xref: /titanic_44/usr/src/uts/common/fs/zfs/spa.c (revision b6131d8fb9d81bf7aaa169dfc3f2f24f68825b18)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains all the routines used when modifying on-disk SPA state.
31  * This includes opening, importing, destroying, exporting a pool, and syncing a
32  * pool.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zio.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/zio_compress.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/callb.h>
60 #include <sys/systeminfo.h>
61 #include <sys/sunddi.h>
62 
63 #include "zfs_prop.h"
64 
65 int zio_taskq_threads = 8;
66 
67 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
68 
69 /*
70  * ==========================================================================
71  * SPA properties routines
72  * ==========================================================================
73  */
74 
75 /*
76  * Add a (source=src, propname=propval) list to an nvlist.
77  */
78 static int
79 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
80     uint64_t intval, zprop_source_t src)
81 {
82 	const char *propname = zpool_prop_to_name(prop);
83 	nvlist_t *propval;
84 	int err = 0;
85 
86 	if (err = nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP))
87 		return (err);
88 
89 	if (err = nvlist_add_uint64(propval, ZPROP_SOURCE, src))
90 		goto out;
91 
92 	if (strval != NULL) {
93 		if (err = nvlist_add_string(propval, ZPROP_VALUE, strval))
94 			goto out;
95 	} else {
96 		if (err = nvlist_add_uint64(propval, ZPROP_VALUE, intval))
97 			goto out;
98 	}
99 
100 	err = nvlist_add_nvlist(nvl, propname, propval);
101 out:
102 	nvlist_free(propval);
103 	return (err);
104 }
105 
106 /*
107  * Get property values from the spa configuration.
108  */
109 static int
110 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
111 {
112 	uint64_t size = spa_get_space(spa);
113 	uint64_t used = spa_get_alloc(spa);
114 	uint64_t cap, version;
115 	zprop_source_t src = ZPROP_SRC_NONE;
116 	int err;
117 
118 	/*
119 	 * readonly properties
120 	 */
121 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa->spa_name,
122 	    0, src))
123 		return (err);
124 
125 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src))
126 		return (err);
127 
128 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src))
129 		return (err);
130 
131 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL,
132 	    size - used, src))
133 		return (err);
134 
135 	cap = (size == 0) ? 0 : (used * 100 / size);
136 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src))
137 		return (err);
138 
139 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL,
140 	    spa_guid(spa), src))
141 		return (err);
142 
143 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
144 	    spa->spa_root_vdev->vdev_state, src))
145 		return (err);
146 
147 	/*
148 	 * settable properties that are not stored in the pool property object.
149 	 */
150 	version = spa_version(spa);
151 	if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
152 		src = ZPROP_SRC_DEFAULT;
153 	else
154 		src = ZPROP_SRC_LOCAL;
155 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
156 	    version, src))
157 		return (err);
158 
159 	if (spa->spa_root != NULL) {
160 		src = ZPROP_SRC_LOCAL;
161 		if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT,
162 		    spa->spa_root, 0, src))
163 			return (err);
164 	}
165 
166 	if (spa->spa_temporary ==
167 	    zpool_prop_default_numeric(ZPOOL_PROP_TEMPORARY))
168 		src = ZPROP_SRC_DEFAULT;
169 	else
170 		src = ZPROP_SRC_LOCAL;
171 	if (err = spa_prop_add_list(*nvp, ZPOOL_PROP_TEMPORARY, NULL,
172 	    spa->spa_temporary, src))
173 		return (err);
174 
175 	return (0);
176 }
177 
178 /*
179  * Get zpool property values.
180  */
181 int
182 spa_prop_get(spa_t *spa, nvlist_t **nvp)
183 {
184 	zap_cursor_t zc;
185 	zap_attribute_t za;
186 	objset_t *mos = spa->spa_meta_objset;
187 	int err;
188 
189 	if (err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP))
190 		return (err);
191 
192 	/*
193 	 * Get properties from the spa config.
194 	 */
195 	if (err = spa_prop_get_config(spa, nvp))
196 		goto out;
197 
198 	mutex_enter(&spa->spa_props_lock);
199 	/* If no pool property object, no more prop to get. */
200 	if (spa->spa_pool_props_object == 0) {
201 		mutex_exit(&spa->spa_props_lock);
202 		return (0);
203 	}
204 
205 	/*
206 	 * Get properties from the MOS pool property object.
207 	 */
208 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
209 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
210 	    zap_cursor_advance(&zc)) {
211 		uint64_t intval = 0;
212 		char *strval = NULL;
213 		zprop_source_t src = ZPROP_SRC_DEFAULT;
214 		zpool_prop_t prop;
215 
216 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
217 			continue;
218 
219 		switch (za.za_integer_length) {
220 		case 8:
221 			/* integer property */
222 			if (za.za_first_integer !=
223 			    zpool_prop_default_numeric(prop))
224 				src = ZPROP_SRC_LOCAL;
225 
226 			if (prop == ZPOOL_PROP_BOOTFS) {
227 				dsl_pool_t *dp;
228 				dsl_dataset_t *ds = NULL;
229 
230 				dp = spa_get_dsl(spa);
231 				rw_enter(&dp->dp_config_rwlock, RW_READER);
232 				if (err = dsl_dataset_open_obj(dp,
233 				    za.za_first_integer, NULL, DS_MODE_NONE,
234 				    FTAG, &ds)) {
235 					rw_exit(&dp->dp_config_rwlock);
236 					break;
237 				}
238 
239 				strval = kmem_alloc(
240 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
241 				    KM_SLEEP);
242 				dsl_dataset_name(ds, strval);
243 				dsl_dataset_close(ds, DS_MODE_NONE, FTAG);
244 				rw_exit(&dp->dp_config_rwlock);
245 			} else {
246 				strval = NULL;
247 				intval = za.za_first_integer;
248 			}
249 
250 			err = spa_prop_add_list(*nvp, prop, strval,
251 			    intval, src);
252 
253 			if (strval != NULL)
254 				kmem_free(strval,
255 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
256 
257 			break;
258 
259 		case 1:
260 			/* string property */
261 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
262 			err = zap_lookup(mos, spa->spa_pool_props_object,
263 			    za.za_name, 1, za.za_num_integers, strval);
264 			if (err) {
265 				kmem_free(strval, za.za_num_integers);
266 				break;
267 			}
268 			err = spa_prop_add_list(*nvp, prop, strval, 0, src);
269 			kmem_free(strval, za.za_num_integers);
270 			break;
271 
272 		default:
273 			break;
274 		}
275 	}
276 	zap_cursor_fini(&zc);
277 	mutex_exit(&spa->spa_props_lock);
278 out:
279 	if (err && err != ENOENT) {
280 		nvlist_free(*nvp);
281 		return (err);
282 	}
283 
284 	return (0);
285 }
286 
287 /*
288  * Validate the given pool properties nvlist and modify the list
289  * for the property values to be set.
290  */
291 static int
292 spa_prop_validate(spa_t *spa, nvlist_t *props)
293 {
294 	nvpair_t *elem;
295 	int error = 0, reset_bootfs = 0;
296 	uint64_t objnum;
297 
298 	elem = NULL;
299 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
300 		zpool_prop_t prop;
301 		char *propname, *strval;
302 		uint64_t intval;
303 		vdev_t *rvdev;
304 		char *vdev_type;
305 		objset_t *os;
306 
307 		propname = nvpair_name(elem);
308 
309 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
310 			return (EINVAL);
311 
312 		switch (prop) {
313 		case ZPOOL_PROP_VERSION:
314 			error = nvpair_value_uint64(elem, &intval);
315 			if (!error &&
316 			    (intval < spa_version(spa) || intval > SPA_VERSION))
317 				error = EINVAL;
318 			break;
319 
320 		case ZPOOL_PROP_DELEGATION:
321 		case ZPOOL_PROP_AUTOREPLACE:
322 			error = nvpair_value_uint64(elem, &intval);
323 			if (!error && intval > 1)
324 				error = EINVAL;
325 			break;
326 
327 		case ZPOOL_PROP_BOOTFS:
328 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
329 				error = ENOTSUP;
330 				break;
331 			}
332 
333 			/*
334 			 * A bootable filesystem can not be on a RAIDZ pool
335 			 * nor a striped pool with more than 1 device.
336 			 */
337 			rvdev = spa->spa_root_vdev;
338 			vdev_type =
339 			    rvdev->vdev_child[0]->vdev_ops->vdev_op_type;
340 			if (rvdev->vdev_children > 1 ||
341 			    strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
342 			    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
343 				error = ENOTSUP;
344 				break;
345 			}
346 
347 			reset_bootfs = 1;
348 
349 			error = nvpair_value_string(elem, &strval);
350 
351 			if (!error) {
352 				if (strval == NULL || strval[0] == '\0') {
353 					objnum = zpool_prop_default_numeric(
354 					    ZPOOL_PROP_BOOTFS);
355 					break;
356 				}
357 
358 				if (error = dmu_objset_open(strval, DMU_OST_ZFS,
359 				    DS_MODE_STANDARD | DS_MODE_READONLY, &os))
360 					break;
361 				objnum = dmu_objset_id(os);
362 				dmu_objset_close(os);
363 			}
364 			break;
365 		case ZPOOL_PROP_FAILUREMODE:
366 			error = nvpair_value_uint64(elem, &intval);
367 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
368 			    intval > ZIO_FAILURE_MODE_PANIC))
369 				error = EINVAL;
370 
371 			/*
372 			 * This is a special case which only occurs when
373 			 * the pool has completely failed. This allows
374 			 * the user to change the in-core failmode property
375 			 * without syncing it out to disk (I/Os might
376 			 * currently be blocked). We do this by returning
377 			 * EIO to the caller (spa_prop_set) to trick it
378 			 * into thinking we encountered a property validation
379 			 * error.
380 			 */
381 			if (!error && spa_state(spa) == POOL_STATE_IO_FAILURE) {
382 				spa->spa_failmode = intval;
383 				error = EIO;
384 			}
385 			break;
386 		}
387 
388 		if (error)
389 			break;
390 	}
391 
392 	if (!error && reset_bootfs) {
393 		error = nvlist_remove(props,
394 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
395 
396 		if (!error) {
397 			error = nvlist_add_uint64(props,
398 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
399 		}
400 	}
401 
402 	return (error);
403 }
404 
405 int
406 spa_prop_set(spa_t *spa, nvlist_t *nvp)
407 {
408 	int error;
409 
410 	if ((error = spa_prop_validate(spa, nvp)) != 0)
411 		return (error);
412 
413 	return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
414 	    spa, nvp, 3));
415 }
416 
417 /*
418  * If the bootfs property value is dsobj, clear it.
419  */
420 void
421 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
422 {
423 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
424 		VERIFY(zap_remove(spa->spa_meta_objset,
425 		    spa->spa_pool_props_object,
426 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
427 		spa->spa_bootfs = 0;
428 	}
429 }
430 
431 /*
432  * ==========================================================================
433  * SPA state manipulation (open/create/destroy/import/export)
434  * ==========================================================================
435  */
436 
437 static int
438 spa_error_entry_compare(const void *a, const void *b)
439 {
440 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
441 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
442 	int ret;
443 
444 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
445 	    sizeof (zbookmark_t));
446 
447 	if (ret < 0)
448 		return (-1);
449 	else if (ret > 0)
450 		return (1);
451 	else
452 		return (0);
453 }
454 
455 /*
456  * Utility function which retrieves copies of the current logs and
457  * re-initializes them in the process.
458  */
459 void
460 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
461 {
462 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
463 
464 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
465 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
466 
467 	avl_create(&spa->spa_errlist_scrub,
468 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
469 	    offsetof(spa_error_entry_t, se_avl));
470 	avl_create(&spa->spa_errlist_last,
471 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
472 	    offsetof(spa_error_entry_t, se_avl));
473 }
474 
475 /*
476  * Activate an uninitialized pool.
477  */
478 static void
479 spa_activate(spa_t *spa)
480 {
481 	int t;
482 
483 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
484 
485 	spa->spa_state = POOL_STATE_ACTIVE;
486 
487 	spa->spa_normal_class = metaslab_class_create();
488 	spa->spa_log_class = metaslab_class_create();
489 
490 	for (t = 0; t < ZIO_TYPES; t++) {
491 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
492 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
493 		    TASKQ_PREPOPULATE);
494 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
495 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
496 		    TASKQ_PREPOPULATE);
497 	}
498 
499 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
500 	    offsetof(vdev_t, vdev_dirty_node));
501 	list_create(&spa->spa_zio_list, sizeof (zio_t),
502 	    offsetof(zio_t, zio_link_node));
503 
504 	txg_list_create(&spa->spa_vdev_txg_list,
505 	    offsetof(struct vdev, vdev_txg_node));
506 
507 	avl_create(&spa->spa_errlist_scrub,
508 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
509 	    offsetof(spa_error_entry_t, se_avl));
510 	avl_create(&spa->spa_errlist_last,
511 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
512 	    offsetof(spa_error_entry_t, se_avl));
513 }
514 
515 /*
516  * Opposite of spa_activate().
517  */
518 static void
519 spa_deactivate(spa_t *spa)
520 {
521 	int t;
522 
523 	ASSERT(spa->spa_sync_on == B_FALSE);
524 	ASSERT(spa->spa_dsl_pool == NULL);
525 	ASSERT(spa->spa_root_vdev == NULL);
526 
527 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
528 
529 	txg_list_destroy(&spa->spa_vdev_txg_list);
530 
531 	list_destroy(&spa->spa_dirty_list);
532 	list_destroy(&spa->spa_zio_list);
533 
534 	for (t = 0; t < ZIO_TYPES; t++) {
535 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
536 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
537 		spa->spa_zio_issue_taskq[t] = NULL;
538 		spa->spa_zio_intr_taskq[t] = NULL;
539 	}
540 
541 	metaslab_class_destroy(spa->spa_normal_class);
542 	spa->spa_normal_class = NULL;
543 
544 	metaslab_class_destroy(spa->spa_log_class);
545 	spa->spa_log_class = NULL;
546 
547 	/*
548 	 * If this was part of an import or the open otherwise failed, we may
549 	 * still have errors left in the queues.  Empty them just in case.
550 	 */
551 	spa_errlog_drain(spa);
552 
553 	avl_destroy(&spa->spa_errlist_scrub);
554 	avl_destroy(&spa->spa_errlist_last);
555 
556 	spa->spa_state = POOL_STATE_UNINITIALIZED;
557 }
558 
559 /*
560  * Verify a pool configuration, and construct the vdev tree appropriately.  This
561  * will create all the necessary vdevs in the appropriate layout, with each vdev
562  * in the CLOSED state.  This will prep the pool before open/creation/import.
563  * All vdev validation is done by the vdev_alloc() routine.
