xref: /titanic_44/usr/src/uts/common/fs/zfs/spa_misc.c (revision 19e1255fca03b62e8105a1c6f74377fe34b2ff77)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum.h>
32 #include <sys/zio_compress.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zap.h>
36 #include <sys/zil.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/uberblock_impl.h>
40 #include <sys/txg.h>
41 #include <sys/avl.h>
42 #include <sys/unique.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/metaslab_impl.h>
48 #include "zfs_prop.h"
49 
50 /*
51  * SPA locking
52  *
53  * There are four basic locks for managing spa_t structures:
54  *
55  * spa_namespace_lock (global mutex)
56  *
57  *	This lock must be acquired to do any of the following:
58  *
59  *		- Lookup a spa_t by name
60  *		- Add or remove a spa_t from the namespace
61  *		- Increase spa_refcount from non-zero
62  *		- Check if spa_refcount is zero
63  *		- Rename a spa_t
64  *		- add/remove/attach/detach devices
65  *		- Held for the duration of create/destroy/import/export
66  *
67  *	It does not need to handle recursion.  A create or destroy may
68  *	reference objects (files or zvols) in other pools, but by
69  *	definition they must have an existing reference, and will never need
70  *	to lookup a spa_t by name.
71  *
72  * spa_refcount (per-spa refcount_t protected by mutex)
73  *
74  *	This reference count keep track of any active users of the spa_t.  The
75  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
76  *	the refcount is never really 'zero' - opening a pool implicitly keeps
77  *	some references in the DMU.  Internally we check against spa_minref, but
78  *	present the image of a zero/non-zero value to consumers.
79  *
80  * spa_config_lock (per-spa read-priority rwlock)
81  *
82  *	This protects the spa_t from config changes, and must be held in
83  *	the following circumstances:
84  *
85  *		- RW_READER to perform I/O to the spa
86  *		- RW_WRITER to change the vdev config
87  *
88  * spa_config_cache_lock (per-spa mutex)
89  *
90  *	This mutex prevents the spa_config nvlist from being updated.  No
91  *      other locks are required to obtain this lock, although implicitly you
92  *      must have the namespace lock or non-zero refcount to have any kind
93  *      of spa_t pointer at all.
94  *
95  * The locking order is fairly straightforward:
96  *
97  *		spa_namespace_lock	->	spa_refcount
98  *
99  *	The namespace lock must be acquired to increase the refcount from 0
100  *	or to check if it is zero.
101  *
102  *		spa_refcount		->	spa_config_lock
103  *
104  *	There must be at least one valid reference on the spa_t to acquire
105  *	the config lock.
106  *
107  *		spa_namespace_lock	->	spa_config_lock
108  *
109  *	The namespace lock must always be taken before the config lock.
110  *
111  *
112  * The spa_namespace_lock and spa_config_cache_lock can be acquired directly and
113  * are globally visible.
114  *
115  * The namespace is manipulated using the following functions, all which require
116  * the spa_namespace_lock to be held.
117  *
118  *	spa_lookup()		Lookup a spa_t by name.
119  *
120  *	spa_add()		Create a new spa_t in the namespace.
121  *
122  *	spa_remove()		Remove a spa_t from the namespace.  This also
123  *				frees up any memory associated with the spa_t.
124  *
125  *	spa_next()		Returns the next spa_t in the system, or the
126  *				first if NULL is passed.
127  *
128  *	spa_evict_all()		Shutdown and remove all spa_t structures in
129  *				the system.
130  *
131  *	spa_guid_exists()	Determine whether a pool/device guid exists.
132  *
133  * The spa_refcount is manipulated using the following functions:
134  *
135  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
136  *				called with spa_namespace_lock held if the
137  *				refcount is currently zero.
138  *
139  *	spa_close()		Remove a reference from the spa_t.  This will
140  *				not free the spa_t or remove it from the
141  *				namespace.  No locking is required.
142  *
143  *	spa_refcount_zero()	Returns true if the refcount is currently
144  *				zero.  Must be called with spa_namespace_lock
145  *				held.
146  *
147  * The spa_config_lock is a form of rwlock.  It must be held as RW_READER
148  * to perform I/O to the pool, and as RW_WRITER to change the vdev config.
149  * The spa_config_lock is manipulated with spa_config_{enter,exit,held}().
150  *
151  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
152  *
153  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
154  *				for writing.
155  *
156  *	spa_vdev_exit()		Release the config lock, wait for all I/O
157  *				to complete, sync the updated configs to the
158  *				cache, and release the namespace lock.
159  *
160  * The spa_name() function also requires either the spa_namespace_lock
161  * or the spa_config_lock, as both are needed to do a rename.  spa_rename() is
162  * also implemented within this file since is requires manipulation of the
163  * namespace.
