1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa_impl.h> 29 #include <sys/spa_boot.h> 30 #include <sys/zio.h> 31 #include <sys/zio_checksum.h> 32 #include <sys/zio_compress.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/zap.h> 36 #include <sys/zil.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/uberblock_impl.h> 40 #include <sys/txg.h> 41 #include <sys/avl.h> 42 #include <sys/unique.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_dir.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/dsl_scan.h> 47 #include <sys/fs/zfs.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/arc.h> 50 #include <sys/ddt.h> 51 #include "zfs_prop.h" 52 #include "zfeature_common.h" 53 54 /* 55 * SPA locking 56 * 57 * There are four basic locks for managing spa_t structures: 58 * 59 * spa_namespace_lock (global mutex) 60 * 61 * This lock must be acquired to do any of the following: 62 * 63 * - Lookup a spa_t by name 64 * - Add or remove a spa_t from the namespace 65 * - Increase spa_refcount from non-zero 66 * - Check if spa_refcount is zero 67 * - Rename a spa_t 68 * - add/remove/attach/detach devices 69 * - Held for the duration of create/destroy/import/export 70 * 71 * It does not need to handle recursion. A create or destroy may 72 * reference objects (files or zvols) in other pools, but by 73 * definition they must have an existing reference, and will never need 74 * to lookup a spa_t by name. 75 * 76 * spa_refcount (per-spa refcount_t protected by mutex) 77 * 78 * This reference count keep track of any active users of the spa_t. The 79 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 80 * the refcount is never really 'zero' - opening a pool implicitly keeps 81 * some references in the DMU. Internally we check against spa_minref, but 82 * present the image of a zero/non-zero value to consumers. 83 * 84 * spa_config_lock[] (per-spa array of rwlocks) 85 * 86 * This protects the spa_t from config changes, and must be held in 87 * the following circumstances: 88 * 89 * - RW_READER to perform I/O to the spa 90 * - RW_WRITER to change the vdev config 91 * 92 * The locking order is fairly straightforward: 93 * 94 * spa_namespace_lock -> spa_refcount 95 * 96 * The namespace lock must be acquired to increase the refcount from 0 97 * or to check if it is zero. 98 * 99 * spa_refcount -> spa_config_lock[] 100 * 101 * There must be at least one valid reference on the spa_t to acquire 102 * the config lock. 103 * 104 * spa_namespace_lock -> spa_config_lock[] 105 * 106 * The namespace lock must always be taken before the config lock. 107 * 108 * 109 * The spa_namespace_lock can be acquired directly and is globally visible. 110 * 111 * The namespace is manipulated using the following functions, all of which 112 * require the spa_namespace_lock to be held. 113 * 114 * spa_lookup() Lookup a spa_t by name. 115 * 116 * spa_add() Create a new spa_t in the namespace. 117 * 118 * spa_remove() Remove a spa_t from the namespace. This also 119 * frees up any memory associated with the spa_t. 120 * 121 * spa_next() Returns the next spa_t in the system, or the 122 * first if NULL is passed. 123 * 124 * spa_evict_all() Shutdown and remove all spa_t structures in 125 * the system. 126 * 127 * spa_guid_exists() Determine whether a pool/device guid exists. 128 * 129 * The spa_refcount is manipulated using the following functions: 130 * 131 * spa_open_ref() Adds a reference to the given spa_t. Must be 132 * called with spa_namespace_lock held if the 133 * refcount is currently zero. 134 * 135 * spa_close() Remove a reference from the spa_t. This will 136 * not free the spa_t or remove it from the 137 * namespace. No locking is required. 138 * 139 * spa_refcount_zero() Returns true if the refcount is currently 140 * zero. Must be called with spa_namespace_lock 141 * held. 142 * 143 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 144 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 145 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 146 * 147 * To read the configuration, it suffices to hold one of these locks as reader. 148 * To modify the configuration, you must hold all locks as writer. To modify 149 * vdev state without altering the vdev tree's topology (e.g. online/offline), 150 * you must hold SCL_STATE and SCL_ZIO as writer. 151 * 152 * We use these distinct config locks to avoid recursive lock entry. 153 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 154 * block allocations (SCL_ALLOC), which may require reading space maps 155 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 156 * 157 * The spa config locks cannot be normal rwlocks because we need the 158 * ability to hand off ownership. For example, SCL_ZIO is acquired 159 * by the issuing thread and later released by an interrupt thread. 160 * They do, however, obey the usual write-wanted semantics to prevent 161 * writer (i.e. system administrator) starvation. 162 * 163 * The lock acquisition rules are as follows: 164 * 165 * SCL_CONFIG 166 * Protects changes to the vdev tree topology, such as vdev 167 * add/remove/attach/detach. Protects the dirty config list 168 * (spa_config_dirty_list) and the set of spares and l2arc devices. 169 * 170 * SCL_STATE 171 * Protects changes to pool state and vdev state, such as vdev 172 * online/offline/fault/degrade/clear. Protects the dirty state list 173 * (spa_state_dirty_list) and global pool state (spa_state). 174 * 175 * SCL_ALLOC 176 * Protects changes to metaslab groups and classes. 177 * Held as reader by metaslab_alloc() and metaslab_claim(). 178 * 179 * SCL_ZIO 180 * Held by bp-level zios (those which have no io_vd upon entry) 181 * to prevent changes to the vdev tree. The bp-level zio implicitly 182 * protects all of its vdev child zios, which do not hold SCL_ZIO. 183 * 184 * SCL_FREE 185 * Protects changes to metaslab groups and classes. 186 * Held as reader by metaslab_free(). SCL_FREE is distinct from 187 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 188 * blocks in zio_done() while another i/o that holds either 189 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 190 * 191 * SCL_VDEV 192 * Held as reader to prevent changes to the vdev tree during trivial 193 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 194 * other locks, and lower than all of them, to ensure that it's safe 195 * to acquire regardless of caller context. 196 * 197 * In addition, the following rules apply: 198 * 199 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 200 * The lock ordering is SCL_CONFIG > spa_props_lock. 201 * 202 * (b) I/O operations on leaf vdevs. For any zio operation that takes 203 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 204 * or zio_write_phys() -- the caller must ensure that the config cannot 205 * cannot change in the interim, and that the vdev cannot be reopened. 