = spa->spa_scan_pass_exam; 1828 1829 return (0); 1830 } 1831 1832 boolean_t 1833 spa_debug_enabled(spa_t *spa) 1834 { 1835 return (spa->spa_debug); 1836 } 1837