1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* 29 * SPA: Storage Pool Allocator 30 * 31 * This file contains all the routines used when modifying on-disk SPA state. 32 * This includes opening, importing, destroying, exporting a pool, and syncing a 33 * pool. 34 */ 35 36 #include <sys/zfs_context.h> 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/spa_impl.h> 39 #include <sys/zio.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/ddt.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/uberblock_impl.h> 50 #include <sys/txg.h> 51 #include <sys/avl.h> 52 #include <sys/dmu_traverse.h> 53 #include <sys/dmu_objset.h> 54 #include <sys/unique.h> 55 #include <sys/dsl_pool.h> 56 #include <sys/dsl_dataset.h> 57 #include <sys/dsl_dir.h> 58 #include <sys/dsl_prop.h> 59 #include <sys/dsl_synctask.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/arc.h> 62 #include <sys/callb.h> 63 #include <sys/systeminfo.h> 64 #include <sys/spa_boot.h> 65 #include <sys/zfs_ioctl.h> 66 #include <sys/dsl_scan.h> 67 #include <sys/zfeature.h> 68 #include <sys/dsl_destroy.h> 69 70 #ifdef _KERNEL 71 #include <sys/bootprops.h> 72 #include <sys/callb.h> 73 #include <sys/cpupart.h> 74 #include <sys/pool.h> 75 #include <sys/sysdc.h> 76 #include <sys/zone.h> 77 #endif /* _KERNEL */ 78 79 #include "zfs_prop.h" 80 #include "zfs_comutil.h" 81 82 /* 83 * The interval, in seconds, at which failed configuration cache file writes 84 * should be retried. 85 */ 86 static int zfs_ccw_retry_interval = 300; 87 88 typedef enum zti_modes { 89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 90 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 91 ZTI_MODE_NULL, /* don't create a taskq */ 92 ZTI_NMODES 93 } zti_modes_t; 94 95 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 98 99 #define ZTI_N(n) ZTI_P(n, 1) 100 #define ZTI_ONE ZTI_N(1) 101 102 typedef struct zio_taskq_info { 103 zti_modes_t zti_mode; 104 uint_t zti_value; 105 uint_t zti_count; 106 } zio_taskq_info_t; 107 108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 109 "issue", "issue_high", "intr", "intr_high" 110 }; 111 112 /* 113 * This table defines the taskq settings for each ZFS I/O type. When 114 * initializing a pool, we use this table to create an appropriately sized 115 * taskq. Some operations are low volume and therefore have a small, static 116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 117 * macros. Other operations process a large amount of data; the ZTI_BATCH 118 * macro causes us to create a taskq oriented for throughput. Some operations 119 * are so high frequency and short-lived that the taskq itself can become a a 120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 121 * additional degree of parallelism specified by the number of threads per- 122 * taskq and the number of taskqs; when dispatching an event in this case, the 123 * particular taskq is chosen at random. 124 * 125 * The different taskq priorities are to handle the different contexts (issue 126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 127 * need to be handled with minimum delay. 128 */ 129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 132 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 137 }; 138 139 static void spa_sync_version(void *arg, dmu_tx_t *tx); 140 static void spa_sync_props(void *arg, dmu_tx_t *tx); 141 static boolean_t spa_has_active_shared_spare(spa_t *spa); 142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 144 char **ereport); 145 static void spa_vdev_resilver_done(spa_t *spa); 146 147 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 148 id_t zio_taskq_psrset_bind = PS_NONE; 149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 150 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 151 152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 153 extern int zfs_sync_pass_deferred_free; 154 155 /* 156 * This (illegal) pool name is used when temporarily importing a spa_t in order 157 * to get the vdev stats associated with the imported devices. 