564  */
565 static int
566 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
567     uint_t id, int atype)
568 {
569 	nvlist_t **child;
570 	uint_t c, children;
571 	int error;
572 
573 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
574 		return (error);
575 
576 	if ((*vdp)->vdev_ops->vdev_op_leaf)
577 		return (0);
578 
579 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
580 	    &child, &children) != 0) {
581 		vdev_free(*vdp);
582 		*vdp = NULL;
583 		return (EINVAL);
584 	}
585 
586 	for (c = 0; c < children; c++) {
587 		vdev_t *vd;
588 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
589 		    atype)) != 0) {
590 			vdev_free(*vdp);
591 			*vdp = NULL;
592 			return (error);
593 		}
594 	}
595 
596 	ASSERT(*vdp != NULL);
597 
598 	return (0);
599 }
600 
601 /*
602  * Opposite of spa_load().
603  */
604 static void
605 spa_unload(spa_t *spa)
606 {
607 	int i;
608 
609 	/*
610 	 * Stop async tasks.
611 	 */
612 	spa_async_suspend(spa);
613 
614 	/*
615 	 * Stop syncing.
616 	 */
617 	if (spa->spa_sync_on) {
618 		txg_sync_stop(spa->spa_dsl_pool);
619 		spa->spa_sync_on = B_FALSE;
620 	}
621 
622 	/*
623 	 * Wait for any outstanding prefetch I/O to complete.
624 	 */
625 	spa_config_enter(spa, RW_WRITER, FTAG);
626 	spa_config_exit(spa, FTAG);
627 
628 	/*
629 	 * Close the dsl pool.
630 	 */
631 	if (spa->spa_dsl_pool) {
632 		dsl_pool_close(spa->spa_dsl_pool);
633 		spa->spa_dsl_pool = NULL;
634 	}
635 
636 	/*
637 	 * Close all vdevs.
638 	 */
639 	if (spa->spa_root_vdev)
640 		vdev_free(spa->spa_root_vdev);
641 	ASSERT(spa->spa_root_vdev == NULL);
642 
643 	for (i = 0; i < spa->spa_nspares; i++)
644 		vdev_free(spa->spa_spares[i]);
645 	if (spa->spa_spares) {
646 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
647 		spa->spa_spares = NULL;
648 	}
649 	if (spa->spa_sparelist) {
650 		nvlist_free(spa->spa_sparelist);
651 		spa->spa_sparelist = NULL;
652 	}
653 
654 	spa->spa_async_suspended = 0;
655 }
656 
657 /*
658  * Load (or re-load) the current list of vdevs describing the active spares for
659  * this pool.  When this is called, we have some form of basic information in
660  * 'spa_sparelist'.  We parse this into vdevs, try to open them, and then
661  * re-generate a more complete list including status information.
662  */
663 static void
664 spa_load_spares(spa_t *spa)
665 {
666 	nvlist_t **spares;
667 	uint_t nspares;
668 	int i;
669 	vdev_t *vd, *tvd;
670 
671 	/*
672 	 * First, close and free any existing spare vdevs.
673 	 */
674 	for (i = 0; i < spa->spa_nspares; i++) {
675 		vd = spa->spa_spares[i];
676 
677 		/* Undo the call to spa_activate() below */
678 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL &&
679 		    tvd->vdev_isspare)
680 			spa_spare_remove(tvd);
681 		vdev_close(vd);
682 		vdev_free(vd);
683 	}
684 
685 	if (spa->spa_spares)
686 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
687 
688 	if (spa->spa_sparelist == NULL)
689 		nspares = 0;
690 	else
691 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
692 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
693 
694 	spa->spa_nspares = (int)nspares;
695 	spa->spa_spares = NULL;
696 
697 	if (nspares == 0)
698 		return;
699 
700 	/*
701 	 * Construct the array of vdevs, opening them to get status in the
702 	 * process.   For each spare, there is potentially two different vdev_t
703 	 * structures associated with it: one in the list of spares (used only
704 	 * for basic validation purposes) and one in the active vdev
705 	 * configuration (if it's spared in).  During this phase we open and
706 	 * validate each vdev on the spare list.  If the vdev also exists in the
707 	 * active configuration, then we also mark this vdev as an active spare.
708 	 */
709 	spa->spa_spares = kmem_alloc(nspares * sizeof (void *), KM_SLEEP);
710 	for (i = 0; i < spa->spa_nspares; i++) {
711 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
712 		    VDEV_ALLOC_SPARE) == 0);
713 		ASSERT(vd != NULL);
714 
715 		spa->spa_spares[i] = vd;
716 
717 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL) {
718 			if (!tvd->vdev_isspare)
719 				spa_spare_add(tvd);
720 
721 			/*
722 			 * We only mark the spare active if we were successfully
723 			 * able to load the vdev.  Otherwise, importing a pool
724 			 * with a bad active spare would result in strange
725 			 * behavior, because multiple pool would think the spare
726 			 * is actively in use.
727 			 *
728 			 * There is a vulnerability here to an equally bizarre
729 			 * circumstance, where a dead active spare is later
730 			 * brought back to life (onlined or otherwise).  Given
731 			 * the rarity of this scenario, and the extra complexity
732 			 * it adds, we ignore the possibility.
733 			 */
734 			if (!vdev_is_dead(tvd))
735 				spa_spare_activate(tvd);
736 		}
737 
738 		if (vdev_open(vd) != 0)
739 			continue;
740 
741 		vd->vdev_top = vd;
742 		(void) vdev_validate_spare(vd);
743 	}
744 
745 	/*
746 	 * Recompute the stashed list of spares, with status information
747 	 * this time.
748 	 */
749 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
750 	    DATA_TYPE_NVLIST_ARRAY) == 0);
751 
752 	spares = kmem_alloc(spa->spa_nspares * sizeof (void *), KM_SLEEP);
753 	for (i = 0; i < spa->spa_nspares; i++)
754 		spares[i] = vdev_config_generate(spa, spa->spa_spares[i],
755 		    B_TRUE, B_TRUE);
756 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
757 	    spares, spa->spa_nspares) == 0);
758 	for (i = 0; i < spa->spa_nspares; i++)
759 		nvlist_free(spares[i]);
760 	kmem_free(spares, spa->spa_nspares * sizeof (void *));
761 }
762 
763 static int
764 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
765 {
766 	dmu_buf_t *db;
767 	char *packed = NULL;
768 	size_t nvsize = 0;
769 	int error;
770 	*value = NULL;
771 
772 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
773 	nvsize = *(uint64_t *)db->db_data;
774 	dmu_buf_rele(db, FTAG);
775 
776 	packed = kmem_alloc(nvsize, KM_SLEEP);
777 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
778 	if (error == 0)
779 		error = nvlist_unpack(packed, nvsize, value, 0);
780 	kmem_free(packed, nvsize);
781 
782 	return (error);
783 }
784 
785 /*
786  * Checks to see if the given vdev could not be opened, in which case we post a
787  * sysevent to notify the autoreplace code that the device has been removed.
788  */
789 static void
790 spa_check_removed(vdev_t *vd)
791 {
792 	int c;
793 
794 	for (c = 0; c < vd->vdev_children; c++)
795 		spa_check_removed(vd->vdev_child[c]);
796 
797 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
798 		zfs_post_autoreplace(vd->vdev_spa, vd);
799 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
800 	}
801 }
802 
803 /*
804  * Load an existing storage pool, using the pool's builtin spa_config as a
805  * source of configuration information.
806  */
807 static int
808 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
809 {
810 	int error = 0;
811 	nvlist_t *nvroot = NULL;
812 	vdev_t *rvd;
813 	uberblock_t *ub = &spa->spa_uberblock;
814 	uint64_t config_cache_txg = spa->spa_config_txg;
815 	uint64_t pool_guid;
816 	uint64_t version;
817 	zio_t *zio;
818 	uint64_t autoreplace = 0;
819 
820 	spa->spa_load_state = state;
821 
822 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
823 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
824 		error = EINVAL;
825 		goto out;
826 	}
827 
828 	/*
829 	 * Versioning wasn't explicitly added to the label until later, so if
830 	 * it's not present treat it as the initial version.
831 	 */
832 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
833 		version = SPA_VERSION_INITIAL;
834 
835 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
836 	    &spa->spa_config_txg);
837 
838 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
839 	    spa_guid_exists(pool_guid, 0)) {
840 		error = EEXIST;
841 		goto out;
842 	}
843 
844 	spa->spa_load_guid = pool_guid;
845 
846 	/*
847 	 * Parse the configuration into a vdev tree.  We explicitly set the
848 	 * value that will be returned by spa_version() since parsing the
849 	 * configuration requires knowing the version number.
850 	 */
851 	spa_config_enter(spa, RW_WRITER, FTAG);
852 	spa->spa_ubsync.ub_version = version;
853 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
854 	spa_config_exit(spa, FTAG);
855 
856 	if (error != 0)
857 		goto out;
858 
859 	ASSERT(spa->spa_root_vdev == rvd);
860 	ASSERT(spa_guid(spa) == pool_guid);
861 
862 	/*
863 	 * Try to open all vdevs, loading each label in the process.
864 	 */
865 	error = vdev_open(rvd);
866 	if (error != 0)
867 		goto out;
868 
869 	/*
870 	 * Validate the labels for all leaf vdevs.  We need to grab the config
871 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
872 	 * flag.
873 	 */
874 	spa_config_enter(spa, RW_READER, FTAG);
875 	error = vdev_validate(rvd);
876 	spa_config_exit(spa, FTAG);
877 
878 	if (error != 0)
879 		goto out;
880 
881 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
882 		error = ENXIO;
883 		goto out;
884 	}
885 
886 	/*
887 	 * Find the best uberblock.
888 	 */
889 	bzero(ub, sizeof (uberblock_t));
890 
891 	zio = zio_root(spa, NULL, NULL,
892 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
893 	vdev_uberblock_load(zio, rvd, ub);
894 	error = zio_wait(zio);
895 
896 	/*
897 	 * If we weren't able to find a single valid uberblock, return failure.
898 	 */
899 	if (ub->ub_txg == 0) {
900 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
901 		    VDEV_AUX_CORRUPT_DATA);
902 		error = ENXIO;
903 		goto out;
904 	}
905 
906 	/*
907 	 * If the pool is newer than the code, we can't open it.
908 	 */
909 	if (ub->ub_version > SPA_VERSION) {
910 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
911 		    VDEV_AUX_VERSION_NEWER);
912 		error = ENOTSUP;
913 		goto out;
914 	}
915 
916 	/*
917 	 * If the vdev guid sum doesn't match the uberblock, we have an
918 	 * incomplete configuration.
919 	 */
920 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
921 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
922 		    VDEV_AUX_BAD_GUID_SUM);
923 		error = ENXIO;
924 		goto out;
925 	}
926 
927 	/*
928 	 * Initialize internal SPA structures.
929 	 */
930 	spa->spa_state = POOL_STATE_ACTIVE;
931 	spa->spa_ubsync = spa->spa_uberblock;
932 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
933 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
934 	if (error) {
935 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
936 		    VDEV_AUX_CORRUPT_DATA);
937 		goto out;
938 	}
939 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
940 
941 	if (zap_lookup(spa->spa_meta_objset,
942 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
943 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
944 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
945 		    VDEV_AUX_CORRUPT_DATA);
946 		error = EIO;
947 		goto out;
948 	}
949 
950 	if (!mosconfig) {
951 		nvlist_t *newconfig;
952 		uint64_t hostid;
953 
954 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
955 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
956 			    VDEV_AUX_CORRUPT_DATA);
957 			error = EIO;
958 			goto out;
959 		}
960 
961 		if (nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID,
962 		    &hostid) == 0) {
963 			char *hostname;
964 			unsigned long myhostid = 0;
965 
966 			VERIFY(nvlist_lookup_string(newconfig,
967 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
968 
969 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
970 			if (hostid != 0 && myhostid != 0 &&
971 			    (unsigned long)hostid != myhostid) {
972 				cmn_err(CE_WARN, "pool '%s' could not be "
973 				    "loaded as it was last accessed by "
974 				    "another system (host: %s hostid: 0x%lx).  "
975 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
976 				    spa->spa_name, hostname,
977 				    (unsigned long)hostid);
978 				error = EBADF;
979 				goto out;
980 			}
981 		}
982 
983 		spa_config_set(spa, newconfig);
984 		spa_unload(spa);
985 		spa_deactivate(spa);
986 		spa_activate(spa);
987 
988 		return (spa_load(spa, newconfig, state, B_TRUE));
989 	}
990 
991 	if (zap_lookup(spa->spa_meta_objset,
992 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
993 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
994 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
995 		    VDEV_AUX_CORRUPT_DATA);
996 		error = EIO;
997 		goto out;
998 	}
999 
1000 	/*
1001 	 * Load the bit that tells us to use the new accounting function
1002 	 * (raid-z deflation).  If we have an older pool, this will not
1003 	 * be present.
1004 	 */
1005 	error = zap_lookup(spa->spa_meta_objset,
1006 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1007 	    sizeof (uint64_t), 1, &spa->spa_deflate);
1008 	if (error != 0 && error != ENOENT) {
1009 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1010 		    VDEV_AUX_CORRUPT_DATA);
1011 		error = EIO;
1012 		goto out;
1013 	}
1014 
1015 	/*
1016 	 * Load the persistent error log.  If we have an older pool, this will
1017 	 * not be present.
1018 	 */
1019 	error = zap_lookup(spa->spa_meta_objset,
1020 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1021 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1022 	if (error != 0 && error != ENOENT) {
1023 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1024 		    VDEV_AUX_CORRUPT_DATA);
1025 		error = EIO;
1026 		goto out;
1027 	}
1028 
1029 	error = zap_lookup(spa->spa_meta_objset,
1030 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1031 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1032 	if (error != 0 && error != ENOENT) {
1033 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1034 		    VDEV_AUX_CORRUPT_DATA);
1035 		error = EIO;
1036 		goto out;
1037 	}
1038 
1039 	/*
1040 	 * Load the history object.  If we have an older pool, this
1041 	 * will not be present.
1042 	 */
1043 	error = zap_lookup(spa->spa_meta_objset,
1044 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1045 	    sizeof (uint64_t), 1, &spa->spa_history);
1046 	if (error != 0 && error != ENOENT) {
1047 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1048 		    VDEV_AUX_CORRUPT_DATA);
1049 		error = EIO;
1050 		goto out;
1051 	}
1052 
1053 	/*
1054 	 * Load any hot spares for this pool.
