xref: /titanic_44/usr/src/uts/common/fs/zfs/spa.c (revision fbcec90110655a00a2d5c9bdfaf87c7b476a4902)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains all the routines used when modifying on-disk SPA state.
31  * This includes opening, importing, destroying, exporting a pool, and syncing a
32  * pool.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zio.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/zio_compress.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/callb.h>
60 #include <sys/systeminfo.h>
61 #include <sys/sunddi.h>
62 
63 int zio_taskq_threads = 8;
64 
65 /*
66  * ==========================================================================
67  * SPA state manipulation (open/create/destroy/import/export)
68  * ==========================================================================
69  */
70 
71 static int
72 spa_error_entry_compare(const void *a, const void *b)
73 {
74 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
75 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
76 	int ret;
77 
78 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
79 	    sizeof (zbookmark_t));
80 
81 	if (ret < 0)
82 		return (-1);
83 	else if (ret > 0)
84 		return (1);
85 	else
86 		return (0);
87 }
88 
89 /*
90  * Utility function which retrieves copies of the current logs and
91  * re-initializes them in the process.
92  */
93 void
94 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
95 {
96 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
97 
98 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
99 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
100 
101 	avl_create(&spa->spa_errlist_scrub,
102 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
103 	    offsetof(spa_error_entry_t, se_avl));
104 	avl_create(&spa->spa_errlist_last,
105 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
106 	    offsetof(spa_error_entry_t, se_avl));
107 }
108 
109 /*
110  * Activate an uninitialized pool.
111  */
112 static void
113 spa_activate(spa_t *spa)
114 {
115 	int t;
116 
117 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
118 
119 	spa->spa_state = POOL_STATE_ACTIVE;
120 
121 	spa->spa_normal_class = metaslab_class_create();
122 	spa->spa_log_class = metaslab_class_create();
123 
124 	for (t = 0; t < ZIO_TYPES; t++) {
125 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
126 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
127 		    TASKQ_PREPOPULATE);
128 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
129 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
130 		    TASKQ_PREPOPULATE);
131 	}
132 
133 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
134 
135 	rprw_init(&spa->spa_config_lock);
136 
137 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
138 	mutex_init(&spa->spa_config_cache_lock, NULL, MUTEX_DEFAULT, NULL);
139 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
140 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
141 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
142 	mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
143 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
144 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
145 
146 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
147 	    offsetof(vdev_t, vdev_dirty_node));
148 
149 	txg_list_create(&spa->spa_vdev_txg_list,
150 	    offsetof(struct vdev, vdev_txg_node));
151 
152 	avl_create(&spa->spa_errlist_scrub,
153 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
154 	    offsetof(spa_error_entry_t, se_avl));
155 	avl_create(&spa->spa_errlist_last,
156 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
157 	    offsetof(spa_error_entry_t, se_avl));
158 }
159 
160 /*
161  * Opposite of spa_activate().
162  */
163 static void
164 spa_deactivate(spa_t *spa)
165 {
166 	int t;
167 
168 	ASSERT(spa->spa_sync_on == B_FALSE);
169 	ASSERT(spa->spa_dsl_pool == NULL);
170 	ASSERT(spa->spa_root_vdev == NULL);
171 
172 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
173 
174 	txg_list_destroy(&spa->spa_vdev_txg_list);
175 
176 	list_destroy(&spa->spa_dirty_list);
177 
178 	rw_destroy(&spa->spa_traverse_lock);
179 
180 	for (t = 0; t < ZIO_TYPES; t++) {
181 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
182 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
183 		spa->spa_zio_issue_taskq[t] = NULL;
184 		spa->spa_zio_intr_taskq[t] = NULL;
185 	}
186 
187 	metaslab_class_destroy(spa->spa_normal_class);
188 	spa->spa_normal_class = NULL;
189 
190 	metaslab_class_destroy(spa->spa_log_class);
191 	spa->spa_log_class = NULL;
192 
193 	/*
194 	 * If this was part of an import or the open otherwise failed, we may
195 	 * still have errors left in the queues.  Empty them just in case.
196 	 */
197 	spa_errlog_drain(spa);
198 
199 	avl_destroy(&spa->spa_errlist_scrub);
200 	avl_destroy(&spa->spa_errlist_last);
201 
202 	spa->spa_state = POOL_STATE_UNINITIALIZED;
203 }
204 
205 /*
206  * Verify a pool configuration, and construct the vdev tree appropriately.  This
207  * will create all the necessary vdevs in the appropriate layout, with each vdev
208  * in the CLOSED state.  This will prep the pool before open/creation/import.
209  * All vdev validation is done by the vdev_alloc() routine.
210  */
211 static int
212 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
213     uint_t id, int atype)
214 {
215 	nvlist_t **child;
216 	uint_t c, children;
217 	int error;
218 
219 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
220 		return (error);
221 
222 	if ((*vdp)->vdev_ops->vdev_op_leaf)
223 		return (0);
224 
225 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
226 	    &child, &children) != 0) {
227 		vdev_free(*vdp);
228 		*vdp = NULL;
229 		return (EINVAL);
230 	}
231 
232 	for (c = 0; c < children; c++) {
233 		vdev_t *vd;
234 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
235 		    atype)) != 0) {
236 			vdev_free(*vdp);
237 			*vdp = NULL;
238 			return (error);
239 		}
240 	}
241 
242 	ASSERT(*vdp != NULL);
243 
244 	return (0);
245 }
246 
247 /*
248  * Opposite of spa_load().
249  */
250 static void
251 spa_unload(spa_t *spa)
252 {
253 	int i;
254 
255 	/*
256 	 * Stop async tasks.
257 	 */
258 	spa_async_suspend(spa);
259 
260 	/*
261 	 * Stop syncing.
262 	 */
263 	if (spa->spa_sync_on) {
264 		txg_sync_stop(spa->spa_dsl_pool);
265 		spa->spa_sync_on = B_FALSE;
266 	}
267 
268 	/*
269 	 * Wait for any outstanding prefetch I/O to complete.
270 	 */
271 	spa_config_enter(spa, RW_WRITER, FTAG);
272 	spa_config_exit(spa, FTAG);
273 
274 	/*
275 	 * Close the dsl pool.
276 	 */
277 	if (spa->spa_dsl_pool) {
278 		dsl_pool_close(spa->spa_dsl_pool);
279 		spa->spa_dsl_pool = NULL;
280 	}
281 
282 	/*
283 	 * Close all vdevs.
284 	 */
285 	if (spa->spa_root_vdev)
286 		vdev_free(spa->spa_root_vdev);
287 	ASSERT(spa->spa_root_vdev == NULL);
288 
289 	for (i = 0; i < spa->spa_nspares; i++)
290 		vdev_free(spa->spa_spares[i]);
291 	if (spa->spa_spares) {
292 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
293 		spa->spa_spares = NULL;
294 	}
295 	if (spa->spa_sparelist) {
296 		nvlist_free(spa->spa_sparelist);
297 		spa->spa_sparelist = NULL;
298 	}
299 
300 	spa->spa_async_suspended = 0;
301 }
302 
303 /*
304  * Load (or re-load) the current list of vdevs describing the active spares for
305  * this pool.  When this is called, we have some form of basic information in
306  * 'spa_sparelist'.  We parse this into vdevs, try to open them, and then
307  * re-generate a more complete list including status information.
308  */
309 static void
310 spa_load_spares(spa_t *spa)
311 {
312 	nvlist_t **spares;
313 	uint_t nspares;
314 	int i;
315 	vdev_t *vd, *tvd;
316 
317 	/*
318 	 * First, close and free any existing spare vdevs.
319 	 */
320 	for (i = 0; i < spa->spa_nspares; i++) {
321 		vd = spa->spa_spares[i];
322 
323 		/* Undo the call to spa_activate() below */
324 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL &&
325 		    tvd->vdev_isspare)
326 			spa_spare_remove(tvd);
327 		vdev_close(vd);
328 		vdev_free(vd);
329 	}
330 
331 	if (spa->spa_spares)
332 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
333 
334 	if (spa->spa_sparelist == NULL)
335 		nspares = 0;
336 	else
337 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
338 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
339 
340 	spa->spa_nspares = (int)nspares;
341 	spa->spa_spares = NULL;
342 
343 	if (nspares == 0)
344 		return;
345 
346 	/*
347 	 * Construct the array of vdevs, opening them to get status in the
348 	 * process.   For each spare, there is potentially two different vdev_t
349 	 * structures associated with it: one in the list of spares (used only
350 	 * for basic validation purposes) and one in the active vdev
351 	 * configuration (if it's spared in).  During this phase we open and
352 	 * validate each vdev on the spare list.  If the vdev also exists in the
353 	 * active configuration, then we also mark this vdev as an active spare.
354 	 */
355 	spa->spa_spares = kmem_alloc(nspares * sizeof (void *), KM_SLEEP);
356 	for (i = 0; i < spa->spa_nspares; i++) {
357 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
358 		    VDEV_ALLOC_SPARE) == 0);
359 		ASSERT(vd != NULL);
360 
361 		spa->spa_spares[i] = vd;
362 
363 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL) {
364 			if (!tvd->vdev_isspare)
365 				spa_spare_add(tvd);
366 
367 			/*
368 			 * We only mark the spare active if we were successfully
369 			 * able to load the vdev.  Otherwise, importing a pool
370 			 * with a bad active spare would result in strange
371 			 * behavior, because multiple pool would think the spare
372 			 * is actively in use.
373 			 *
374 			 * There is a vulnerability here to an equally bizarre
375 			 * circumstance, where a dead active spare is later
376 			 * brought back to life (onlined or otherwise).  Given
377 			 * the rarity of this scenario, and the extra complexity
378 			 * it adds, we ignore the possibility.
379 			 */
380 			if (!vdev_is_dead(tvd))
381 				spa_spare_activate(tvd);
382 		}
383 
384 		if (vdev_open(vd) != 0)
385 			continue;
386 
387 		vd->vdev_top = vd;
388 		(void) vdev_validate_spare(vd);
389 	}
390 
391 	/*
392 	 * Recompute the stashed list of spares, with status information
393 	 * this time.
394 	 */
395 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
396 	    DATA_TYPE_NVLIST_ARRAY) == 0);
397 
398 	spares = kmem_alloc(spa->spa_nspares * sizeof (void *), KM_SLEEP);
399 	for (i = 0; i < spa->spa_nspares; i++)
400 		spares[i] = vdev_config_generate(spa, spa->spa_spares[i],
401 		    B_TRUE, B_TRUE);
402 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
403 	    spares, spa->spa_nspares) == 0);
404 	for (i = 0; i < spa->spa_nspares; i++)
405 		nvlist_free(spares[i]);
406 	kmem_free(spares, spa->spa_nspares * sizeof (void *));
407 }
408 
409 static int
410 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
411 {
412 	dmu_buf_t *db;
413 	char *packed = NULL;
414 	size_t nvsize = 0;
415 	int error;
416 	*value = NULL;
417 
418 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
419 	nvsize = *(uint64_t *)db->db_data;
420 	dmu_buf_rele(db, FTAG);
421 
422 	packed = kmem_alloc(nvsize, KM_SLEEP);
423 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
424 	if (error == 0)
425 		error = nvlist_unpack(packed, nvsize, value, 0);
426 	kmem_free(packed, nvsize);
427 
428 	return (error);
429 }
430 
431 /*
432  * Checks to see if the given vdev could not be opened, in which case we post a
433  * sysevent to notify the autoreplace code that the device has been removed.
434  */
435 static void
436 spa_check_removed(vdev_t *vd)
437 {
438 	int c;
439 
440 	for (c = 0; c < vd->vdev_children; c++)
441 		spa_check_removed(vd->vdev_child[c]);
442 
443 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
444 		zfs_post_autoreplace(vd->vdev_spa, vd);
445 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
446 	}
447 }
448 
449 /*
450  * Load an existing storage pool, using the pool's builtin spa_config as a
451  * source of configuration information.
452  */
453 static int
454 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
455 {
456 	int error = 0;
457 	nvlist_t *nvroot = NULL;
458 	vdev_t *rvd;
459 	uberblock_t *ub = &spa->spa_uberblock;
460 	uint64_t config_cache_txg = spa->spa_config_txg;
461 	uint64_t pool_guid;
462 	uint64_t version;
463 	zio_t *zio;
464 	uint64_t autoreplace = 0;
465 
466 	spa->spa_load_state = state;
467 
468 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
469 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
470 		error = EINVAL;
471 		goto out;
472 	}
473 
474 	/*
475 	 * Versioning wasn't explicitly added to the label until later, so if
476 	 * it's not present treat it as the initial version.
477 	 */
478 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
479 		version = SPA_VERSION_INITIAL;
480 
481 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
482 	    &spa->spa_config_txg);
483 
484 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
485 	    spa_guid_exists(pool_guid, 0)) {
486 		error = EEXIST;
487 		goto out;
488 	}
489 
490 	spa->spa_load_guid = pool_guid;
491 
492 	/*
493 	 * Parse the configuration into a vdev tree.  We explicitly set the
494 	 * value that will be returned by spa_version() since parsing the
495 	 * configuration requires knowing the version number.
496 	 */
497 	spa_config_enter(spa, RW_WRITER, FTAG);
498 	spa->spa_ubsync.ub_version = version;
499 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
500 	spa_config_exit(spa, FTAG);
501 
502 	if (error != 0)
503 		goto out;
504 
505 	ASSERT(spa->spa_root_vdev == rvd);
506 	ASSERT(spa_guid(spa) == pool_guid);
507 
508 	/*
509 	 * Try to open all vdevs, loading each label in the process.
510 	 */
511 	error = vdev_open(rvd);
512 	if (error != 0)
513 		goto out;
514 
515 	/*
516 	 * Validate the labels for all leaf vdevs.  We need to grab the config
517 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
518 	 * flag.