158 */ 159 #define TRYIMPORT_NAME "$import" 160 161 /* 162 * ========================================================================== 163 * SPA properties routines 164 * ========================================================================== 165 */ 166 167 /* 168 * Add a (source=src, propname=propval) list to an nvlist. 169 */ 170 static void 171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 172 uint64_t intval, zprop_source_t src) 173 { 174 const char *propname = zpool_prop_to_name(prop); 175 nvlist_t *propval; 176 177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 179 180 if (strval != NULL) 181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 182 else 183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 184 185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 186 nvlist_free(propval); 187 } 188 189 /* 190 * Get property values from the spa configuration. 191 */ 192 static void 193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 194 { 195 vdev_t *rvd = spa->spa_root_vdev; 196 dsl_pool_t *pool = spa->spa_dsl_pool; 197 uint64_t size; 198 uint64_t alloc; 199 uint64_t space; 200 uint64_t cap, version; 201 zprop_source_t src = ZPROP_SRC_NONE; 202 spa_config_dirent_t *dp; 203 204 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 205 206 if (rvd != NULL) { 207 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 208 size = metaslab_class_get_space(spa_normal_class(spa)); 209 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 210 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 211 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 212 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 213 size - alloc, src); 214 215 space = 0; 216 for (int c = 0; c < rvd->vdev_children; c++) { 217 vdev_t *tvd = rvd->vdev_child[c]; 218 space += tvd->vdev_max_asize - tvd->vdev_asize; 219 } 220 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space, 221 src); 222 223 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 224 (spa_mode(spa) == FREAD), src); 225 226 cap = (size == 0) ? 0 : (alloc * 100 / size); 227 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 228 229 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 230 ddt_get_pool_dedup_ratio(spa), src); 231 232 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 233 rvd->vdev_state, src); 234 235 version = spa_version(spa); 236 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 237 src = ZPROP_SRC_DEFAULT; 238 else 239 src = ZPROP_SRC_LOCAL; 240 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 241 } 242 243 if (pool != NULL) { 244 /* 245 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 246 * when opening pools before this version freedir will be NULL. 247 */ 248 if (pool->dp_free_dir != NULL) { 249 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 250 pool->dp_free_dir->dd_phys->dd_used_bytes, src); 251 } else { 252 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 253 NULL, 0, src); 254 } 255 256 if (pool->dp_leak_dir != NULL) { 257 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 258 pool->dp_leak_dir->dd_phys->dd_used_bytes, src); 259 } else { 260 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 261 NULL, 0, src); 262 } 263 } 264 265 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 266 267 if (spa->spa_comment != NULL) { 268 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 269 0, ZPROP_SRC_LOCAL); 270 } 271 272 if (spa->spa_root != NULL) 273 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 274 0, ZPROP_SRC_LOCAL); 275 276 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 277 if (dp->scd_path == NULL) { 278 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 279 "none", 0, ZPROP_SRC_LOCAL); 280 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 281 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 282 dp->scd_path, 0, ZPROP_SRC_LOCAL); 283 } 284 } 285 } 286 287 /* 288 * Get zpool property values. 289 */ 290 int 291 spa_prop_get(spa_t *spa, nvlist_t **nvp) 292 { 293 objset_t *mos = spa->spa_meta_objset; 294 zap_cursor_t zc; 295 zap_attribute_t za; 296 int err; 297 298 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 299 300 mutex_enter(&spa->spa_props_lock); 301 302 /* 303 * Get properties from the spa config. 