1055 	 */
1056 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1057 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares_object);
1058 	if (error != 0 && error != ENOENT) {
1059 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1060 		    VDEV_AUX_CORRUPT_DATA);
1061 		error = EIO;
1062 		goto out;
1063 	}
1064 	if (error == 0) {
1065 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1066 		if (load_nvlist(spa, spa->spa_spares_object,
1067 		    &spa->spa_sparelist) != 0) {
1068 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1069 			    VDEV_AUX_CORRUPT_DATA);
1070 			error = EIO;
1071 			goto out;
1072 		}
1073 
1074 		spa_config_enter(spa, RW_WRITER, FTAG);
1075 		spa_load_spares(spa);
1076 		spa_config_exit(spa, FTAG);
1077 	}
1078 
1079 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1080 
1081 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1082 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1083 
1084 	if (error && error != ENOENT) {
1085 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1086 		    VDEV_AUX_CORRUPT_DATA);
1087 		error = EIO;
1088 		goto out;
1089 	}
1090 
1091 	if (error == 0) {
1092 		(void) zap_lookup(spa->spa_meta_objset,
1093 		    spa->spa_pool_props_object,
1094 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1095 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1096 		(void) zap_lookup(spa->spa_meta_objset,
1097 		    spa->spa_pool_props_object,
1098 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1099 		    sizeof (uint64_t), 1, &autoreplace);
1100 		(void) zap_lookup(spa->spa_meta_objset,
1101 		    spa->spa_pool_props_object,
1102 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1103 		    sizeof (uint64_t), 1, &spa->spa_delegation);
1104 		(void) zap_lookup(spa->spa_meta_objset,
1105 		    spa->spa_pool_props_object,
1106 		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1107 		    sizeof (uint64_t), 1, &spa->spa_failmode);
1108 	}
1109 
1110 	/*
1111 	 * If the 'autoreplace' property is set, then post a resource notifying
1112 	 * the ZFS DE that it should not issue any faults for unopenable
1113 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1114 	 * unopenable vdevs so that the normal autoreplace handler can take
1115 	 * over.
1116 	 */
1117 	if (autoreplace)
1118 		spa_check_removed(spa->spa_root_vdev);
1119 
1120 	/*
1121 	 * Load the vdev state for all toplevel vdevs.
1122 	 */
1123 	vdev_load(rvd);
1124 
1125 	/*
1126 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1127 	 */
1128 	spa_config_enter(spa, RW_WRITER, FTAG);
1129 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1130 	spa_config_exit(spa, FTAG);
1131 
1132 	/*
1133 	 * Check the state of the root vdev.  If it can't be opened, it
1134 	 * indicates one or more toplevel vdevs are faulted.
1135 	 */
1136 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1137 		error = ENXIO;
1138 		goto out;
1139 	}
1140 
1141 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
1142 		dmu_tx_t *tx;
1143 		int need_update = B_FALSE;
1144 		int c;
1145 
1146 		/*
1147 		 * Claim log blocks that haven't been committed yet.
1148 		 * This must all happen in a single txg.
1149 		 */
1150 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1151 		    spa_first_txg(spa));
1152 		(void) dmu_objset_find(spa->spa_name,
1153 		    zil_claim, tx, DS_FIND_CHILDREN);
1154 		dmu_tx_commit(tx);
1155 
1156 		spa->spa_sync_on = B_TRUE;
1157 		txg_sync_start(spa->spa_dsl_pool);
1158 
1159 		/*
1160 		 * Wait for all claims to sync.
1161 		 */
1162 		txg_wait_synced(spa->spa_dsl_pool, 0);
1163 
1164 		/*
1165 		 * If the config cache is stale, or we have uninitialized
1166 		 * metaslabs (see spa_vdev_add()), then update the config.
1167 		 */
1168 		if (config_cache_txg != spa->spa_config_txg ||
1169 		    state == SPA_LOAD_IMPORT)
1170 			need_update = B_TRUE;
1171 
1172 		for (c = 0; c < rvd->vdev_children; c++)
1173 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1174 				need_update = B_TRUE;
1175 
1176 		/*
1177 		 * Update the config cache asychronously in case we're the
1178 		 * root pool, in which case the config cache isn't writable yet.
1179 		 */
1180 		if (need_update)
1181 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1182 	}
1183 
1184 	error = 0;
1185 out:
1186 	if (error && error != EBADF)
1187 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
1188 	spa->spa_load_state = SPA_LOAD_NONE;
1189 	spa->spa_ena = 0;
1190 
1191 	return (error);
1192 }
1193 
1194 /*
1195  * Pool Open/Import
1196  *
1197  * The import case is identical to an open except that the configuration is sent
1198  * down from userland, instead of grabbed from the configuration cache.  For the
1199  * case of an open, the pool configuration will exist in the
1200  * POOL_STATE_UNINITIALIZED state.
1201  *
1202  * The stats information (gen/count/ustats) is used to gather vdev statistics at
1203  * the same time open the pool, without having to keep around the spa_t in some
1204  * ambiguous state.
1205  */
1206 static int
1207 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1208 {
1209 	spa_t *spa;
1210 	int error;
1211 	int loaded = B_FALSE;
1212 	int locked = B_FALSE;
1213 
1214 	*spapp = NULL;
1215 
1216 	/*
1217 	 * As disgusting as this is, we need to support recursive calls to this
1218 	 * function because dsl_dir_open() is called during spa_load(), and ends
1219 	 * up calling spa_open() again.  The real fix is to figure out how to
1220 	 * avoid dsl_dir_open() calling this in the first place.
1221 	 */
1222 	if (mutex_owner(&spa_namespace_lock) != curthread) {
1223 		mutex_enter(&spa_namespace_lock);
1224 		locked = B_TRUE;
1225 	}
1226 
1227 	if ((spa = spa_lookup(pool)) == NULL) {
1228 		if (locked)
1229 			mutex_exit(&spa_namespace_lock);
1230 		return (ENOENT);
1231 	}
1232 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1233 
1234 		spa_activate(spa);
1235 
1236 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1237 
1238 		if (error == EBADF) {
1239 			/*
1240 			 * If vdev_validate() returns failure (indicated by
1241 			 * EBADF), it indicates that one of the vdevs indicates
1242 			 * that the pool has been exported or destroyed.  If
1243 			 * this is the case, the config cache is out of sync and
1244 			 * we should remove the pool from the namespace.
1245 			 */
1246 			zfs_post_ok(spa, NULL);
1247 			spa_unload(spa);
1248 			spa_deactivate(spa);
1249 			spa_remove(spa);
1250 			spa_config_sync();
1251 			if (locked)
1252 				mutex_exit(&spa_namespace_lock);
1253 			return (ENOENT);
1254 		}
1255 
1256 		if (error) {
1257 			/*
1258 			 * We can't open the pool, but we still have useful
1259 			 * information: the state of each vdev after the
1260 			 * attempted vdev_open().  Return this to the user.
1261 			 */
1262 			if (config != NULL && spa->spa_root_vdev != NULL) {
1263 				spa_config_enter(spa, RW_READER, FTAG);
1264 				*config = spa_config_generate(spa, NULL, -1ULL,
1265 				    B_TRUE);
1266 				spa_config_exit(spa, FTAG);
1267 			}
1268 			spa_unload(spa);
1269 			spa_deactivate(spa);
1270 			spa->spa_last_open_failed = B_TRUE;
1271 			if (locked)
1272 				mutex_exit(&spa_namespace_lock);
1273 			*spapp = NULL;
1274 			return (error);
1275 		} else {
1276 			zfs_post_ok(spa, NULL);
1277 			spa->spa_last_open_failed = B_FALSE;
1278 		}
1279 
1280 		loaded = B_TRUE;
1281 	}
1282 
1283 	spa_open_ref(spa, tag);
1284 
1285 	/*
1286 	 * If we just loaded the pool, resilver anything that's out of date.
1287 	 */
1288 	if (loaded && (spa_mode & FWRITE))
1289 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1290 
1291 	if (locked)
1292 		mutex_exit(&spa_namespace_lock);
1293 
1294 	*spapp = spa;
1295 
1296 	if (config != NULL) {
1297 		spa_config_enter(spa, RW_READER, FTAG);
1298 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1299 		spa_config_exit(spa, FTAG);
1300 	}
1301 
1302 	return (0);
1303 }
1304 
1305 int
1306 spa_open(const char *name, spa_t **spapp, void *tag)
1307 {
1308 	return (spa_open_common(name, spapp, tag, NULL));
1309 }
1310 
1311 /*
1312  * Lookup the given spa_t, incrementing the inject count in the process,
1313  * preventing it from being exported or destroyed.
1314  */
1315 spa_t *
1316 spa_inject_addref(char *name)
1317 {
1318 	spa_t *spa;
1319 
1320 	mutex_enter(&spa_namespace_lock);
1321 	if ((spa = spa_lookup(name)) == NULL) {
1322 		mutex_exit(&spa_namespace_lock);
1323 		return (NULL);
1324 	}
1325 	spa->spa_inject_ref++;
1326 	mutex_exit(&spa_namespace_lock);
1327 
1328 	return (spa);
1329 }
1330 
1331 void
1332 spa_inject_delref(spa_t *spa)
1333 {
1334 	mutex_enter(&spa_namespace_lock);
1335 	spa->spa_inject_ref--;
1336 	mutex_exit(&spa_namespace_lock);
1337 }
1338 
1339 static void
1340 spa_add_spares(spa_t *spa, nvlist_t *config)
1341 {
1342 	nvlist_t **spares;
1343 	uint_t i, nspares;
1344 	nvlist_t *nvroot;
1345 	uint64_t guid;
1346 	vdev_stat_t *vs;
1347 	uint_t vsc;
1348 	uint64_t pool;
1349 
1350 	if (spa->spa_nspares == 0)
1351 		return;
1352 
1353 	VERIFY(nvlist_lookup_nvlist(config,
1354 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1355 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
1356 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1357 	if (nspares != 0) {
1358 		VERIFY(nvlist_add_nvlist_array(nvroot,
1359 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1360 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1361 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1362 
1363 		/*
1364 		 * Go through and find any spares which have since been
1365 		 * repurposed as an active spare.  If this is the case, update
1366 		 * their status appropriately.
1367 		 */
1368 		for (i = 0; i < nspares; i++) {
1369 			VERIFY(nvlist_lookup_uint64(spares[i],
1370 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1371 			if (spa_spare_exists(guid, &pool) && pool != 0ULL) {
1372 				VERIFY(nvlist_lookup_uint64_array(
1373 				    spares[i], ZPOOL_CONFIG_STATS,
1374 				    (uint64_t **)&vs, &vsc) == 0);
1375 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1376 				vs->vs_aux = VDEV_AUX_SPARED;
1377 			}
1378 		}
1379 	}
1380 }
1381 
1382 int
1383 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1384 {
1385 	int error;
1386 	spa_t *spa;
1387 
1388 	*config = NULL;
1389 	error = spa_open_common(name, &spa, FTAG, config);
1390 
1391 	if (spa && *config != NULL) {
1392 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
1393 		    spa_get_errlog_size(spa)) == 0);
1394 
1395 		spa_add_spares(spa, *config);
1396 	}
1397 
1398 	/*
1399 	 * We want to get the alternate root even for faulted pools, so we cheat
1400 	 * and call spa_lookup() directly.
1401 	 */
1402 	if (altroot) {
1403 		if (spa == NULL) {
1404 			mutex_enter(&spa_namespace_lock);
1405 			spa = spa_lookup(name);
1406 			if (spa)
1407 				spa_altroot(spa, altroot, buflen);
1408 			else
1409 				altroot[0] = '\0';
1410 			spa = NULL;
1411 			mutex_exit(&spa_namespace_lock);
1412 		} else {
1413 			spa_altroot(spa, altroot, buflen);
1414 		}
1415 	}
1416 
1417 	if (spa != NULL)
1418 		spa_close(spa, FTAG);
1419 
1420 	return (error);
1421 }
1422 
1423 /*
1424  * Validate that the 'spares' array is well formed.  We must have an array of
1425  * nvlists, each which describes a valid leaf vdev.  If this is an import (mode
1426  * is VDEV_ALLOC_SPARE), then we allow corrupted spares to be specified, as long
1427  * as they are well-formed.
1428  */
1429 static int
1430 spa_validate_spares(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1431 {
1432 	nvlist_t **spares;
1433 	uint_t i, nspares;
1434 	vdev_t *vd;
1435 	int error;
1436 
1437 	/*
1438 	 * It's acceptable to have no spares specified.
1439 	 */
1440 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1441 	    &spares, &nspares) != 0)
1442 		return (0);
1443 
1444 	if (nspares == 0)
1445 		return (EINVAL);
1446 
1447 	/*
1448 	 * Make sure the pool is formatted with a version that supports hot
1449 	 * spares.
1450 	 */
1451 	if (spa_version(spa) < SPA_VERSION_SPARES)
1452 		return (ENOTSUP);
1453 
1454 	/*
1455 	 * Set the pending spare list so we correctly handle device in-use
1456 	 * checking.
1457 	 */
1458 	spa->spa_pending_spares = spares;
1459 	spa->spa_pending_nspares = nspares;
1460 
1461 	for (i = 0; i < nspares; i++) {
1462 		if ((error = spa_config_parse(spa, &vd, spares[i], NULL, 0,
1463 		    mode)) != 0)
1464 			goto out;
1465 
1466 		if (!vd->vdev_ops->vdev_op_leaf) {
1467 			vdev_free(vd);
1468 			error = EINVAL;
1469 			goto out;
1470 		}
1471 
1472 		vd->vdev_top = vd;
1473 
1474 		if ((error = vdev_open(vd)) == 0 &&
1475 		    (error = vdev_label_init(vd, crtxg,
1476 		    VDEV_LABEL_SPARE)) == 0) {
1477 			VERIFY(nvlist_add_uint64(spares[i], ZPOOL_CONFIG_GUID,
1478 			    vd->vdev_guid) == 0);
1479 		}
1480 
1481 		vdev_free(vd);
1482 
1483 		if (error && mode != VDEV_ALLOC_SPARE)
1484 			goto out;
1485 		else
1486 			error = 0;
1487 	}
1488 
1489 out:
1490 	spa->spa_pending_spares = NULL;
1491 	spa->spa_pending_nspares = 0;
1492 	return (error);
1493 }
1494 
1495 /*
1496  * Pool Creation
1497  */
1498 int
1499 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
1500     const char *history_str)
1501 {
1502 	spa_t *spa;
1503 	char *altroot = NULL;
1504 	vdev_t *rvd;
1505 	dsl_pool_t *dp;
1506 	dmu_tx_t *tx;
1507 	int c, error = 0;
1508 	uint64_t txg = TXG_INITIAL;
1509 	nvlist_t **spares;
1510 	uint_t nspares;
1511 	uint64_t version;
1512 
1513 	/*
1514 	 * If this pool already exists, return failure.
1515 	 */
1516 	mutex_enter(&spa_namespace_lock);
1517 	if (spa_lookup(pool) != NULL) {
1518 		mutex_exit(&spa_namespace_lock);
1519 		return (EEXIST);
1520 	}
1521 
1522 	/*
1523 	 * Allocate a new spa_t structure.
1524 	 */
1525 	(void) nvlist_lookup_string(props,
1526 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
1527 	spa = spa_add(pool, altroot);
1528 	spa_activate(spa);
1529 
1530 	spa->spa_uberblock.ub_txg = txg - 1;
1531 
1532 	if (props && (error = spa_prop_validate(spa, props))) {
1533 		spa_unload(spa);
1534 		spa_deactivate(spa);
1535 		spa_remove(spa);
1536 		return (error);
1537 	}
1538 
1539 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
1540 	    &version) != 0)
1541 		version = SPA_VERSION;
1542 	ASSERT(version <= SPA_VERSION);
1543 	spa->spa_uberblock.ub_version = version;
1544 	spa->spa_ubsync = spa->spa_uberblock;
1545 
1546 	/*
1547 	 * Create the root vdev.