519 	 */
520 	spa_config_enter(spa, RW_READER, FTAG);
521 	error = vdev_validate(rvd);
522 	spa_config_exit(spa, FTAG);
523 
524 	if (error != 0)
525 		goto out;
526 
527 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
528 		error = ENXIO;
529 		goto out;
530 	}
531 
532 	/*
533 	 * Find the best uberblock.
534 	 */
535 	bzero(ub, sizeof (uberblock_t));
536 
537 	zio = zio_root(spa, NULL, NULL,
538 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
539 	vdev_uberblock_load(zio, rvd, ub);
540 	error = zio_wait(zio);
541 
542 	/*
543 	 * If we weren't able to find a single valid uberblock, return failure.
544 	 */
545 	if (ub->ub_txg == 0) {
546 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
547 		    VDEV_AUX_CORRUPT_DATA);
548 		error = ENXIO;
549 		goto out;
550 	}
551 
552 	/*
553 	 * If the pool is newer than the code, we can't open it.
554 	 */
555 	if (ub->ub_version > SPA_VERSION) {
556 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
557 		    VDEV_AUX_VERSION_NEWER);
558 		error = ENOTSUP;
559 		goto out;
560 	}
561 
562 	/*
563 	 * If the vdev guid sum doesn't match the uberblock, we have an
564 	 * incomplete configuration.
565 	 */
566 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
567 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
568 		    VDEV_AUX_BAD_GUID_SUM);
569 		error = ENXIO;
570 		goto out;
571 	}
572 
573 	/*
574 	 * Initialize internal SPA structures.
575 	 */
576 	spa->spa_state = POOL_STATE_ACTIVE;
577 	spa->spa_ubsync = spa->spa_uberblock;
578 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
579 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
580 	if (error) {
581 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
582 		    VDEV_AUX_CORRUPT_DATA);
583 		goto out;
584 	}
585 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
586 
587 	if (zap_lookup(spa->spa_meta_objset,
588 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
589 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
590 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
591 		    VDEV_AUX_CORRUPT_DATA);
592 		error = EIO;
593 		goto out;
594 	}
595 
596 	if (!mosconfig) {
597 		nvlist_t *newconfig;
598 		uint64_t hostid;
599 
600 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
601 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
602 			    VDEV_AUX_CORRUPT_DATA);
603 			error = EIO;
604 			goto out;
605 		}
606 
607 		if (nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID,
608 		    &hostid) == 0) {
609 			char *hostname;
610 			unsigned long myhostid = 0;
611 
612 			VERIFY(nvlist_lookup_string(newconfig,
613 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
614 
615 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
616 			if (hostid != 0 && myhostid != 0 &&
617 			    (unsigned long)hostid != myhostid) {
618 				cmn_err(CE_WARN, "pool '%s' could not be "
619 				    "loaded as it was last accessed by "
620 				    "another system (host: %s hostid: 0x%lx).  "
621 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
622 				    spa->spa_name, hostname,
623 				    (unsigned long)hostid);
624 				error = EBADF;
625 				goto out;
626 			}
627 		}
628 
629 		spa_config_set(spa, newconfig);
630 		spa_unload(spa);
631 		spa_deactivate(spa);
632 		spa_activate(spa);
633 
634 		return (spa_load(spa, newconfig, state, B_TRUE));
635 	}
636 
637 	if (zap_lookup(spa->spa_meta_objset,
638 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
639 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
640 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
641 		    VDEV_AUX_CORRUPT_DATA);
642 		error = EIO;
643 		goto out;
644 	}
645 
646 	/*
647 	 * Load the bit that tells us to use the new accounting function
648 	 * (raid-z deflation).  If we have an older pool, this will not
649 	 * be present.
650 	 */
651 	error = zap_lookup(spa->spa_meta_objset,
652 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
653 	    sizeof (uint64_t), 1, &spa->spa_deflate);
654 	if (error != 0 && error != ENOENT) {
655 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
656 		    VDEV_AUX_CORRUPT_DATA);
657 		error = EIO;
658 		goto out;
659 	}
660 
661 	/*
662 	 * Load the persistent error log.  If we have an older pool, this will
663 	 * not be present.
664 	 */
665 	error = zap_lookup(spa->spa_meta_objset,
666 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
667 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
668 	if (error != 0 && error != ENOENT) {
669 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
670 		    VDEV_AUX_CORRUPT_DATA);
671 		error = EIO;
672 		goto out;
673 	}
674 
675 	error = zap_lookup(spa->spa_meta_objset,
676 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
677 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
678 	if (error != 0 && error != ENOENT) {
679 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
680 		    VDEV_AUX_CORRUPT_DATA);
681 		error = EIO;
682 		goto out;
683 	}
684 
685 	/*
686 	 * Load the history object.  If we have an older pool, this
687 	 * will not be present.
688 	 */
689 	error = zap_lookup(spa->spa_meta_objset,
690 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
691 	    sizeof (uint64_t), 1, &spa->spa_history);
692 	if (error != 0 && error != ENOENT) {
693 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
694 		    VDEV_AUX_CORRUPT_DATA);
695 		error = EIO;
696 		goto out;
697 	}
698 
699 	/*
700 	 * Load any hot spares for this pool.
701 	 */
702 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
703 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares_object);
704 	if (error != 0 && error != ENOENT) {
705 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
706 		    VDEV_AUX_CORRUPT_DATA);
707 		error = EIO;
708 		goto out;
709 	}
710 	if (error == 0) {
711 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
712 		if (load_nvlist(spa, spa->spa_spares_object,
713 		    &spa->spa_sparelist) != 0) {
714 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
715 			    VDEV_AUX_CORRUPT_DATA);
716 			error = EIO;
717 			goto out;
718 		}
719 
720 		spa_config_enter(spa, RW_WRITER, FTAG);
721 		spa_load_spares(spa);
722 		spa_config_exit(spa, FTAG);
723 	}
724 
725 	spa->spa_delegation = zfs_prop_default_numeric(ZPOOL_PROP_DELEGATION);
726 
727 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
728 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
729 
730 	if (error && error != ENOENT) {
731 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
732 		    VDEV_AUX_CORRUPT_DATA);
733 		error = EIO;
734 		goto out;
735 	}
736 
737 	if (error == 0) {
738 		(void) zap_lookup(spa->spa_meta_objset,
739 		    spa->spa_pool_props_object,
740 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
741 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
742 		(void) zap_lookup(spa->spa_meta_objset,
743 		    spa->spa_pool_props_object,
744 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
745 		    sizeof (uint64_t), 1, &autoreplace);
746 		(void) zap_lookup(spa->spa_meta_objset,
747 		    spa->spa_pool_props_object,
748 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
749 		    sizeof (uint64_t), 1, &spa->spa_delegation);
750 	}
751 
752 	/*
753 	 * If the 'autoreplace' property is set, then post a resource notifying
754 	 * the ZFS DE that it should not issue any faults for unopenable
755 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
756 	 * unopenable vdevs so that the normal autoreplace handler can take
757 	 * over.
758 	 */
759 	if (autoreplace)
760 		spa_check_removed(spa->spa_root_vdev);
761 
762 	/*
763 	 * Load the vdev state for all toplevel vdevs.
764 	 */
765 	vdev_load(rvd);
766 
767 	/*
768 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
769 	 */
770 	spa_config_enter(spa, RW_WRITER, FTAG);
771 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
772 	spa_config_exit(spa, FTAG);
773 
774 	/*
775 	 * Check the state of the root vdev.  If it can't be opened, it
776 	 * indicates one or more toplevel vdevs are faulted.
777 	 */
778 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
779 		error = ENXIO;
780 		goto out;
781 	}
782 
783 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
784 		dmu_tx_t *tx;
785 		int need_update = B_FALSE;
786 		int c;
787 
788 		/*
789 		 * Claim log blocks that haven't been committed yet.
790 		 * This must all happen in a single txg.
791 		 */
792 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
793 		    spa_first_txg(spa));
794 		(void) dmu_objset_find(spa->spa_name,
795 		    zil_claim, tx, DS_FIND_CHILDREN);
796 		dmu_tx_commit(tx);
797 
798 		spa->spa_sync_on = B_TRUE;
799 		txg_sync_start(spa->spa_dsl_pool);
800 
801 		/*
802 		 * Wait for all claims to sync.
803 		 */
804 		txg_wait_synced(spa->spa_dsl_pool, 0);
805 
806 		/*
807 		 * If the config cache is stale, or we have uninitialized
808 		 * metaslabs (see spa_vdev_add()), then update the config.
809 		 */
810 		if (config_cache_txg != spa->spa_config_txg ||
811 		    state == SPA_LOAD_IMPORT)
812 			need_update = B_TRUE;
813 
814 		for (c = 0; c < rvd->vdev_children; c++)
815 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
816 				need_update = B_TRUE;
817 
818 		/*
819 		 * Update the config cache asychronously in case we're the
820 		 * root pool, in which case the config cache isn't writable yet.
821 		 */
822 		if (need_update)
823 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
824 	}
825 
826 	error = 0;
827 out:
828 	if (error && error != EBADF)
829 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
830 	spa->spa_load_state = SPA_LOAD_NONE;
831 	spa->spa_ena = 0;
832 
833 	return (error);
834 }
835 
836 /*
837  * Pool Open/Import
838  *
839  * The import case is identical to an open except that the configuration is sent
840  * down from userland, instead of grabbed from the configuration cache.  For the
841  * case of an open, the pool configuration will exist in the
842  * POOL_STATE_UNINITIALIZED state.
843  *
844  * The stats information (gen/count/ustats) is used to gather vdev statistics at
845  * the same time open the pool, without having to keep around the spa_t in some
846  * ambiguous state.
847  */
848 static int
849 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
850 {
851 	spa_t *spa;
852 	int error;
853 	int loaded = B_FALSE;
854 	int locked = B_FALSE;
855 
856 	*spapp = NULL;
857 
858 	/*
859 	 * As disgusting as this is, we need to support recursive calls to this
860 	 * function because dsl_dir_open() is called during spa_load(), and ends
861 	 * up calling spa_open() again.  The real fix is to figure out how to
862 	 * avoid dsl_dir_open() calling this in the first place.
863 	 */
864 	if (mutex_owner(&spa_namespace_lock) != curthread) {
865 		mutex_enter(&spa_namespace_lock);
866 		locked = B_TRUE;
867 	}
868 
869 	if ((spa = spa_lookup(pool)) == NULL) {
870 		if (locked)
871 			mutex_exit(&spa_namespace_lock);
872 		return (ENOENT);
873 	}
874 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
875 
876 		spa_activate(spa);
877 
878 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
879 
880 		if (error == EBADF) {
881 			/*
882 			 * If vdev_validate() returns failure (indicated by
883 			 * EBADF), it indicates that one of the vdevs indicates
884 			 * that the pool has been exported or destroyed.  If
885 			 * this is the case, the config cache is out of sync and
886 			 * we should remove the pool from the namespace.
887 			 */
888 			zfs_post_ok(spa, NULL);
889 			spa_unload(spa);
890 			spa_deactivate(spa);
891 			spa_remove(spa);
892 			spa_config_sync();
893 			if (locked)
894 				mutex_exit(&spa_namespace_lock);
895 			return (ENOENT);
896 		}
897 
898 		if (error) {
899 			/*
900 			 * We can't open the pool, but we still have useful
901 			 * information: the state of each vdev after the
902 			 * attempted vdev_open().  Return this to the user.
903 			 */
904 			if (config != NULL && spa->spa_root_vdev != NULL) {
905 				spa_config_enter(spa, RW_READER, FTAG);
906 				*config = spa_config_generate(spa, NULL, -1ULL,
907 				    B_TRUE);
908 				spa_config_exit(spa, FTAG);
909 			}
910 			spa_unload(spa);
911 			spa_deactivate(spa);
912 			spa->spa_last_open_failed = B_TRUE;
913 			if (locked)
914 				mutex_exit(&spa_namespace_lock);
915 			*spapp = NULL;
916 			return (error);
917 		} else {
918 			zfs_post_ok(spa, NULL);
919 			spa->spa_last_open_failed = B_FALSE;
920 		}
921 
922 		loaded = B_TRUE;
923 	}
924 
925 	spa_open_ref(spa, tag);
926 
927 	/*
928 	 * If we just loaded the pool, resilver anything that's out of date.
929 	 */
930 	if (loaded && (spa_mode & FWRITE))
931 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
932 
933 	if (locked)
934 		mutex_exit(&spa_namespace_lock);
935 
936 	*spapp = spa;
937 
938 	if (config != NULL) {
939 		spa_config_enter(spa, RW_READER, FTAG);
940 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
941 		spa_config_exit(spa, FTAG);
942 	}
943 
944 	return (0);
945 }
946 
947 int
948 spa_open(const char *name, spa_t **spapp, void *tag)
949 {
950 	return (spa_open_common(name, spapp, tag, NULL));
951 }
952 
953 /*
954  * Lookup the given spa_t, incrementing the inject count in the process,
955  * preventing it from being exported or destroyed.
956  */
957 spa_t *
958 spa_inject_addref(char *name)
959 {
960 	spa_t *spa;
961 
962 	mutex_enter(&spa_namespace_lock);
963 	if ((spa = spa_lookup(name)) == NULL) {
964 		mutex_exit(&spa_namespace_lock);
965 		return (NULL);
966 	}
967 	spa->spa_inject_ref++;
968 	mutex_exit(&spa_namespace_lock);
969 
970 	return (spa);
971 }
972 
973 void
974 spa_inject_delref(spa_t *spa)
975 {
976 	mutex_enter(&spa_namespace_lock);
977 	spa->spa_inject_ref--;
978 	mutex_exit(&spa_namespace_lock);
979 }
980 
981 static void
982 spa_add_spares(spa_t *spa, nvlist_t *config)
983 {
984 	nvlist_t **spares;
985 	uint_t i, nspares;
986 	nvlist_t *nvroot;
987 	uint64_t guid;
988 	vdev_stat_t *vs;
989 	uint_t vsc;
990 	uint64_t pool;
991 
992 	if (spa->spa_nspares == 0)
993 		return;
994 
995 	VERIFY(nvlist_lookup_nvlist(config,
996 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
997 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
998 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
999 	if (nspares != 0) {
1000 		VERIFY(nvlist_add_nvlist_array(nvroot,
1001 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1002 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1003 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1004 
1005 		/*
1006 		 * Go through and find any spares which have since been
1007 		 * repurposed as an active spare.  If this is the case, update
1008 		 * their status appropriately.