304 */ 305 spa_prop_get_config(spa, nvp); 306 307 /* If no pool property object, no more prop to get. */ 308 if (mos == NULL || spa->spa_pool_props_object == 0) { 309 mutex_exit(&spa->spa_props_lock); 310 return (0); 311 } 312 313 /* 314 * Get properties from the MOS pool property object. 315 */ 316 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 317 (err = zap_cursor_retrieve(&zc, &za)) == 0; 318 zap_cursor_advance(&zc)) { 319 uint64_t intval = 0; 320 char *strval = NULL; 321 zprop_source_t src = ZPROP_SRC_DEFAULT; 322 zpool_prop_t prop; 323 324 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 325 continue; 326 327 switch (za.za_integer_length) { 328 case 8: 329 /* integer property */ 330 if (za.za_first_integer != 331 zpool_prop_default_numeric(prop)) 332 src = ZPROP_SRC_LOCAL; 333 334 if (prop == ZPOOL_PROP_BOOTFS) { 335 dsl_pool_t *dp; 336 dsl_dataset_t *ds = NULL; 337 338 dp = spa_get_dsl(spa); 339 dsl_pool_config_enter(dp, FTAG); 340 if (err = dsl_dataset_hold_obj(dp, 341 za.za_first_integer, FTAG, &ds)) { 342 dsl_pool_config_exit(dp, FTAG); 343 break; 344 } 345 346 strval = kmem_alloc( 347 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 348 KM_SLEEP); 349 dsl_dataset_name(ds, strval); 350 dsl_dataset_rele(ds, FTAG); 351 dsl_pool_config_exit(dp, FTAG); 352 } else { 353 strval = NULL; 354 intval = za.za_first_integer; 355 } 356 357 spa_prop_add_list(*nvp, prop, strval, intval, src); 358 359 if (strval != NULL) 360 kmem_free(strval, 361 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 362 363 break; 364 365 case 1: 366 /* string property */ 367 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 368 err = zap_lookup(mos, spa->spa_pool_props_object, 369 za.za_name, 1, za.za_num_integers, strval); 370 if (err) { 371 kmem_free(strval, za.za_num_integers); 372 break; 373 } 374 spa_prop_add_list(*nvp, prop, strval, 0, src); 375 kmem_free(strval, za.za_num_integers); 376 break; 377 378 default: 379 break; 380 } 381 } 382 zap_cursor_fini(&zc); 383 mutex_exit(&spa->spa_props_lock); 384 out: 385 if (err && err != ENOENT) { 386 nvlist_free(*nvp); 387 *nvp = NULL; 388 return (err); 389 } 390 391 return (0); 392 } 393 394 /* 395 * Validate the given pool properties nvlist and modify the list 396 * for the property values to be set. 397 */ 398 static int 399 spa_prop_validate(spa_t *spa, nvlist_t *props) 400 { 401 nvpair_t *elem; 402 int error = 0, reset_bootfs = 0; 403 uint64_t objnum = 0; 404 boolean_t has_feature = B_FALSE; 405 406 elem = NULL; 407 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 408 uint64_t intval; 409 char *strval, *slash, *check, *fname; 410 const char *propname = nvpair_name(elem); 411 zpool_prop_t prop = zpool_name_to_prop(propname); 412 413 switch (prop) { 414 case ZPROP_INVAL: 415 if (!zpool_prop_feature(propname)) { 416 error = SET_ERROR(EINVAL); 417 break; 418 } 419 420 /* 421 * Sanitize the input. 422 */ 423 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 424 error = SET_ERROR(EINVAL); 425 break; 426 } 427 428 if (nvpair_value_uint64(elem, &intval) != 0) { 429 error = SET_ERROR(EINVAL); 430 break; 431 } 432 433 if (intval != 0) { 434 error = SET_ERROR(EINVAL); 435 break; 436 } 437 438 fname = strchr(propname, '@') + 1; 439 if (zfeature_lookup_name(fname, NULL) != 0) { 440 error = SET_ERROR(EINVAL); 441 break; 442 } 443 444 has_feature = B_TRUE; 445 break; 446 447 case ZPOOL_PROP_VERSION: 448 error = nvpair_value_uint64(elem, &intval); 449 if (!error && 450 (intval < spa_version(spa) || 451 intval > SPA_VERSION_BEFORE_FEATURES || 452 has_feature)) 453 error = SET_ERROR(EINVAL); 454 break; 455 456 case ZPOOL_PROP_DELEGATION: 457 case ZPOOL_PROP_AUTOREPLACE: 458 case ZPOOL_PROP_LISTSNAPS: 459 case ZPOOL_PROP_AUTOEXPAND: 460 error = nvpair_value_uint64(elem, &intval); 461 if (!error && intval > 1) 462 error = SET_ERROR(EINVAL); 463 break; 464 465 case ZPOOL_PROP_BOOTFS: 466 /* 467 * If the pool version is less than SPA_VERSION_BOOTFS, 468 * or the pool is still being created (version == 0), 469 * the bootfs property cannot be set. 470 */ 471 