164  */
165 
166 static avl_tree_t spa_namespace_avl;
167 kmutex_t spa_namespace_lock;
168 static kcondvar_t spa_namespace_cv;
169 static int spa_active_count;
170 int spa_max_replication_override = SPA_DVAS_PER_BP;
171 
172 static kmutex_t spa_spare_lock;
173 static avl_tree_t spa_spare_avl;
174 static kmutex_t spa_l2cache_lock;
175 static avl_tree_t spa_l2cache_avl;
176 
177 kmem_cache_t *spa_buffer_pool;
178 int spa_mode;
179 
180 #ifdef ZFS_DEBUG
181 /* Everything except dprintf is on by default in debug builds */
182 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
183 #else
184 int zfs_flags = 0;
185 #endif
186 
187 /*
188  * zfs_recover can be set to nonzero to attempt to recover from
189  * otherwise-fatal errors, typically caused by on-disk corruption.  When
190  * set, calls to zfs_panic_recover() will turn into warning messages.
191  */
192 int zfs_recover = 0;
193 
194 
195 /*
196  * ==========================================================================
197  * SPA config locking
198  * ==========================================================================
199  */
200 static void
201 spa_config_lock_init(spa_config_lock_t *scl)
202 {
203 	mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
204 	scl->scl_writer = NULL;
205 	cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
206 	refcount_create(&scl->scl_count);
207 }
208 
209 static void
210 spa_config_lock_destroy(spa_config_lock_t *scl)
211 {
212 	mutex_destroy(&scl->scl_lock);
213 	ASSERT(scl->scl_writer == NULL);
214 	cv_destroy(&scl->scl_cv);
215 	refcount_destroy(&scl->scl_count);
216 }
217 
218 void
219 spa_config_enter(spa_t *spa, krw_t rw, void *tag)
220 {
221 	spa_config_lock_t *scl = &spa->spa_config_lock;
222 
223 	mutex_enter(&scl->scl_lock);
224 
225 	if (rw == RW_READER) {
226 		while (scl->scl_writer != NULL && scl->scl_writer != curthread)
227 			cv_wait(&scl->scl_cv, &scl->scl_lock);
228 	} else {
229 		while (!refcount_is_zero(&scl->scl_count) &&
230 		    scl->scl_writer != curthread)
231 			cv_wait(&scl->scl_cv, &scl->scl_lock);
232 		scl->scl_writer = curthread;
233 	}
234 
235 	(void) refcount_add(&scl->scl_count, tag);
236 
237 	mutex_exit(&scl->scl_lock);
238 }
239 
240 void
241 spa_config_exit(spa_t *spa, void *tag)
242 {
243 	spa_config_lock_t *scl = &spa->spa_config_lock;
244 
245 	mutex_enter(&scl->scl_lock);
246 
247 	ASSERT(!refcount_is_zero(&scl->scl_count));
248 
249 	if (refcount_remove(&scl->scl_count, tag) == 0) {
250 		cv_broadcast(&scl->scl_cv);
251 		ASSERT(scl->scl_writer == NULL || scl->scl_writer == curthread);
252 		scl->scl_writer = NULL;  /* OK in either case */
253 	}
254 
255 	mutex_exit(&scl->scl_lock);
256 }
257 
258 boolean_t
259 spa_config_held(spa_t *spa, krw_t rw)
260 {
261 	spa_config_lock_t *scl = &spa->spa_config_lock;
262 
263 	if (rw == RW_READER)
264 		return (!refcount_is_zero(&scl->scl_count));
265 	else
266 		return (scl->scl_writer == curthread);
267 }
268 
269 /*
270  * ==========================================================================
271  * SPA namespace functions
272  * ==========================================================================
273  */
274 
275 /*
276  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
277  * Returns NULL if no matching spa_t is found.
278  */
279 spa_t *
280 spa_lookup(const char *name)
281 {
282 	spa_t search, *spa;
283 	avl_index_t where;
284 	char c;
285 	char *cp;
286 
287 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
288 
289 	/*
290 	 * If it's a full dataset name, figure out the pool name and
291 	 * just use that.
292 	 */
293 	cp = strpbrk(name, "/@");
294 	if (cp) {
295 		c = *cp;
296 		*cp = '\0';
297 	}
298 
299 	search.spa_name = (char *)name;
300 	spa = avl_find(&spa_namespace_avl, &search, &where);
301 
302 	if (cp)
303 		*cp = c;
304 
305 	return (spa);
306 }
307 
308 /*
309  * Create an uninitialized spa_t with the given name.  Requires
310  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
311  * exist by calling spa_lookup() first.