1009 		 */
1010 		for (i = 0; i < nspares; i++) {
1011 			VERIFY(nvlist_lookup_uint64(spares[i],
1012 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1013 			if (spa_spare_exists(guid, &pool) && pool != 0ULL) {
1014 				VERIFY(nvlist_lookup_uint64_array(
1015 				    spares[i], ZPOOL_CONFIG_STATS,
1016 				    (uint64_t **)&vs, &vsc) == 0);
1017 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1018 				vs->vs_aux = VDEV_AUX_SPARED;
1019 			}
1020 		}
1021 	}
1022 }
1023 
1024 int
1025 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1026 {
1027 	int error;
1028 	spa_t *spa;
1029 
1030 	*config = NULL;
1031 	error = spa_open_common(name, &spa, FTAG, config);
1032 
1033 	if (spa && *config != NULL) {
1034 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
1035 		    spa_get_errlog_size(spa)) == 0);
1036 
1037 		spa_add_spares(spa, *config);
1038 	}
1039 
1040 	/*
1041 	 * We want to get the alternate root even for faulted pools, so we cheat
1042 	 * and call spa_lookup() directly.
1043 	 */
1044 	if (altroot) {
1045 		if (spa == NULL) {
1046 			mutex_enter(&spa_namespace_lock);
1047 			spa = spa_lookup(name);
1048 			if (spa)
1049 				spa_altroot(spa, altroot, buflen);
1050 			else
1051 				altroot[0] = '\0';
1052 			spa = NULL;
1053 			mutex_exit(&spa_namespace_lock);
1054 		} else {
1055 			spa_altroot(spa, altroot, buflen);
1056 		}
1057 	}
1058 
1059 	if (spa != NULL)
1060 		spa_close(spa, FTAG);
1061 
1062 	return (error);
1063 }
1064 
1065 /*
1066  * Validate that the 'spares' array is well formed.  We must have an array of
1067  * nvlists, each which describes a valid leaf vdev.  If this is an import (mode
1068  * is VDEV_ALLOC_SPARE), then we allow corrupted spares to be specified, as long
1069  * as they are well-formed.
1070  */
1071 static int
1072 spa_validate_spares(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1073 {
1074 	nvlist_t **spares;
1075 	uint_t i, nspares;
1076 	vdev_t *vd;
1077 	int error;
1078 
1079 	/*
1080 	 * It's acceptable to have no spares specified.
1081 	 */
1082 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1083 	    &spares, &nspares) != 0)
1084 		return (0);
1085 
1086 	if (nspares == 0)
1087 		return (EINVAL);
1088 
1089 	/*
1090 	 * Make sure the pool is formatted with a version that supports hot
1091 	 * spares.
1092 	 */
1093 	if (spa_version(spa) < SPA_VERSION_SPARES)
1094 		return (ENOTSUP);
1095 
1096 	/*
1097 	 * Set the pending spare list so we correctly handle device in-use
1098 	 * checking.
1099 	 */
1100 	spa->spa_pending_spares = spares;
1101 	spa->spa_pending_nspares = nspares;
1102 
1103 	for (i = 0; i < nspares; i++) {
1104 		if ((error = spa_config_parse(spa, &vd, spares[i], NULL, 0,
1105 		    mode)) != 0)
1106 			goto out;
1107 
1108 		if (!vd->vdev_ops->vdev_op_leaf) {
1109 			vdev_free(vd);
1110 			error = EINVAL;
1111 			goto out;
1112 		}
1113 
1114 		vd->vdev_top = vd;
1115 
1116 		if ((error = vdev_open(vd)) == 0 &&
1117 		    (error = vdev_label_init(vd, crtxg,
1118 		    VDEV_LABEL_SPARE)) == 0) {
1119 			VERIFY(nvlist_add_uint64(spares[i], ZPOOL_CONFIG_GUID,
1120 			    vd->vdev_guid) == 0);
1121 		}
1122 
1123 		vdev_free(vd);
1124 
1125 		if (error && mode != VDEV_ALLOC_SPARE)
1126 			goto out;
1127 		else
1128 			error = 0;
1129 	}
1130 
1131 out:
1132 	spa->spa_pending_spares = NULL;
1133 	spa->spa_pending_nspares = 0;
1134 	return (error);
1135 }
1136 
1137 /*
1138  * Pool Creation
1139  */
1140 int
1141 spa_create(const char *pool, nvlist_t *nvroot, const char *altroot,
1142     const char *history_str)
1143 {
1144 	spa_t *spa;
1145 	vdev_t *rvd;
1146 	dsl_pool_t *dp;
1147 	dmu_tx_t *tx;
1148 	int c, error = 0;
1149 	uint64_t txg = TXG_INITIAL;
1150 	nvlist_t **spares;
1151 	uint_t nspares;
1152 
1153 	/*
1154 	 * If this pool already exists, return failure.
1155 	 */
1156 	mutex_enter(&spa_namespace_lock);
1157 	if (spa_lookup(pool) != NULL) {
1158 		mutex_exit(&spa_namespace_lock);
1159 		return (EEXIST);
1160 	}
1161 
1162 	/*
1163 	 * Allocate a new spa_t structure.
1164 	 */
1165 	spa = spa_add(pool, altroot);
1166 	spa_activate(spa);
1167 
1168 	spa->spa_uberblock.ub_txg = txg - 1;
1169 	spa->spa_uberblock.ub_version = SPA_VERSION;
1170 	spa->spa_ubsync = spa->spa_uberblock;
1171 
1172 	/*
1173 	 * Create the root vdev.
1174 	 */
1175 	spa_config_enter(spa, RW_WRITER, FTAG);
1176 
1177 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1178 
1179 	ASSERT(error != 0 || rvd != NULL);
1180 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1181 
1182 	if (error == 0 && rvd->vdev_children == 0)
1183 		error = EINVAL;
1184 
1185 	if (error == 0 &&
1186 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1187 	    (error = spa_validate_spares(spa, nvroot, txg,
1188 	    VDEV_ALLOC_ADD)) == 0) {
1189 		for (c = 0; c < rvd->vdev_children; c++)
1190 			vdev_init(rvd->vdev_child[c], txg);
1191 		vdev_config_dirty(rvd);
1192 	}
1193 
1194 	spa_config_exit(spa, FTAG);
1195 
1196 	if (error != 0) {
1197 		spa_unload(spa);
1198 		spa_deactivate(spa);
1199 		spa_remove(spa);
1200 		mutex_exit(&spa_namespace_lock);
1201 		return (error);
1202 	}
1203 
1204 	/*
1205 	 * Get the list of spares, if specified.
1206 	 */
1207 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1208 	    &spares, &nspares) == 0) {
1209 		VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME,
1210 		    KM_SLEEP) == 0);
1211 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1212 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1213 		spa_config_enter(spa, RW_WRITER, FTAG);
1214 		spa_load_spares(spa);
1215 		spa_config_exit(spa, FTAG);
1216 		spa->spa_sync_spares = B_TRUE;
1217 	}
1218 
1219 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
1220 	spa->spa_meta_objset = dp->dp_meta_objset;
1221 
1222 	tx = dmu_tx_create_assigned(dp, txg);
1223 
1224 	/*
1225 	 * Create the pool config object.
1226 	 */
1227 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1228 	    DMU_OT_PACKED_NVLIST, 1 << 14,
1229 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1230 
1231 	if (zap_add(spa->spa_meta_objset,
1232 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1233 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1234 		cmn_err(CE_PANIC, "failed to add pool config");
1235 	}
1236 
1237 	/* Newly created pools are always deflated. */
1238 	spa->spa_deflate = TRUE;
1239 	if (zap_add(spa->spa_meta_objset,
1240 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1241 	    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
1242 		cmn_err(CE_PANIC, "failed to add deflate");
1243 	}
1244 
1245 	/*
1246 	 * Create the deferred-free bplist object.  Turn off compression
1247 	 * because sync-to-convergence takes longer if the blocksize
1248 	 * keeps changing.
1249 	 */
1250 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
1251 	    1 << 14, tx);
1252 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
1253 	    ZIO_COMPRESS_OFF, tx);
1254 
1255 	if (zap_add(spa->spa_meta_objset,
1256 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1257 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
1258 		cmn_err(CE_PANIC, "failed to add bplist");
1259 	}
1260 
1261 	/*
1262 	 * Create the pool's history object.
1263 	 */
1264 	spa_history_create_obj(spa, tx);
1265 
1266 	dmu_tx_commit(tx);
1267 
1268 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
1269 	spa->spa_delegation = zfs_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1270 	spa->spa_sync_on = B_TRUE;
1271 	txg_sync_start(spa->spa_dsl_pool);
1272 
1273 	/*
1274 	 * We explicitly wait for the first transaction to complete so that our
1275 	 * bean counters are appropriately updated.
1276 	 */
1277 	txg_wait_synced(spa->spa_dsl_pool, txg);
1278 
1279 	spa_config_sync();
1280 
1281 	if (history_str != NULL)
1282 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
1283 
1284 	mutex_exit(&spa_namespace_lock);
1285 
1286 	return (0);
1287 }
1288 
1289 /*
1290  * Import the given pool into the system.  We set up the necessary spa_t and
1291  * then call spa_load() to do the dirty work.
1292  */
1293 int
1294 spa_import(const char *pool, nvlist_t *config, const char *altroot)
1295 {
1296 	spa_t *spa;
1297 	int error;
1298 	nvlist_t *nvroot;
1299 	nvlist_t **spares;
1300 	uint_t nspares;
1301 
1302 	/*
1303 	 * If a pool with this name exists, return failure.
1304 	 */
1305 	mutex_enter(&spa_namespace_lock);
1306 	if (spa_lookup(pool) != NULL) {
1307 		mutex_exit(&spa_namespace_lock);
1308 		return (EEXIST);
1309 	}
1310 
1311 	/*
1312 	 * Create and initialize the spa structure.
1313 	 */
1314 	spa = spa_add(pool, altroot);
1315 	spa_activate(spa);
1316 
1317 	/*
1318 	 * Pass off the heavy lifting to spa_load().
1319 	 * Pass TRUE for mosconfig because the user-supplied config
1320 	 * is actually the one to trust when doing an import.
1321 	 */
1322 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
1323 
1324 	spa_config_enter(spa, RW_WRITER, FTAG);
1325 	/*
1326 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
1327 	 * and conflicts with spa_has_spare().
1328 	 */
1329 	if (spa->spa_sparelist) {
1330 		nvlist_free(spa->spa_sparelist);
1331 		spa->spa_sparelist = NULL;
1332 		spa_load_spares(spa);
1333 	}
1334 
1335 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1336 	    &nvroot) == 0);
1337 	if (error == 0)
1338 		error = spa_validate_spares(spa, nvroot, -1ULL,
1339 		    VDEV_ALLOC_SPARE);
1340 	spa_config_exit(spa, FTAG);
1341 
1342 	if (error != 0) {
1343 		spa_unload(spa);
1344 		spa_deactivate(spa);
1345 		spa_remove(spa);
1346 		mutex_exit(&spa_namespace_lock);
1347 		return (error);
1348 	}
1349 
1350 	/*
1351 	 * Override any spares as specified by the user, as these may have
1352 	 * correct device names/devids, etc.
1353 	 */
1354 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1355 	    &spares, &nspares) == 0) {
1356 		if (spa->spa_sparelist)
1357 			VERIFY(nvlist_remove(spa->spa_sparelist,
1358 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1359 		else
1360 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1361 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1362 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1363 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1364 		spa_config_enter(spa, RW_WRITER, FTAG);
1365 		spa_load_spares(spa);
1366 		spa_config_exit(spa, FTAG);
1367 		spa->spa_sync_spares = B_TRUE;
1368 	}
1369 
1370 	/*
1371 	 * Update the config cache to include the newly-imported pool.
1372 	 */
1373 	if (spa_mode & FWRITE)
1374 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1375 
1376 	/*
1377 	 * Resilver anything that's out of date.
1378 	 */
1379 	if (spa_mode & FWRITE)
1380 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1381 
1382 	mutex_exit(&spa_namespace_lock);
1383 
1384 	return (0);
1385 }
1386 
1387 /*
1388  * This (illegal) pool name is used when temporarily importing a spa_t in order
1389  * to get the vdev stats associated with the imported devices.
1390  */
1391 #define	TRYIMPORT_NAME	"$import"
1392 
1393 nvlist_t *
1394 spa_tryimport(nvlist_t *tryconfig)
1395 {
1396 	nvlist_t *config = NULL;
1397 	char *poolname;
1398 	spa_t *spa;
1399 	uint64_t state;
1400 
1401 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
1402 		return (NULL);
1403 
1404 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
1405 		return (NULL);
1406 
1407 	/*
1408 	 * Create and initialize the spa structure.
1409 	 */
1410 	mutex_enter(&spa_namespace_lock);
1411 	spa = spa_add(TRYIMPORT_NAME, NULL);
1412 	spa_activate(spa);
1413 
1414 	/*
1415 	 * Pass off the heavy lifting to spa_load().
1416 	 * Pass TRUE for mosconfig because the user-supplied config
1417 	 * is actually the one to trust when doing an import.
1418 	 */
1419 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
1420 
1421 	/*
1422 	 * If 'tryconfig' was at least parsable, return the current config.