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 472 error = SET_ERROR(ENOTSUP); 473 break; 474 } 475 476 /* 477 * Make sure the vdev config is bootable 478 */ 479 if (!vdev_is_bootable(spa->spa_root_vdev)) { 480 error = SET_ERROR(ENOTSUP); 481 break; 482 } 483 484 reset_bootfs = 1; 485 486 error = nvpair_value_string(elem, &strval); 487 488 if (!error) { 489 objset_t *os; 490 uint64_t compress; 491 492 if (strval == NULL || strval[0] == '\0') { 493 objnum = zpool_prop_default_numeric( 494 ZPOOL_PROP_BOOTFS); 495 break; 496 } 497 498 if (error = dmu_objset_hold(strval, FTAG, &os)) 499 break; 500 501 /* Must be ZPL and not gzip compressed. */ 502 503 if (dmu_objset_type(os) != DMU_OST_ZFS) { 504 error = SET_ERROR(ENOTSUP); 505 } else if ((error = 506 dsl_prop_get_int_ds(dmu_objset_ds(os), 507 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 508 &compress)) == 0 && 509 !BOOTFS_COMPRESS_VALID(compress)) { 510 error = SET_ERROR(ENOTSUP); 511 } else { 512 objnum = dmu_objset_id(os); 513 } 514 dmu_objset_rele(os, FTAG); 515 } 516 break; 517 518 case ZPOOL_PROP_FAILUREMODE: 519 error = nvpair_value_uint64(elem, &intval); 520 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 521 intval > ZIO_FAILURE_MODE_PANIC)) 522 error = SET_ERROR(EINVAL); 523 524 /* 525 * This is a special case which only occurs when 526 * the pool has completely failed. This allows 527 * the user to change the in-core failmode property 528 * without syncing it out to disk (I/Os might 529 * currently be blocked). We do this by returning 530 * EIO to the caller (spa_prop_set) to trick it 531 * into thinking we encountered a property validation 532 * error. 533 */ 534 if (!error && spa_suspended(spa)) { 535 spa->spa_failmode = intval; 536 error = SET_ERROR(EIO); 537 } 538 break; 539 540 case ZPOOL_PROP_CACHEFILE: 541 if ((error = nvpair_value_string(elem, &strval)) != 0) 542 break; 543 544 if (strval[0] == '\0') 545 break; 546 547 if (strcmp(strval, "none") == 0) 548 break; 549 550 if (strval[0] != '/') { 551 error = SET_ERROR(EINVAL); 552 break; 553 } 554 555 slash = strrchr(strval, '/'); 556 ASSERT(slash != NULL); 557 558 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 559 strcmp(slash, "/..") == 0) 560 error = SET_ERROR(EINVAL); 561 break; 562 563 case ZPOOL_PROP_COMMENT: 564 if ((error = nvpair_value_string(elem, &strval)) != 0) 565 break; 566 for (check = strval; *check != '\0'; check++) { 567 /* 568 * The kernel doesn't have an easy isprint() 569 * check. For this kernel check, we merely 570 * check ASCII apart from DEL. Fix this if 571 * there is an easy-to-use kernel isprint(). 572 */ 573 if (*check >= 0x7f) { 574 error = SET_ERROR(EINVAL); 575 break; 576 } 577 check++; 578 } 579 if (strlen(strval) > ZPROP_MAX_COMMENT) 580 error = E2BIG; 581 break; 582 583 case ZPOOL_PROP_DEDUPDITTO: 584 if (spa_version(spa) < SPA_VERSION_DEDUP) 585 error = SET_ERROR(ENOTSUP); 586 else 587 error = nvpair_value_uint64(elem, &intval); 588 if (error == 0 && 589 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 590 error = SET_ERROR(EINVAL); 591 break; 592 } 593 594 if (error) 595 break; 596 } 597 598 if (!error && reset_bootfs) { 599 error = nvlist_remove(props, 600 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 601 602 if (!error) { 603 error = nvlist_add_uint64(props, 604 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 605 } 606 } 607 608 return (error); 609 } 610 611 void 612 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 613 { 614 char *cachefile; 615 spa_config_dirent_t *dp; 616 617 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 618 &cachefile) != 0) 619 return; 620 621 dp = kmem_alloc(sizeof (spa_config_dirent_t), 622 KM_SLEEP); 623 624 if (cachefile[0] == '\0') 625 dp->scd_path = spa_strdup(spa_config_path); 626 else if (strcmp(cachefile, "none") == 0) 627 dp->scd_path = NULL; 628 else 629 dp->scd_path = spa_strdup(cachefile); 630 631 list_insert_head(&spa->spa_config_list, dp); 632 if (need_sync) 633 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 634 } 635 636 int 637 spa_prop_set(spa_t *spa, nvlist_t *nvp) 638 { 639 