206 * SCL_STATE as reader suffices for both. 207 * 208 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 209 * 210 * spa_vdev_enter() Acquire the namespace lock and the config lock 211 * for writing. 212 * 213 * spa_vdev_exit() Release the config lock, wait for all I/O 214 * to complete, sync the updated configs to the 215 * cache, and release the namespace lock. 216 * 217 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 218 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 219 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 220 * 221 * spa_rename() is also implemented within this file since it requires 222 * manipulation of the namespace. 223 */ 224 225 static avl_tree_t spa_namespace_avl; 226 kmutex_t spa_namespace_lock; 227 static kcondvar_t spa_namespace_cv; 228 static int spa_active_count; 229 int spa_max_replication_override = SPA_DVAS_PER_BP; 230 231 static kmutex_t spa_spare_lock; 232 static avl_tree_t spa_spare_avl; 233 static kmutex_t spa_l2cache_lock; 234 static avl_tree_t spa_l2cache_avl; 235 236 kmem_cache_t *spa_buffer_pool; 237 int spa_mode_global; 238 239 #ifdef ZFS_DEBUG 240 /* Everything except dprintf and spa is on by default in debug builds */ 241 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA); 242 #else 243 int zfs_flags = 0; 244 #endif 245 246 /* 247 * zfs_recover can be set to nonzero to attempt to recover from 248 * otherwise-fatal errors, typically caused by on-disk corruption. When 249 * set, calls to zfs_panic_recover() will turn into warning messages. 250 * This should only be used as a last resort, as it typically results 251 * in leaked space, or worse. 252 */ 253 boolean_t zfs_recover = B_FALSE; 254 255 /* 256 * If destroy encounters an EIO while reading metadata (e.g. indirect 257 * blocks), space referenced by the missing metadata can not be freed. 258 * Normally this causes the background destroy to become "stalled", as 259 * it is unable to make forward progress. While in this stalled state, 260 * all remaining space to free from the error-encountering filesystem is 261 * "temporarily leaked". Set this flag to cause it to ignore the EIO, 262 * permanently leak the space from indirect blocks that can not be read, 263 * and continue to free everything else that it can. 264 * 265 * The default, "stalling" behavior is useful if the storage partially 266 * fails (i.e. some but not all i/os fail), and then later recovers. In 267 * this case, we will be able to continue pool operations while it is 268 * partially failed, and when it recovers, we can continue to free the 269 * space, with no leaks. However, note that this case is actually 270 * fairly rare. 271 * 272 * Typically pools either (a) fail completely (but perhaps temporarily, 273 * e.g. a top-level vdev going offline), or (b) have localized, 274 * permanent errors (e.g. disk returns the wrong data due to bit flip or 275 * firmware bug). In case (a), this setting does not matter because the 276 * pool will be suspended and the sync thread will not be able to make 277 * forward progress regardless. In case (b), because the error is 278 * permanent, the best we can do is leak the minimum amount of space, 279 * which is what setting this flag will do. Therefore, it is reasonable 280 * for this flag to normally be set, but we chose the more conservative 281 * approach of not setting it, so that there is no possibility of 282 * leaking space in the "partial temporary" failure case. 283 */ 284 boolean_t zfs_free_leak_on_eio = B_FALSE; 285 286 /* 287 * Expiration time in milliseconds. This value has two meanings. First it is 288 * used to determine when the spa_deadman() logic should fire. By default the 289 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds. 290 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 291 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 292 * in a system panic. 293 */ 294 uint64_t zfs_deadman_synctime_ms = 1000000ULL; 295 296 /* 297 * Check time in milliseconds. This defines the frequency at which we check 298 * for hung I/O. 299 */ 300 uint64_t zfs_deadman_checktime_ms = 5000ULL; 301 302 /* 303 * Override the zfs deadman behavior via /etc/system. By default the 304 * deadman is enabled except on VMware and sparc deployments. 305 */ 306 int zfs_deadman_enabled = -1; 307 308 /* 309 * The worst case is single-sector max-parity RAID-Z blocks, in which 310 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 311 * times the size; so just assume that. Add to this the fact that 312 * we can have up to 3 DVAs per bp, and one more factor of 2 because 313 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 314 * the worst case is: 315 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 316 */ 317 int spa_asize_inflation = 24; 318 319 /* 320 * ========================================================================== 321 * SPA config locking 322 * ========================================================================== 323 */ 324 static void 325 spa_config_lock_init(spa_t *spa) 326 { 327 for (int i = 0; i < SCL_LOCKS; i++) { 328 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 329 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 330 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 331 refcount_create_untracked(&scl->scl_count); 332 scl->scl_writer = NULL; 333 scl->scl_write_wanted = 0; 334 } 335 } 336 337 static void 338 spa_config_lock_destroy(spa_t *spa) 339 { 340 for (int i = 0; i < SCL_LOCKS; i++) { 341 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 342 mutex_destroy(&scl->scl_lock); 343 cv_destroy(&scl->scl_cv); 344 refcount_destroy(&scl->scl_count); 345 ASSERT(scl->scl_writer == NULL); 346 ASSERT(scl->scl_write_wanted == 0); 347 } 348 } 349 350 int 351 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 352 { 353 for (int i = 0; i < SCL_LOCKS; i++) { 354 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 355 if (!(locks & (1 << i))) 356 continue; 357 mutex_enter(&scl->scl_lock); 358 if (rw == RW_READER) { 359 if (scl->scl_writer || scl->scl_write_wanted) { 360 mutex_exit(&scl->scl_lock); 361 spa_config_exit(spa, locks ^ (1 << i), tag); 362 return (0); 363 } 364 } else { 365 ASSERT(scl->scl_writer != curthread); 366 if (!refcount_is_zero(&scl->scl_count)) { 367 mutex_exit(&scl->scl_lock); 368 spa_config_exit(spa, locks ^ (1 << i), tag); 369 return (0); 370 } 371 scl->scl_writer = curthread; 372 } 373 (void) refcount_add(&scl->scl_count, tag); 374 mutex_exit(&scl->scl_lock); 375 } 376 return (1); 377 } 378 379 void 380 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 381 { 382 int wlocks_held = 0; 383 384 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 385 386 for (int i = 0; i < SCL_LOCKS; i++) { 387 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 388 if (scl->scl_writer == curthread) 389 wlocks_held |= (1 << i); 390 if (!