1423 	 */
1424 	if (spa->spa_root_vdev != NULL) {
1425 		spa_config_enter(spa, RW_READER, FTAG);
1426 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1427 		spa_config_exit(spa, FTAG);
1428 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
1429 		    poolname) == 0);
1430 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1431 		    state) == 0);
1432 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
1433 		    spa->spa_uberblock.ub_timestamp) == 0);
1434 
1435 		/*
1436 		 * Add the list of hot spares.
1437 		 */
1438 		spa_add_spares(spa, config);
1439 	}
1440 
1441 	spa_unload(spa);
1442 	spa_deactivate(spa);
1443 	spa_remove(spa);
1444 	mutex_exit(&spa_namespace_lock);
1445 
1446 	return (config);
1447 }
1448 
1449 /*
1450  * Pool export/destroy
1451  *
1452  * The act of destroying or exporting a pool is very simple.  We make sure there
1453  * is no more pending I/O and any references to the pool are gone.  Then, we
1454  * update the pool state and sync all the labels to disk, removing the
1455  * configuration from the cache afterwards.
1456  */
1457 static int
1458 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
1459 {
1460 	spa_t *spa;
1461 
1462 	if (oldconfig)
1463 		*oldconfig = NULL;
1464 
1465 	if (!(spa_mode & FWRITE))
1466 		return (EROFS);
1467 
1468 	mutex_enter(&spa_namespace_lock);
1469 	if ((spa = spa_lookup(pool)) == NULL) {
1470 		mutex_exit(&spa_namespace_lock);
1471 		return (ENOENT);
1472 	}
1473 
1474 	/*
1475 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
1476 	 * reacquire the namespace lock, and see if we can export.
1477 	 */
1478 	spa_open_ref(spa, FTAG);
1479 	mutex_exit(&spa_namespace_lock);
1480 	spa_async_suspend(spa);
1481 	mutex_enter(&spa_namespace_lock);
1482 	spa_close(spa, FTAG);
1483 
1484 	/*
1485 	 * The pool will be in core if it's openable,
1486 	 * in which case we can modify its state.
1487 	 */
1488 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
1489 		/*
1490 		 * Objsets may be open only because they're dirty, so we
1491 		 * have to force it to sync before checking spa_refcnt.
1492 		 */
1493 		spa_scrub_suspend(spa);
1494 		txg_wait_synced(spa->spa_dsl_pool, 0);
1495 
1496 		/*
1497 		 * A pool cannot be exported or destroyed if there are active
1498 		 * references.  If we are resetting a pool, allow references by
1499 		 * fault injection handlers.
1500 		 */
1501 		if (!spa_refcount_zero(spa) ||
1502 		    (spa->spa_inject_ref != 0 &&
1503 		    new_state != POOL_STATE_UNINITIALIZED)) {
1504 			spa_scrub_resume(spa);
1505 			spa_async_resume(spa);
1506 			mutex_exit(&spa_namespace_lock);
1507 			return (EBUSY);
1508 		}
1509 
1510 		spa_scrub_resume(spa);
1511 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
1512 
1513 		/*
1514 		 * We want this to be reflected on every label,
1515 		 * so mark them all dirty.  spa_unload() will do the
1516 		 * final sync that pushes these changes out.
1517 		 */
1518 		if (new_state != POOL_STATE_UNINITIALIZED) {
1519 			spa_config_enter(spa, RW_WRITER, FTAG);
1520 			spa->spa_state = new_state;
1521 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
1522 			vdev_config_dirty(spa->spa_root_vdev);
1523 			spa_config_exit(spa, FTAG);
1524 		}
1525 	}
1526 
1527 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
1528 
1529 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1530 		spa_unload(spa);
1531 		spa_deactivate(spa);
1532 	}
1533 
1534 	if (oldconfig && spa->spa_config)
1535 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
1536 
1537 	if (new_state != POOL_STATE_UNINITIALIZED) {
1538 		spa_remove(spa);
1539 		spa_config_sync();
1540 	}
1541 	mutex_exit(&spa_namespace_lock);
1542 
1543 	return (0);
1544 }
1545 
1546 /*
1547  * Destroy a storage pool.
1548  */
1549 int
1550 spa_destroy(char *pool)
1551 {
1552 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
1553 }
1554 
1555 /*
1556  * Export a storage pool.
1557  */
1558 int
1559 spa_export(char *pool, nvlist_t **oldconfig)
1560 {
1561 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
1562 }
1563 
1564 /*
1565  * Similar to spa_export(), this unloads the spa_t without actually removing it
1566  * from the namespace in any way.
1567  */
1568 int
1569 spa_reset(char *pool)
1570 {
1571 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
1572 }
1573 
1574 
1575 /*
1576  * ==========================================================================
1577  * Device manipulation
1578  * ==========================================================================
1579  */
1580 
1581 /*
1582  * Add a device to a storage pool.
1583  */
1584 int
1585 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1586 {
1587 	uint64_t txg;
1588 	int c, error;
1589 	vdev_t *rvd = spa->spa_root_vdev;
1590 	vdev_t *vd, *tvd;
1591 	nvlist_t **spares;
1592 	uint_t i, nspares;
1593 
1594 	txg = spa_vdev_enter(spa);
1595 
1596 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
1597 	    VDEV_ALLOC_ADD)) != 0)
1598 		return (spa_vdev_exit(spa, NULL, txg, error));
1599 
1600 	spa->spa_pending_vdev = vd;
1601 
1602 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1603 	    &spares, &nspares) != 0)
1604 		nspares = 0;
1605 
1606 	if (vd->vdev_children == 0 && nspares == 0) {
1607 		spa->spa_pending_vdev = NULL;
1608 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1609 	}
1610 
1611 	if (vd->vdev_children != 0) {
1612 		if ((error = vdev_create(vd, txg, B_FALSE)) != 0) {
1613 			spa->spa_pending_vdev = NULL;
1614 			return (spa_vdev_exit(spa, vd, txg, error));
1615 		}
1616 	}
1617 
1618 	/*
1619 	 * We must validate the spares after checking the children.  Otherwise,
1620 	 * vdev_inuse() will blindly overwrite the spare.
1621 	 */
1622 	if ((error = spa_validate_spares(spa, nvroot, txg,
1623 	    VDEV_ALLOC_ADD)) != 0) {
1624 		spa->spa_pending_vdev = NULL;
1625 		return (spa_vdev_exit(spa, vd, txg, error));
1626 	}
1627 
1628 	spa->spa_pending_vdev = NULL;
1629 
1630 	/*
1631 	 * Transfer each new top-level vdev from vd to rvd.
1632 	 */
1633 	for (c = 0; c < vd->vdev_children; c++) {
1634 		tvd = vd->vdev_child[c];
1635 		vdev_remove_child(vd, tvd);
1636 		tvd->vdev_id = rvd->vdev_children;
1637 		vdev_add_child(rvd, tvd);
1638 		vdev_config_dirty(tvd);
1639 	}
1640 
1641 	if (nspares != 0) {
1642 		if (spa->spa_sparelist != NULL) {
1643 			nvlist_t **oldspares;
1644 			uint_t oldnspares;
1645 			nvlist_t **newspares;
1646 
1647 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
1648 			    ZPOOL_CONFIG_SPARES, &oldspares, &oldnspares) == 0);
1649 
1650 			newspares = kmem_alloc(sizeof (void *) *
1651 			    (nspares + oldnspares), KM_SLEEP);
1652 			for (i = 0; i < oldnspares; i++)
1653 				VERIFY(nvlist_dup(oldspares[i],
1654 				    &newspares[i], KM_SLEEP) == 0);
1655 			for (i = 0; i < nspares; i++)
1656 				VERIFY(nvlist_dup(spares[i],
1657 				    &newspares[i + oldnspares],
1658 				    KM_SLEEP) == 0);
1659 
1660 			VERIFY(nvlist_remove(spa->spa_sparelist,
1661 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1662 
1663 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1664 			    ZPOOL_CONFIG_SPARES, newspares,
1665 			    nspares + oldnspares) == 0);
1666 			for (i = 0; i < oldnspares + nspares; i++)
1667 				nvlist_free(newspares[i]);
1668 			kmem_free(newspares, (oldnspares + nspares) *
1669 			    sizeof (void *));
1670 		} else {
1671 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1672 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1673 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1674 			    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1675 		}
1676 
1677 		spa_load_spares(spa);
1678 		spa->spa_sync_spares = B_TRUE;
1679 	}
1680 
1681 	/*
1682 	 * We have to be careful when adding new vdevs to an existing pool.
1683 	 * If other threads start allocating from these vdevs before we
1684 	 * sync the config cache, and we lose power, then upon reboot we may
1685 	 * fail to open the pool because there are DVAs that the config cache
1686 	 * can't translate.  Therefore, we first add the vdevs without
1687 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
1688 	 * and then let spa_config_update() initialize the new metaslabs.
1689 	 *
1690 	 * spa_load() checks for added-but-not-initialized vdevs, so that
1691 	 * if we lose power at any point in this sequence, the remaining
1692 	 * steps will be completed the next time we load the pool.
1693 	 */
1694 	(void) spa_vdev_exit(spa, vd, txg, 0);
1695 
1696 	mutex_enter(&spa_namespace_lock);
1697 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1698 	mutex_exit(&spa_namespace_lock);
1699 
1700 	return (0);
1701 }
1702 
1703 /*
1704  * Attach a device to a mirror.  The arguments are the path to any device
1705  * in the mirror, and the nvroot for the new device.  If the path specifies
1706  * a device that is not mirrored, we automatically insert the mirror vdev.
1707  *
1708  * If 'replacing' is specified, the new device is intended to replace the
1709  * existing device; in this case the two devices are made into their own
1710  * mirror using the 'replacing' vdev, which is functionally identical to
1711  * the mirror vdev (it actually reuses all the same ops) but has a few
1712  * extra rules: you can't attach to it after it's been created, and upon
1713  * completion of resilvering, the first disk (the one being replaced)
1714  * is automatically detached.
1715  */
1716 int
1717 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
1718 {
1719 	uint64_t txg, open_txg;
1720 	int error;
1721 	vdev_t *rvd = spa->spa_root_vdev;
1722 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
1723 	vdev_ops_t *pvops;
1724 	int is_log;
1725 
1726 	txg = spa_vdev_enter(spa);
1727 
1728 	oldvd = vdev_lookup_by_guid(rvd, guid);
1729 
1730 	if (oldvd == NULL)
1731 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1732 
1733 	if (!oldvd->vdev_ops->vdev_op_leaf)
1734 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1735 
1736 	pvd = oldvd->vdev_parent;
1737 
1738 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
1739 	    VDEV_ALLOC_ADD)) != 0)
1740 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
1741 
1742 	if (newrootvd->vdev_children != 1)
1743 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1744 
1745 	newvd = newrootvd->vdev_child[0];
1746 
1747 	if (!newvd->vdev_ops->vdev_op_leaf)
1748 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1749 
1750 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
1751 		return (spa_vdev_exit(spa, newrootvd, txg, error));
1752 
1753 	/*
1754 	 * Spares can't replace logs
1755 	 */
1756 	is_log = oldvd->vdev_islog;
1757 	if (is_log && newvd->vdev_isspare)
1758 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1759 
1760 	if (!replacing) {
1761 		/*
1762 		 * For attach, the only allowable parent is a mirror or the root
1763 		 * vdev.
1764 		 */
1765 		if (pvd->vdev_ops != &vdev_mirror_ops &&
1766 		    pvd->vdev_ops != &vdev_root_ops)
1767 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1768 
1769 		pvops = &vdev_mirror_ops;
1770 	} else {
1771 		/*
1772 		 * Active hot spares can only be replaced by inactive hot
1773 		 * spares.
1774 		 */
1775 		if (pvd->vdev_ops == &vdev_spare_ops &&
1776 		    pvd->vdev_child[1] == oldvd &&
1777 		    !spa_has_spare(spa, newvd->vdev_guid))
1778 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1779 
1780 		/*
1781 		 * If the source is a hot spare, and the parent isn't already a
1782 		 * spare, then we want to create a new hot spare.  Otherwise, we
1783 		 * want to create a replacing vdev.  The user is not allowed to
1784 		 * attach to a spared vdev child unless the 'isspare' state is
1785 		 * the same (spare replaces spare, non-spare replaces
1786 		 * non-spare).
1787 		 */
1788 		if (pvd->vdev_ops == &vdev_replacing_ops)
1789 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1790 		else if (pvd->vdev_ops == &vdev_spare_ops &&
1791 		    newvd->vdev_isspare != oldvd->vdev_isspare)
1792 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1793 		else if (pvd->vdev_ops != &vdev_spare_ops &&
1794 		    newvd->vdev_isspare)
1795 			pvops = &vdev_spare_ops;
1796 		else
1797 			pvops = &vdev_replacing_ops;
1798 	}
1799 
1800 	/*
1801 	 * Compare the new device size with the replaceable/attachable
1802 	 * device size.
1803 	 */
1804 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
1805 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
1806 
1807 	/*
1808 	 * The new device cannot have a higher alignment requirement
1809 	 * than the top-level vdev.
1810 	 */
1811 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
1812 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
1813 
1814 	/*
1815 	 * If this is an in-place replacement, update oldvd's path and devid
1816 	 * to make it distinguishable from newvd, and unopenable from now on.
1817 	 */
1818 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
1819 		spa_strfree(oldvd->vdev_path);
1820 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
1821 		    KM_SLEEP);
1822 		(void) sprintf(oldvd->vdev_path, "%s/%s",
1823 		    newvd->vdev_path, "old");
1824 		if (oldvd->vdev_devid != NULL) {
1825 			spa_strfree(oldvd->vdev_devid);
1826 			oldvd->vdev_devid = NULL;
1827 		}
1828 	}
1829 
1830 	/*
1831 	 * If the parent is not a mirror, or if we're replacing, insert the new
1832 	 * mirror/replacing/spare vdev above oldvd.