1548 	 */
1549 	spa_config_enter(spa, RW_WRITER, FTAG);
1550 
1551 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1552 
1553 	ASSERT(error != 0 || rvd != NULL);
1554 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1555 
1556 	if (error == 0 && rvd->vdev_children == 0)
1557 		error = EINVAL;
1558 
1559 	if (error == 0 &&
1560 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1561 	    (error = spa_validate_spares(spa, nvroot, txg,
1562 	    VDEV_ALLOC_ADD)) == 0) {
1563 		for (c = 0; c < rvd->vdev_children; c++)
1564 			vdev_init(rvd->vdev_child[c], txg);
1565 		vdev_config_dirty(rvd);
1566 	}
1567 
1568 	spa_config_exit(spa, FTAG);
1569 
1570 	if (error != 0) {
1571 		spa_unload(spa);
1572 		spa_deactivate(spa);
1573 		spa_remove(spa);
1574 		mutex_exit(&spa_namespace_lock);
1575 		return (error);
1576 	}
1577 
1578 	/*
1579 	 * Get the list of spares, if specified.
1580 	 */
1581 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1582 	    &spares, &nspares) == 0) {
1583 		VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME,
1584 		    KM_SLEEP) == 0);
1585 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1586 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1587 		spa_config_enter(spa, RW_WRITER, FTAG);
1588 		spa_load_spares(spa);
1589 		spa_config_exit(spa, FTAG);
1590 		spa->spa_sync_spares = B_TRUE;
1591 	}
1592 
1593 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
1594 	spa->spa_meta_objset = dp->dp_meta_objset;
1595 
1596 	tx = dmu_tx_create_assigned(dp, txg);
1597 
1598 	/*
1599 	 * Create the pool config object.
1600 	 */
1601 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1602 	    DMU_OT_PACKED_NVLIST, 1 << 14,
1603 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1604 
1605 	if (zap_add(spa->spa_meta_objset,
1606 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1607 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1608 		cmn_err(CE_PANIC, "failed to add pool config");
1609 	}
1610 
1611 	/* Newly created pools with the right version are always deflated. */
1612 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
1613 		spa->spa_deflate = TRUE;
1614 		if (zap_add(spa->spa_meta_objset,
1615 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1616 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
1617 			cmn_err(CE_PANIC, "failed to add deflate");
1618 		}
1619 	}
1620 
1621 	/*
1622 	 * Create the deferred-free bplist object.  Turn off compression
1623 	 * because sync-to-convergence takes longer if the blocksize
1624 	 * keeps changing.
1625 	 */
1626 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
1627 	    1 << 14, tx);
1628 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
1629 	    ZIO_COMPRESS_OFF, tx);
1630 
1631 	if (zap_add(spa->spa_meta_objset,
1632 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1633 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
1634 		cmn_err(CE_PANIC, "failed to add bplist");
1635 	}
1636 
1637 	/*
1638 	 * Create the pool's history object.
1639 	 */
1640 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
1641 		spa_history_create_obj(spa, tx);
1642 
1643 	/*
1644 	 * Set pool properties.
1645 	 */
1646 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
1647 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1648 	spa->spa_temporary = zpool_prop_default_numeric(ZPOOL_PROP_TEMPORARY);
1649 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
1650 	if (props)
1651 		spa_sync_props(spa, props, CRED(), tx);
1652 
1653 	dmu_tx_commit(tx);
1654 
1655 	spa->spa_sync_on = B_TRUE;
1656 	txg_sync_start(spa->spa_dsl_pool);
1657 
1658 	/*
1659 	 * We explicitly wait for the first transaction to complete so that our
1660 	 * bean counters are appropriately updated.
1661 	 */
1662 	txg_wait_synced(spa->spa_dsl_pool, txg);
1663 
1664 	spa_config_sync();
1665 
1666 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
1667 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
1668 
1669 	mutex_exit(&spa_namespace_lock);
1670 
1671 	return (0);
1672 }
1673 
1674 /*
1675  * Import the given pool into the system.  We set up the necessary spa_t and
1676  * then call spa_load() to do the dirty work.
1677  */
1678 int
1679 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
1680 {
1681 	spa_t *spa;
1682 	char *altroot = NULL;
1683 	int error;
1684 	nvlist_t *nvroot;
1685 	nvlist_t **spares;
1686 	uint_t nspares;
1687 
1688 	/*
1689 	 * If a pool with this name exists, return failure.
1690 	 */
1691 	mutex_enter(&spa_namespace_lock);
1692 	if (spa_lookup(pool) != NULL) {
1693 		mutex_exit(&spa_namespace_lock);
1694 		return (EEXIST);
1695 	}
1696 
1697 	/*
1698 	 * Create and initialize the spa structure.
1699 	 */
1700 	(void) nvlist_lookup_string(props,
1701 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
1702 	spa = spa_add(pool, altroot);
1703 	spa_activate(spa);
1704 
1705 	/*
1706 	 * Pass off the heavy lifting to spa_load().
1707 	 * Pass TRUE for mosconfig because the user-supplied config
1708 	 * is actually the one to trust when doing an import.
1709 	 */
1710 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
1711 
1712 	spa_config_enter(spa, RW_WRITER, FTAG);
1713 	/*
1714 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
1715 	 * and conflicts with spa_has_spare().
1716 	 */
1717 	if (spa->spa_sparelist) {
1718 		nvlist_free(spa->spa_sparelist);
1719 		spa->spa_sparelist = NULL;
1720 		spa_load_spares(spa);
1721 	}
1722 
1723 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1724 	    &nvroot) == 0);
1725 	if (error == 0) {
1726 		error = spa_validate_spares(spa, nvroot, -1ULL,
1727 		    VDEV_ALLOC_SPARE);
1728 	}
1729 	spa_config_exit(spa, FTAG);
1730 
1731 	if (error != 0 || (props && (error = spa_prop_set(spa, props)))) {
1732 		spa_unload(spa);
1733 		spa_deactivate(spa);
1734 		spa_remove(spa);
1735 		mutex_exit(&spa_namespace_lock);
1736 		return (error);
1737 	}
1738 
1739 	/*
1740 	 * Override any spares as specified by the user, as these may have
1741 	 * correct device names/devids, etc.
1742 	 */
1743 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1744 	    &spares, &nspares) == 0) {
1745 		if (spa->spa_sparelist)
1746 			VERIFY(nvlist_remove(spa->spa_sparelist,
1747 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1748 		else
1749 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1750 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1751 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1752 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1753 		spa_config_enter(spa, RW_WRITER, FTAG);
1754 		spa_load_spares(spa);
1755 		spa_config_exit(spa, FTAG);
1756 		spa->spa_sync_spares = B_TRUE;
1757 	}
1758 
1759 	/*
1760 	 * Update the config cache to include the newly-imported pool.
1761 	 */
1762 	if (spa_mode & FWRITE)
1763 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1764 
1765 	/*
1766 	 * Resilver anything that's out of date.
1767 	 */
1768 	if (spa_mode & FWRITE)
1769 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1770 
1771 	mutex_exit(&spa_namespace_lock);
1772 
1773 	return (0);
1774 }
1775 
1776 /*
1777  * This (illegal) pool name is used when temporarily importing a spa_t in order
1778  * to get the vdev stats associated with the imported devices.
1779  */
1780 #define	TRYIMPORT_NAME	"$import"
1781 
1782 nvlist_t *
1783 spa_tryimport(nvlist_t *tryconfig)
1784 {
1785 	nvlist_t *config = NULL;
1786 	char *poolname;
1787 	spa_t *spa;
1788 	uint64_t state;
1789 
1790 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
1791 		return (NULL);
1792 
1793 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
1794 		return (NULL);
1795 
1796 	/*
1797 	 * Create and initialize the spa structure.
1798 	 */
1799 	mutex_enter(&spa_namespace_lock);
1800 	spa = spa_add(TRYIMPORT_NAME, NULL);
1801 	spa_activate(spa);
1802 
1803 	/*
1804 	 * Pass off the heavy lifting to spa_load().
1805 	 * Pass TRUE for mosconfig because the user-supplied config
1806 	 * is actually the one to trust when doing an import.
1807 	 */
1808 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
1809 
1810 	/*
1811 	 * If 'tryconfig' was at least parsable, return the current config.
1812 	 */
1813 	if (spa->spa_root_vdev != NULL) {
1814 		spa_config_enter(spa, RW_READER, FTAG);
1815 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1816 		spa_config_exit(spa, FTAG);
1817 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
1818 		    poolname) == 0);
1819 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1820 		    state) == 0);
1821 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
1822 		    spa->spa_uberblock.ub_timestamp) == 0);
1823 
1824 		/*
1825 		 * Add the list of hot spares.
1826 		 */
1827 		spa_add_spares(spa, config);
1828 	}
1829 
1830 	spa_unload(spa);
1831 	spa_deactivate(spa);
1832 	spa_remove(spa);
1833 	mutex_exit(&spa_namespace_lock);
1834 
1835 	return (config);
1836 }
1837 
1838 /*
1839  * Pool export/destroy
1840  *
1841  * The act of destroying or exporting a pool is very simple.  We make sure there
1842  * is no more pending I/O and any references to the pool are gone.  Then, we
1843  * update the pool state and sync all the labels to disk, removing the
1844  * configuration from the cache afterwards.
1845  */
1846 static int
1847 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
1848 {
1849 	spa_t *spa;
1850 
1851 	if (oldconfig)
1852 		*oldconfig = NULL;
1853 
1854 	if (!(spa_mode & FWRITE))
1855 		return (EROFS);
1856 
1857 	mutex_enter(&spa_namespace_lock);
1858 	if ((spa = spa_lookup(pool)) == NULL) {
1859 		mutex_exit(&spa_namespace_lock);
1860 		return (ENOENT);
1861 	}
1862 
1863 	/*
1864 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
1865 	 * reacquire the namespace lock, and see if we can export.
1866 	 */
1867 	spa_open_ref(spa, FTAG);
1868 	mutex_exit(&spa_namespace_lock);
1869 	spa_async_suspend(spa);
1870 	mutex_enter(&spa_namespace_lock);
1871 	spa_close(spa, FTAG);
1872 
1873 	/*
1874 	 * The pool will be in core if it's openable,
1875 	 * in which case we can modify its state.
1876 	 */
1877 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
1878 		/*
1879 		 * Objsets may be open only because they're dirty, so we
1880 		 * have to force it to sync before checking spa_refcnt.
1881 		 */
1882 		spa_scrub_suspend(spa);
1883 		txg_wait_synced(spa->spa_dsl_pool, 0);
1884 
1885 		/*
1886 		 * A pool cannot be exported or destroyed if there are active
1887 		 * references.  If we are resetting a pool, allow references by
1888 		 * fault injection handlers.
1889 		 */
1890 		if (!spa_refcount_zero(spa) ||
1891 		    (spa->spa_inject_ref != 0 &&
1892 		    new_state != POOL_STATE_UNINITIALIZED)) {
1893 			spa_scrub_resume(spa);
1894 			spa_async_resume(spa);
1895 			mutex_exit(&spa_namespace_lock);
1896 			return (EBUSY);
1897 		}
1898 
1899 		spa_scrub_resume(spa);
1900 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
1901 
1902 		/*
1903 		 * We want this to be reflected on every label,
1904 		 * so mark them all dirty.  spa_unload() will do the
1905 		 * final sync that pushes these changes out.
1906 		 */
1907 		if (new_state != POOL_STATE_UNINITIALIZED) {
1908 			spa_config_enter(spa, RW_WRITER, FTAG);
1909 			spa->spa_state = new_state;
1910 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
1911 			vdev_config_dirty(spa->spa_root_vdev);
1912 			spa_config_exit(spa, FTAG);
1913 		}
1914 	}
1915 
1916 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
1917 
1918 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1919 		spa_unload(spa);
1920 		spa_deactivate(spa);
1921 	}
1922 
1923 	if (oldconfig && spa->spa_config)
1924 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
1925 
1926 	if (new_state != POOL_STATE_UNINITIALIZED) {
1927 		spa_remove(spa);
1928 		spa_config_sync();
1929 	}
1930 	mutex_exit(&spa_namespace_lock);
1931 
1932 	return (0);
1933 }
1934 
1935 /*
1936  * Destroy a storage pool.
1937  */
1938 int
1939 spa_destroy(char *pool)
1940 {
1941 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
1942 }
1943 
1944 /*
1945  * Export a storage pool.
1946  */
1947 int
1948 spa_export(char *pool, nvlist_t **oldconfig)
1949 {
1950 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
1951 }
1952 
1953 /*
1954  * Similar to spa_export(), this unloads the spa_t without actually removing it
1955  * from the namespace in any way.
1956  */
1957 int
1958 spa_reset(char *pool)
1959 {
1960 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
1961 }
1962 
1963 
1964 /*
1965  * ==========================================================================
1966  * Device manipulation
1967  * ==========================================================================
1968  */
1969 
1970 /*
1971  * Add a device to a storage pool.
1972  */
1973 int
1974 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1975 {
1976 	uint64_t txg;
1977 	int c, error;
1978 	vdev_t *rvd = spa->spa_root_vdev;
1979 	vdev_t *vd, *tvd;
1980 	nvlist_t **spares;
1981 	uint_t i, nspares;
1982 
1983 	txg = spa_vdev_enter(spa);
1984 
1985 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
1986 	    VDEV_ALLOC_ADD)) != 0)
1987 		return (spa_vdev_exit(spa, NULL, txg, error));
1988 
1989 	spa->spa_pending_vdev = vd;
1990 
1991 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1992 	    &spares, &nspares) != 0)
1993 		nspares = 0;
1994 
1995 	if (vd->vdev_children == 0 && nspares == 0) {
1996 		spa->spa_pending_vdev = NULL;
1997 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1998 	}
1999 
2000 	if (vd->vdev_children != 0) {
2001 		if ((error = vdev_create(vd, txg, B_FALSE)) != 0) {
2002 			spa->spa_pending_vdev = NULL;
2003 			return (spa_vdev_exit(spa, vd, txg, error));
2004 		}
2005 	}
2006 
2007 	/*
2008 	 * We must validate the spares after checking the children.  Otherwise,
2009 	 * vdev_inuse() will blindly overwrite the spare.
2010 	 */
2011 	if ((error = spa_validate_spares(spa, nvroot, txg,
2012 	    VDEV_ALLOC_ADD)) != 0) {
2013 		spa->spa_pending_vdev = NULL;
2014 		return (spa_vdev_exit(spa, vd, txg, error));
2015 	}
2016 
2017 	spa->spa_pending_vdev = NULL;
2018 
2019 	/*
2020 	 * Transfer each new top-level vdev from vd to rvd.