int error; 640 nvpair_t *elem = NULL; 641 boolean_t need_sync = B_FALSE; 642 643 if ((error = spa_prop_validate(spa, nvp)) != 0) 644 return (error); 645 646 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 647 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 648 649 if (prop == ZPOOL_PROP_CACHEFILE || 650 prop == ZPOOL_PROP_ALTROOT || 651 prop == ZPOOL_PROP_READONLY) 652 continue; 653 654 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 655 uint64_t ver; 656 657 if (prop == ZPOOL_PROP_VERSION) { 658 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 659 } else { 660 ASSERT(zpool_prop_feature(nvpair_name(elem))); 661 ver = SPA_VERSION_FEATURES; 662 need_sync = B_TRUE; 663 } 664 665 /* Save time if the version is already set. */ 666 if (ver == spa_version(spa)) 667 continue; 668 669 /* 670 * In addition to the pool directory object, we might 671 * create the pool properties object, the features for 672 * read object, the features for write object, or the 673 * feature descriptions object. 674 */ 675 error = dsl_sync_task(spa->spa_name, NULL, 676 spa_sync_version, &ver, 677 6, ZFS_SPACE_CHECK_RESERVED); 678 if (error) 679 return (error); 680 continue; 681 } 682 683 need_sync = B_TRUE; 684 break; 685 } 686 687 if (need_sync) { 688 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 689 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 690 } 691 692 return (0); 693 } 694 695 /* 696 * If the bootfs property value is dsobj, clear it. 697 */ 698 void 699 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 700 { 701 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 702 VERIFY(zap_remove(spa->spa_meta_objset, 703 spa->spa_pool_props_object, 704 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 705 spa->spa_bootfs = 0; 706 } 707 } 708 709 /*ARGSUSED*/ 710 static int 711 spa_change_guid_check(void *arg, dmu_tx_t *tx) 712 { 713 uint64_t *newguid = arg; 714 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 715 vdev_t *rvd = spa->spa_root_vdev; 716 uint64_t vdev_state; 717 718 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 719 vdev_state = rvd->vdev_state; 720 spa_config_exit(spa, SCL_STATE, FTAG); 721 722 if (vdev_state != VDEV_STATE_HEALTHY) 723 return (SET_ERROR(ENXIO)); 724 725 ASSERT3U(spa_guid(spa), !=, *newguid); 726 727 return (0); 728 } 729 730 static void 731 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 732 { 733 uint64_t *newguid = arg; 734 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 735 uint64_t oldguid; 736 vdev_t *rvd = spa->spa_root_vdev; 737 738 oldguid = spa_guid(spa); 739 740 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 741 rvd->vdev_guid = *newguid; 742 rvd->vdev_guid_sum += (*newguid - oldguid); 743 vdev_config_dirty(rvd); 744 spa_config_exit(spa, SCL_STATE, FTAG); 745 746 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 747 oldguid, *newguid); 748 } 749 750 /* 751 * Change the GUID for the pool. This is done so that we can later 752 * re-import a pool built from a clone of our own vdevs. We will modify 753 * the root vdev's guid, our own pool guid, and then mark all of our 754 * vdevs dirty. Note that we must make sure that all our vdevs are 755 * online when we do this, or else any vdevs that weren't present 756 * would be orphaned from our pool. We are also going to issue a 757 * sysevent to update any watchers. 758 */ 759 int 760 spa_change_guid(spa_t *spa) 761 { 762 int error; 763 uint64_t guid; 764 765 mutex_enter(&spa->spa_vdev_top_lock); 766 mutex_enter(&spa_namespace_lock); 767 guid = spa_generate_guid(NULL); 768 769 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 770 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 771 772 if (error == 0) { 773 spa_config_sync(spa, B_FALSE, B_TRUE); 774 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 775 } 776 777 mutex_exit(&spa_namespace_lock); 778 mutex_exit(&spa->spa_vdev_top_lock); 779 780 return (error); 781 } 782 783 /* 784 * ========================================================================== 785 * SPA state manipulation (open/create/destroy/import/export) 786 * ========================================================================== 787 */ 788 789 static int 790 spa_error_entry_compare(const void *a, const void *b) 791 { 792 spa_error_entry_t *sa = (spa_error_entry_t *)a; 793 spa_error_entry_t *sb = (spa_error_entry_t *)b; 794 int ret; 795 796 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 797 sizeof (zbookmark_phys_t)); 798 799 if (ret < 0) 800 return (-1); 801 else if (ret > 0) 802 return (1); 803 else 804 return (0); 805 } 806 807 /* 808 * Utility function which retrieves copies of the current logs and 809 * re-initializes them in the process. 