1833 	 */
1834 	if (pvd->vdev_ops != pvops)
1835 		pvd = vdev_add_parent(oldvd, pvops);
1836 
1837 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
1838 	ASSERT(pvd->vdev_ops == pvops);
1839 	ASSERT(oldvd->vdev_parent == pvd);
1840 
1841 	/*
1842 	 * Extract the new device from its root and add it to pvd.
1843 	 */
1844 	vdev_remove_child(newrootvd, newvd);
1845 	newvd->vdev_id = pvd->vdev_children;
1846 	vdev_add_child(pvd, newvd);
1847 
1848 	/*
1849 	 * If newvd is smaller than oldvd, but larger than its rsize,
1850 	 * the addition of newvd may have decreased our parent's asize.
1851 	 */
1852 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
1853 
1854 	tvd = newvd->vdev_top;
1855 	ASSERT(pvd->vdev_top == tvd);
1856 	ASSERT(tvd->vdev_parent == rvd);
1857 
1858 	vdev_config_dirty(tvd);
1859 
1860 	/*
1861 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
1862 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
1863 	 */
1864 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
1865 
1866 	mutex_enter(&newvd->vdev_dtl_lock);
1867 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
1868 	    open_txg - TXG_INITIAL + 1);
1869 	mutex_exit(&newvd->vdev_dtl_lock);
1870 
1871 	if (newvd->vdev_isspare)
1872 		spa_spare_activate(newvd);
1873 
1874 	/*
1875 	 * Mark newvd's DTL dirty in this txg.
1876 	 */
1877 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
1878 
1879 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
1880 
1881 	/*
1882 	 * Kick off a resilver to update newvd.  We need to grab the namespace
1883 	 * lock because spa_scrub() needs to post a sysevent with the pool name.
1884 	 */
1885 	mutex_enter(&spa_namespace_lock);
1886 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1887 	mutex_exit(&spa_namespace_lock);
1888 
1889 	return (0);
1890 }
1891 
1892 /*
1893  * Detach a device from a mirror or replacing vdev.
1894  * If 'replace_done' is specified, only detach if the parent
1895  * is a replacing vdev.
1896  */
1897 int
1898 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
1899 {
1900 	uint64_t txg;
1901 	int c, t, error;
1902 	vdev_t *rvd = spa->spa_root_vdev;
1903 	vdev_t *vd, *pvd, *cvd, *tvd;
1904 	boolean_t unspare = B_FALSE;
1905 	uint64_t unspare_guid;
1906 
1907 	txg = spa_vdev_enter(spa);
1908 
1909 	vd = vdev_lookup_by_guid(rvd, guid);
1910 
1911 	if (vd == NULL)
1912 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1913 
1914 	if (!vd->vdev_ops->vdev_op_leaf)
1915 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1916 
1917 	pvd = vd->vdev_parent;
1918 
1919 	/*
1920 	 * If replace_done is specified, only remove this device if it's
1921 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
1922 	 * disk can be removed.
1923 	 */
1924 	if (replace_done) {
1925 		if (pvd->vdev_ops == &vdev_replacing_ops) {
1926 			if (vd->vdev_id != 0)
1927 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1928 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
1929 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1930 		}
1931 	}
1932 
1933 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
1934 	    spa_version(spa) >= SPA_VERSION_SPARES);
1935 
1936 	/*
1937 	 * Only mirror, replacing, and spare vdevs support detach.
1938 	 */
1939 	if (pvd->vdev_ops != &vdev_replacing_ops &&
1940 	    pvd->vdev_ops != &vdev_mirror_ops &&
1941 	    pvd->vdev_ops != &vdev_spare_ops)
1942 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1943 
1944 	/*
1945 	 * If there's only one replica, you can't detach it.
1946 	 */
1947 	if (pvd->vdev_children <= 1)
1948 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1949 
1950 	/*
1951 	 * If all siblings have non-empty DTLs, this device may have the only
1952 	 * valid copy of the data, which means we cannot safely detach it.
1953 	 *
1954 	 * XXX -- as in the vdev_offline() case, we really want a more
1955 	 * precise DTL check.
1956 	 */
1957 	for (c = 0; c < pvd->vdev_children; c++) {
1958 		uint64_t dirty;
1959 
1960 		cvd = pvd->vdev_child[c];
1961 		if (cvd == vd)
1962 			continue;
1963 		if (vdev_is_dead(cvd))
1964 			continue;
1965 		mutex_enter(&cvd->vdev_dtl_lock);
1966 		dirty = cvd->vdev_dtl_map.sm_space |
1967 		    cvd->vdev_dtl_scrub.sm_space;
1968 		mutex_exit(&cvd->vdev_dtl_lock);
1969 		if (!dirty)
1970 			break;
1971 	}
1972 
1973 	/*
1974 	 * If we are a replacing or spare vdev, then we can always detach the
1975 	 * latter child, as that is how one cancels the operation.
1976 	 */
1977 	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
1978 	    c == pvd->vdev_children)
1979 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1980 
1981 	/*
1982 	 * If we are detaching the original disk from a spare, then it implies
1983 	 * that the spare should become a real disk, and be removed from the
1984 	 * active spare list for the pool.
1985 	 */
1986 	if (pvd->vdev_ops == &vdev_spare_ops &&
1987 	    vd->vdev_id == 0)
1988 		unspare = B_TRUE;
1989 
1990 	/*
1991 	 * Erase the disk labels so the disk can be used for other things.
1992 	 * This must be done after all other error cases are handled,
1993 	 * but before we disembowel vd (so we can still do I/O to it).
1994 	 * But if we can't do it, don't treat the error as fatal --
1995 	 * it may be that the unwritability of the disk is the reason
1996 	 * it's being detached!
1997 	 */
1998 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1999 
2000 	/*
2001 	 * Remove vd from its parent and compact the parent's children.
2002 	 */
2003 	vdev_remove_child(pvd, vd);
2004 	vdev_compact_children(pvd);
2005 
2006 	/*
2007 	 * Remember one of the remaining children so we can get tvd below.
2008 	 */
2009 	cvd = pvd->vdev_child[0];
2010 
2011 	/*
2012 	 * If we need to remove the remaining child from the list of hot spares,
2013 	 * do it now, marking the vdev as no longer a spare in the process.  We
2014 	 * must do this before vdev_remove_parent(), because that can change the
2015 	 * GUID if it creates a new toplevel GUID.
2016 	 */
2017 	if (unspare) {
2018 		ASSERT(cvd->vdev_isspare);
2019 		spa_spare_remove(cvd);
2020 		unspare_guid = cvd->vdev_guid;
2021 	}
2022 
2023 	/*
2024 	 * If the parent mirror/replacing vdev only has one child,
2025 	 * the parent is no longer needed.  Remove it from the tree.
2026 	 */
2027 	if (pvd->vdev_children == 1)
2028 		vdev_remove_parent(cvd);
2029 
2030 	/*
2031 	 * We don't set tvd until now because the parent we just removed
2032 	 * may have been the previous top-level vdev.
2033 	 */
2034 	tvd = cvd->vdev_top;
2035 	ASSERT(tvd->vdev_parent == rvd);
2036 
2037 	/*
2038 	 * Reevaluate the parent vdev state.
2039 	 */
2040 	vdev_propagate_state(cvd);
2041 
2042 	/*
2043 	 * If the device we just detached was smaller than the others, it may be
2044 	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
2045 	 * can't fail because the existing metaslabs are already in core, so
2046 	 * there's nothing to read from disk.
2047 	 */
2048 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
2049 
2050 	vdev_config_dirty(tvd);
2051 
2052 	/*
2053 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
2054 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
2055 	 * But first make sure we're not on any *other* txg's DTL list, to
2056 	 * prevent vd from being accessed after it's freed.
2057 	 */
2058 	for (t = 0; t < TXG_SIZE; t++)
2059 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
2060 	vd->vdev_detached = B_TRUE;
2061 	vdev_dirty(tvd, VDD_DTL, vd, txg);
2062 
2063 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
2064 
2065 	error = spa_vdev_exit(spa, vd, txg, 0);
2066 
2067 	/*
2068 	 * If this was the removal of the original device in a hot spare vdev,
2069 	 * then we want to go through and remove the device from the hot spare
2070 	 * list of every other pool.
2071 	 */
2072 	if (unspare) {
2073 		spa = NULL;
2074 		mutex_enter(&spa_namespace_lock);
2075 		while ((spa = spa_next(spa)) != NULL) {
2076 			if (spa->spa_state != POOL_STATE_ACTIVE)
2077 				continue;
2078 
2079 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
2080 		}
2081 		mutex_exit(&spa_namespace_lock);
2082 	}
2083 
2084 	return (error);
2085 }
2086 
2087 /*
2088  * Remove a device from the pool.  Currently, this supports removing only hot
2089  * spares.
2090  */
2091 int
2092 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2093 {
2094 	vdev_t *vd;
2095 	nvlist_t **spares, *nv, **newspares;
2096 	uint_t i, j, nspares;
2097 	int ret = 0;
2098 
2099 	spa_config_enter(spa, RW_WRITER, FTAG);
2100 
2101 	vd = spa_lookup_by_guid(spa, guid);
2102 
2103 	nv = NULL;
2104 	if (spa->spa_spares != NULL &&
2105 	    nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2106 	    &spares, &nspares) == 0) {
2107 		for (i = 0; i < nspares; i++) {
2108 			uint64_t theguid;
2109 
2110 			VERIFY(nvlist_lookup_uint64(spares[i],
2111 			    ZPOOL_CONFIG_GUID, &theguid) == 0);
2112 			if (theguid == guid) {
2113 				nv = spares[i];
2114 				break;
2115 			}
2116 		}
2117 	}
2118 
2119 	/*
2120 	 * We only support removing a hot spare, and only if it's not currently
2121 	 * in use in this pool.
2122 	 */
2123 	if (nv == NULL && vd == NULL) {
2124 		ret = ENOENT;
2125 		goto out;
2126 	}
2127 
2128 	if (nv == NULL && vd != NULL) {
2129 		ret = ENOTSUP;
2130 		goto out;
2131 	}
2132 
2133 	if (!unspare && nv != NULL && vd != NULL) {
2134 		ret = EBUSY;
2135 		goto out;
2136 	}
2137 
2138 	if (nspares == 1) {
2139 		newspares = NULL;
2140 	} else {
2141 		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
2142 		    KM_SLEEP);
2143 		for (i = 0, j = 0; i < nspares; i++) {
2144 			if (spares[i] != nv)
2145 				VERIFY(nvlist_dup(spares[i],
2146 				    &newspares[j++], KM_SLEEP) == 0);
2147 		}
2148 	}
2149 
2150 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2151 	    DATA_TYPE_NVLIST_ARRAY) == 0);
2152 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2153 	    newspares, nspares - 1) == 0);
2154 	for (i = 0; i < nspares - 1; i++)
2155 		nvlist_free(newspares[i]);
2156 	kmem_free(newspares, (nspares - 1) * sizeof (void *));
2157 	spa_load_spares(spa);
2158 	spa->spa_sync_spares = B_TRUE;
2159 
2160 out:
2161 	spa_config_exit(spa, FTAG);
2162 
2163 	return (ret);
2164 }
2165 
2166 /*
2167  * Find any device that's done replacing, or a vdev marked 'unspare' that's
2168  * current spared, so we can detach it.
2169  */
2170 static vdev_t *
2171 spa_vdev_resilver_done_hunt(vdev_t *vd)
2172 {
2173 	vdev_t *newvd, *oldvd;
2174 	int c;
2175 
2176 	for (c = 0; c < vd->vdev_children; c++) {
2177 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
2178 		if (oldvd != NULL)
2179 			return (oldvd);
2180 	}
2181 
2182 	/*
2183 	 * Check for a completed replacement.
2184 	 */
2185 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
2186 		oldvd = vd->vdev_child[0];
2187 		newvd = vd->vdev_child[1];
2188 
2189 		mutex_enter(&newvd->vdev_dtl_lock);
2190 		if (newvd->vdev_dtl_map.sm_space == 0 &&
2191 		    newvd->vdev_dtl_scrub.sm_space == 0) {
2192 			mutex_exit(&newvd->vdev_dtl_lock);
2193 			return (oldvd);
2194 		}
2195 		mutex_exit(&newvd->vdev_dtl_lock);
2196 	}
2197 
2198 	/*
2199 	 * Check for a completed resilver with the 'unspare' flag set.
2200 	 */
2201 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
2202 		newvd = vd->vdev_child[0];
2203 		oldvd = vd->vdev_child[1];
2204 
2205 		mutex_enter(&newvd->vdev_dtl_lock);
2206 		if (newvd->vdev_unspare &&
2207 		    newvd->vdev_dtl_map.sm_space == 0 &&
2208 		    newvd->vdev_dtl_scrub.sm_space == 0) {
2209 			newvd->vdev_unspare = 0;
2210 			mutex_exit(&newvd->vdev_dtl_lock);
2211 			return (oldvd);
2212 		}
2213 		mutex_exit(&newvd->vdev_dtl_lock);
2214 	}
2215 
2216 	return (NULL);
2217 }
2218 
2219 static void
2220 spa_vdev_resilver_done(spa_t *spa)
2221 {
2222 	vdev_t *vd;
2223 	vdev_t *pvd;
2224 	uint64_t guid;
2225 	uint64_t pguid = 0;
2226 
2227 	spa_config_enter(spa, RW_READER, FTAG);
2228 
2229 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
2230 		guid = vd->vdev_guid;
2231 		/*
2232 		 * If we have just finished replacing a hot spared device, then
2233 		 * we need to detach the parent's first child (the original hot
2234 		 * spare) as well.