(locks & (1 << i))) 391 continue; 392 mutex_enter(&scl->scl_lock); 393 if (rw == RW_READER) { 394 while (scl->scl_writer || scl->scl_write_wanted) { 395 cv_wait(&scl->scl_cv, &scl->scl_lock); 396 } 397 } else { 398 ASSERT(scl->scl_writer != curthread); 399 while (!refcount_is_zero(&scl->scl_count)) { 400 scl->scl_write_wanted++; 401 cv_wait(&scl->scl_cv, &scl->scl_lock); 402 scl->scl_write_wanted--; 403 } 404 scl->scl_writer = curthread; 405 } 406 (void) refcount_add(&scl->scl_count, tag); 407 mutex_exit(&scl->scl_lock); 408 } 409 ASSERT(wlocks_held <= locks); 410 } 411 412 void 413 spa_config_exit(spa_t *spa, int locks, void *tag) 414 { 415 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 416 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 417 if (!(locks & (1 << i))) 418 continue; 419 mutex_enter(&scl->scl_lock); 420 ASSERT(!refcount_is_zero(&scl->scl_count)); 421 if (refcount_remove(&scl->scl_count, tag) == 0) { 422 ASSERT(scl->scl_writer == NULL || 423 scl->scl_writer == curthread); 424 scl->scl_writer = NULL; /* OK in either case */ 425 cv_broadcast(&scl->scl_cv); 426 } 427 mutex_exit(&scl->scl_lock); 428 } 429 } 430 431 int 432 spa_config_held(spa_t *spa, int locks, krw_t rw) 433 { 434 int locks_held = 0; 435 436 for (int i = 0; i < SCL_LOCKS; i++) { 437 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 438 if (!(locks & (1 << i))) 439 continue; 440 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || 441 (rw == RW_WRITER && scl->scl_writer == curthread)) 442 locks_held |= 1 << i; 443 } 444 445 return (locks_held); 446 } 447 448 /* 449 * ========================================================================== 450 * SPA namespace functions 451 * ========================================================================== 452 */ 453 454 /* 455 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 456 * Returns NULL if no matching spa_t is found. 457 */ 458 spa_t * 459 spa_lookup(const char *name) 460 { 461 static spa_t search; /* spa_t is large; don't allocate on stack */ 462 spa_t *spa; 463 avl_index_t where; 464 char *cp; 465 466 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 467 468 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 469 470 /* 471 * If it's a full dataset name, figure out the pool name and 472 * just use that. 473 */ 474 cp = strpbrk(search.spa_name, "/@#"); 475 if (cp != NULL) 476 *cp = '\0'; 477 478 spa = avl_find(&spa_namespace_avl, &search, &where); 479 480 return (spa); 481 } 482 483 /* 484 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 485 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 486 * looking for potentially hung I/Os. 487 */ 488 void 489 spa_deadman(void *arg) 490 { 491 spa_t *spa = arg; 492 493 /* 494 * Disable the deadman timer if the pool is suspended. 495 */ 496 if (spa_suspended(spa)) { 497 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 498 return; 499 } 500 501 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 502 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 503 ++spa->spa_deadman_calls); 504 if (zfs_deadman_enabled) 505 vdev_deadman(spa->spa_root_vdev); 506 } 507 508 /* 509 * Create an uninitialized spa_t with the given name. Requires 510 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 511 * exist by calling spa_lookup() first. 512 */ 513 spa_t * 514 spa_add(const char *name, nvlist_t *config, const char *altroot) 515 { 516 spa_t *spa; 517 spa_config_dirent_t *dp; 518 cyc_handler_t hdlr; 519 cyc_time_t when; 520 521 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 522 523 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 524 525 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 526 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 527 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 528 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 529 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 530 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 531 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 532 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 533 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 534 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL); 535 536 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 537 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 538 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 539 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 540 541 for (int t = 0; t < TXG_SIZE; t++) 542 bplist_create(&spa->spa_free_bplist[t]); 543 544 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 545 spa->spa_state = POOL_STATE_UNINITIALIZED; 546 spa->spa_freeze_txg = UINT64_MAX; 547 spa->spa_final_txg = UINT64_MAX; 548 spa->spa_load_max_txg = UINT64_MAX; 549 spa->spa_proc = &p0; 550 spa->spa_proc_state = SPA_PROC_NONE; 551 552 hdlr.cyh_func = spa_deadman; 553 hdlr.cyh_arg = spa; 554 hdlr.cyh_level = CY_LOW_LEVEL; 555 556 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 557 558 /* 559 * This determines how often we need to check for hung I/Os after 560 * the cyclic has already fired. Since checking for hung I/Os is 561 * an expensive operation we don't want to check too frequently. 562 * Instead wait for 5 seconds before checking again. 563 */ 564 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms); 565 when.cyt_when = CY_INFINITY; 566 mutex_enter(&cpu_lock); 567 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when); 568 mutex_exit(&cpu_lock); 569 570 refcount_create(&spa->spa_refcount); 571 spa_config_lock_init(spa); 572 573 avl_add(&spa_namespace_avl, spa); 574 575 /* 576 * Set the alternate root, if there is one. 577 */ 578 if (altroot) { 579 spa->spa_root = spa_strdup(altroot); 580 spa_active_count++; 581 } 582 583 /* 584 * Every pool starts with the default cachefile 585 */ 586 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 587 offsetof(spa_config_dirent_t, scd_link)); 588 589 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 590 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 591 list_insert_head(&spa->spa_config_list, dp); 592 593 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 594 KM_SLEEP) == 0); 595 596 if (config != NULL) { 597 nvlist_t *features; 598 599 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 600 &features) == 0) { 601 VERIFY(nvlist_dup(features, &spa->spa_label_features, 602 0) == 0); 603 } 604 605 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 606 } 607 608 if (spa->spa_label_features == NULL) { 609 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 610 KM_SLEEP) == 0); 611 } 612 613 spa->spa_iokstat = kstat_create("zfs", 0, name, 614 "disk", KSTAT_TYPE_IO, 1, 0); 615 if (spa->spa_iokstat) { 616 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock; 617 kstat_install(spa->spa_iokstat); 618 } 619 620 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0); 621 622 /* 623 * As a pool is being created, treat all features as disabled by 624 * setting SPA_FEATURE_DISABLED for all entries in the feature 625 * refcount cache. 