810 */ 811 void 812 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 813 { 814 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 815 816 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 817 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 818 819 avl_create(&spa->spa_errlist_scrub, 820 spa_error_entry_compare, sizeof (spa_error_entry_t), 821 offsetof(spa_error_entry_t, se_avl)); 822 avl_create(&spa->spa_errlist_last, 823 spa_error_entry_compare, sizeof (spa_error_entry_t), 824 offsetof(spa_error_entry_t, se_avl)); 825 } 826 827 static void 828 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 829 { 830 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 831 enum zti_modes mode = ztip->zti_mode; 832 uint_t value = ztip->zti_value; 833 uint_t count = ztip->zti_count; 834 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 835 char name[32]; 836 uint_t flags = 0; 837 boolean_t batch = B_FALSE; 838 839 if (mode == ZTI_MODE_NULL) { 840 tqs->stqs_count = 0; 841 tqs->stqs_taskq = NULL; 842 return; 843 } 844 845 ASSERT3U(count, >, 0); 846 847 tqs->stqs_count = count; 848 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 849 850 switch (mode) { 851 case ZTI_MODE_FIXED: 852 ASSERT3U(value, >=, 1); 853 value = MAX(value, 1); 854 break; 855 856 case ZTI_MODE_BATCH: 857 batch = B_TRUE; 858 flags |= TASKQ_THREADS_CPU_PCT; 859 value = zio_taskq_batch_pct; 860 break; 861 862 default: 863 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 864 "spa_activate()", 865 zio_type_name[t], zio_taskq_types[q], mode, value); 866 break; 867 } 868 869 for (uint_t i = 0; i < count; i++) { 870 taskq_t *tq; 871 872 if (count > 1) { 873 (void) snprintf(name, sizeof (name), "%s_%s_%u", 874 zio_type_name[t], zio_taskq_types[q], i); 875 } else { 876 (void) snprintf(name, sizeof (name), "%s_%s", 877 zio_type_name[t], zio_taskq_types[q]); 878 } 879 880 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 881 if (batch) 882 flags |= TASKQ_DC_BATCH; 883 884 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 885 spa->spa_proc, zio_taskq_basedc, flags); 886 } else { 887 pri_t pri = maxclsyspri; 888 /* 889 * The write issue taskq can be extremely CPU 890 * intensive. Run it at slightly lower priority 891 * than the other taskqs. 892 */ 893 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 894 pri--; 895 896 tq = taskq_create_proc(name, value, pri, 50, 897 INT_MAX, spa->spa_proc, flags); 898 } 899 900 tqs->stqs_taskq[i] = tq; 901 } 902 } 903 904 static void 905 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 906 { 907 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 908 909 if (tqs->stqs_taskq == NULL) { 910 ASSERT0(tqs->stqs_count); 911 return; 912 } 913 914 for (uint_t i = 0; i < tqs->stqs_count; i++) { 915 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 916 taskq_destroy(tqs->stqs_taskq[i]); 917 } 918 919 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 920 tqs->stqs_taskq = NULL; 921 } 922 923 /* 924 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 925 * Note that a type may have multiple discrete taskqs to avoid lock contention 926 * on the taskq itself. In that case we choose which taskq at random by using 927 * the low bits of gethrtime(). 928 */ 929 void 930 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 931 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 932 { 933 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 934 taskq_t *tq; 935 936 ASSERT3P(tqs->stqs_taskq, !=, NULL); 937 ASSERT3U(tqs->stqs_count, !