312  */
313 spa_t *
314 spa_add(const char *name, const char *altroot)
315 {
316 	spa_t *spa;
317 	spa_config_dirent_t *dp;
318 
319 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
320 
321 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
322 
323 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
324 
325 	mutex_init(&spa->spa_uberblock_lock, NULL, MUTEX_DEFAULT, NULL);
326 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
327 	mutex_init(&spa->spa_config_cache_lock, NULL, MUTEX_DEFAULT, NULL);
328 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
329 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
330 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
331 	mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
332 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
333 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
334 
335 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
336 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
337 
338 	spa->spa_name = spa_strdup(name);
339 	spa->spa_state = POOL_STATE_UNINITIALIZED;
340 	spa->spa_freeze_txg = UINT64_MAX;
341 	spa->spa_final_txg = UINT64_MAX;
342 
343 	refcount_create(&spa->spa_refcount);
344 	spa_config_lock_init(&spa->spa_config_lock);
345 
346 	avl_add(&spa_namespace_avl, spa);
347 
348 	mutex_init(&spa->spa_zio_lock, NULL, MUTEX_DEFAULT, NULL);
349 
350 	/*
351 	 * Set the alternate root, if there is one.
352 	 */
353 	if (altroot) {
354 		spa->spa_root = spa_strdup(altroot);
355 		spa_active_count++;
356 	}
357 
358 	/*
359 	 * Every pool starts with the default cachefile
360 	 */
361 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
362 	    offsetof(spa_config_dirent_t, scd_link));
363 
364 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
365 	dp->scd_path = spa_strdup(spa_config_path);
366 	list_insert_head(&spa->spa_config_list, dp);
367 
368 	return (spa);
369 }
370 
371 /*
372  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
373  * spa_namespace_lock.  This is called only after the spa_t has been closed and
374  * deactivated.
375  */
376 void
377 spa_remove(spa_t *spa)
378 {
379 	spa_config_dirent_t *dp;
380 
381 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
382 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
383 
384 	avl_remove(&spa_namespace_avl, spa);
385 	cv_broadcast(&spa_namespace_cv);
386 
387 	if (spa->spa_root) {
388 		spa_strfree(spa->spa_root);
389 		spa_active_count--;
390 	}
391 
392 	if (spa->spa_name)
393 		spa_strfree(spa->spa_name);
394 
395 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
396 		list_remove(&spa->spa_config_list, dp);
397 		if (dp->scd_path != NULL)
398 			spa_strfree(dp->scd_path);
399 		kmem_free(dp, sizeof (spa_config_dirent_t));
400 	}
401 
402 	list_destroy(&spa->spa_config_list);
403 
404 	spa_config_set(spa, NULL);
405 
406 	refcount_destroy(&spa->spa_refcount);
407 
408 	spa_config_lock_destroy(&spa->spa_config_lock);
409 
410 	rw_destroy(&spa->spa_traverse_lock);
411 
412 	cv_destroy(&spa->spa_async_cv);
413 	cv_destroy(&spa->spa_scrub_io_cv);
414 
415 	mutex_destroy(&spa->spa_uberblock_lock);
416 	mutex_destroy(&spa->spa_async_lock);
417 	mutex_destroy(&spa->spa_config_cache_lock);
418 	mutex_destroy(&spa->spa_scrub_lock);
419 	mutex_destroy(&spa->spa_errlog_lock);
420 	mutex_destroy(&spa->spa_errlist_lock);
421 	mutex_destroy(&spa->spa_sync_bplist.bpl_lock);
422 	mutex_destroy(&spa->spa_history_lock);
423 	mutex_destroy(&spa->spa_props_lock);
424 	mutex_destroy(&spa->spa_zio_lock);
425 
426 	kmem_free(spa, sizeof (spa_t));
427 }
428 
429 /*
430  * Given a pool, return the next pool in the namespace, or NULL if there is
431  * none.  If 'prev' is NULL, return the first pool.
432  */
433 spa_t *
434 spa_next(spa_t *prev)
435 {
436 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
437 
438 	if (prev)
439 		return (AVL_NEXT(&spa_namespace_avl, prev));
440 	else
441 		return (avl_first(&spa_namespace_avl));
442 }
443 
444 /*
445  * ==========================================================================
446  * SPA refcount functions
447  * ==========================================================================
448  */
449 
450 /*
451  * Add a reference to the given spa_t.  Must have at least one reference, or
452  * have the namespace lock held.
453  */
454 void
455 spa_open_ref(spa_t *spa, void *tag)
456 {
457 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
458 	    MUTEX_HELD(&spa_namespace_lock));
459 	(void) refcount_add(&spa->spa_refcount, tag);
460 }
461 
462 /*
463  * Remove a reference to the given spa_t.  Must have at least one reference, or
464  * have the namespace lock held.