2021 	 */
2022 	for (c = 0; c < vd->vdev_children; c++) {
2023 		tvd = vd->vdev_child[c];
2024 		vdev_remove_child(vd, tvd);
2025 		tvd->vdev_id = rvd->vdev_children;
2026 		vdev_add_child(rvd, tvd);
2027 		vdev_config_dirty(tvd);
2028 	}
2029 
2030 	if (nspares != 0) {
2031 		if (spa->spa_sparelist != NULL) {
2032 			nvlist_t **oldspares;
2033 			uint_t oldnspares;
2034 			nvlist_t **newspares;
2035 
2036 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
2037 			    ZPOOL_CONFIG_SPARES, &oldspares, &oldnspares) == 0);
2038 
2039 			newspares = kmem_alloc(sizeof (void *) *
2040 			    (nspares + oldnspares), KM_SLEEP);
2041 			for (i = 0; i < oldnspares; i++)
2042 				VERIFY(nvlist_dup(oldspares[i],
2043 				    &newspares[i], KM_SLEEP) == 0);
2044 			for (i = 0; i < nspares; i++)
2045 				VERIFY(nvlist_dup(spares[i],
2046 				    &newspares[i + oldnspares],
2047 				    KM_SLEEP) == 0);
2048 
2049 			VERIFY(nvlist_remove(spa->spa_sparelist,
2050 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2051 
2052 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
2053 			    ZPOOL_CONFIG_SPARES, newspares,
2054 			    nspares + oldnspares) == 0);
2055 			for (i = 0; i < oldnspares + nspares; i++)
2056 				nvlist_free(newspares[i]);
2057 			kmem_free(newspares, (oldnspares + nspares) *
2058 			    sizeof (void *));
2059 		} else {
2060 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
2061 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2062 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
2063 			    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2064 		}
2065 
2066 		spa_load_spares(spa);
2067 		spa->spa_sync_spares = B_TRUE;
2068 	}
2069 
2070 	/*
2071 	 * We have to be careful when adding new vdevs to an existing pool.
2072 	 * If other threads start allocating from these vdevs before we
2073 	 * sync the config cache, and we lose power, then upon reboot we may
2074 	 * fail to open the pool because there are DVAs that the config cache
2075 	 * can't translate.  Therefore, we first add the vdevs without
2076 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2077 	 * and then let spa_config_update() initialize the new metaslabs.
2078 	 *
2079 	 * spa_load() checks for added-but-not-initialized vdevs, so that
2080 	 * if we lose power at any point in this sequence, the remaining
2081 	 * steps will be completed the next time we load the pool.
2082 	 */
2083 	(void) spa_vdev_exit(spa, vd, txg, 0);
2084 
2085 	mutex_enter(&spa_namespace_lock);
2086 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2087 	mutex_exit(&spa_namespace_lock);
2088 
2089 	return (0);
2090 }
2091 
2092 /*
2093  * Attach a device to a mirror.  The arguments are the path to any device
2094  * in the mirror, and the nvroot for the new device.  If the path specifies
2095  * a device that is not mirrored, we automatically insert the mirror vdev.
2096  *
2097  * If 'replacing' is specified, the new device is intended to replace the
2098  * existing device; in this case the two devices are made into their own
2099  * mirror using the 'replacing' vdev, which is functionally identical to
2100  * the mirror vdev (it actually reuses all the same ops) but has a few
2101  * extra rules: you can't attach to it after it's been created, and upon
2102  * completion of resilvering, the first disk (the one being replaced)
2103  * is automatically detached.
2104  */
2105 int
2106 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2107 {
2108 	uint64_t txg, open_txg;
2109 	int error;
2110 	vdev_t *rvd = spa->spa_root_vdev;
2111 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
2112 	vdev_ops_t *pvops;
2113 	int is_log;
2114 
2115 	txg = spa_vdev_enter(spa);
2116 
2117 	oldvd = vdev_lookup_by_guid(rvd, guid);
2118 
2119 	if (oldvd == NULL)
2120 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2121 
2122 	if (!oldvd->vdev_ops->vdev_op_leaf)
2123 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2124 
2125 	pvd = oldvd->vdev_parent;
2126 
2127 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
2128 	    VDEV_ALLOC_ADD)) != 0)
2129 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
2130 
2131 	if (newrootvd->vdev_children != 1)
2132 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2133 
2134 	newvd = newrootvd->vdev_child[0];
2135 
2136 	if (!newvd->vdev_ops->vdev_op_leaf)
2137 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2138 
2139 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
2140 		return (spa_vdev_exit(spa, newrootvd, txg, error));
2141 
2142 	/*
2143 	 * Spares can't replace logs
2144 	 */
2145 	is_log = oldvd->vdev_islog;
2146 	if (is_log && newvd->vdev_isspare)
2147 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2148 
2149 	if (!replacing) {
2150 		/*
2151 		 * For attach, the only allowable parent is a mirror or the root
2152 		 * vdev.
2153 		 */
2154 		if (pvd->vdev_ops != &vdev_mirror_ops &&
2155 		    pvd->vdev_ops != &vdev_root_ops)
2156 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2157 
2158 		pvops = &vdev_mirror_ops;
2159 	} else {
2160 		/*
2161 		 * Active hot spares can only be replaced by inactive hot
2162 		 * spares.
2163 		 */
2164 		if (pvd->vdev_ops == &vdev_spare_ops &&
2165 		    pvd->vdev_child[1] == oldvd &&
2166 		    !spa_has_spare(spa, newvd->vdev_guid))
2167 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2168 
2169 		/*
2170 		 * If the source is a hot spare, and the parent isn't already a
2171 		 * spare, then we want to create a new hot spare.  Otherwise, we
2172 		 * want to create a replacing vdev.  The user is not allowed to
2173 		 * attach to a spared vdev child unless the 'isspare' state is
2174 		 * the same (spare replaces spare, non-spare replaces
2175 		 * non-spare).
2176 		 */
2177 		if (pvd->vdev_ops == &vdev_replacing_ops)
2178 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2179 		else if (pvd->vdev_ops == &vdev_spare_ops &&
2180 		    newvd->vdev_isspare != oldvd->vdev_isspare)
2181 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2182 		else if (pvd->vdev_ops != &vdev_spare_ops &&
2183 		    newvd->vdev_isspare)
2184 			pvops = &vdev_spare_ops;
2185 		else
2186 			pvops = &vdev_replacing_ops;
2187 	}
2188 
2189 	/*
2190 	 * Compare the new device size with the replaceable/attachable
2191 	 * device size.
2192 	 */
2193 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
2194 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
2195 
2196 	/*
2197 	 * The new device cannot have a higher alignment requirement
2198 	 * than the top-level vdev.
2199 	 */
2200 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
2201 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
2202 
2203 	/*
2204 	 * If this is an in-place replacement, update oldvd's path and devid
2205 	 * to make it distinguishable from newvd, and unopenable from now on.
2206 	 */
2207 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
2208 		spa_strfree(oldvd->vdev_path);
2209 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
2210 		    KM_SLEEP);
2211 		(void) sprintf(oldvd->vdev_path, "%s/%s",
2212 		    newvd->vdev_path, "old");
2213 		if (oldvd->vdev_devid != NULL) {
2214 			spa_strfree(oldvd->vdev_devid);
2215 			oldvd->vdev_devid = NULL;
2216 		}
2217 	}
2218 
2219 	/*
2220 	 * If the parent is not a mirror, or if we're replacing, insert the new
2221 	 * mirror/replacing/spare vdev above oldvd.
2222 	 */
2223 	if (pvd->vdev_ops != pvops)
2224 		pvd = vdev_add_parent(oldvd, pvops);
2225 
2226 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
2227 	ASSERT(pvd->vdev_ops == pvops);
2228 	ASSERT(oldvd->vdev_parent == pvd);
2229 
2230 	/*
2231 	 * Extract the new device from its root and add it to pvd.
2232 	 */
2233 	vdev_remove_child(newrootvd, newvd);
2234 	newvd->vdev_id = pvd->vdev_children;
2235 	vdev_add_child(pvd, newvd);
2236 
2237 	/*
2238 	 * If newvd is smaller than oldvd, but larger than its rsize,
2239 	 * the addition of newvd may have decreased our parent's asize.
2240 	 */
2241 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
2242 
2243 	tvd = newvd->vdev_top;
2244 	ASSERT(pvd->vdev_top == tvd);
2245 	ASSERT(tvd->vdev_parent == rvd);
2246 
2247 	vdev_config_dirty(tvd);
2248 
2249 	/*
2250 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
2251 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
2252 	 */
2253 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
2254 
2255 	mutex_enter(&newvd->vdev_dtl_lock);
2256 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
2257 	    open_txg - TXG_INITIAL + 1);
2258 	mutex_exit(&newvd->vdev_dtl_lock);
2259 
2260 	if (newvd->vdev_isspare)
2261 		spa_spare_activate(newvd);
2262 
2263 	/*
2264 	 * Mark newvd's DTL dirty in this txg.
2265 	 */
2266 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
2267 
2268 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
2269 
2270 	/*
2271 	 * Kick off a resilver to update newvd.  We need to grab the namespace
2272 	 * lock because spa_scrub() needs to post a sysevent with the pool name.
2273 	 */
2274 	mutex_enter(&spa_namespace_lock);
2275 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
2276 	mutex_exit(&spa_namespace_lock);
2277 
2278 	return (0);
2279 }
2280 
2281 /*
2282  * Detach a device from a mirror or replacing vdev.
2283  * If 'replace_done' is specified, only detach if the parent
2284  * is a replacing vdev.
2285  */
2286 int
2287 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
2288 {
2289 	uint64_t txg;
2290 	int c, t, error;
2291 	vdev_t *rvd = spa->spa_root_vdev;
2292 	vdev_t *vd, *pvd, *cvd, *tvd;
2293 	boolean_t unspare = B_FALSE;
2294 	uint64_t unspare_guid;
2295 
2296 	txg = spa_vdev_enter(spa);
2297 
2298 	vd = vdev_lookup_by_guid(rvd, guid);
2299 
2300 	if (vd == NULL)
2301 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2302 
2303 	if (!vd->vdev_ops->vdev_op_leaf)
2304 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2305 
2306 	pvd = vd->vdev_parent;
2307 
2308 	/*
2309 	 * If replace_done is specified, only remove this device if it's
2310 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
2311 	 * disk can be removed.
2312 	 */
2313 	if (replace_done) {
2314 		if (pvd->vdev_ops == &vdev_replacing_ops) {
2315 			if (vd->vdev_id != 0)
2316 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2317 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
2318 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2319 		}
2320 	}
2321 
2322 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
2323 	    spa_version(spa) >= SPA_VERSION_SPARES);
2324 
2325 	/*
2326 	 * Only mirror, replacing, and spare vdevs support detach.
2327 	 */
2328 	if (pvd->vdev_ops != &vdev_replacing_ops &&
2329 	    pvd->vdev_ops != &vdev_mirror_ops &&
2330 	    pvd->vdev_ops != &vdev_spare_ops)
2331 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2332 
2333 	/*
2334 	 * If there's only one replica, you can't detach it.
2335 	 */
2336 	if (pvd->vdev_children <= 1)
2337 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
2338 
2339 	/*
2340 	 * If all siblings have non-empty DTLs, this device may have the only
2341 	 * valid copy of the data, which means we cannot safely detach it.
2342 	 *
2343 	 * XXX -- as in the vdev_offline() case, we really want a more
2344 	 * precise DTL check.
2345 	 */
2346 	for (c = 0; c < pvd->vdev_children; c++) {
2347 		uint64_t dirty;
2348 
2349 		cvd = pvd->vdev_child[c];
2350 		if (cvd == vd)
2351 			continue;
2352 		if (vdev_is_dead(cvd))
2353 			continue;
2354 		mutex_enter(&cvd->vdev_dtl_lock);
2355 		dirty = cvd->vdev_dtl_map.sm_space |
2356 		    cvd->vdev_dtl_scrub.sm_space;
2357 		mutex_exit(&cvd->vdev_dtl_lock);
2358 		if (!dirty)
2359 			break;
2360 	}
2361 
2362 	/*
2363 	 * If we are a replacing or spare vdev, then we can always detach the
2364 	 * latter child, as that is how one cancels the operation.
2365 	 */
2366 	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
2367 	    c == pvd->vdev_children)
2368 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
2369 
2370 	/*
2371 	 * If we are detaching the original disk from a spare, then it implies
2372 	 * that the spare should become a real disk, and be removed from the
2373 	 * active spare list for the pool.
2374 	 */
2375 	if (pvd->vdev_ops == &vdev_spare_ops &&
2376 	    vd->vdev_id == 0)
2377 		unspare = B_TRUE;
2378 
2379 	/*
2380 	 * Erase the disk labels so the disk can be used for other things.
2381 	 * This must be done after all other error cases are handled,
2382 	 * but before we disembowel vd (so we can still do I/O to it).
2383 	 * But if we can't do it, don't treat the error as fatal --
2384 	 * it may be that the unwritability of the disk is the reason
2385 	 * it's being detached!
2386 	 */
2387 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
2388 
2389 	/*
2390 	 * Remove vd from its parent and compact the parent's children.
2391 	 */
2392 	vdev_remove_child(pvd, vd);
2393 	vdev_compact_children(pvd);
2394 
2395 	/*
2396 	 * Remember one of the remaining children so we can get tvd below.
2397 	 */
2398 	cvd = pvd->vdev_child[0];
2399 
2400 	/*
2401 	 * If we need to remove the remaining child from the list of hot spares,
2402 	 * do it now, marking the vdev as no longer a spare in the process.  We
2403 	 * must do this before vdev_remove_parent(), because that can change the
2404 	 * GUID if it creates a new toplevel GUID.
2405 	 */
2406 	if (unspare) {
2407 		ASSERT(cvd->vdev_isspare);
2408 		spa_spare_remove(cvd);
2409 		unspare_guid = cvd->vdev_guid;
2410 	}
2411 
2412 	/*
2413 	 * If the parent mirror/replacing vdev only has one child,
2414 	 * the parent is no longer needed.  Remove it from the tree.
2415 	 */
2416 	if (pvd->vdev_children == 1)
2417 		vdev_remove_parent(cvd);
2418 
2419 	/*
2420 	 * We don't set tvd until now because the parent we just removed
2421 	 * may have been the previous top-level vdev.
2422 	 */
2423 	tvd = cvd->vdev_top;
2424 	ASSERT(tvd->vdev_parent == rvd);
2425 
2426 	/*
2427 	 * Reevaluate the parent vdev state.
2428 	 */
2429 	vdev_propagate_state(cvd);
2430 
2431 	/*
2432 	 * If the device we just detached was smaller than the others, it may be
2433 	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
2434 	 * can't fail because the existing metaslabs are already in core, so
2435 	 * there's nothing to read from disk.
2436 	 */
2437 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
2438 
2439 	vdev_config_dirty(tvd);
2440 
2441 	/*
2442 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
2443 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
2444 	 * But first make sure we're not on any *other* txg's DTL list, to
2445 	 * prevent vd from being accessed after it's freed.
2446 	 */
2447 	for (t = 0; t < TXG_SIZE; t++)
2448 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
2449 	vd->vdev_detached = B_TRUE;
2450 	vdev_dirty(tvd, VDD_DTL, vd, txg);
2451 
2452 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
2453 
2454 	error = spa_vdev_exit(spa, vd, txg, 0);
2455 
2456 	/*
2457 	 * If this was the removal of the original device in a hot spare vdev,
2458 	 * then we want to go through and remove the device from the hot spare
2459 	 * list of every other pool.