2235 		 */
2236 		pvd = vd->vdev_parent;
2237 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2238 		    pvd->vdev_id == 0) {
2239 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
2240 			ASSERT(pvd->vdev_parent->vdev_children == 2);
2241 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
2242 		}
2243 		spa_config_exit(spa, FTAG);
2244 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
2245 			return;
2246 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
2247 			return;
2248 		spa_config_enter(spa, RW_READER, FTAG);
2249 	}
2250 
2251 	spa_config_exit(spa, FTAG);
2252 }
2253 
2254 /*
2255  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
2256  * on spa_vdev_enter/exit() to synchronize the labels and cache.
2257  */
2258 int
2259 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
2260 {
2261 	vdev_t *rvd, *vd;
2262 	uint64_t txg;
2263 
2264 	rvd = spa->spa_root_vdev;
2265 
2266 	txg = spa_vdev_enter(spa);
2267 
2268 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2269 		/*
2270 		 * Determine if this is a reference to a hot spare.  In that
2271 		 * case, update the path as stored in the spare list.
2272 		 */
2273 		nvlist_t **spares;
2274 		uint_t i, nspares;
2275 		if (spa->spa_sparelist != NULL) {
2276 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
2277 			    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2278 			for (i = 0; i < nspares; i++) {
2279 				uint64_t theguid;
2280 				VERIFY(nvlist_lookup_uint64(spares[i],
2281 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
2282 				if (theguid == guid)
2283 					break;
2284 			}
2285 
2286 			if (i == nspares)
2287 				return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2288 
2289 			VERIFY(nvlist_add_string(spares[i],
2290 			    ZPOOL_CONFIG_PATH, newpath) == 0);
2291 			spa_load_spares(spa);
2292 			spa->spa_sync_spares = B_TRUE;
2293 			return (spa_vdev_exit(spa, NULL, txg, 0));
2294 		} else {
2295 			return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2296 		}
2297 	}
2298 
2299 	if (!vd->vdev_ops->vdev_op_leaf)
2300 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2301 
2302 	spa_strfree(vd->vdev_path);
2303 	vd->vdev_path = spa_strdup(newpath);
2304 
2305 	vdev_config_dirty(vd->vdev_top);
2306 
2307 	return (spa_vdev_exit(spa, NULL, txg, 0));
2308 }
2309 
2310 /*
2311  * ==========================================================================
2312  * SPA Scrubbing
2313  * ==========================================================================
2314  */
2315 
2316 static void
2317 spa_scrub_io_done(zio_t *zio)
2318 {
2319 	spa_t *spa = zio->io_spa;
2320 
2321 	arc_data_buf_free(zio->io_data, zio->io_size);
2322 
2323 	mutex_enter(&spa->spa_scrub_lock);
2324 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2325 		vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
2326 		spa->spa_scrub_errors++;
2327 		mutex_enter(&vd->vdev_stat_lock);
2328 		vd->vdev_stat.vs_scrub_errors++;
2329 		mutex_exit(&vd->vdev_stat_lock);
2330 	}
2331 
2332 	if (--spa->spa_scrub_inflight < spa->spa_scrub_maxinflight)
2333 		cv_broadcast(&spa->spa_scrub_io_cv);
2334 
2335 	ASSERT(spa->spa_scrub_inflight >= 0);
2336 
2337 	mutex_exit(&spa->spa_scrub_lock);
2338 }
2339 
2340 static void
2341 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
2342     zbookmark_t *zb)
2343 {
2344 	size_t size = BP_GET_LSIZE(bp);
2345 	void *data;
2346 
2347 	mutex_enter(&spa->spa_scrub_lock);
2348 	/*
2349 	 * Do not give too much work to vdev(s).
2350 	 */
2351 	while (spa->spa_scrub_inflight >= spa->spa_scrub_maxinflight) {
2352 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2353 	}
2354 	spa->spa_scrub_inflight++;
2355 	mutex_exit(&spa->spa_scrub_lock);
2356 
2357 	data = arc_data_buf_alloc(size);
2358 
2359 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2360 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
2361 
2362 	flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL;
2363 
2364 	zio_nowait(zio_read(NULL, spa, bp, data, size,
2365 	    spa_scrub_io_done, NULL, priority, flags, zb));
2366 }
2367 
2368 /* ARGSUSED */
2369 static int
2370 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
2371 {
2372 	blkptr_t *bp = &bc->bc_blkptr;
2373 	vdev_t *vd = spa->spa_root_vdev;
2374 	dva_t *dva = bp->blk_dva;
2375 	int needs_resilver = B_FALSE;
2376 	int d;
2377 
2378 	if (bc->bc_errno) {
2379 		/*
2380 		 * We can't scrub this block, but we can continue to scrub
2381 		 * the rest of the pool.  Note the error and move along.
2382 		 */
2383 		mutex_enter(&spa->spa_scrub_lock);
2384 		spa->spa_scrub_errors++;
2385 		mutex_exit(&spa->spa_scrub_lock);
2386 
2387 		mutex_enter(&vd->vdev_stat_lock);
2388 		vd->vdev_stat.vs_scrub_errors++;
2389 		mutex_exit(&vd->vdev_stat_lock);
2390 
2391 		return (ERESTART);
2392 	}
2393 
2394 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
2395 
2396 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
2397 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
2398 
2399 		ASSERT(vd != NULL);
2400 
2401 		/*
2402 		 * Keep track of how much data we've examined so that
2403 		 * zpool(1M) status can make useful progress reports.
2404 		 */
2405 		mutex_enter(&vd->vdev_stat_lock);
2406 		vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
2407 		mutex_exit(&vd->vdev_stat_lock);
2408 
2409 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
2410 			if (DVA_GET_GANG(&dva[d])) {
2411 				/*
2412 				 * Gang members may be spread across multiple
2413 				 * vdevs, so the best we can do is look at the
2414 				 * pool-wide DTL.
2415 				 * XXX -- it would be better to change our
2416 				 * allocation policy to ensure that this can't
2417 				 * happen.
2418 				 */
2419 				vd = spa->spa_root_vdev;
2420 			}
2421 			if (vdev_dtl_contains(&vd->vdev_dtl_map,
2422 			    bp->blk_birth, 1))
2423 				needs_resilver = B_TRUE;
2424 		}
2425 	}
2426 
2427 	if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
2428 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
2429 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
2430 	else if (needs_resilver)
2431 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
2432 		    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
2433 
2434 	return (0);
2435 }
2436 
2437 static void
2438 spa_scrub_thread(spa_t *spa)
2439 {
2440 	callb_cpr_t cprinfo;
2441 	traverse_handle_t *th = spa->spa_scrub_th;
2442 	vdev_t *rvd = spa->spa_root_vdev;
2443 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
2444 	int error = 0;
2445 	boolean_t complete;
2446 
2447 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
2448 
2449 	/*
2450 	 * If we're restarting due to a snapshot create/delete,
2451 	 * wait for that to complete.
2452 	 */
2453 	txg_wait_synced(spa_get_dsl(spa), 0);
2454 
2455 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
2456 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2457 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
2458 
2459 	spa_config_enter(spa, RW_WRITER, FTAG);
2460 	vdev_reopen(rvd);		/* purge all vdev caches */
2461 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
2462 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
2463 	spa_config_exit(spa, FTAG);
2464 
2465 	mutex_enter(&spa->spa_scrub_lock);
2466 	spa->spa_scrub_errors = 0;
2467 	spa->spa_scrub_active = 1;
2468 	ASSERT(spa->spa_scrub_inflight == 0);
2469 
2470 	while (!spa->spa_scrub_stop) {
2471 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2472 		while (spa->spa_scrub_suspended) {
2473 			spa->spa_scrub_active = 0;
2474 			cv_broadcast(&spa->spa_scrub_cv);
2475 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2476 			spa->spa_scrub_active = 1;
2477 		}
2478 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
2479 
2480 		if (spa->spa_scrub_restart_txg != 0)
2481 			break;
2482 
2483 		mutex_exit(&spa->spa_scrub_lock);
2484 		error = traverse_more(th);
2485 		mutex_enter(&spa->spa_scrub_lock);
2486 		if (error != EAGAIN)
2487 			break;
2488 	}
2489 
2490 	while (spa->spa_scrub_inflight)
2491 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2492 
2493 	spa->spa_scrub_active = 0;
2494 	cv_broadcast(&spa->spa_scrub_cv);
2495 
2496 	mutex_exit(&spa->spa_scrub_lock);
2497 
2498 	spa_config_enter(spa, RW_WRITER, FTAG);
2499 
2500 	mutex_enter(&spa->spa_scrub_lock);
2501 
2502 	/*
2503 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
2504 	 * AND the spa config lock to synchronize with any config changes
2505 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
2506 	 */
2507 	if (spa->spa_scrub_restart_txg != 0)
2508 		error = ERESTART;
2509 
2510 	if (spa->spa_scrub_stop)
2511 		error = EINTR;
2512 
2513 	/*
2514 	 * Even if there were uncorrectable errors, we consider the scrub
2515 	 * completed.  The downside is that if there is a transient error during
2516 	 * a resilver, we won't resilver the data properly to the target.  But
2517 	 * if the damage is permanent (more likely) we will resilver forever,
2518 	 * which isn't really acceptable.  Since there is enough information for
2519 	 * the user to know what has failed and why, this seems like a more
2520 	 * tractable approach.
2521 	 */
2522 	complete = (error == 0);
2523 
2524 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
2525 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2526 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
2527 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
2528 
2529 	mutex_exit(&spa->spa_scrub_lock);
2530 
2531 	/*
2532 	 * If the scrub/resilver completed, update all DTLs to reflect this.
2533 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
2534 	 */
2535 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
2536 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
2537 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
2538 	spa_errlog_rotate(spa);
2539 
2540 	if (scrub_type == POOL_SCRUB_RESILVER && complete)
2541 		spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_FINISH);
2542 
2543 	spa_config_exit(spa, FTAG);
2544 
2545 	mutex_enter(&spa->spa_scrub_lock);
2546 
2547 	/*
2548 	 * We may have finished replacing a device.
2549 	 * Let the async thread assess this and handle the detach.
2550 	 */
2551 	spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
2552 
2553 	/*
2554 	 * If we were told to restart, our final act is to start a new scrub.
2555 	 */
2556 	if (error == ERESTART)
2557 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
2558 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
2559 
2560 	spa->spa_scrub_type = POOL_SCRUB_NONE;
2561 	spa->spa_scrub_active = 0;
2562 	spa->spa_scrub_thread = NULL;
2563 	cv_broadcast(&spa->spa_scrub_cv);
2564 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
2565 	thread_exit();
2566 }
2567 
2568 void
2569 spa_scrub_suspend(spa_t *spa)
2570 {
2571 	mutex_enter(&spa->spa_scrub_lock);
2572 	spa->spa_scrub_suspended++;
2573 	while (spa->spa_scrub_active) {
2574 		cv_broadcast(&spa->spa_scrub_cv);
2575 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2576 	}
2577 	while (spa->spa_scrub_inflight)
2578 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2579 	mutex_exit(&spa->spa_scrub_lock);
2580 }
2581 
2582 void
2583 spa_scrub_resume(spa_t *spa)
2584 {
2585 	mutex_enter(&spa->spa_scrub_lock);
2586 	ASSERT(spa->spa_scrub_suspended != 0);
2587 	if (--spa->spa_scrub_suspended == 0)
2588 		cv_broadcast(&spa->spa_scrub_cv);
2589 	mutex_exit(&spa->spa_scrub_lock);
2590 }
2591 
2592 void
2593 spa_scrub_restart(spa_t *spa, uint64_t txg)
2594 {
2595 	/*
2596 	 * Something happened (e.g. snapshot create/delete) that means
2597 	 * we must restart any in-progress scrubs.  The itinerary will
2598 	 * fix this properly.
2599 	 */
2600 	mutex_enter(&spa->spa_scrub_lock);
2601 	spa->spa_scrub_restart_txg = txg;
2602 	mutex_exit(&spa->spa_scrub_lock);
2603 }
2604 
2605 int
2606 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
2607 {
2608 	space_seg_t *ss;
2609 	uint64_t mintxg, maxtxg;
2610 	vdev_t *rvd = spa->spa_root_vdev;
2611 
2612 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2613 	ASSERT(!spa_config_held(spa, RW_WRITER));
2614 
2615 	if ((uint_t)type >= POOL_SCRUB_TYPES)
2616 		return (ENOTSUP);
2617 
2618 	mutex_enter(&spa->spa_scrub_lock);
2619 
2620 	/*
2621 	 * If there's a scrub or resilver already in progress, stop it.
2622 	 */
2623 	while (spa->spa_scrub_thread != NULL) {
2624 		/*
2625 		 * Don't stop a resilver unless forced.
2626 		 */
2627 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
2628 			mutex_exit(&spa->spa_scrub_lock);
2629 			return (EBUSY);
2630 		}
2631 		spa->spa_scrub_stop = 1;
2632 		cv_broadcast(&spa->spa_scrub_cv);
2633 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2634 	}
2635 
2636 	/*
2637 	 * Terminate the previous traverse.
2638 	 */
2639 	if (spa->spa_scrub_th != NULL) {
2640 		traverse_fini(spa->spa_scrub_th);
2641 		spa->spa_scrub_th = NULL;
2642 	}
2643 
2644 	if (rvd == NULL) {
2645 		ASSERT(spa->spa_scrub_stop == 0);
2646 		ASSERT(spa->spa_scrub_type == type);
2647 		ASSERT(spa->spa_scrub_restart_txg == 0);
2648 		mutex_exit(&spa->spa_scrub_lock);
2649 		return (0);
2650 	}
2651 
2652 	mintxg = TXG_INITIAL - 1;
2653 	maxtxg = spa_last_synced_txg(spa) + 1;
2654 
2655 	mutex_enter(&rvd->vdev_dtl_lock);
2656 
2657 	if (rvd->vdev_dtl_map.sm_space == 0) {
2658 		/*
2659 		 * The pool-wide DTL is empty.