626 */ 627 for (int i = 0; i < SPA_FEATURES; i++) { 628 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 629 } 630 631 return (spa); 632 } 633 634 /* 635 * Removes a spa_t from the namespace, freeing up any memory used. Requires 636 * spa_namespace_lock. This is called only after the spa_t has been closed and 637 * deactivated. 638 */ 639 void 640 spa_remove(spa_t *spa) 641 { 642 spa_config_dirent_t *dp; 643 644 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 645 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 646 647 nvlist_free(spa->spa_config_splitting); 648 649 avl_remove(&spa_namespace_avl, spa); 650 cv_broadcast(&spa_namespace_cv); 651 652 if (spa->spa_root) { 653 spa_strfree(spa->spa_root); 654 spa_active_count--; 655 } 656 657 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 658 list_remove(&spa->spa_config_list, dp); 659 if (dp->scd_path != NULL) 660 spa_strfree(dp->scd_path); 661 kmem_free(dp, sizeof (spa_config_dirent_t)); 662 } 663 664 list_destroy(&spa->spa_config_list); 665 666 nvlist_free(spa->spa_label_features); 667 nvlist_free(spa->spa_load_info); 668 spa_config_set(spa, NULL); 669 670 mutex_enter(&cpu_lock); 671 if (spa->spa_deadman_cycid != CYCLIC_NONE) 672 cyclic_remove(spa->spa_deadman_cycid); 673 mutex_exit(&cpu_lock); 674 spa->spa_deadman_cycid = CYCLIC_NONE; 675 676 refcount_destroy(&spa->spa_refcount); 677 678 spa_config_lock_destroy(spa); 679 680 kstat_delete(spa->spa_iokstat); 681 spa->spa_iokstat = NULL; 682 683 for (int t = 0; t < TXG_SIZE; t++) 684 bplist_destroy(&spa->spa_free_bplist[t]); 685 686 cv_destroy(&spa->spa_async_cv); 687 cv_destroy(&spa->spa_proc_cv); 688 cv_destroy(&spa->spa_scrub_io_cv); 689 cv_destroy(&spa->spa_suspend_cv); 690 691 mutex_destroy(&spa->spa_async_lock); 692 mutex_destroy(&spa->spa_errlist_lock); 693 mutex_destroy(&spa->spa_errlog_lock); 694 mutex_destroy(&spa->spa_history_lock); 695 mutex_destroy(&spa->spa_proc_lock); 696 mutex_destroy(&spa->spa_props_lock); 697 mutex_destroy(&spa->spa_scrub_lock); 698 mutex_destroy(&spa->spa_suspend_lock); 699 mutex_destroy(&spa->spa_vdev_top_lock); 700 mutex_destroy(&spa->spa_iokstat_lock); 701 702 kmem_free(spa, sizeof (spa_t)); 703 } 704 705 /* 706 * Given a pool, return the next pool in the namespace, or NULL if there is 707 * none. If 'prev' is NULL, return the first pool. 708 */ 709 spa_t * 710 spa_next(spa_t *prev) 711 { 712 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 713 714 if (prev) 715 return (AVL_NEXT(&spa_namespace_avl, prev)); 716 else 717 return (avl_first(&spa_namespace_avl)); 718 } 719 720 /* 721 * ========================================================================== 722 * SPA refcount functions 723 * ========================================================================== 724 */ 725 726 /* 727 * Add a reference to the given spa_t. Must have at least one reference, or 728 * have the namespace lock held. 729 */ 730 void 731 spa_open_ref(spa_t *spa, void *tag) 732 { 733 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || 734 MUTEX_HELD(&spa_namespace_lock)); 735 (void) refcount_add(&spa->spa_refcount, tag); 736 } 737 738 /* 739 * Remove a reference to the given spa_t. Must have at least one reference, or 740 * have the namespace lock held. 741 */ 742 void 743 spa_close(spa_t *spa, void *tag) 744 { 745 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || 746 MUTEX_HELD(&spa_namespace_lock)); 747 (void) refcount_remove(&spa->spa_refcount, tag); 748 } 749 750 /* 751 * Check to see if the spa refcount is zero. Must be called with 752 * spa_namespace_lock held. We really compare against spa_minref, which is the 753 * number of references acquired when opening a pool 754 */ 755 boolean_t 756 spa_refcount_zero(spa_t *spa) 757 { 758 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 759 760 return (refcount_count(&spa->spa_refcount) == spa->spa_minref); 761 } 762 763 /* 764 * ========================================================================== 765 * SPA spare and l2cache tracking 766 * ========================================================================== 767 */ 768 769 /* 770 * Hot spares and cache devices are tracked using the same code below, 771 * for 'auxiliary' devices. 772 */ 773 774 typedef struct spa_aux { 775 uint64_t aux_guid; 776 uint64_t aux_pool; 777 avl_node_t aux_avl; 778 int aux_count; 779 } spa_aux_t; 780 781 static int 782 spa_aux_compare(const void *a, const void *b) 783 { 784 const spa_aux_t *sa = a; 785 const spa_aux_t *sb = b; 786 787 if (sa->aux_guid < sb->aux_guid) 788 return (-1); 789 else if (sa->aux_guid > sb->aux_guid) 790 return (1); 791 else 792 return (0); 793 } 794 795 void 796 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 797 { 798 avl_index_t where; 799 spa_aux_t search; 800 spa_aux_t *aux; 801 802 search.aux_guid = vd->vdev_guid; 803 if ((aux = avl_find(avl, &search, &where)) != NULL) { 804 aux->aux_count++; 805 } else { 806 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 807 aux->aux_guid = vd->vdev_guid; 808 aux->aux_count = 1; 809 avl_insert(avl, aux, where); 810 } 811 } 812 813 void 814 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 815 { 816 spa_aux_t search; 817 spa_aux_t *aux; 818 avl_index_t where; 819 820 search.aux_guid = vd->vdev_guid; 821 aux = avl_find(avl, &search, &where); 822 823 ASSERT(aux != NULL); 824 825 if (--aux->aux_count == 0) { 826 avl_remove(avl, aux); 827 kmem_free(aux, sizeof (spa_aux_t)); 828 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 829 aux->aux_pool = 0ULL; 830 } 831 } 832 833 boolean_t 834 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 835 { 836 spa_aux_t search, *found; 837 838 search.aux_guid = guid; 839 found = avl_find(avl, &search, NULL); 840 841 if (pool) { 842 if (found) 843 *pool = found->aux_pool; 844 else 845 *pool = 0ULL; 846 } 847 848 if (refcnt) { 849 if (found) 850 *refcnt = found->aux_count; 851 else 852 *refcnt = 0; 853 } 854 855 return (found != NULL); 856 } 857 858 void 859 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 860 { 861 spa_aux_t search, *found; 862 avl_index_t where; 863 864 search.aux_guid = vd->vdev_guid; 865 found = avl_find(avl, &search, &where); 866 ASSERT(found != NULL); 867 ASSERT(found->aux_pool == 0ULL); 868 869 found->aux_pool = spa_guid(vd->vdev_spa); 870 } 871 872 /* 873 * Spares are tracked globally due to the following constraints: 874 * 875 * - A spare may be part of multiple pools. 