465  */
466 void
467 spa_close(spa_t *spa, void *tag)
468 {
469 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
470 	    MUTEX_HELD(&spa_namespace_lock));
471 	(void) refcount_remove(&spa->spa_refcount, tag);
472 }
473 
474 /*
475  * Check to see if the spa refcount is zero.  Must be called with
476  * spa_namespace_lock held.  We really compare against spa_minref, which is the
477  * number of references acquired when opening a pool
478  */
479 boolean_t
480 spa_refcount_zero(spa_t *spa)
481 {
482 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
483 
484 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
485 }
486 
487 /*
488  * ==========================================================================
489  * SPA spare and l2cache tracking
490  * ==========================================================================
491  */
492 
493 /*
494  * Hot spares and cache devices are tracked using the same code below,
495  * for 'auxiliary' devices.
496  */
497 
498 typedef struct spa_aux {
499 	uint64_t	aux_guid;
500 	uint64_t	aux_pool;
501 	avl_node_t	aux_avl;
502 	int		aux_count;
503 } spa_aux_t;
504 
505 static int
506 spa_aux_compare(const void *a, const void *b)
507 {
508 	const spa_aux_t *sa = a;
509 	const spa_aux_t *sb = b;
510 
511 	if (sa->aux_guid < sb->aux_guid)
512 		return (-1);
513 	else if (sa->aux_guid > sb->aux_guid)
514 		return (1);
515 	else
516 		return (0);
517 }
518 
519 void
520 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
521 {
522 	avl_index_t where;
523 	spa_aux_t search;
524 	spa_aux_t *aux;
525 
526 	search.aux_guid = vd->vdev_guid;
527 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
528 		aux->aux_count++;
529 	} else {
530 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
531 		aux->aux_guid = vd->vdev_guid;
532 		aux->aux_count = 1;
533 		avl_insert(avl, aux, where);
534 	}
535 }
536 
537 void
538 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
539 {
540 	spa_aux_t search;
541 	spa_aux_t *aux;
542 	avl_index_t where;
543 
544 	search.aux_guid = vd->vdev_guid;
545 	aux = avl_find(avl, &search, &where);
546 
547 	ASSERT(aux != NULL);
548 
549 	if (--aux->aux_count == 0) {
550 		avl_remove(avl, aux);
551 		kmem_free(aux, sizeof (spa_aux_t));
552 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
553 		aux->aux_pool = 0ULL;
554 	}
555 }
556 
557 boolean_t
558 spa_aux_exists(uint64_t guid, uint64_t *pool, avl_tree_t *avl)
559 {
560 	spa_aux_t search, *found;
561 	avl_index_t where;
562 
563 	search.aux_guid = guid;
564 	found = avl_find(avl, &search, &where);
565 
566 	if (pool) {
567 		if (found)
568 			*pool = found->aux_pool;
569 		else
570 			*pool = 0ULL;
571 	}
572 
573 	return (found != NULL);
574 }
575 
576 void
577 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
578 {
579 	spa_aux_t search, *found;
580 	avl_index_t where;
581 
582 	search.aux_guid = vd->vdev_guid;
583 	found = avl_find(avl, &search, &where);
584 	ASSERT(found != NULL);
585 	ASSERT(found->aux_pool == 0ULL);
586 
587 	found->aux_pool = spa_guid(vd->vdev_spa);
588 }
589 
590 /*
591  * Spares are tracked globally due to the following constraints:
592  *
593  * 	- A spare may be part of multiple pools.
594  * 	- A spare may be added to a pool even if it's actively in use within
595  *	  another pool.
596  * 	- A spare in use in any pool can only be the source of a replacement if
597  *	  the target is a spare in the same pool.
598  *
599  * We keep track of all spares on the system through the use of a reference
600  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
601  * spare, then we bump the reference count in the AVL tree.  In addition, we set
602  * the 'vdev_isspare' member to indicate that the device is a spare (active or
603  * inactive).  When a spare is made active (used to replace a device in the
604  * pool), we also keep track of which pool its been made a part of.
605  *
606  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
607  * called under the spa_namespace lock as part of vdev reconfiguration.  The
608  * separate spare lock exists for the status query path, which does not need to
609  * be completely consistent with respect to other vdev configuration changes.
610  */
611 
612 static int
613 spa_spare_compare(const void *a, const void *b)
614 {
615 	return (spa_aux_compare(a, b));
616 }
617 
618 void
619 spa_spare_add(vdev_t *vd)
620 {
621 	mutex_enter(&spa_spare_lock);
622 	ASSERT(!vd->vdev_isspare);
623 	spa_aux_add(vd, &spa_spare_avl);
624 	vd->vdev_isspare = B_TRUE;
625 	mutex_exit(&spa_spare_lock);
626 }
627 
628 void
629 spa_spare_remove(vdev_t *vd)
630 {
631 	mutex_enter(&spa_spare_lock);
632 	ASSERT(vd->vdev_isspare);
633 	spa_aux_remove(vd, &spa_spare_avl);
634 	vd->vdev_isspare = B_FALSE;
635 	mutex_exit(&spa_spare_lock);
636 }
637 
638 boolean_t
639 spa_spare_exists(uint64_t guid, uint64_t *pool)
640 {
641 	boolean_t found;
642 
643 	mutex_enter(&spa_spare_lock);
644 	found = spa_aux_exists(guid, pool, &spa_spare_avl);
645 	mutex_exit(&spa_spare_lock);
646 
647 	return (found);
648 }
649 
650 void
651 spa_spare_activate(vdev_t *vd)
652 {
653 	mutex_enter(&spa_spare_lock);
654 	ASSERT(vd->vdev_isspare);
655 	spa_aux_activate(vd, &spa_spare_avl);
656 	mutex_exit(&spa_spare_lock);
657 }
658 
659 /*
660  * Level 2 ARC devices are tracked globally for the same reasons as spares.