2460 	 */
2461 	if (unspare) {
2462 		spa = NULL;
2463 		mutex_enter(&spa_namespace_lock);
2464 		while ((spa = spa_next(spa)) != NULL) {
2465 			if (spa->spa_state != POOL_STATE_ACTIVE)
2466 				continue;
2467 
2468 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
2469 		}
2470 		mutex_exit(&spa_namespace_lock);
2471 	}
2472 
2473 	return (error);
2474 }
2475 
2476 /*
2477  * Remove a device from the pool.  Currently, this supports removing only hot
2478  * spares.
2479  */
2480 int
2481 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2482 {
2483 	vdev_t *vd;
2484 	nvlist_t **spares, *nv, **newspares;
2485 	uint_t i, j, nspares;
2486 	int ret = 0;
2487 
2488 	spa_config_enter(spa, RW_WRITER, FTAG);
2489 
2490 	vd = spa_lookup_by_guid(spa, guid);
2491 
2492 	nv = NULL;
2493 	if (spa->spa_spares != NULL &&
2494 	    nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2495 	    &spares, &nspares) == 0) {
2496 		for (i = 0; i < nspares; i++) {
2497 			uint64_t theguid;
2498 
2499 			VERIFY(nvlist_lookup_uint64(spares[i],
2500 			    ZPOOL_CONFIG_GUID, &theguid) == 0);
2501 			if (theguid == guid) {
2502 				nv = spares[i];
2503 				break;
2504 			}
2505 		}
2506 	}
2507 
2508 	/*
2509 	 * We only support removing a hot spare, and only if it's not currently
2510 	 * in use in this pool.
2511 	 */
2512 	if (nv == NULL && vd == NULL) {
2513 		ret = ENOENT;
2514 		goto out;
2515 	}
2516 
2517 	if (nv == NULL && vd != NULL) {
2518 		ret = ENOTSUP;
2519 		goto out;
2520 	}
2521 
2522 	if (!unspare && nv != NULL && vd != NULL) {
2523 		ret = EBUSY;
2524 		goto out;
2525 	}
2526 
2527 	if (nspares == 1) {
2528 		newspares = NULL;
2529 	} else {
2530 		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
2531 		    KM_SLEEP);
2532 		for (i = 0, j = 0; i < nspares; i++) {
2533 			if (spares[i] != nv)
2534 				VERIFY(nvlist_dup(spares[i],
2535 				    &newspares[j++], KM_SLEEP) == 0);
2536 		}
2537 	}
2538 
2539 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2540 	    DATA_TYPE_NVLIST_ARRAY) == 0);
2541 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2542 	    newspares, nspares - 1) == 0);
2543 	for (i = 0; i < nspares - 1; i++)
2544 		nvlist_free(newspares[i]);
2545 	kmem_free(newspares, (nspares - 1) * sizeof (void *));
2546 	spa_load_spares(spa);
2547 	spa->spa_sync_spares = B_TRUE;
2548 
2549 out:
2550 	spa_config_exit(spa, FTAG);
2551 
2552 	return (ret);
2553 }
2554 
2555 /*
2556  * Find any device that's done replacing, or a vdev marked 'unspare' that's
2557  * current spared, so we can detach it.
2558  */
2559 static vdev_t *
2560 spa_vdev_resilver_done_hunt(vdev_t *vd)
2561 {
2562 	vdev_t *newvd, *oldvd;
2563 	int c;
2564 
2565 	for (c = 0; c < vd->vdev_children; c++) {
2566 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
2567 		if (oldvd != NULL)
2568 			return (oldvd);
2569 	}
2570 
2571 	/*
2572 	 * Check for a completed replacement.
2573 	 */
2574 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
2575 		oldvd = vd->vdev_child[0];
2576 		newvd = vd->vdev_child[1];
2577 
2578 		mutex_enter(&newvd->vdev_dtl_lock);
2579 		if (newvd->vdev_dtl_map.sm_space == 0 &&
2580 		    newvd->vdev_dtl_scrub.sm_space == 0) {
2581 			mutex_exit(&newvd->vdev_dtl_lock);
2582 			return (oldvd);
2583 		}
2584 		mutex_exit(&newvd->vdev_dtl_lock);
2585 	}
2586 
2587 	/*
2588 	 * Check for a completed resilver with the 'unspare' flag set.
2589 	 */
2590 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
2591 		newvd = vd->vdev_child[0];
2592 		oldvd = vd->vdev_child[1];
2593 
2594 		mutex_enter(&newvd->vdev_dtl_lock);
2595 		if (newvd->vdev_unspare &&
2596 		    newvd->vdev_dtl_map.sm_space == 0 &&
2597 		    newvd->vdev_dtl_scrub.sm_space == 0) {
2598 			newvd->vdev_unspare = 0;
2599 			mutex_exit(&newvd->vdev_dtl_lock);
2600 			return (oldvd);
2601 		}
2602 		mutex_exit(&newvd->vdev_dtl_lock);
2603 	}
2604 
2605 	return (NULL);
2606 }
2607 
2608 static void
2609 spa_vdev_resilver_done(spa_t *spa)
2610 {
2611 	vdev_t *vd;
2612 	vdev_t *pvd;
2613 	uint64_t guid;
2614 	uint64_t pguid = 0;
2615 
2616 	spa_config_enter(spa, RW_READER, FTAG);
2617 
2618 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
2619 		guid = vd->vdev_guid;
2620 		/*
2621 		 * If we have just finished replacing a hot spared device, then
2622 		 * we need to detach the parent's first child (the original hot
2623 		 * spare) as well.
2624 		 */
2625 		pvd = vd->vdev_parent;
2626 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2627 		    pvd->vdev_id == 0) {
2628 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
2629 			ASSERT(pvd->vdev_parent->vdev_children == 2);
2630 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
2631 		}
2632 		spa_config_exit(spa, FTAG);
2633 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
2634 			return;
2635 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
2636 			return;
2637 		spa_config_enter(spa, RW_READER, FTAG);
2638 	}
2639 
2640 	spa_config_exit(spa, FTAG);
2641 }
2642 
2643 /*
2644  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
2645  * on spa_vdev_enter/exit() to synchronize the labels and cache.
2646  */
2647 int
2648 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
2649 {
2650 	vdev_t *rvd, *vd;
2651 	uint64_t txg;
2652 
2653 	rvd = spa->spa_root_vdev;
2654 
2655 	txg = spa_vdev_enter(spa);
2656 
2657 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2658 		/*
2659 		 * Determine if this is a reference to a hot spare.  In that
2660 		 * case, update the path as stored in the spare list.
2661 		 */
2662 		nvlist_t **spares;
2663 		uint_t i, nspares;
2664 		if (spa->spa_sparelist != NULL) {
2665 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
2666 			    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2667 			for (i = 0; i < nspares; i++) {
2668 				uint64_t theguid;
2669 				VERIFY(nvlist_lookup_uint64(spares[i],
2670 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
2671 				if (theguid == guid)
2672 					break;
2673 			}
2674 
2675 			if (i == nspares)
2676 				return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2677 
2678 			VERIFY(nvlist_add_string(spares[i],
2679 			    ZPOOL_CONFIG_PATH, newpath) == 0);
2680 			spa_load_spares(spa);
2681 			spa->spa_sync_spares = B_TRUE;
2682 			return (spa_vdev_exit(spa, NULL, txg, 0));
2683 		} else {
2684 			return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2685 		}
2686 	}
2687 
2688 	if (!vd->vdev_ops->vdev_op_leaf)
2689 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2690 
2691 	spa_strfree(vd->vdev_path);
2692 	vd->vdev_path = spa_strdup(newpath);
2693 
2694 	vdev_config_dirty(vd->vdev_top);
2695 
2696 	return (spa_vdev_exit(spa, NULL, txg, 0));
2697 }
2698 
2699 /*
2700  * ==========================================================================
2701  * SPA Scrubbing
2702  * ==========================================================================
2703  */
2704 
2705 static void
2706 spa_scrub_io_done(zio_t *zio)
2707 {
2708 	spa_t *spa = zio->io_spa;
2709 
2710 	arc_data_buf_free(zio->io_data, zio->io_size);
2711 
2712 	mutex_enter(&spa->spa_scrub_lock);
2713 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2714 		vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
2715 		spa->spa_scrub_errors++;
2716 		mutex_enter(&vd->vdev_stat_lock);
2717 		vd->vdev_stat.vs_scrub_errors++;
2718 		mutex_exit(&vd->vdev_stat_lock);
2719 	}
2720 
2721 	if (--spa->spa_scrub_inflight < spa->spa_scrub_maxinflight)
2722 		cv_broadcast(&spa->spa_scrub_io_cv);
2723 
2724 	ASSERT(spa->spa_scrub_inflight >= 0);
2725 
2726 	mutex_exit(&spa->spa_scrub_lock);
2727 }
2728 
2729 static void
2730 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
2731     zbookmark_t *zb)
2732 {
2733 	size_t size = BP_GET_LSIZE(bp);
2734 	void *data;
2735 
2736 	mutex_enter(&spa->spa_scrub_lock);
2737 	/*
2738 	 * Do not give too much work to vdev(s).
2739 	 */
2740 	while (spa->spa_scrub_inflight >= spa->spa_scrub_maxinflight) {
2741 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2742 	}
2743 	spa->spa_scrub_inflight++;
2744 	mutex_exit(&spa->spa_scrub_lock);
2745 
2746 	data = arc_data_buf_alloc(size);
2747 
2748 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2749 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
2750 
2751 	flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL;
2752 
2753 	zio_nowait(zio_read(NULL, spa, bp, data, size,
2754 	    spa_scrub_io_done, NULL, priority, flags, zb));
2755 }
2756 
2757 /* ARGSUSED */
2758 static int
2759 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
2760 {
2761 	blkptr_t *bp = &bc->bc_blkptr;
2762 	vdev_t *vd = spa->spa_root_vdev;
2763 	dva_t *dva = bp->blk_dva;
2764 	int needs_resilver = B_FALSE;
2765 	int d;
2766 
2767 	if (bc->bc_errno) {
2768 		/*
2769 		 * We can't scrub this block, but we can continue to scrub
2770 		 * the rest of the pool.  Note the error and move along.
2771 		 */
2772 		mutex_enter(&spa->spa_scrub_lock);
2773 		spa->spa_scrub_errors++;
2774 		mutex_exit(&spa->spa_scrub_lock);
2775 
2776 		mutex_enter(&vd->vdev_stat_lock);
2777 		vd->vdev_stat.vs_scrub_errors++;
2778 		mutex_exit(&vd->vdev_stat_lock);
2779 
2780 		return (ERESTART);
2781 	}
2782 
2783 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
2784 
2785 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
2786 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
2787 
2788 		ASSERT(vd != NULL);
2789 
2790 		/*
2791 		 * Keep track of how much data we've examined so that
2792 		 * zpool(1M) status can make useful progress reports.
2793 		 */
2794 		mutex_enter(&vd->vdev_stat_lock);
2795 		vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
2796 		mutex_exit(&vd->vdev_stat_lock);
2797 
2798 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
2799 			if (DVA_GET_GANG(&dva[d])) {
2800 				/*
2801 				 * Gang members may be spread across multiple
2802 				 * vdevs, so the best we can do is look at the
2803 				 * pool-wide DTL.
2804 				 * XXX -- it would be better to change our
2805 				 * allocation policy to ensure that this can't
2806 				 * happen.
2807 				 */
2808 				vd = spa->spa_root_vdev;
2809 			}
2810 			if (vdev_dtl_contains(&vd->vdev_dtl_map,
2811 			    bp->blk_birth, 1))
2812 				needs_resilver = B_TRUE;
2813 		}
2814 	}
2815 
2816 	if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
2817 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
2818 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
2819 	else if (needs_resilver)
2820 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
2821 		    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
2822 
2823 	return (0);
2824 }
2825 
2826 static void
2827 spa_scrub_thread(spa_t *spa)
2828 {
2829 	callb_cpr_t cprinfo;
2830 	traverse_handle_t *th = spa->spa_scrub_th;
2831 	vdev_t *rvd = spa->spa_root_vdev;
2832 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
2833 	int error = 0;
2834 	boolean_t complete;
2835 
2836 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
2837 
2838 	/*
2839 	 * If we're restarting due to a snapshot create/delete,
2840 	 * wait for that to complete.
2841 	 */
2842 	txg_wait_synced(spa_get_dsl(spa), 0);
2843 
2844 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
2845 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2846 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
2847 
2848 	spa_config_enter(spa, RW_WRITER, FTAG);
2849 	vdev_reopen(rvd);		/* purge all vdev caches */
2850 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
2851 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
2852 	spa_config_exit(spa, FTAG);
2853 
2854 	mutex_enter(&spa->spa_scrub_lock);
2855 	spa->spa_scrub_errors = 0;
2856 	spa->spa_scrub_active = 1;
2857 	ASSERT(spa->spa_scrub_inflight == 0);
2858 
2859 	while (!spa->spa_scrub_stop) {
2860 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2861 		while (spa->spa_scrub_suspended) {
2862 			spa->spa_scrub_active = 0;
2863 			cv_broadcast(&spa->spa_scrub_cv);
2864 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2865 			spa->spa_scrub_active = 1;
2866 		}
2867 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
2868 
2869 		if (spa->spa_scrub_restart_txg != 0)
2870 			break;
2871 
2872 		mutex_exit(&spa->spa_scrub_lock);
2873 		error = traverse_more(th);
2874 		mutex_enter(&spa->spa_scrub_lock);
2875 		if (error != EAGAIN)
2876 			break;
2877 	}
2878 
2879 	while (spa->spa_scrub_inflight)
2880 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2881 
2882 	spa->spa_scrub_active = 0;
2883 	cv_broadcast(&spa->spa_scrub_cv);
2884 
2885 	mutex_exit(&spa->spa_scrub_lock);
2886 
2887 	spa_config_enter(spa, RW_WRITER, FTAG);
2888 
2889 	mutex_enter(&spa->spa_scrub_lock);
2890 
2891 	/*
2892 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
2893 	 * AND the spa config lock to synchronize with any config changes
2894 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
2895 	 */
2896 	if (spa->spa_scrub_restart_txg != 0)
2897 		error = ERESTART;
2898 
2899 	if (spa->spa_scrub_stop)
2900 		error = EINTR;
2901 
2902 	/*
2903 	 * Even if there were uncorrectable errors, we consider the scrub
2904 	 * completed.  The downside is that if there is a transient error during
2905 	 * a resilver, we won't resilver the data properly to the target.  But
2906 	 * if the damage is permanent (more likely) we will resilver forever,
2907 	 * which isn't really acceptable.  Since there is enough information for
2908 	 * the user to know what has failed and why, this seems like a more
2909 	 * tractable approach.
2910 	 */
2911 	complete = (error == 0);
2912 
2913 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
2914 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2915 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
2916 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
2917 
2918 	mutex_exit(&spa->spa_scrub_lock);
2919 
2920 	/*
2921 	 * If the scrub/resilver completed, update all DTLs to reflect this.