=, 0); 938 939 if (tqs->stqs_count == 1) { 940 tq = tqs->stqs_taskq[0]; 941 } else { 942 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 943 } 944 945 taskq_dispatch_ent(tq, func, arg, flags, ent); 946 } 947 948 static void 949 spa_create_zio_taskqs(spa_t *spa) 950 { 951 for (int t = 0; t < ZIO_TYPES; t++) { 952 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 953 spa_taskqs_init(spa, t, q); 954 } 955 } 956 } 957 958 #ifdef _KERNEL 959 static void 960 spa_thread(void *arg) 961 { 962 callb_cpr_t cprinfo; 963 964 spa_t *spa = arg; 965 user_t *pu = PTOU(curproc); 966 967 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 968 spa->spa_name); 969 970 ASSERT(curproc != &p0); 971 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 972 "zpool-%s", spa->spa_name); 973 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 974 975 /* bind this thread to the requested psrset */ 976 if (zio_taskq_psrset_bind != PS_NONE) { 977 pool_lock(); 978 mutex_enter(&cpu_lock); 979 mutex_enter(&pidlock); 980 mutex_enter(&curproc->p_lock); 981 982 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 983 0, NULL, NULL) == 0) { 984 curthread->t_bind_pset = zio_taskq_psrset_bind; 985 } else { 986 cmn_err(CE_WARN, 987 "Couldn't bind process for zfs pool \"%s\" to " 988 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 989 } 990 991 mutex_exit(&curproc->p_lock); 992 mutex_exit(&pidlock); 993 mutex_exit(&cpu_lock); 994 pool_unlock(); 995 } 996 997 if (zio_taskq_sysdc) { 998 sysdc_thread_enter(curthread, 100, 0); 999 } 1000 1001 spa->spa_proc = curproc; 1002 spa->spa_did = curthread->t_did; 1003 1004 spa_create_zio_taskqs(spa); 1005 1006 mutex_enter(&spa->spa_proc_lock); 1007 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1008 1009 spa->spa_proc_state = SPA_PROC_ACTIVE; 1010 cv_broadcast(&spa->spa_proc_cv); 1011 1012 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1013 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1014 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1015 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1016 1017 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1018 spa->spa_proc_state = SPA_PROC_GONE; 1019 spa->spa_proc = &p0; 1020 cv_broadcast(&spa->spa_proc_cv); 1021 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1022 1023 mutex_enter(&curproc->p_lock); 1024 lwp_exit(); 1025 } 1026 #endif 1027 1028 /* 1029 * Activate an uninitialized pool. 1030 */ 1031 static void 1032 spa_activate(spa_t *spa, int mode) 1033 { 1034 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1035 1036 spa->spa_state = POOL_STATE_ACTIVE; 1037 spa->spa_mode = mode; 1038 1039 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1040 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1041 1042 /* Try to create a covering process */ 1043 mutex_enter(&spa->spa_proc_lock); 1044 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1045 ASSERT(spa->spa_proc == &p0); 1046 spa->spa_did = 0; 1047 1048 /* Only create a process if we're going to be around a while. */ 1049 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1050 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1051 NULL, 0) == 0) { 1052 spa->spa_proc_state = SPA_PROC_CREATED; 1053 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1054 cv_wait(&spa->spa_proc_cv, 1055 &spa->spa_proc_lock); 1056 } 1057 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1058 ASSERT(spa->spa_proc != &p0); 1059 ASSERT(spa->spa_did != 0); 1060 } else { 1061 #ifdef _KERNEL 1062 cmn_err(CE_WARN, 1063 "Couldn't create process for zfs pool \"%s\"\n", 1064 spa->spa_name); 1065 #endif 1066 } 1067 } 1068 mutex_exit(&spa->spa_proc_lock); 1069 1070 /* If we didn't create a process, we need to create our taskqs. */ 1071 if (spa->spa_proc == &p0) { 1072 spa_create_zio_taskqs(spa); 1073 } 1074 1075 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1076 offsetof(vdev_t, vdev_config_dirty_node)); 1077 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1078 offsetof(vdev_t, vdev_state_dirty_node)); 1079 1080 txg_list_create(&spa->spa_vdev_txg_list, 1081 offsetof(struct vdev, vdev_txg_node)); 1082 1083 avl_create(&spa->spa_errlist_scrub, 1084 spa_error_entry_compare, sizeof (spa_error_entry_t), 1085 offsetof(spa_error_entry_t, se_avl)); 1086 avl_create(&spa->spa_errlist_last, 1087 spa_error_entry_compare, sizeof (spa_error_entry_t), 1088 offsetof(spa_error_entry_t, se_avl)); 1089 } 1090 1091 /* 1092 * Opposite of spa_activate(). 