876 * - A spare may be added to a pool even if it's actively in use within 877 * another pool. 878 * - A spare in use in any pool can only be the source of a replacement if 879 * the target is a spare in the same pool. 880 * 881 * We keep track of all spares on the system through the use of a reference 882 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 883 * spare, then we bump the reference count in the AVL tree. In addition, we set 884 * the 'vdev_isspare' member to indicate that the device is a spare (active or 885 * inactive). When a spare is made active (used to replace a device in the 886 * pool), we also keep track of which pool its been made a part of. 887 * 888 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 889 * called under the spa_namespace lock as part of vdev reconfiguration. The 890 * separate spare lock exists for the status query path, which does not need to 891 * be completely consistent with respect to other vdev configuration changes. 892 */ 893 894 static int 895 spa_spare_compare(const void *a, const void *b) 896 { 897 return (spa_aux_compare(a, b)); 898 } 899 900 void 901 spa_spare_add(vdev_t *vd) 902 { 903 mutex_enter(&spa_spare_lock); 904 ASSERT(!vd->vdev_isspare); 905 spa_aux_add(vd, &spa_spare_avl); 906 vd->vdev_isspare = B_TRUE; 907 mutex_exit(&spa_spare_lock); 908 } 909 910 void 911 spa_spare_remove(vdev_t *vd) 912 { 913 mutex_enter(&spa_spare_lock); 914 ASSERT(vd->vdev_isspare); 915 spa_aux_remove(vd, &spa_spare_avl); 916 vd->vdev_isspare = B_FALSE; 917 mutex_exit(&spa_spare_lock); 918 } 919 920 boolean_t 921 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 922 { 923 boolean_t found; 924 925 mutex_enter(&spa_spare_lock); 926 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 927 mutex_exit(&spa_spare_lock); 928 929 return (found); 930 } 931 932 void 933 spa_spare_activate(vdev_t *vd) 934 { 935 mutex_enter(&spa_spare_lock); 936 ASSERT(vd->vdev_isspare); 937 spa_aux_activate(vd, &spa_spare_avl); 938 mutex_exit(&spa_spare_lock); 939 } 940 941 /* 942 * Level 2 ARC devices are tracked globally for the same reasons as spares. 943 * Cache devices currently only support one pool per cache device, and so 944 * for these devices the aux reference count is currently unused beyond 1. 945 */ 946 947 static int 948 spa_l2cache_compare(const void *a, const void *b) 949 { 950 return (spa_aux_compare(a, b)); 951 } 952 953 void 954 spa_l2cache_add(vdev_t *vd) 955 { 956 mutex_enter(&spa_l2cache_lock); 957 ASSERT(!vd->vdev_isl2cache); 958 spa_aux_add(vd, &spa_l2cache_avl); 959 vd->vdev_isl2cache = B_TRUE; 960 mutex_exit(&spa_l2cache_lock); 961 } 962 963 void 964 spa_l2cache_remove(vdev_t *vd) 965 { 966 mutex_enter(&spa_l2cache_lock); 967 ASSERT(vd->vdev_isl2cache); 968 spa_aux_remove(vd, &spa_l2cache_avl); 969 vd->vdev_isl2cache = B_FALSE; 970 mutex_exit(&spa_l2cache_lock); 971 } 972 973 boolean_t 974 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 975 { 976 boolean_t found; 977 978 mutex_enter(&spa_l2cache_lock); 979 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 980 mutex_exit(&spa_l2cache_lock); 981 982 return (found); 983 } 984 985 void 986 spa_l2cache_activate(vdev_t *vd) 987 { 988 mutex_enter(&spa_l2cache_lock); 989 ASSERT(vd->vdev_isl2cache); 990 spa_aux_activate(vd, &spa_l2cache_avl); 991 mutex_exit(&spa_l2cache_lock); 992 } 993 994 /* 995 * ========================================================================== 996 * SPA vdev locking 997 * ========================================================================== 998 */ 999 1000 /* 1001 * Lock the given spa_t for the purpose of adding or removing a vdev. 1002 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 1003 * It returns the next transaction group for the spa_t. 1004 */ 1005 uint64_t 1006 spa_vdev_enter(spa_t *spa) 1007 { 1008 mutex_enter(&spa->spa_vdev_top_lock); 1009 mutex_enter(&spa_namespace_lock); 1010 return (spa_vdev_config_enter(spa)); 1011 } 1012 1013 /* 1014 * Internal implementation for spa_vdev_enter(). Used when a vdev 1015 * operation requires multiple syncs (i.e. removing a device) while 1016 * keeping the spa_namespace_lock held. 1017 */ 1018 uint64_t 1019 spa_vdev_config_enter(spa_t *spa) 1020 { 1021 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1022 1023 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1024 1025 return (spa_last_synced_txg(spa) + 1); 1026 } 1027 1028 /* 1029 * Used in combination with spa_vdev_config_enter() to allow the syncing 1030 * of multiple transactions without releasing the spa_namespace_lock. 1031 */ 1032 void 1033 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 1034 { 1035 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1036 1037 int config_changed = B_FALSE; 1038 1039 ASSERT(txg > spa_last_synced_txg(spa)); 1040 1041 spa->spa_pending_vdev = NULL; 1042 1043 /* 1044 * Reassess the DTLs. 1045 */ 1046 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 1047 1048 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1049 config_changed = B_TRUE; 1050 spa->spa_config_generation++; 1051 } 1052 1053 /* 1054 * Verify the metaslab classes. 1055 */ 1056 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1057 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1058 1059 spa_config_exit(spa, SCL_ALL, spa); 1060 1061 /* 1062 * Panic the system if the specified tag requires it. This 1063 * is useful for ensuring that configurations are updated 1064 * transactionally. 1065 */ 1066 if (zio_injection_enabled) 1067 zio_handle_panic_injection(spa, tag, 0); 1068 1069 /* 1070 * Note: this txg_wait_synced() is important because it ensures 1071 * that there won't be more than one config change per txg. 1072 * This allows us to use the txg as the generation number. 1073 */ 1074 if (error == 0) 1075 txg_wait_synced(spa->spa_dsl_pool, txg); 1076 1077 if (vd != NULL) { 1078 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1079 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1080 vdev_free(vd); 1081 spa_config_exit(spa, SCL_ALL, spa); 1082 } 1083 1084 /* 1085 * If the config changed, update the config cache. 