661  * Cache devices currently only support one pool per cache device, and so
662  * for these devices the aux reference count is currently unused beyond 1.
663  */
664 
665 static int
666 spa_l2cache_compare(const void *a, const void *b)
667 {
668 	return (spa_aux_compare(a, b));
669 }
670 
671 void
672 spa_l2cache_add(vdev_t *vd)
673 {
674 	mutex_enter(&spa_l2cache_lock);
675 	ASSERT(!vd->vdev_isl2cache);
676 	spa_aux_add(vd, &spa_l2cache_avl);
677 	vd->vdev_isl2cache = B_TRUE;
678 	mutex_exit(&spa_l2cache_lock);
679 }
680 
681 void
682 spa_l2cache_remove(vdev_t *vd)
683 {
684 	mutex_enter(&spa_l2cache_lock);
685 	ASSERT(vd->vdev_isl2cache);
686 	spa_aux_remove(vd, &spa_l2cache_avl);
687 	vd->vdev_isl2cache = B_FALSE;
688 	mutex_exit(&spa_l2cache_lock);
689 }
690 
691 boolean_t
692 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
693 {
694 	boolean_t found;
695 
696 	mutex_enter(&spa_l2cache_lock);
697 	found = spa_aux_exists(guid, pool, &spa_l2cache_avl);
698 	mutex_exit(&spa_l2cache_lock);
699 
700 	return (found);
701 }
702 
703 void
704 spa_l2cache_activate(vdev_t *vd)
705 {
706 	mutex_enter(&spa_l2cache_lock);
707 	ASSERT(vd->vdev_isl2cache);
708 	spa_aux_activate(vd, &spa_l2cache_avl);
709 	mutex_exit(&spa_l2cache_lock);
710 }
711 
712 void
713 spa_l2cache_space_update(vdev_t *vd, int64_t space, int64_t alloc)
714 {
715 	vdev_space_update(vd, space, alloc, B_FALSE);
716 }
717 
718 /*
719  * ==========================================================================
720  * SPA vdev locking
721  * ==========================================================================
722  */
723 
724 /*
725  * Lock the given spa_t for the purpose of adding or removing a vdev.
726  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
727  * It returns the next transaction group for the spa_t.
728  */
729 uint64_t
730 spa_vdev_enter(spa_t *spa)
731 {
732 	mutex_enter(&spa_namespace_lock);
733 
734 	spa_config_enter(spa, RW_WRITER, spa);
735 
736 	return (spa_last_synced_txg(spa) + 1);
737 }
738 
739 /*
740  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
741  * locking of spa_vdev_enter(), we also want make sure the transactions have
742  * synced to disk, and then update the global configuration cache with the new
743  * information.
744  */
745 int
746 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
747 {
748 	int config_changed = B_FALSE;
749 
750 	ASSERT(txg > spa_last_synced_txg(spa));
751 
752 	/*
753 	 * Reassess the DTLs.
754 	 */
755 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
756 
757 	/*
758 	 * If the config changed, notify the scrub thread that it must restart.
759 	 */
760 	if (error == 0 && !list_is_empty(&spa->spa_dirty_list)) {
761 		dsl_pool_scrub_restart(spa->spa_dsl_pool);
762 		config_changed = B_TRUE;
763 	}
764 
765 	spa_config_exit(spa, spa);
766 
767 	/*
768 	 * Note: this txg_wait_synced() is important because it ensures
769 	 * that there won't be more than one config change per txg.
770 	 * This allows us to use the txg as the generation number.
771 	 */
772 	if (error == 0)
773 		txg_wait_synced(spa->spa_dsl_pool, txg);
774 
775 	if (vd != NULL) {
776 		ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0);
777 		vdev_free(vd);
778 	}
779 
780 	/*
781 	 * If the config changed, update the config cache.
782 	 */
783 	if (config_changed)
784 		spa_config_sync(spa, B_FALSE, B_TRUE);
785 
786 	mutex_exit(&spa_namespace_lock);
787 
788 	return (error);
789 }
790 
791 /*
792  * ==========================================================================
793  * Miscellaneous functions
794  * ==========================================================================
795  */
796 
797 /*
798  * Rename a spa_t.