2660 		 * If this is a resilver, there's nothing to do except
2661 		 * check whether any in-progress replacements have completed.
2662 		 */
2663 		if (type == POOL_SCRUB_RESILVER) {
2664 			type = POOL_SCRUB_NONE;
2665 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
2666 		}
2667 	} else {
2668 		/*
2669 		 * The pool-wide DTL is non-empty.
2670 		 * If this is a normal scrub, upgrade to a resilver instead.
2671 		 */
2672 		if (type == POOL_SCRUB_EVERYTHING)
2673 			type = POOL_SCRUB_RESILVER;
2674 	}
2675 
2676 	if (type == POOL_SCRUB_RESILVER) {
2677 		/*
2678 		 * Determine the resilvering boundaries.
2679 		 *
2680 		 * Note: (mintxg, maxtxg) is an open interval,
2681 		 * i.e. mintxg and maxtxg themselves are not included.
2682 		 *
2683 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
2684 		 * so we don't claim to resilver a txg that's still changing.
2685 		 */
2686 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
2687 		mintxg = ss->ss_start - 1;
2688 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
2689 		maxtxg = MIN(ss->ss_end, maxtxg);
2690 
2691 		spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_START);
2692 	}
2693 
2694 	mutex_exit(&rvd->vdev_dtl_lock);
2695 
2696 	spa->spa_scrub_stop = 0;
2697 	spa->spa_scrub_type = type;
2698 	spa->spa_scrub_restart_txg = 0;
2699 
2700 	if (type != POOL_SCRUB_NONE) {
2701 		spa->spa_scrub_mintxg = mintxg;
2702 		spa->spa_scrub_maxtxg = maxtxg;
2703 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
2704 		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
2705 		    ZIO_FLAG_CANFAIL);
2706 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
2707 		spa->spa_scrub_thread = thread_create(NULL, 0,
2708 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
2709 	}
2710 
2711 	mutex_exit(&spa->spa_scrub_lock);
2712 
2713 	return (0);
2714 }
2715 
2716 /*
2717  * ==========================================================================
2718  * SPA async task processing
2719  * ==========================================================================
2720  */
2721 
2722 static void
2723 spa_async_remove(spa_t *spa, vdev_t *vd)
2724 {
2725 	vdev_t *tvd;
2726 	int c;
2727 
2728 	for (c = 0; c < vd->vdev_children; c++) {
2729 		tvd = vd->vdev_child[c];
2730 		if (tvd->vdev_remove_wanted) {
2731 			tvd->vdev_remove_wanted = 0;
2732 			vdev_set_state(tvd, B_FALSE, VDEV_STATE_REMOVED,
2733 			    VDEV_AUX_NONE);
2734 			vdev_clear(spa, tvd);
2735 			vdev_config_dirty(tvd->vdev_top);
2736 		}
2737 		spa_async_remove(spa, tvd);
2738 	}
2739 }
2740 
2741 static void
2742 spa_async_thread(spa_t *spa)
2743 {
2744 	int tasks;
2745 	uint64_t txg;
2746 
2747 	ASSERT(spa->spa_sync_on);
2748 
2749 	mutex_enter(&spa->spa_async_lock);
2750 	tasks = spa->spa_async_tasks;
2751 	spa->spa_async_tasks = 0;
2752 	mutex_exit(&spa->spa_async_lock);
2753 
2754 	/*
2755 	 * See if the config needs to be updated.
2756 	 */
2757 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
2758 		mutex_enter(&spa_namespace_lock);
2759 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2760 		mutex_exit(&spa_namespace_lock);
2761 	}
2762 
2763 	/*
2764 	 * See if any devices need to be marked REMOVED.
2765 	 */
2766 	if (tasks & SPA_ASYNC_REMOVE) {
2767 		txg = spa_vdev_enter(spa);
2768 		spa_async_remove(spa, spa->spa_root_vdev);
2769 		(void) spa_vdev_exit(spa, NULL, txg, 0);
2770 	}
2771 
2772 	/*
2773 	 * If any devices are done replacing, detach them.
2774 	 */
2775 	if (tasks & SPA_ASYNC_RESILVER_DONE)
2776 		spa_vdev_resilver_done(spa);
2777 
2778 	/*
2779 	 * Kick off a scrub.  When starting a RESILVER scrub (or an EVERYTHING
2780 	 * scrub which can become a resilver), we need to hold
2781 	 * spa_namespace_lock() because the sysevent we post via
2782 	 * spa_event_notify() needs to get the name of the pool.
2783 	 */
2784 	if (tasks & SPA_ASYNC_SCRUB) {
2785 		mutex_enter(&spa_namespace_lock);
2786 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
2787 		mutex_exit(&spa_namespace_lock);
2788 	}
2789 
2790 	/*
2791 	 * Kick off a resilver.
2792 	 */
2793 	if (tasks & SPA_ASYNC_RESILVER) {
2794 		mutex_enter(&spa_namespace_lock);
2795 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
2796 		mutex_exit(&spa_namespace_lock);
2797 	}
2798 
2799 	/*
2800 	 * Let the world know that we're done.
2801 	 */
2802 	mutex_enter(&spa->spa_async_lock);
2803 	spa->spa_async_thread = NULL;
2804 	cv_broadcast(&spa->spa_async_cv);
2805 	mutex_exit(&spa->spa_async_lock);
2806 	thread_exit();
2807 }
2808 
2809 void
2810 spa_async_suspend(spa_t *spa)
2811 {
2812 	mutex_enter(&spa->spa_async_lock);
2813 	spa->spa_async_suspended++;
2814 	while (spa->spa_async_thread != NULL)
2815 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
2816 	mutex_exit(&spa->spa_async_lock);
2817 }
2818 
2819 void
2820 spa_async_resume(spa_t *spa)
2821 {
2822 	mutex_enter(&spa->spa_async_lock);
2823 	ASSERT(spa->spa_async_suspended != 0);
2824 	spa->spa_async_suspended--;
2825 	mutex_exit(&spa->spa_async_lock);
2826 }
2827 
2828 static void
2829 spa_async_dispatch(spa_t *spa)
2830 {
2831 	mutex_enter(&spa->spa_async_lock);
2832 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
2833 	    spa->spa_async_thread == NULL &&
2834 	    rootdir != NULL && !vn_is_readonly(rootdir))
2835 		spa->spa_async_thread = thread_create(NULL, 0,
2836 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
2837 	mutex_exit(&spa->spa_async_lock);
2838 }
2839 
2840 void
2841 spa_async_request(spa_t *spa, int task)
2842 {
2843 	mutex_enter(&spa->spa_async_lock);
2844 	spa->spa_async_tasks |= task;
2845 	mutex_exit(&spa->spa_async_lock);
2846 }
2847 
2848 /*
2849  * ==========================================================================
2850  * SPA syncing routines
2851  * ==========================================================================
2852  */
2853 
2854 static void
2855 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
2856 {
2857 	bplist_t *bpl = &spa->spa_sync_bplist;
2858 	dmu_tx_t *tx;
2859 	blkptr_t blk;
2860 	uint64_t itor = 0;
2861 	zio_t *zio;
2862 	int error;
2863 	uint8_t c = 1;
2864 
2865 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
2866 
2867 	while (bplist_iterate(bpl, &itor, &blk) == 0)
2868 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
2869 
2870 	error = zio_wait(zio);
2871 	ASSERT3U(error, ==, 0);
2872 
2873 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2874 	bplist_vacate(bpl, tx);
2875 
2876 	/*
2877 	 * Pre-dirty the first block so we sync to convergence faster.
2878 	 * (Usually only the first block is needed.)
2879 	 */
2880 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
2881 	dmu_tx_commit(tx);
2882 }
2883 
2884 static void
2885 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
2886 {
2887 	char *packed = NULL;
2888 	size_t nvsize = 0;
2889 	dmu_buf_t *db;
2890 
2891 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
2892 
2893 	packed = kmem_alloc(nvsize, KM_SLEEP);
2894 
2895 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
2896 	    KM_SLEEP) == 0);
2897 
2898 	dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
2899 
2900 	kmem_free(packed, nvsize);
2901 
2902 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
2903 	dmu_buf_will_dirty(db, tx);
2904 	*(uint64_t *)db->db_data = nvsize;
2905 	dmu_buf_rele(db, FTAG);
2906 }
2907 
2908 static void
2909 spa_sync_spares(spa_t *spa, dmu_tx_t *tx)
2910 {
2911 	nvlist_t *nvroot;
2912 	nvlist_t **spares;
2913 	int i;
2914 
2915 	if (!spa->spa_sync_spares)
2916 		return;
2917 
2918 	/*
2919 	 * Update the MOS nvlist describing the list of available spares.
2920 	 * spa_validate_spares() will have already made sure this nvlist is
2921 	 * valid and the vdevs are labeled appropriately.
2922 	 */
2923 	if (spa->spa_spares_object == 0) {
2924 		spa->spa_spares_object = dmu_object_alloc(spa->spa_meta_objset,
2925 		    DMU_OT_PACKED_NVLIST, 1 << 14,
2926 		    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2927 		VERIFY(zap_update(spa->spa_meta_objset,
2928 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES,
2929 		    sizeof (uint64_t), 1, &spa->spa_spares_object, tx) == 0);
2930 	}
2931 
2932 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2933 	if (spa->spa_nspares == 0) {
2934 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2935 		    NULL, 0) == 0);
2936 	} else {
2937 		spares = kmem_alloc(spa->spa_nspares * sizeof (void *),
2938 		    KM_SLEEP);
2939 		for (i = 0; i < spa->spa_nspares; i++)
2940 			spares[i] = vdev_config_generate(spa,
2941 			    spa->spa_spares[i], B_FALSE, B_TRUE);
2942 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2943 		    spares, spa->spa_nspares) == 0);
2944 		for (i = 0; i < spa->spa_nspares; i++)
2945 			nvlist_free(spares[i]);
2946 		kmem_free(spares, spa->spa_nspares * sizeof (void *));
2947 	}
2948 
2949 	spa_sync_nvlist(spa, spa->spa_spares_object, nvroot, tx);
2950 	nvlist_free(nvroot);
2951 
2952 	spa->spa_sync_spares = B_FALSE;
2953 }
2954 
2955 static void
2956 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
2957 {
2958 	nvlist_t *config;
2959 
2960 	if (list_is_empty(&spa->spa_dirty_list))
2961 		return;
2962 
2963 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
2964 
2965 	if (spa->spa_config_syncing)
2966 		nvlist_free(spa->spa_config_syncing);
2967 	spa->spa_config_syncing = config;
2968 
2969 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
2970 }
2971 
2972 static void
2973 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
2974 {
2975 	spa_t *spa = arg1;
2976 	nvlist_t *nvp = arg2;
2977 	nvpair_t *nvpair;
2978 	objset_t *mos = spa->spa_meta_objset;
2979 	uint64_t zapobj;
2980 	uint64_t intval;
2981 
2982 	mutex_enter(&spa->spa_props_lock);
2983 	if (spa->spa_pool_props_object == 0) {
2984 		zapobj = zap_create(mos, DMU_OT_POOL_PROPS, DMU_OT_NONE, 0, tx);
2985 		VERIFY(zapobj > 0);
2986 
2987 		spa->spa_pool_props_object = zapobj;
2988 
2989 		VERIFY(zap_update(mos, DMU_POOL_DIRECTORY_OBJECT,
2990 		    DMU_POOL_PROPS, 8, 1,
2991 		    &spa->spa_pool_props_object, tx) == 0);
2992 	}
2993 	mutex_exit(&spa->spa_props_lock);
2994 
2995 	nvpair = NULL;
2996 	while ((nvpair = nvlist_next_nvpair(nvp, nvpair))) {
2997 		switch (zpool_name_to_prop(nvpair_name(nvpair))) {
2998 		case ZPOOL_PROP_DELEGATION:
2999 			VERIFY(nvlist_lookup_uint64(nvp,
3000 			    nvpair_name(nvpair), &intval) == 0);
3001 			VERIFY(zap_update(mos,
3002 			    spa->spa_pool_props_object,
3003 			    nvpair_name(nvpair), 8, 1,
3004 			    &intval, tx) == 0);
3005 			spa->spa_delegation = intval;
3006 			break;
3007 		case ZPOOL_PROP_BOOTFS:
3008 			VERIFY(nvlist_lookup_uint64(nvp,
3009 			    nvpair_name(nvpair), &spa->spa_bootfs) == 0);
3010 			intval = spa->spa_bootfs;
3011 			VERIFY(zap_update(mos,
3012 			    spa->spa_pool_props_object,
3013 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), 8, 1,
3014 			    &intval, tx) == 0);
3015 			break;
3016 
3017 		case ZPOOL_PROP_AUTOREPLACE:
3018 			VERIFY(nvlist_lookup_uint64(nvp,
3019 			    nvpair_name(nvpair), &intval) == 0);
3020 			VERIFY(zap_update(mos,
3021 			    spa->spa_pool_props_object,
3022 			    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 8, 1,
3023 			    &intval, tx) == 0);
3024 			break;
3025 		}
3026 		spa_history_internal_log(LOG_POOL_PROPSET,
3027 		    spa, tx, cr, "%s %lld %s",
3028 		    nvpair_name(nvpair), intval,
3029 		    spa->spa_name);
3030 	}
3031 }
3032 
3033 /*
3034  * Sync the specified transaction group.  New blocks may be dirtied as
3035  * part of the process, so we iterate until it converges.
3036  */
3037 void
3038 spa_sync(spa_t *spa, uint64_t txg)
3039 {
3040 	dsl_pool_t *dp = spa->spa_dsl_pool;
3041 	objset_t *mos = spa->spa_meta_objset;
3042 	bplist_t *bpl = &spa->spa_sync_bplist;
3043 	vdev_t *rvd = spa->spa_root_vdev;
3044 	vdev_t *vd;
3045 	dmu_tx_t *tx;
3046 	int dirty_vdevs;
3047 
3048 	/*
3049 	 * Lock out configuration changes.