1086 */ 1087 if (config_changed) 1088 spa_config_sync(spa, B_FALSE, B_TRUE); 1089 } 1090 1091 /* 1092 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1093 * locking of spa_vdev_enter(), we also want make sure the transactions have 1094 * synced to disk, and then update the global configuration cache with the new 1095 * information. 1096 */ 1097 int 1098 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1099 { 1100 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1101 mutex_exit(&spa_namespace_lock); 1102 mutex_exit(&spa->spa_vdev_top_lock); 1103 1104 return (error); 1105 } 1106 1107 /* 1108 * Lock the given spa_t for the purpose of changing vdev state. 1109 */ 1110 void 1111 spa_vdev_state_enter(spa_t *spa, int oplocks) 1112 { 1113 int locks = SCL_STATE_ALL | oplocks; 1114 1115 /* 1116 * Root pools may need to read of the underlying devfs filesystem 1117 * when opening up a vdev. Unfortunately if we're holding the 1118 * SCL_ZIO lock it will result in a deadlock when we try to issue 1119 * the read from the root filesystem. Instead we "prefetch" 1120 * the associated vnodes that we need prior to opening the 1121 * underlying devices and cache them so that we can prevent 1122 * any I/O when we are doing the actual open. 1123 */ 1124 if (spa_is_root(spa)) { 1125 int low = locks & ~(SCL_ZIO - 1); 1126 int high = locks & ~low; 1127 1128 spa_config_enter(spa, high, spa, RW_WRITER); 1129 vdev_hold(spa->spa_root_vdev); 1130 spa_config_enter(spa, low, spa, RW_WRITER); 1131 } else { 1132 spa_config_enter(spa, locks, spa, RW_WRITER); 1133 } 1134 spa->spa_vdev_locks = locks; 1135 } 1136 1137 int 1138 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1139 { 1140 boolean_t config_changed = B_FALSE; 1141 1142 if (vd != NULL || error == 0) 1143 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 1144 0, 0, B_FALSE); 1145 1146 if (vd != NULL) { 1147 vdev_state_dirty(vd->vdev_top); 1148 config_changed = B_TRUE; 1149 spa->spa_config_generation++; 1150 } 1151 1152 if (spa_is_root(spa)) 1153 vdev_rele(spa->spa_root_vdev); 1154 1155 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1156 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1157 1158 /* 1159 * If anything changed, wait for it to sync. This ensures that, 1160 * from the system administrator's perspective, zpool(1M) commands 1161 * are synchronous. This is important for things like zpool offline: 1162 * when the command completes, you expect no further I/O from ZFS. 1163 */ 1164 if (vd != NULL) 1165 txg_wait_synced(spa->spa_dsl_pool, 0); 1166 1167 /* 1168 * If the config changed, update the config cache. 1169 */ 1170 if (config_changed) { 1171 mutex_enter(&spa_namespace_lock); 1172 spa_config_sync(spa, B_FALSE, B_TRUE); 1173 mutex_exit(&spa_namespace_lock); 1174 } 1175 1176 return (error); 1177 } 1178 1179 /* 1180 * ========================================================================== 1181 * Miscellaneous functions 1182 * ========================================================================== 1183 */ 1184 1185 void 1186 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1187 { 1188 if (!nvlist_exists(spa->spa_label_features, feature)) { 1189 fnvlist_add_boolean(spa->spa_label_features, feature); 1190 /* 1191 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1192 * dirty the vdev config because lock SCL_CONFIG is not held. 1193 * Thankfully, in this case we don't need to dirty the config 1194 * because it will be written out anyway when we finish 1195 * creating the pool. 1196 */ 1197 if (tx->tx_txg != TXG_INITIAL) 1198 vdev_config_dirty(spa->spa_root_vdev); 1199 } 1200 } 1201 1202 void 1203 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1204 { 1205 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1206 vdev_config_dirty(spa->spa_root_vdev); 1207 } 1208 1209 /* 1210 * Rename a spa_t. 1211 */ 1212 int 1213 spa_rename(const char *name, const char *newname) 1214 { 1215 spa_t *spa; 1216 int err; 1217 1218 /* 1219 * Lookup the spa_t and grab the config lock for writing. We need to 1220 * actually open the pool so that we can sync out the necessary labels. 1221 * It's OK to call spa_open() with the namespace lock held because we 1222 * allow recursive calls for other reasons. 1223 */ 1224 mutex_enter(&spa_namespace_lock); 1225 if ((err = spa_open(name, &spa, FTAG)) != 0) { 1226 mutex_exit(&spa_namespace_lock); 1227 return (err); 1228 } 1229 1230 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1231 1232 avl_remove(&spa_namespace_avl, spa); 1233 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); 1234 avl_add(&spa_namespace_avl, spa); 1235 1236 /* 1237 * Sync all labels to disk with the new names by marking the root vdev 1238 * dirty and waiting for it to sync. It will pick up the new pool name 1239 * during the sync. 1240 */ 1241 vdev_config_dirty(spa->spa_root_vdev); 1242 1243 spa_config_exit(spa, SCL_ALL, FTAG); 1244 1245 txg_wait_synced(spa->spa_dsl_pool, 0); 1246 1247 /* 1248 * Sync the updated config cache. 1249 */ 1250 spa_config_sync(spa, B_FALSE, B_TRUE); 1251 1252 spa_close(spa, FTAG); 1253 1254 mutex_exit(&spa_namespace_lock); 1255 1256 return (0); 1257 } 1258 1259 /* 1260 * Return the spa_t associated with given pool_guid, if it exists. If 1261 * device_guid is non-zero, determine whether the pool exists *and* contains 1262 * a device with the specified device_guid. 1263 */ 1264 spa_t * 1265 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1266 { 1267 spa_t *spa; 1268 avl_tree_t *t = &spa_namespace_avl; 1269 1270 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1271 1272 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1273 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1274 continue; 1275 if (spa->spa_root_vdev == NULL) 1276 continue; 1277 if (spa_guid(spa) == pool_guid) { 1278 if (device_guid == 0) 1279 break; 1280 1281 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1282 device_guid) != NULL) 1283 break; 1284 1285 /* 1286 * Check any devices we may be in the process of adding. 1287 */ 1288 if (spa->spa_pending_vdev) { 1289 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1290 device_guid) != NULL) 1291 break; 1292 } 1293 } 1294 } 1295 1296 return (spa); 1297 } 1298 1299 /* 1300 * Determine whether a pool with the given pool_guid exists. 