799  */
800 int
801 spa_rename(const char *name, const char *newname)
802 {
803 	spa_t *spa;
804 	int err;
805 
806 	/*
807 	 * Lookup the spa_t and grab the config lock for writing.  We need to
808 	 * actually open the pool so that we can sync out the necessary labels.
809 	 * It's OK to call spa_open() with the namespace lock held because we
810 	 * allow recursive calls for other reasons.
811 	 */
812 	mutex_enter(&spa_namespace_lock);
813 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
814 		mutex_exit(&spa_namespace_lock);
815 		return (err);
816 	}
817 
818 	spa_config_enter(spa, RW_WRITER, FTAG);
819 
820 	avl_remove(&spa_namespace_avl, spa);
821 	spa_strfree(spa->spa_name);
822 	spa->spa_name = spa_strdup(newname);
823 	avl_add(&spa_namespace_avl, spa);
824 
825 	/*
826 	 * Sync all labels to disk with the new names by marking the root vdev
827 	 * dirty and waiting for it to sync.  It will pick up the new pool name
828 	 * during the sync.
829 	 */
830 	vdev_config_dirty(spa->spa_root_vdev);
831 
832 	spa_config_exit(spa, FTAG);
833 
834 	txg_wait_synced(spa->spa_dsl_pool, 0);
835 
836 	/*
837 	 * Sync the updated config cache.
838 	 */
839 	spa_config_sync(spa, B_FALSE, B_TRUE);
840 
841 	spa_close(spa, FTAG);
842 
843 	mutex_exit(&spa_namespace_lock);
844 
845 	return (0);
846 }
847 
848 
849 /*
850  * Determine whether a pool with given pool_guid exists.  If device_guid is
851  * non-zero, determine whether the pool exists *and* contains a device with the
852  * specified device_guid.
853  */
854 boolean_t
855 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
856 {
857 	spa_t *spa;
858 	avl_tree_t *t = &spa_namespace_avl;
859 
860 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
861 
862 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
863 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
864 			continue;
865 		if (spa->spa_root_vdev == NULL)
866 			continue;
867 		if (spa_guid(spa) == pool_guid) {
868 			if (device_guid == 0)
869 				break;
870 
871 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
872 			    device_guid) != NULL)
873 				break;
874 
875 			/*
876 			 * Check any devices we may be in the process of adding.
877 			 */
878 			if (spa->spa_pending_vdev) {
879 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
880 				    device_guid) != NULL)
881 					break;
882 			}
883 		}
884 	}
885 
886 	return (spa != NULL);
887 }
888 
889 char *
890 spa_strdup(const char *s)
891 {
892 	size_t len;
893 	char *new;
894 
895 	len = strlen(s);
896 	new = kmem_alloc(len + 1, KM_SLEEP);
897 	bcopy(s, new, len);
898 	new[len] = '\0';
899 
900 	return (new);
901 }
902 
903 void
904 spa_strfree(char *s)
905 {
906 	kmem_free(s, strlen(s) + 1);
907 }
908 
909 uint64_t
910 spa_get_random(uint64_t range)
911 {
912 	uint64_t r;
913 
914 	ASSERT(range != 0);
915 
916 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
917 
918 	return (r % range);
919 }
920 
921 void
922 sprintf_blkptr(char *buf, int len, const blkptr_t *bp)
923 {
924 	int d;
925 
926 	if (bp == NULL) {
927 		(void) snprintf(buf, len, "<NULL>");
928 		return;
929 	}
930 
931 	if (BP_IS_HOLE(bp)) {
932 		(void) snprintf(buf, len, "<hole>");
933 		return;
934 	}
935 
936 	(void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ",
937 	    (u_longlong_t)BP_GET_LEVEL(bp),
938 	    dmu_ot[BP_GET_TYPE(bp)].ot_name,
939 	    (u_longlong_t)BP_GET_LSIZE(bp),
940 	    (u_longlong_t)BP_GET_PSIZE(bp));
941 
942 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
943 		const dva_t *dva = &bp->blk_dva[d];
944 		(void) snprintf(buf + strlen(buf), len - strlen(buf),
945 		    "DVA[%d]=<%llu:%llx:%llx> ", d,
946 		    (u_longlong_t)DVA_GET_VDEV(dva),
947 		    (u_longlong_t)DVA_GET_OFFSET(dva),
948 		    (u_longlong_t)DVA_GET_ASIZE(dva));
949 	}
950 
951 	(void) snprintf(buf + strlen(buf), len - strlen(buf),
952 	    "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
953 	    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
954 	    zio_compress_table[BP_GET_COMPRESS(bp)].ci_name,
955 	    BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",
956 	    BP_IS_GANG(bp) ? "gang" : "contiguous",
957 	    (u_longlong_t)bp->blk_birth,
958 	    (u_longlong_t)bp->blk_fill,
959 	    (u_longlong_t)bp->blk_cksum.zc_word[0],
960 	    (u_longlong_t)bp->blk_cksum.zc_word[1],
961 	    (u_longlong_t)bp->blk_cksum.zc_word[2],
962 	    (u_longlong_t)bp->blk_cksum.zc_word[3]);
963 }
964 
965 void
966 spa_freeze(spa_t *spa)
967 {
968 	uint64_t freeze_txg = 0;
969 
970 	spa_config_enter(spa, RW_WRITER, FTAG);
971 	if (spa->spa_freeze_txg == UINT64_MAX) {
972 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
973 		spa->spa_freeze_txg = freeze_txg;
974 	}
975 	spa_config_exit(spa, FTAG);
976 	if (freeze_txg != 0)
977 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
978 }
979 
980 void
981 zfs_panic_recover(const char *fmt, ...)