2922 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
2923 	 */
2924 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
2925 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
2926 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
2927 	spa_errlog_rotate(spa);
2928 
2929 	if (scrub_type == POOL_SCRUB_RESILVER && complete)
2930 		spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_FINISH);
2931 
2932 	spa_config_exit(spa, FTAG);
2933 
2934 	mutex_enter(&spa->spa_scrub_lock);
2935 
2936 	/*
2937 	 * We may have finished replacing a device.
2938 	 * Let the async thread assess this and handle the detach.
2939 	 */
2940 	spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
2941 
2942 	/*
2943 	 * If we were told to restart, our final act is to start a new scrub.
2944 	 */
2945 	if (error == ERESTART)
2946 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
2947 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
2948 
2949 	spa->spa_scrub_type = POOL_SCRUB_NONE;
2950 	spa->spa_scrub_active = 0;
2951 	spa->spa_scrub_thread = NULL;
2952 	cv_broadcast(&spa->spa_scrub_cv);
2953 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
2954 	thread_exit();
2955 }
2956 
2957 void
2958 spa_scrub_suspend(spa_t *spa)
2959 {
2960 	mutex_enter(&spa->spa_scrub_lock);
2961 	spa->spa_scrub_suspended++;
2962 	while (spa->spa_scrub_active) {
2963 		cv_broadcast(&spa->spa_scrub_cv);
2964 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2965 	}
2966 	while (spa->spa_scrub_inflight)
2967 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2968 	mutex_exit(&spa->spa_scrub_lock);
2969 }
2970 
2971 void
2972 spa_scrub_resume(spa_t *spa)
2973 {
2974 	mutex_enter(&spa->spa_scrub_lock);
2975 	ASSERT(spa->spa_scrub_suspended != 0);
2976 	if (--spa->spa_scrub_suspended == 0)
2977 		cv_broadcast(&spa->spa_scrub_cv);
2978 	mutex_exit(&spa->spa_scrub_lock);
2979 }
2980 
2981 void
2982 spa_scrub_restart(spa_t *spa, uint64_t txg)
2983 {
2984 	/*
2985 	 * Something happened (e.g. snapshot create/delete) that means
2986 	 * we must restart any in-progress scrubs.  The itinerary will
2987 	 * fix this properly.
2988 	 */
2989 	mutex_enter(&spa->spa_scrub_lock);
2990 	spa->spa_scrub_restart_txg = txg;
2991 	mutex_exit(&spa->spa_scrub_lock);
2992 }
2993 
2994 int
2995 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
2996 {
2997 	space_seg_t *ss;
2998 	uint64_t mintxg, maxtxg;
2999 	vdev_t *rvd = spa->spa_root_vdev;
3000 
3001 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3002 	ASSERT(!spa_config_held(spa, RW_WRITER));
3003 
3004 	if ((uint_t)type >= POOL_SCRUB_TYPES)
3005 		return (ENOTSUP);
3006 
3007 	mutex_enter(&spa->spa_scrub_lock);
3008 
3009 	/*
3010 	 * If there's a scrub or resilver already in progress, stop it.
3011 	 */
3012 	while (spa->spa_scrub_thread != NULL) {
3013 		/*
3014 		 * Don't stop a resilver unless forced.
3015 		 */
3016 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
3017 			mutex_exit(&spa->spa_scrub_lock);
3018 			return (EBUSY);
3019 		}
3020 		spa->spa_scrub_stop = 1;
3021 		cv_broadcast(&spa->spa_scrub_cv);
3022 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
3023 	}
3024 
3025 	/*
3026 	 * Terminate the previous traverse.
3027 	 */
3028 	if (spa->spa_scrub_th != NULL) {
3029 		traverse_fini(spa->spa_scrub_th);
3030 		spa->spa_scrub_th = NULL;
3031 	}
3032 
3033 	if (rvd == NULL) {
3034 		ASSERT(spa->spa_scrub_stop == 0);
3035 		ASSERT(spa->spa_scrub_type == type);
3036 		ASSERT(spa->spa_scrub_restart_txg == 0);
3037 		mutex_exit(&spa->spa_scrub_lock);
3038 		return (0);
3039 	}
3040 
3041 	mintxg = TXG_INITIAL - 1;
3042 	maxtxg = spa_last_synced_txg(spa) + 1;
3043 
3044 	mutex_enter(&rvd->vdev_dtl_lock);
3045 
3046 	if (rvd->vdev_dtl_map.sm_space == 0) {
3047 		/*
3048 		 * The pool-wide DTL is empty.
3049 		 * If this is a resilver, there's nothing to do except
3050 		 * check whether any in-progress replacements have completed.
3051 		 */
3052 		if (type == POOL_SCRUB_RESILVER) {
3053 			type = POOL_SCRUB_NONE;
3054 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3055 		}
3056 	} else {
3057 		/*
3058 		 * The pool-wide DTL is non-empty.
3059 		 * If this is a normal scrub, upgrade to a resilver instead.
3060 		 */
3061 		if (type == POOL_SCRUB_EVERYTHING)
3062 			type = POOL_SCRUB_RESILVER;
3063 	}
3064 
3065 	if (type == POOL_SCRUB_RESILVER) {
3066 		/*
3067 		 * Determine the resilvering boundaries.
3068 		 *
3069 		 * Note: (mintxg, maxtxg) is an open interval,
3070 		 * i.e. mintxg and maxtxg themselves are not included.
3071 		 *
3072 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
3073 		 * so we don't claim to resilver a txg that's still changing.
3074 		 */
3075 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
3076 		mintxg = ss->ss_start - 1;
3077 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
3078 		maxtxg = MIN(ss->ss_end, maxtxg);
3079 
3080 		spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_START);
3081 	}
3082 
3083 	mutex_exit(&rvd->vdev_dtl_lock);
3084 
3085 	spa->spa_scrub_stop = 0;
3086 	spa->spa_scrub_type = type;
3087 	spa->spa_scrub_restart_txg = 0;
3088 
3089 	if (type != POOL_SCRUB_NONE) {
3090 		spa->spa_scrub_mintxg = mintxg;
3091 		spa->spa_scrub_maxtxg = maxtxg;
3092 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
3093 		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
3094 		    ZIO_FLAG_CANFAIL);
3095 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
3096 		spa->spa_scrub_thread = thread_create(NULL, 0,
3097 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
3098 	}
3099 
3100 	mutex_exit(&spa->spa_scrub_lock);
3101 
3102 	return (0);
3103 }
3104 
3105 /*
3106  * ==========================================================================
3107  * SPA async task processing
3108  * ==========================================================================
3109  */
3110 
3111 static void
3112 spa_async_remove(spa_t *spa, vdev_t *vd)
3113 {
3114 	vdev_t *tvd;
3115 	int c;
3116 
3117 	for (c = 0; c < vd->vdev_children; c++) {
3118 		tvd = vd->vdev_child[c];
3119 		if (tvd->vdev_remove_wanted) {
3120 			tvd->vdev_remove_wanted = 0;
3121 			vdev_set_state(tvd, B_FALSE, VDEV_STATE_REMOVED,
3122 			    VDEV_AUX_NONE);
3123 			vdev_clear(spa, tvd, B_TRUE);
3124 			vdev_config_dirty(tvd->vdev_top);
3125 		}
3126 		spa_async_remove(spa, tvd);
3127 	}
3128 }
3129 
3130 static void
3131 spa_async_thread(spa_t *spa)
3132 {
3133 	int tasks;
3134 	uint64_t txg;
3135 
3136 	ASSERT(spa->spa_sync_on);
3137 
3138 	mutex_enter(&spa->spa_async_lock);
3139 	tasks = spa->spa_async_tasks;
3140 	spa->spa_async_tasks = 0;
3141 	mutex_exit(&spa->spa_async_lock);
3142 
3143 	/*
3144 	 * See if the config needs to be updated.
3145 	 */
3146 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3147 		mutex_enter(&spa_namespace_lock);
3148 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3149 		mutex_exit(&spa_namespace_lock);
3150 	}
3151 
3152 	/*
3153 	 * See if any devices need to be marked REMOVED.
3154 	 *
3155 	 * XXX - We avoid doing this when we are in
3156 	 * I/O failure state since spa_vdev_enter() grabs
3157 	 * the namespace lock and would not be able to obtain
3158 	 * the writer config lock.
3159 	 */
3160 	if (tasks & SPA_ASYNC_REMOVE &&
3161 	    spa_state(spa) != POOL_STATE_IO_FAILURE) {
3162 		txg = spa_vdev_enter(spa);
3163 		spa_async_remove(spa, spa->spa_root_vdev);
3164 		(void) spa_vdev_exit(spa, NULL, txg, 0);
3165 	}
3166 
3167 	/*
3168 	 * If any devices are done replacing, detach them.
3169 	 */
3170 	if (tasks & SPA_ASYNC_RESILVER_DONE)
3171 		spa_vdev_resilver_done(spa);
3172 
3173 	/*
3174 	 * Kick off a scrub.  When starting a RESILVER scrub (or an EVERYTHING
3175 	 * scrub which can become a resilver), we need to hold
3176 	 * spa_namespace_lock() because the sysevent we post via
3177 	 * spa_event_notify() needs to get the name of the pool.
3178 	 */
3179 	if (tasks & SPA_ASYNC_SCRUB) {
3180 		mutex_enter(&spa_namespace_lock);
3181 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
3182 		mutex_exit(&spa_namespace_lock);
3183 	}
3184 
3185 	/*
3186 	 * Kick off a resilver.
3187 	 */
3188 	if (tasks & SPA_ASYNC_RESILVER) {
3189 		mutex_enter(&spa_namespace_lock);
3190 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
3191 		mutex_exit(&spa_namespace_lock);
3192 	}
3193 
3194 	/*
3195 	 * Let the world know that we're done.
3196 	 */
3197 	mutex_enter(&spa->spa_async_lock);
3198 	spa->spa_async_thread = NULL;
3199 	cv_broadcast(&spa->spa_async_cv);
3200 	mutex_exit(&spa->spa_async_lock);
3201 	thread_exit();
3202 }
3203 
3204 void
3205 spa_async_suspend(spa_t *spa)
3206 {
3207 	mutex_enter(&spa->spa_async_lock);
3208 	spa->spa_async_suspended++;
3209 	while (spa->spa_async_thread != NULL)
3210 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3211 	mutex_exit(&spa->spa_async_lock);
3212 }
3213 
3214 void
3215 spa_async_resume(spa_t *spa)
3216 {
3217 	mutex_enter(&spa->spa_async_lock);
3218 	ASSERT(spa->spa_async_suspended != 0);
3219 	spa->spa_async_suspended--;
3220 	mutex_exit(&spa->spa_async_lock);
3221 }
3222 
3223 static void
3224 spa_async_dispatch(spa_t *spa)
3225 {
3226 	mutex_enter(&spa->spa_async_lock);
3227 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3228 	    spa->spa_async_thread == NULL &&
3229 	    rootdir != NULL && !vn_is_readonly(rootdir))
3230 		spa->spa_async_thread = thread_create(NULL, 0,
3231 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3232 	mutex_exit(&spa->spa_async_lock);
3233 }
3234 
3235 void
3236 spa_async_request(spa_t *spa, int task)
3237 {
3238 	mutex_enter(&spa->spa_async_lock);
3239 	spa->spa_async_tasks |= task;
3240 	mutex_exit(&spa->spa_async_lock);
3241 }
3242 
3243 /*
3244  * ==========================================================================
3245  * SPA syncing routines
3246  * ==========================================================================
3247  */
3248 
3249 static void
3250 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3251 {
3252 	bplist_t *bpl = &spa->spa_sync_bplist;
3253 	dmu_tx_t *tx;
3254 	blkptr_t blk;
3255 	uint64_t itor = 0;
3256 	zio_t *zio;
3257 	int error;
3258 	uint8_t c = 1;
3259 
3260 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
3261 
3262 	while (bplist_iterate(bpl, &itor, &blk) == 0)
3263 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
3264 
3265 	error = zio_wait(zio);
3266 	ASSERT3U(error, ==, 0);
3267 
3268 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3269 	bplist_vacate(bpl, tx);
3270 
3271 	/*
3272 	 * Pre-dirty the first block so we sync to convergence faster.
3273 	 * (Usually only the first block is needed.)
3274 	 */
3275 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3276 	dmu_tx_commit(tx);
3277 }
3278 
3279 static void
3280 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3281 {
3282 	char *packed = NULL;
3283 	size_t nvsize = 0;
3284 	dmu_buf_t *db;
3285 
3286 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3287 
3288 	packed = kmem_alloc(nvsize, KM_SLEEP);
3289 
3290 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3291 	    KM_SLEEP) == 0);
3292 
3293 	dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
3294 
3295 	kmem_free(packed, nvsize);
3296 
3297 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3298 	dmu_buf_will_dirty(db, tx);
3299 	*(uint64_t *)db->db_data = nvsize;
3300 	dmu_buf_rele(db, FTAG);
3301 }
3302 
3303 static void
3304 spa_sync_spares(spa_t *spa, dmu_tx_t *tx)
3305 {
3306 	nvlist_t *nvroot;
3307 	nvlist_t **spares;
3308 	int i;
3309 
3310 	if (!spa->spa_sync_spares)
3311 		return;
3312 
3313 	/*
3314 	 * Update the MOS nvlist describing the list of available spares.
3315 	 * spa_validate_spares() will have already made sure this nvlist is
3316 	 * valid and the vdevs are labeled appropriately.
3317 	 */
3318 	if (spa->spa_spares_object == 0) {
3319 		spa->spa_spares_object = dmu_object_alloc(spa->spa_meta_objset,
3320 		    DMU_OT_PACKED_NVLIST, 1 << 14,
3321 		    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3322 		VERIFY(zap_update(spa->spa_meta_objset,
3323 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES,
3324 		    sizeof (uint64_t), 1, &spa->spa_spares_object, tx) == 0);
3325 	}
3326 
3327 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3328 	if (spa->spa_nspares == 0) {
3329 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3330 		    NULL, 0) == 0);
3331 	} else {
3332 		spares = kmem_alloc(spa->spa_nspares * sizeof (void *),
3333 		    KM_SLEEP);
3334 		for (i = 0; i < spa->spa_nspares; i++)
3335 			spares[i] = vdev_config_generate(spa,
3336 			    spa->spa_spares[i], B_FALSE, B_TRUE);
3337 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3338 		    spares, spa->spa_nspares) == 0);
3339 		for (i = 0; i < spa->spa_nspares; i++)
3340 			nvlist_free(spares[i]);
3341 		kmem_free(spares, spa->spa_nspares * sizeof (void *));
3342 	}
3343 
3344 	spa_sync_nvlist(spa, spa->spa_spares_object, nvroot, tx);
3345 	nvlist_free(nvroot);
3346 
3347 	spa->spa_sync_spares = B_FALSE;
3348 }
3349 
3350 static void
3351 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3352 {
3353 	nvlist_t *config;
3354 
3355 	if (list_is_empty(&spa->spa_dirty_list))
3356 		return;
3357 
3358 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
3359 
3360 	if (spa->spa_config_syncing)
3361 		nvlist_free(spa->spa_config_syncing);
3362 	spa->spa_config_syncing = config;
3363 
3364 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
3365 }
3366 
3367 /*
3368  * Set zpool properties.