1301 */ 1302 boolean_t 1303 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1304 { 1305 return (spa_by_guid(pool_guid, device_guid) != NULL); 1306 } 1307 1308 char * 1309 spa_strdup(const char *s) 1310 { 1311 size_t len; 1312 char *new; 1313 1314 len = strlen(s); 1315 new = kmem_alloc(len + 1, KM_SLEEP); 1316 bcopy(s, new, len); 1317 new[len] = '\0'; 1318 1319 return (new); 1320 } 1321 1322 void 1323 spa_strfree(char *s) 1324 { 1325 kmem_free(s, strlen(s) + 1); 1326 } 1327 1328 uint64_t 1329 spa_get_random(uint64_t range) 1330 { 1331 uint64_t r; 1332 1333 ASSERT(range != 0); 1334 1335 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1336 1337 return (r % range); 1338 } 1339 1340 uint64_t 1341 spa_generate_guid(spa_t *spa) 1342 { 1343 uint64_t guid = spa_get_random(-1ULL); 1344 1345 if (spa != NULL) { 1346 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1347 guid = spa_get_random(-1ULL); 1348 } else { 1349 while (guid == 0 || spa_guid_exists(guid, 0)) 1350 guid = spa_get_random(-1ULL); 1351 } 1352 1353 return (guid); 1354 } 1355 1356 void 1357 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1358 { 1359 char type[256]; 1360 char *checksum = NULL; 1361 char *compress = NULL; 1362 1363 if (bp != NULL) { 1364 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1365 dmu_object_byteswap_t bswap = 1366 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1367 (void) snprintf(type, sizeof (type), "bswap %s %s", 1368 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1369 "metadata" : "data", 1370 dmu_ot_byteswap[bswap].ob_name); 1371 } else { 1372 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1373 sizeof (type)); 1374 } 1375 if (!BP_IS_EMBEDDED(bp)) { 1376 checksum = 1377 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1378 } 1379 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1380 } 1381 1382 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, 1383 compress); 1384 } 1385 1386 void 1387 spa_freeze(spa_t *spa) 1388 { 1389 uint64_t freeze_txg = 0; 1390 1391 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1392 if (spa->spa_freeze_txg == UINT64_MAX) { 1393 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1394 spa->spa_freeze_txg = freeze_txg; 1395 } 1396 spa_config_exit(spa, SCL_ALL, FTAG); 1397 if (freeze_txg != 0) 1398 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1399 } 1400 1401 void 1402 zfs_panic_recover(const char *fmt, ...) 1403 { 1404 va_list adx; 1405 1406 va_start(adx, fmt); 1407 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1408 va_end(adx); 1409 } 1410 1411 /* 1412 * This is a stripped-down version of strtoull, suitable only for converting 1413 * lowercase hexadecimal numbers that don't overflow. 1414 */ 1415 uint64_t 1416 strtonum(const char *str, char **nptr) 1417 { 1418 uint64_t val = 0; 1419 char c; 1420 int digit; 1421 1422 while ((c = *str) != '\0') { 1423 if (c >= '0' && c <= '9') 1424 digit = c - '0'; 1425 else if (c >= 'a' && c <= 'f') 1426 digit = 10 + c - 'a'; 1427 else 1428 break; 1429 1430 val *= 16; 1431 val += digit; 1432 1433 str++; 1434 } 1435 1436 if (nptr) 1437 *nptr = (char *)str; 1438 1439 return (val); 1440 } 1441 1442 /* 1443 * ========================================================================== 1444 * Accessor functions 1445 * ========================================================================== 1446 */ 1447 1448 boolean_t 1449 spa_shutting_down(spa_t *spa) 1450 { 1451 return (spa->spa_async_suspended); 1452 } 1453 1454 dsl_pool_t * 1455 spa_get_dsl(spa_t *spa) 1456 { 1457 return (spa->spa_dsl_pool); 1458 } 1459 1460 boolean_t 1461 spa_is_initializing(spa_t *spa) 1462 { 1463 return (spa->spa_is_initializing); 1464 } 1465 1466 blkptr_t * 1467 spa_get_rootblkptr(spa_t *spa) 1468 { 1469 return (&spa->spa_ubsync.ub_rootbp); 1470 } 1471 1472 void 1473 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1474 { 1475 spa->spa_uberblock.ub_rootbp = *bp; 1476 } 1477 1478 void 1479 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1480 { 1481 if (spa->spa_root == NULL) 1482 buf[0] = '\0'; 1483 else 1484 (void) strncpy(buf, spa->spa_root, buflen); 1485 } 1486 1487 int 1488 spa_sync_pass(spa_t *spa) 1489 { 1490 return (spa->spa_sync_pass); 1491 } 1492 1493 char * 1494 spa_name(spa_t *spa) 1495 { 1496 return (spa->spa_name); 1497 } 1498 1499 uint64_t 1500 spa_guid(spa_t *spa) 1501 { 1502 dsl_pool_t *dp = spa_get_dsl(spa); 1503 uint64_t guid; 1504 1505 /* 1506 * If we fail to parse the config during spa_load(), we can go through 1507 * the error path (which posts an ereport) and end up here with no root 1508 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1509 * this case. 1510 */ 1511 if (spa->spa_root_vdev == NULL) 1512 return (spa->spa_config_guid); 1513 1514 guid = spa->spa_last_synced_guid != 0 ? 1515 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1516 1517 /* 1518 * Return the most recently synced out guid unless we're 1519 * in syncing context. 1520 */ 1521 if (dp && dsl_pool_sync_context(dp)) 1522 return (spa->spa_root_vdev->vdev_guid); 1523 else 1524 return (guid); 1525 } 1526 1527 uint64_t 1528 spa_load_guid(spa_t *spa) 1529 { 1530 /* 1531 * This is a GUID that exists solely as a reference for the 1532 * purposes of the arc. It is generated at load time, and 1533 * is never written to persistent storage. 1534 */ 1535 return (spa->spa_load_guid); 1536 } 1537 1538 uint64_t 1539 spa_last_synced_txg(spa_t *spa) 1540 { 1541 return (spa->spa_ubsync.ub_txg); 1542 } 1543 1544 uint64_t 1545 spa_first_txg(spa_t *spa) 1546 { 1547 return (spa->spa_first_txg); 1548 } 1549 1550 uint64_t 1551 spa_syncing_txg(spa_t *spa) 1552 { 1553 return (spa->spa_syncing_txg); 1554 } 1555 1556 pool_state_t 1557 spa_state(spa_t *spa) 1558 { 1559 return (spa->spa_state); 1560 } 1561 1562 spa_load_state_t 1563 spa_load_state(spa_t *spa) 1564 { 1565 return (spa->spa_load_state); 1566 } 1567 1568 uint64_t 1569 spa_freeze_txg(spa_t *spa) 1570 { 1571 return (spa->spa_freeze_txg); 1572 } 1573 1574 /* ARGSUSED */ 1575 uint64_t 1576 spa_get_asize(spa_t *spa, uint64_t lsize) 1577 { 1578 return (lsize * spa_asize_inflation); 1579 } 1580 1581 uint64_t 1582 spa_get_dspace(spa_t *spa) 1583 { 1584 return (spa->spa_dspace); 1585 } 1586 1587 void 1588 spa_update_dspace(spa_t *spa) 1589 { 1590 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1591 ddt_get_dedup_dspace(spa); 1592 } 1593 1594 /* 1595 * Return the failure mode that has been set to this pool. The default 1596 * behavior will be to block all I/Os when a complete failure occurs. 1597 */ 1598 uint8_t 1599 spa_get_failmode(spa_t *spa) 1600 { 1601 return (spa->spa_failmode); 1602 } 1603 1604 boolean_t 1605 spa_suspended(spa_t *spa) 1606 { 1607 return (spa->spa_suspended); 1608 } 1609 1610 uint64_t 1611 spa_version(spa_t *spa) 1612 { 1613 return (spa->spa_ubsync.ub_version); 1614 } 1615 1616 boolean_t 1617 spa_deflate(spa_t *spa) 1618 { 1619 return (spa->spa_deflate); 1620 } 1621 1622 metaslab_class_t * 1623 spa_normal_class(spa_t *spa) 1624 { 1625 return (spa->spa_normal_class); 1626 } 1627 1628 metaslab_class_t * 1629 spa_log_class(spa_t *spa) 1630 { 1631 return (spa->spa_log_class); 1632 } 1633 1634 int 1635 spa_max_replication(spa_t *spa) 1636 { 1637 /* 1638 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1639 * handle BPs with more than one DVA allocated. Set our max 1640 * replication level accordingly. 