982 {
983 	va_list adx;
984 
985 	va_start(adx, fmt);
986 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
987 	va_end(adx);
988 }
989 
990 /*
991  * ==========================================================================
992  * Accessor functions
993  * ==========================================================================
994  */
995 
996 krwlock_t *
997 spa_traverse_rwlock(spa_t *spa)
998 {
999 	return (&spa->spa_traverse_lock);
1000 }
1001 
1002 boolean_t
1003 spa_traverse_wanted(spa_t *spa)
1004 {
1005 	return (spa->spa_traverse_wanted);
1006 }
1007 
1008 dsl_pool_t *
1009 spa_get_dsl(spa_t *spa)
1010 {
1011 	return (spa->spa_dsl_pool);
1012 }
1013 
1014 blkptr_t *
1015 spa_get_rootblkptr(spa_t *spa)
1016 {
1017 	return (&spa->spa_ubsync.ub_rootbp);
1018 }
1019 
1020 void
1021 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1022 {
1023 	spa->spa_uberblock.ub_rootbp = *bp;
1024 }
1025 
1026 void
1027 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1028 {
1029 	if (spa->spa_root == NULL)
1030 		buf[0] = '\0';
1031 	else
1032 		(void) strncpy(buf, spa->spa_root, buflen);
1033 }
1034 
1035 int
1036 spa_sync_pass(spa_t *spa)
1037 {
1038 	return (spa->spa_sync_pass);
1039 }
1040 
1041 char *
1042 spa_name(spa_t *spa)
1043 {
1044 	/*
1045 	 * Accessing the name requires holding either the namespace lock or the
1046 	 * config lock, both of which are required to do a rename.
1047 	 */
1048 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
1049 	    spa_config_held(spa, RW_READER));
1050 
1051 	return (spa->spa_name);
1052 }
1053 
1054 uint64_t
1055 spa_guid(spa_t *spa)
1056 {
1057 	/*
1058 	 * If we fail to parse the config during spa_load(), we can go through
1059 	 * the error path (which posts an ereport) and end up here with no root
1060 	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
1061 	 * this case.
1062 	 */
1063 	if (spa->spa_root_vdev != NULL)
1064 		return (spa->spa_root_vdev->vdev_guid);
1065 	else
1066 		return (spa->spa_load_guid);
1067 }
1068 
1069 uint64_t
1070 spa_last_synced_txg(spa_t *spa)
1071 {
1072 	return (spa->spa_ubsync.ub_txg);
1073 }
1074 
1075 uint64_t
1076 spa_first_txg(spa_t *spa)
1077 {
1078 	return (spa->spa_first_txg);
1079 }
1080 
1081 int
1082 spa_state(spa_t *spa)
1083 {
1084 	return (spa->spa_state);
1085 }
1086 
1087 uint64_t
1088 spa_freeze_txg(spa_t *spa)
1089 {
1090 	return (spa->spa_freeze_txg);
1091 }
1092 
1093 /*
1094  * Return how much space is allocated in the pool (ie. sum of all asize)
1095  */
1096 uint64_t
1097 spa_get_alloc(spa_t *spa)
1098 {
1099 	return (spa->spa_root_vdev->vdev_stat.vs_alloc);
1100 }
1101 
1102 /*
1103  * Return how much (raid-z inflated) space there is in the pool.
1104  */
1105 uint64_t
1106 spa_get_space(spa_t *spa)
1107 {
1108 	return (spa->spa_root_vdev->vdev_stat.vs_space);
1109 }
1110 
1111 /*
1112  * Return the amount of raid-z-deflated space in the pool.