3369  */
3370 static void
3371 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
3372 {
3373 	spa_t *spa = arg1;
3374 	objset_t *mos = spa->spa_meta_objset;
3375 	nvlist_t *nvp = arg2;
3376 	nvpair_t *elem;
3377 	uint64_t intval;
3378 	char *strval;
3379 	zpool_prop_t prop;
3380 	const char *propname;
3381 	zprop_type_t proptype;
3382 
3383 	elem = NULL;
3384 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
3385 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
3386 		case ZPOOL_PROP_VERSION:
3387 			/*
3388 			 * Only set version for non-zpool-creation cases
3389 			 * (set/import). spa_create() needs special care
3390 			 * for version setting.
3391 			 */
3392 			if (tx->tx_txg != TXG_INITIAL) {
3393 				VERIFY(nvpair_value_uint64(elem,
3394 				    &intval) == 0);
3395 				ASSERT(intval <= SPA_VERSION);
3396 				ASSERT(intval >= spa_version(spa));
3397 				spa->spa_uberblock.ub_version = intval;
3398 				vdev_config_dirty(spa->spa_root_vdev);
3399 			}
3400 			break;
3401 
3402 		case ZPOOL_PROP_ALTROOT:
3403 			/*
3404 			 * 'altroot' is a non-persistent property. It should
3405 			 * have been set temporarily at creation or import time.
3406 			 */
3407 			ASSERT(spa->spa_root != NULL);
3408 			break;
3409 
3410 		case ZPOOL_PROP_TEMPORARY:
3411 			/*
3412 			 * 'temporary' is a non-persistant property.
3413 			 */
3414 			VERIFY(nvpair_value_uint64(elem, &intval) == 0);
3415 			spa->spa_temporary = intval;
3416 			break;
3417 		default:
3418 			/*
3419 			 * Set pool property values in the poolprops mos object.
3420 			 */
3421 			mutex_enter(&spa->spa_props_lock);
3422 			if (spa->spa_pool_props_object == 0) {
3423 				objset_t *mos = spa->spa_meta_objset;
3424 
3425 				VERIFY((spa->spa_pool_props_object =
3426 				    zap_create(mos, DMU_OT_POOL_PROPS,
3427 				    DMU_OT_NONE, 0, tx)) > 0);
3428 
3429 				VERIFY(zap_update(mos,
3430 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
3431 				    8, 1, &spa->spa_pool_props_object, tx)
3432 				    == 0);
3433 			}
3434 			mutex_exit(&spa->spa_props_lock);
3435 
3436 			/* normalize the property name */
3437 			propname = zpool_prop_to_name(prop);
3438 			proptype = zpool_prop_get_type(prop);
3439 
3440 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
3441 				ASSERT(proptype == PROP_TYPE_STRING);
3442 				VERIFY(nvpair_value_string(elem, &strval) == 0);
3443 				VERIFY(zap_update(mos,
3444 				    spa->spa_pool_props_object, propname,
3445 				    1, strlen(strval) + 1, strval, tx) == 0);
3446 
3447 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
3448 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
3449 
3450 				if (proptype == PROP_TYPE_INDEX) {
3451 					const char *unused;
3452 					VERIFY(zpool_prop_index_to_string(
3453 					    prop, intval, &unused) == 0);
3454 				}
3455 				VERIFY(zap_update(mos,
3456 				    spa->spa_pool_props_object, propname,
3457 				    8, 1, &intval, tx) == 0);
3458 			} else {
3459 				ASSERT(0); /* not allowed */
3460 			}
3461 
3462 			switch (prop) {
3463 			case ZPOOL_PROP_DELEGATION:
3464 				spa->spa_delegation = intval;
3465 				break;
3466 			case ZPOOL_PROP_BOOTFS:
3467 				spa->spa_bootfs = intval;
3468 				break;
3469 			case ZPOOL_PROP_FAILUREMODE:
3470 				spa->spa_failmode = intval;
3471 				break;
3472 			default:
3473 				break;
3474 			}
3475 		}
3476 
3477 		/* log internal history if this is not a zpool create */
3478 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
3479 		    tx->tx_txg != TXG_INITIAL) {
3480 			spa_history_internal_log(LOG_POOL_PROPSET,
3481 			    spa, tx, cr, "%s %lld %s",
3482 			    nvpair_name(elem), intval, spa->spa_name);
3483 		}
3484 	}
3485 }
3486 
3487 /*
3488  * Sync the specified transaction group.  New blocks may be dirtied as
3489  * part of the process, so we iterate until it converges.
3490  */
3491 void
3492 spa_sync(spa_t *spa, uint64_t txg)
3493 {
3494 	dsl_pool_t *dp = spa->spa_dsl_pool;
3495 	objset_t *mos = spa->spa_meta_objset;
3496 	bplist_t *bpl = &spa->spa_sync_bplist;
3497 	vdev_t *rvd = spa->spa_root_vdev;
3498 	vdev_t *vd;
3499 	dmu_tx_t *tx;
3500 	int dirty_vdevs;
3501 
3502 	/*
3503 	 * Lock out configuration changes.
3504 	 */
3505 	spa_config_enter(spa, RW_READER, FTAG);
3506 
3507 	spa->spa_syncing_txg = txg;
3508 	spa->spa_sync_pass = 0;
3509 
3510 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
3511 
3512 	tx = dmu_tx_create_assigned(dp, txg);
3513 
3514 	/*
3515 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
3516 	 * set spa_deflate if we have no raid-z vdevs.
3517 	 */
3518 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
3519 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
3520 		int i;
3521 
3522 		for (i = 0; i < rvd->vdev_children; i++) {
3523 			vd = rvd->vdev_child[i];
3524 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
3525 				break;
3526 		}
3527 		if (i == rvd->vdev_children) {
3528 			spa->spa_deflate = TRUE;
3529 			VERIFY(0 == zap_add(spa->spa_meta_objset,
3530 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3531 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
3532 		}
3533 	}
3534 
3535 	/*
3536 	 * If anything has changed in this txg, push the deferred frees
3537 	 * from the previous txg.  If not, leave them alone so that we
3538 	 * don't generate work on an otherwise idle system.
3539 	 */
3540 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
3541 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
3542 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
3543 		spa_sync_deferred_frees(spa, txg);
3544 
3545 	/*
3546 	 * Iterate to convergence.
3547 	 */
3548 	do {
3549 		spa->spa_sync_pass++;
3550 
3551 		spa_sync_config_object(spa, tx);
3552 		spa_sync_spares(spa, tx);
3553 		spa_errlog_sync(spa, txg);
3554 		dsl_pool_sync(dp, txg);
3555 
3556 		dirty_vdevs = 0;
3557 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
3558 			vdev_sync(vd, txg);
3559 			dirty_vdevs++;
3560 		}
3561 
3562 		bplist_sync(bpl, tx);
3563 	} while (dirty_vdevs);
3564 
3565 	bplist_close(bpl);
3566 
3567 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
3568 
3569 	/*
3570 	 * Rewrite the vdev configuration (which includes the uberblock)
3571 	 * to commit the transaction group.
3572 	 *
3573 	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
3574 	 * Otherwise, pick a random top-level vdev that's known to be
3575 	 * visible in the config cache (see spa_vdev_add() for details).
3576 	 * If the write fails, try the next vdev until we're tried them all.
3577 	 */
3578 	if (!list_is_empty(&spa->spa_dirty_list)) {
3579 		VERIFY(vdev_config_sync(rvd, txg) == 0);
3580 	} else {
3581 		int children = rvd->vdev_children;
3582 		int c0 = spa_get_random(children);
3583 		int c;
3584 
3585 		for (c = 0; c < children; c++) {
3586 			vd = rvd->vdev_child[(c0 + c) % children];
3587 			if (vd->vdev_ms_array == 0)
3588 				continue;
3589 			if (vdev_config_sync(vd, txg) == 0)
3590 				break;
3591 		}
3592 		if (c == children)
3593 			VERIFY(vdev_config_sync(rvd, txg) == 0);
3594 	}
3595 
3596 	dmu_tx_commit(tx);
3597 
3598 	/*
3599 	 * Clear the dirty config list.
3600 	 */
3601 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
3602 		vdev_config_clean(vd);
3603 
3604 	/*
3605 	 * Now that the new config has synced transactionally,
3606 	 * let it become visible to the config cache.
3607 	 */
3608 	if (spa->spa_config_syncing != NULL) {
3609 		spa_config_set(spa, spa->spa_config_syncing);
3610 		spa->spa_config_txg = txg;
3611 		spa->spa_config_syncing = NULL;
3612 	}
3613 
3614 	/*
3615 	 * Make a stable copy of the fully synced uberblock.
3616 	 * We use this as the root for pool traversals.
3617 	 */
3618 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
3619 
3620 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
3621 
3622 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
3623 	spa->spa_traverse_wanted = 0;
3624 	spa->spa_ubsync = spa->spa_uberblock;
3625 	rw_exit(&spa->spa_traverse_lock);
3626 
3627 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
3628 
3629 	/*
3630 	 * Clean up the ZIL records for the synced txg.
3631 	 */
3632 	dsl_pool_zil_clean(dp);
3633 
3634 	/*
3635 	 * Update usable space statistics.
3636 	 */
3637 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
3638 		vdev_sync_done(vd, txg);
3639 
3640 	/*
3641 	 * It had better be the case that we didn't dirty anything
3642 	 * since vdev_config_sync().
3643 	 */
3644 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
3645 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
3646 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
3647 	ASSERT(bpl->bpl_queue == NULL);
3648 
3649 	spa_config_exit(spa, FTAG);
3650 
3651 	/*
3652 	 * If any async tasks have been requested, kick them off.
3653 	 */
3654 	spa_async_dispatch(spa);
3655 }
3656 
3657 /*
3658  * Sync all pools.  We don't want to hold the namespace lock across these
3659  * operations, so we take a reference on the spa_t and drop the lock during the
3660  * sync.
3661  */
3662 void
3663 spa_sync_allpools(void)
3664 {
3665 	spa_t *spa = NULL;
3666 	mutex_enter(&spa_namespace_lock);
3667 	while ((spa = spa_next(spa)) != NULL) {
3668 		if (spa_state(spa) != POOL_STATE_ACTIVE)
3669 			continue;
3670 		spa_open_ref(spa, FTAG);
3671 		mutex_exit(&spa_namespace_lock);
3672 		txg_wait_synced(spa_get_dsl(spa), 0);
3673 		mutex_enter(&spa_namespace_lock);
3674 		spa_close(spa, FTAG);
3675 	}
3676 	mutex_exit(&spa_namespace_lock);
3677 }
3678 
3679 /*
3680  * ==========================================================================
3681  * Miscellaneous routines
3682  * ==========================================================================
3683  */
3684 
3685 /*
3686  * Remove all pools in the system.
3687  */
3688 void
3689 spa_evict_all(void)
3690 {
3691 	spa_t *spa;
3692 
3693 	/*
3694 	 * Remove all cached state.  All pools should be closed now,
3695 	 * so every spa in the AVL tree should be unreferenced.
3696 	 */
3697 	mutex_enter(&spa_namespace_lock);
3698 	while ((spa = spa_next(NULL)) != NULL) {
3699 		/*
3700 		 * Stop async tasks.  The async thread may need to detach
3701 		 * a device that's been replaced, which requires grabbing
3702 		 * spa_namespace_lock, so we must drop it here.
3703 		 */
3704 		spa_open_ref(spa, FTAG);
3705 		mutex_exit(&spa_namespace_lock);
3706 		spa_async_suspend(spa);
3707 		mutex_enter(&spa_namespace_lock);
3708 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
3709 		spa_close(spa, FTAG);
3710 
3711 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3712 			spa_unload(spa);
3713 			spa_deactivate(spa);
3714 		}
3715 		spa_remove(spa);
3716 	}
3717 	mutex_exit(&spa_namespace_lock);
3718 }
3719 
3720 vdev_t *
3721 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
3722 {
3723 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
3724 }
3725 
3726 void
3727 spa_upgrade(spa_t *spa, uint64_t version)
3728 {
3729 	spa_config_enter(spa, RW_WRITER, FTAG);
3730 
3731 	/*
3732 	 * This should only be called for a non-faulted pool, and since a
3733 	 * future version would result in an unopenable pool, this shouldn't be
3734 	 * possible.
3735 	 */
3736 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
3737 	ASSERT(version >= spa->spa_uberblock.ub_version);
3738 
3739 	spa->spa_uberblock.ub_version = version;
3740 	vdev_config_dirty(spa->spa_root_vdev);
3741 
3742 	spa_config_exit(spa, FTAG);
3743 
3744 	txg_wait_synced(spa_get_dsl(spa), 0);
3745 }
3746 
3747 boolean_t
3748 spa_has_spare(spa_t *spa, uint64_t guid)
3749 {
3750 	int i;
3751 	uint64_t spareguid;
3752 
3753 	for (i = 0; i < spa->spa_nspares; i++)
3754 		if (spa->spa_spares[i]->vdev_guid == guid)
3755 			return (B_TRUE);
3756 
3757 	for (i = 0; i < spa->spa_pending_nspares; i++) {
3758 		if (nvlist_lookup_uint64(spa->spa_pending_spares[i],
3759 		    ZPOOL_CONFIG_GUID, &spareguid) == 0 &&
3760 		    spareguid == guid)
3761 			return (B_TRUE);
3762 	}
3763 
3764 	return (B_FALSE);
3765 }
3766 
3767 /*
3768  * Post a sysevent corresponding to the given event.  The 'name' must be one of
3769  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
3770  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
3771  * in the userland libzpool, as we don't want consumers to misinterpret ztest
3772  * or zdb as real changes.
3773  */
3774 void
3775 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
3776 {
3777 #ifdef _KERNEL
3778 	sysevent_t		*ev;
3779 	sysevent_attr_list_t	*attr = NULL;
3780 	sysevent_value_t	value;
3781 	sysevent_id_t		eid;
3782 
3783 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
3784 	    SE_SLEEP);
3785 
3786 	value.value_type = SE_DATA_TYPE_STRING;
3787 	value.value.sv_string = spa_name(spa);
3788 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
3789 		goto done;
3790 
3791 	value.value_type = SE_DATA_TYPE_UINT64;
3792 	value.value.sv_uint64 = spa_guid(spa);
3793 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
3794 		goto done;
3795 
3796 	if (vd) {
3797 		value.value_type = SE_DATA_TYPE_UINT64;
3798 		value.value.sv_uint64 = vd->vdev_guid;
3799 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
3800 		    SE_SLEEP) != 0)
3801 			goto done;
3802 
3803 		if (vd->vdev_path) {
3804 			value.value_type = SE_DATA_TYPE_STRING;
3805 			value.value.sv_string = vd->vdev_path;
3806 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
3807 			    &value, SE_SLEEP) != 0)
3808 				goto done;
3809 		}
3810 	}
3811 
3812 	(void) log_sysevent(ev, SE_SLEEP, &eid);
3813 
3814 done:
3815 	if (attr)
3816 		sysevent_free_attr(attr);
3817 	sysevent_free(ev);
3818 #endif
3819 }
3820