1641 */ 1642 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1643 return (1); 1644 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1645 } 1646 1647 int 1648 spa_prev_software_version(spa_t *spa) 1649 { 1650 return (spa->spa_prev_software_version); 1651 } 1652 1653 uint64_t 1654 spa_deadman_synctime(spa_t *spa) 1655 { 1656 return (spa->spa_deadman_synctime); 1657 } 1658 1659 uint64_t 1660 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 1661 { 1662 uint64_t asize = DVA_GET_ASIZE(dva); 1663 uint64_t dsize = asize; 1664 1665 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1666 1667 if (asize != 0 && spa->spa_deflate) { 1668 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 1669 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1670 } 1671 1672 return (dsize); 1673 } 1674 1675 uint64_t 1676 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 1677 { 1678 uint64_t dsize = 0; 1679 1680 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 1681 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1682 1683 return (dsize); 1684 } 1685 1686 uint64_t 1687 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 1688 { 1689 uint64_t dsize = 0; 1690 1691 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1692 1693 for (int d = 0; d < BP_GET_NDVAS(bp); d++) 1694 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1695 1696 spa_config_exit(spa, SCL_VDEV, FTAG); 1697 1698 return (dsize); 1699 } 1700 1701 /* 1702 * ========================================================================== 1703 * Initialization and Termination 1704 * ========================================================================== 1705 */ 1706 1707 static int 1708 spa_name_compare(const void *a1, const void *a2) 1709 { 1710 const spa_t *s1 = a1; 1711 const spa_t *s2 = a2; 1712 int s; 1713 1714 s = strcmp(s1->spa_name, s2->spa_name); 1715 if (s > 0) 1716 return (1); 1717 if (s < 0) 1718 return (-1); 1719 return (0); 1720 } 1721 1722 int 1723 spa_busy(void) 1724 { 1725 return (spa_active_count); 1726 } 1727 1728 void 1729 spa_boot_init() 1730 { 1731 spa_config_load(); 1732 } 1733 1734 void 1735 spa_init(int mode) 1736 { 1737 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1738 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1739 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 1740 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1741 1742 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1743 offsetof(spa_t, spa_avl)); 1744 1745 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 1746 offsetof(spa_aux_t, aux_avl)); 1747 1748 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 1749 offsetof(spa_aux_t, aux_avl)); 1750 1751 spa_mode_global = mode; 1752 1753 #ifdef _KERNEL 1754 spa_arch_init(); 1755 #else 1756 if (spa_mode_global != FREAD && dprintf_find_string("watch")) { 1757 arc_procfd = open("/proc/self/ctl", O_WRONLY); 1758 if (arc_procfd == -1) { 1759 perror("could not enable watchpoints: " 1760 "opening /proc/self/ctl failed: "); 1761 } else { 1762 arc_watch = B_TRUE; 1763 } 1764 } 1765 #endif 1766 1767 refcount_init(); 1768 unique_init(); 1769 range_tree_init(); 1770 zio_init(); 1771 dmu_init(); 1772 zil_init(); 1773 vdev_cache_stat_init(); 1774 zfs_prop_init(); 1775 zpool_prop_init(); 1776 zpool_feature_init(); 1777 spa_config_load(); 1778 l2arc_start(); 1779 } 1780 1781 void 1782 spa_fini(void) 1783 { 1784 l2arc_stop(); 1785 1786 spa_evict_all(); 1787 1788 vdev_cache_stat_fini(); 1789 zil_fini(); 1790 dmu_fini(); 1791 zio_fini(); 1792 range_tree_fini(); 1793 unique_fini(); 1794 refcount_fini(); 1795 1796 avl_destroy(&spa_namespace_avl); 1797 avl_destroy(&spa_spare_avl); 1798 avl_destroy(&spa_l2cache_avl); 1799 1800 cv_destroy(&spa_namespace_cv); 1801 mutex_destroy(&spa_namespace_lock); 1802 mutex_destroy(&spa_spare_lock); 1803 mutex_destroy(&spa_l2cache_lock); 1804 } 1805 1806 /* 1807 * Return whether this pool has slogs. No locking needed. 1808 * It's not a problem if the wrong answer is returned as it's only for 1809 * performance and not correctness 1810 */ 1811 boolean_t 1812 spa_has_slogs(spa_t *spa) 1813 { 1814 return (spa->spa_log_class->mc_rotor != NULL); 1815 } 1816 1817 spa_log_state_t 1818 spa_get_log_state(spa_t *spa) 1819 { 1820 return (spa->spa_log_state); 1821 } 1822 1823 void 1824 spa_set_log_state(spa_t *spa, spa_log_state_t state) 1825 { 1826 spa->spa_log_state = state; 1827 } 1828 1829 boolean_t 1830 spa_is_root(spa_t *spa) 1831 { 1832 return (spa->spa_is_root); 1833 } 1834 1835 boolean_t 1836 spa_writeable(spa_t *spa) 1837 { 1838 return (!!(spa->spa_mode & FWRITE)); 1839 } 1840 1841 int 1842 spa_mode(spa_t *spa) 1843 { 1844 return (spa->spa_mode); 1845 } 1846 1847 uint64_t 1848 spa_bootfs(spa_t *spa) 1849 { 1850 return (spa->spa_bootfs); 1851 } 1852 1853 uint64_t 1854 spa_delegation(spa_t *spa) 1855 { 1856 return (spa->spa_delegation); 1857 } 1858 1859 objset_t * 1860 spa_meta_objset(spa_t *spa) 1861 { 1862 return (spa->spa_meta_objset); 1863 } 1864 1865 enum zio_checksum 1866 spa_dedup_checksum(spa_t *spa) 1867 { 1868 return (spa->spa_dedup_checksum); 1869 } 1870 1871 /* 1872 * Reset pool scan stat per scan pass (or reboot). 1873 */ 1874 void 1875 spa_scan_stat_init(spa_t *spa) 1876 { 1877 /* data not stored on disk */ 1878 spa->spa_scan_pass_start = gethrestime_sec(); 1879 spa->spa_scan_pass_exam = 0; 1880 vdev_scan_stat_init(spa->spa_root_vdev); 1881 } 1882 1883 /* 1884 * Get scan stats for zpool status reports 1885 */ 1886 int 1887 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 1888 { 1889 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 1890 1891 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 1892 return (SET_ERROR(ENOENT)); 1893 bzero(ps, sizeof (pool_scan_stat_t)); 1894 1895 /* data stored on disk */ 1896 ps->pss_func = scn->scn_phys.scn_func; 1897 ps->pss_start_time = scn->scn_phys.scn_start_time; 1898 ps->pss_end_time = scn->scn_phys.scn_end_time; 1899 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 1900 ps->pss_examined = scn->scn_phys.scn_examined; 1901 ps->pss_to_process = scn->scn_phys.scn_to_process; 1902 ps->pss_processed = scn->scn_phys.scn_processed; 1903 ps->pss_errors = scn->scn_phys.scn_errors; 1904 ps->pss_state = scn->scn_phys.scn_state; 1905 1906 /* data not stored on disk */ 1907 ps->pss_pass_start = spa->spa_scan_pass_start; 1908 ps->pss_pass_exam = spa->spa_scan_pass_exam; 1909 1910 return (0); 1911 } 1912 1913 boolean_t 1914 spa_debug_enabled(spa_t *spa) 1915 { 1916 return (spa->spa_debug); 1917 } 1918