3050 	 */
3051 	spa_config_enter(spa, RW_READER, FTAG);
3052 
3053 	spa->spa_syncing_txg = txg;
3054 	spa->spa_sync_pass = 0;
3055 
3056 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
3057 
3058 	tx = dmu_tx_create_assigned(dp, txg);
3059 
3060 	/*
3061 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
3062 	 * set spa_deflate if we have no raid-z vdevs.
3063 	 */
3064 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
3065 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
3066 		int i;
3067 
3068 		for (i = 0; i < rvd->vdev_children; i++) {
3069 			vd = rvd->vdev_child[i];
3070 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
3071 				break;
3072 		}
3073 		if (i == rvd->vdev_children) {
3074 			spa->spa_deflate = TRUE;
3075 			VERIFY(0 == zap_add(spa->spa_meta_objset,
3076 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3077 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
3078 		}
3079 	}
3080 
3081 	/*
3082 	 * If anything has changed in this txg, push the deferred frees
3083 	 * from the previous txg.  If not, leave them alone so that we
3084 	 * don't generate work on an otherwise idle system.
3085 	 */
3086 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
3087 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
3088 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
3089 		spa_sync_deferred_frees(spa, txg);
3090 
3091 	/*
3092 	 * Iterate to convergence.
3093 	 */
3094 	do {
3095 		spa->spa_sync_pass++;
3096 
3097 		spa_sync_config_object(spa, tx);
3098 		spa_sync_spares(spa, tx);
3099 		spa_errlog_sync(spa, txg);
3100 		dsl_pool_sync(dp, txg);
3101 
3102 		dirty_vdevs = 0;
3103 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
3104 			vdev_sync(vd, txg);
3105 			dirty_vdevs++;
3106 		}
3107 
3108 		bplist_sync(bpl, tx);
3109 	} while (dirty_vdevs);
3110 
3111 	bplist_close(bpl);
3112 
3113 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
3114 
3115 	/*
3116 	 * Rewrite the vdev configuration (which includes the uberblock)
3117 	 * to commit the transaction group.
3118 	 *
3119 	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
3120 	 * Otherwise, pick a random top-level vdev that's known to be
3121 	 * visible in the config cache (see spa_vdev_add() for details).
3122 	 * If the write fails, try the next vdev until we're tried them all.
3123 	 */
3124 	if (!list_is_empty(&spa->spa_dirty_list)) {
3125 		VERIFY(vdev_config_sync(rvd, txg) == 0);
3126 	} else {
3127 		int children = rvd->vdev_children;
3128 		int c0 = spa_get_random(children);
3129 		int c;
3130 
3131 		for (c = 0; c < children; c++) {
3132 			vd = rvd->vdev_child[(c0 + c) % children];
3133 			if (vd->vdev_ms_array == 0)
3134 				continue;
3135 			if (vdev_config_sync(vd, txg) == 0)
3136 				break;
3137 		}
3138 		if (c == children)
3139 			VERIFY(vdev_config_sync(rvd, txg) == 0);
3140 	}
3141 
3142 	dmu_tx_commit(tx);
3143 
3144 	/*
3145 	 * Clear the dirty config list.
3146 	 */
3147 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
3148 		vdev_config_clean(vd);
3149 
3150 	/*
3151 	 * Now that the new config has synced transactionally,
3152 	 * let it become visible to the config cache.
3153 	 */
3154 	if (spa->spa_config_syncing != NULL) {
3155 		spa_config_set(spa, spa->spa_config_syncing);
3156 		spa->spa_config_txg = txg;
3157 		spa->spa_config_syncing = NULL;
3158 	}
3159 
3160 	/*
3161 	 * Make a stable copy of the fully synced uberblock.
3162 	 * We use this as the root for pool traversals.
3163 	 */
3164 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
3165 
3166 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
3167 
3168 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
3169 	spa->spa_traverse_wanted = 0;
3170 	spa->spa_ubsync = spa->spa_uberblock;
3171 	rw_exit(&spa->spa_traverse_lock);
3172 
3173 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
3174 
3175 	/*
3176 	 * Clean up the ZIL records for the synced txg.
3177 	 */
3178 	dsl_pool_zil_clean(dp);
3179 
3180 	/*
3181 	 * Update usable space statistics.
3182 	 */
3183 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
3184 		vdev_sync_done(vd, txg);
3185 
3186 	/*
3187 	 * It had better be the case that we didn't dirty anything
3188 	 * since vdev_config_sync().
3189 	 */
3190 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
3191 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
3192 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
3193 	ASSERT(bpl->bpl_queue == NULL);
3194 
3195 	spa_config_exit(spa, FTAG);
3196 
3197 	/*
3198 	 * If any async tasks have been requested, kick them off.
3199 	 */
3200 	spa_async_dispatch(spa);
3201 }
3202 
3203 /*
3204  * Sync all pools.  We don't want to hold the namespace lock across these
3205  * operations, so we take a reference on the spa_t and drop the lock during the
3206  * sync.
3207  */
3208 void
3209 spa_sync_allpools(void)
3210 {
3211 	spa_t *spa = NULL;
3212 	mutex_enter(&spa_namespace_lock);
3213 	while ((spa = spa_next(spa)) != NULL) {
3214 		if (spa_state(spa) != POOL_STATE_ACTIVE)
3215 			continue;
3216 		spa_open_ref(spa, FTAG);
3217 		mutex_exit(&spa_namespace_lock);
3218 		txg_wait_synced(spa_get_dsl(spa), 0);
3219 		mutex_enter(&spa_namespace_lock);
3220 		spa_close(spa, FTAG);
3221 	}
3222 	mutex_exit(&spa_namespace_lock);
3223 }
3224 
3225 /*
3226  * ==========================================================================
3227  * Miscellaneous routines
3228  * ==========================================================================
3229  */
3230 
3231 /*
3232  * Remove all pools in the system.
3233  */
3234 void
3235 spa_evict_all(void)
3236 {
3237 	spa_t *spa;
3238 
3239 	/*
3240 	 * Remove all cached state.  All pools should be closed now,
3241 	 * so every spa in the AVL tree should be unreferenced.
3242 	 */
3243 	mutex_enter(&spa_namespace_lock);
3244 	while ((spa = spa_next(NULL)) != NULL) {
3245 		/*
3246 		 * Stop async tasks.  The async thread may need to detach
3247 		 * a device that's been replaced, which requires grabbing
3248 		 * spa_namespace_lock, so we must drop it here.
3249 		 */
3250 		spa_open_ref(spa, FTAG);
3251 		mutex_exit(&spa_namespace_lock);
3252 		spa_async_suspend(spa);
3253 		mutex_enter(&spa_namespace_lock);
3254 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
3255 		spa_close(spa, FTAG);
3256 
3257 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3258 			spa_unload(spa);
3259 			spa_deactivate(spa);
3260 		}
3261 		spa_remove(spa);
3262 	}
3263 	mutex_exit(&spa_namespace_lock);
3264 }
3265 
3266 vdev_t *
3267 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
3268 {
3269 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
3270 }
3271 
3272 void
3273 spa_upgrade(spa_t *spa)
3274 {
3275 	spa_config_enter(spa, RW_WRITER, FTAG);
3276 
3277 	/*
3278 	 * This should only be called for a non-faulted pool, and since a
3279 	 * future version would result in an unopenable pool, this shouldn't be
3280 	 * possible.
3281 	 */
3282 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
3283 
3284 	spa->spa_uberblock.ub_version = SPA_VERSION;
3285 	vdev_config_dirty(spa->spa_root_vdev);
3286 
3287 	spa_config_exit(spa, FTAG);
3288 
3289 	txg_wait_synced(spa_get_dsl(spa), 0);
3290 }
3291 
3292 boolean_t
3293 spa_has_spare(spa_t *spa, uint64_t guid)
3294 {
3295 	int i;
3296 	uint64_t spareguid;
3297 
3298 	for (i = 0; i < spa->spa_nspares; i++)
3299 		if (spa->spa_spares[i]->vdev_guid == guid)
3300 			return (B_TRUE);
3301 
3302 	for (i = 0; i < spa->spa_pending_nspares; i++) {
3303 		if (nvlist_lookup_uint64(spa->spa_pending_spares[i],
3304 		    ZPOOL_CONFIG_GUID, &spareguid) == 0 &&
3305 		    spareguid == guid)
3306 			return (B_TRUE);
3307 	}
3308 
3309 	return (B_FALSE);
3310 }
3311 
3312 int
3313 spa_set_props(spa_t *spa, nvlist_t *nvp)
3314 {
3315 	return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
3316 	    spa, nvp, 3));
3317 }
3318 
3319 int
3320 spa_get_props(spa_t *spa, nvlist_t **nvp)
3321 {
3322 	zap_cursor_t zc;
3323 	zap_attribute_t za;
3324 	objset_t *mos = spa->spa_meta_objset;
3325 	zfs_source_t src;
3326 	zpool_prop_t prop;
3327 	nvlist_t *propval;
3328 	uint64_t value;
3329 	int err;
3330 
3331 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3332 
3333 	mutex_enter(&spa->spa_props_lock);
3334 	/* If no props object, then just return empty nvlist */
3335 	if (spa->spa_pool_props_object == 0) {
3336 		mutex_exit(&spa->spa_props_lock);
3337 		return (0);
3338 	}
3339 
3340 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
3341 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
3342 	    zap_cursor_advance(&zc)) {
3343 
3344 		if ((prop = zpool_name_to_prop(za.za_name)) == ZFS_PROP_INVAL)
3345 			continue;
3346 
3347 		VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3348 		switch (za.za_integer_length) {
3349 		case 8:
3350 			if (zpool_prop_default_numeric(prop) ==
3351 			    za.za_first_integer)
3352 				src = ZFS_SRC_DEFAULT;
3353 			else
3354 				src = ZFS_SRC_LOCAL;
3355 			value = za.za_first_integer;
3356 
3357 			if (prop == ZPOOL_PROP_BOOTFS) {
3358 				dsl_pool_t *dp;
3359 				dsl_dataset_t *ds = NULL;
3360 				char strval[MAXPATHLEN];
3361 
3362 				dp = spa_get_dsl(spa);
3363 				rw_enter(&dp->dp_config_rwlock, RW_READER);
3364 				if ((err = dsl_dataset_open_obj(dp,
3365 				    za.za_first_integer, NULL, DS_MODE_NONE,
3366 				    FTAG, &ds)) != 0) {
3367 					rw_exit(&dp->dp_config_rwlock);
3368 					break;
3369 				}
3370 				dsl_dataset_name(ds, strval);
3371 				dsl_dataset_close(ds, DS_MODE_NONE, FTAG);
3372 				rw_exit(&dp->dp_config_rwlock);
3373 
3374 				VERIFY(nvlist_add_uint64(propval,
3375 				    ZFS_PROP_SOURCE, src) == 0);
3376 				VERIFY(nvlist_add_string(propval,
3377 				    ZFS_PROP_VALUE, strval) == 0);
3378 			} else {
3379 				VERIFY(nvlist_add_uint64(propval,
3380 				    ZFS_PROP_SOURCE, src) == 0);
3381 				VERIFY(nvlist_add_uint64(propval,
3382 				    ZFS_PROP_VALUE, value) == 0);
3383 			}
3384 			VERIFY(nvlist_add_nvlist(*nvp, za.za_name,
3385 			    propval) == 0);
3386 			break;
3387 		}
3388 		nvlist_free(propval);
3389 	}
3390 	zap_cursor_fini(&zc);
3391 	mutex_exit(&spa->spa_props_lock);
3392 	if (err && err != ENOENT) {
3393 		nvlist_free(*nvp);
3394 		return (err);
3395 	}
3396 
3397 	return (0);
3398 }
3399 
3400 /*
3401  * If the bootfs property value is dsobj, clear it.
3402  */
3403 void
3404 spa_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
3405 {
3406 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
3407 		VERIFY(zap_remove(spa->spa_meta_objset,
3408 		    spa->spa_pool_props_object,
3409 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
3410 		spa->spa_bootfs = 0;
3411 	}
3412 }
3413 
3414 /*
3415  * Post a sysevent corresponding to the given event.  The 'name' must be one of
3416  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
3417  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
3418  * in the userland libzpool, as we don't want consumers to misinterpret ztest
3419  * or zdb as real changes.
3420  */
3421 void
3422 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
3423 {
3424 #ifdef _KERNEL
3425 	sysevent_t		*ev;
3426 	sysevent_attr_list_t	*attr = NULL;
3427 	sysevent_value_t	value;
3428 	sysevent_id_t		eid;
3429 
3430 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
3431 	    SE_SLEEP);
3432 
3433 	value.value_type = SE_DATA_TYPE_STRING;
3434 	value.value.sv_string = spa_name(spa);
3435 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
3436 		goto done;
3437 
3438 	value.value_type = SE_DATA_TYPE_UINT64;
3439 	value.value.sv_uint64 = spa_guid(spa);
3440 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
3441 		goto done;
3442 
3443 	if (vd) {
3444 		value.value_type = SE_DATA_TYPE_UINT64;
3445 		value.value.sv_uint64 = vd->vdev_guid;
3446 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
3447 		    SE_SLEEP) != 0)
3448 			goto done;
3449 
3450 		if (vd->vdev_path) {
3451 			value.value_type = SE_DATA_TYPE_STRING;
3452 			value.value.sv_string = vd->vdev_path;
3453 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
3454 			    &value, SE_SLEEP) != 0)
3455 				goto done;
3456 		}
3457 	}
3458 
3459 	(void) log_sysevent(ev, SE_SLEEP, &eid);
3460 
3461 done:
3462 	if (attr)
3463 		sysevent_free_attr(attr);
3464 	sysevent_free(ev);
3465 #endif
3466 }
3467