1113  */
1114 uint64_t
1115 spa_get_dspace(spa_t *spa)
1116 {
1117 	if (spa->spa_deflate)
1118 		return (spa->spa_root_vdev->vdev_stat.vs_dspace);
1119 	else
1120 		return (spa->spa_root_vdev->vdev_stat.vs_space);
1121 }
1122 
1123 /* ARGSUSED */
1124 uint64_t
1125 spa_get_asize(spa_t *spa, uint64_t lsize)
1126 {
1127 	/*
1128 	 * For now, the worst case is 512-byte RAID-Z blocks, in which
1129 	 * case the space requirement is exactly 2x; so just assume that.
1130 	 * Add to this the fact that we can have up to 3 DVAs per bp, and
1131 	 * we have to multiply by a total of 6x.
1132 	 */
1133 	return (lsize * 6);
1134 }
1135 
1136 /*
1137  * Return the failure mode that has been set to this pool. The default
1138  * behavior will be to block all I/Os when a complete failure occurs.
1139  */
1140 uint8_t
1141 spa_get_failmode(spa_t *spa)
1142 {
1143 	return (spa->spa_failmode);
1144 }
1145 
1146 uint64_t
1147 spa_version(spa_t *spa)
1148 {
1149 	return (spa->spa_ubsync.ub_version);
1150 }
1151 
1152 int
1153 spa_max_replication(spa_t *spa)
1154 {
1155 	/*
1156 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1157 	 * handle BPs with more than one DVA allocated.  Set our max
1158 	 * replication level accordingly.
1159 	 */
1160 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1161 		return (1);
1162 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1163 }
1164 
1165 uint64_t
1166 bp_get_dasize(spa_t *spa, const blkptr_t *bp)
1167 {
1168 	int sz = 0, i;
1169 
1170 	if (!spa->spa_deflate)
1171 		return (BP_GET_ASIZE(bp));
1172 
1173 	spa_config_enter(spa, RW_READER, FTAG);
1174 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
1175 		vdev_t *vd =
1176 		    vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i]));
1177 		if (vd)
1178 			sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >>
1179 			    SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1180 	}
1181 	spa_config_exit(spa, FTAG);
1182 	return (sz);
1183 }
1184 
1185 /*
1186  * ==========================================================================
1187  * Initialization and Termination
1188  * ==========================================================================
1189  */
1190 
1191 static int
1192 spa_name_compare(const void *a1, const void *a2)
1193 {
1194 	const spa_t *s1 = a1;
1195 	const spa_t *s2 = a2;
1196 	int s;
1197 
1198 	s = strcmp(s1->spa_name, s2->spa_name);
1199 	if (s > 0)
1200 		return (1);
1201 	if (s < 0)
1202 		return (-1);
1203 	return (0);
1204 }
1205 
1206 int
1207 spa_busy(void)
1208 {
1209 	return (spa_active_count);
1210 }
1211 
1212 void
1213 spa_boot_init()
1214 {
1215 	spa_config_load();
1216 }
1217 
1218 void
1219 spa_init(int mode)
1220 {
1221 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1222 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1223 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1224 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1225 
1226 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1227 	    offsetof(spa_t, spa_avl));
1228 
1229 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1230 	    offsetof(spa_aux_t, aux_avl));
1231 
1232 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1233 	    offsetof(spa_aux_t, aux_avl));
1234 
1235 	spa_mode = mode;
1236 
1237 	refcount_init();
1238 	unique_init();
1239 	zio_init();
1240 	dmu_init();
1241 	zil_init();
1242 	vdev_cache_stat_init();
1243 	zfs_prop_init();
1244 	zpool_prop_init();
1245 	spa_config_load();
1246 }
1247 
1248 void
1249 spa_fini(void)
1250 {
1251 	spa_evict_all();
1252 
1253 	vdev_cache_stat_fini();
1254 	zil_fini();
1255 	dmu_fini();
1256 	zio_fini();
1257 	unique_fini();
1258 	refcount_fini();
1259 
1260 	avl_destroy(&spa_namespace_avl);
1261 	avl_destroy(&spa_spare_avl);
1262 	avl_destroy(&spa_l2cache_avl);
1263 
1264 	cv_destroy(&spa_namespace_cv);
1265 	mutex_destroy(&spa_namespace_lock);
1266 	mutex_destroy(&spa_spare_lock);
1267 	mutex_destroy(&spa_l2cache_lock);
1268 }
1269 
1270 /*
1271  * Return whether this pool has slogs. No locking needed.
1272  * It's not a problem if the wrong answer is returned as it's only for
1273  * performance and not correctness
1274  */
1275 boolean_t
1276 spa_has_slogs(spa_t *spa)
1277 {
1278 	return (spa->spa_log_class->mc_rotor != NULL);
1279 }
1280 
1281 /*
1282  * Return whether this pool is the root pool.
1283  */
1284 boolean_t
1285 spa_is_root(spa_t *spa)
1286 {
1287 	return (spa->spa_is_root);
1288 }
1289