1093 */ 1094 static void 1095 spa_deactivate(spa_t *spa) 1096 { 1097 ASSERT(spa->spa_sync_on == B_FALSE); 1098 ASSERT(spa->spa_dsl_pool == NULL); 1099 ASSERT(spa->spa_root_vdev == NULL); 1100 ASSERT(spa->spa_async_zio_root == NULL); 1101 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1102 1103 txg_list_destroy(&spa->spa_vdev_txg_list); 1104 1105 list_destroy(&spa->spa_config_dirty_list); 1106 list_destroy(&spa->spa_state_dirty_list); 1107 1108 for (int t = 0; t < ZIO_TYPES; t++) { 1109 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1110 spa_taskqs_fini(spa, t, q); 1111 } 1112 } 1113 1114 metaslab_class_destroy(spa->spa_normal_class); 1115 spa->spa_normal_class = NULL; 1116 1117 metaslab_class_destroy(spa->spa_log_class); 1118 spa->spa_log_class = NULL; 1119 1120 /* 1121 * If this was part of an import or the open otherwise failed, we may 1122 * still have errors left in the queues. Empty them just in case. 1123 */ 1124 spa_errlog_drain(spa); 1125 1126 avl_destroy(&spa->spa_errlist_scrub); 1127 avl_destroy(&spa->spa_errlist_last); 1128 1129 spa->spa_state = POOL_STATE_UNINITIALIZED; 1130 1131 mutex_enter(&spa->spa_proc_lock); 1132 if (spa->spa_proc_state != SPA_PROC_NONE) { 1133 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1134 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1135 cv_broadcast(&spa->spa_proc_cv); 1136 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1137 ASSERT(spa->spa_proc != &p0); 1138 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1139 } 1140 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1141 spa->spa_proc_state = SPA_PROC_NONE; 1142 } 1143 ASSERT(spa->spa_proc == &p0); 1144 mutex_exit(&spa->spa_proc_lock); 1145 1146 /* 1147 * We want to make sure spa_thread() has actually exited the ZFS 1148 * module, so that the module can't be unloaded out from underneath 1149 * it. 1150 */ 1151 if (spa->spa_did != 0) { 1152 thread_join(spa->spa_did); 1153 spa->spa_did = 0; 1154 } 1155 } 1156 1157 /* 1158 * Verify a pool configuration, and construct the vdev tree appropriately. This 1159 * will create all the necessary vdevs in the appropriate layout, with each vdev 1160 * in the CLOSED state. This will prep the pool before open/creation/import. 1161 * All vdev validation is done by the vdev_alloc() routine. 1162 */ 1163 static int 1164 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1165 uint_t id, int atype) 1166 { 1167 nvlist_t **child; 1168 uint_t children; 1169 int error; 1170 1171 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1172 return (error); 1173 1174 if ((*vdp)->vdev_ops->vdev_op_leaf) 1175 return (0); 1176 1177 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1178 &child, &children); 1179 1180 if (error == ENOENT) 1181 return (0); 1182 1183 if (error) { 1184 vdev_free(*vdp); 1185 *vdp = NULL; 1186 return (SET_ERROR(EINVAL)); 1187 } 1188 1189 for (int c = 0; c < children; c++) { 1190 vdev_t *vd; 1191 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1192 atype)) != 0) { 1193 vdev_free(*vdp); 1194 *vdp = NULL; 1195 return (error); 1196 } 1197 } 1198 1199 ASSERT(*vdp != NULL); 1200 1201 return (0); 1202 } 1203 1204 /* 1205 * Opposite of spa_load(). 1206 */ 1207 static void 1208 spa_unload(spa_t *spa) 1209 { 1210 int i; 1211 1212 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1213 1214 /* 1215 * Stop async tasks. 1216 */ 1217 spa_async_suspend(spa); 1218 1219 /* 1220 * Stop syncing. 1221 */ 1222 if (spa->spa_sync_on) { 1223 txg_sync_stop(spa->spa_dsl_pool); 1224 spa->spa_sync_on = B_FALSE; 1225 } 1226 1227 /* 1228 * Wait for any outstanding async I/O to complete. 1229 */ 1230 if (spa->spa_async_zio_root != NULL) { 1231 (void) zio_wait(spa->spa_async_zio_root); 1232 spa->spa_async_zio_root = NULL; 1233 } 1234 1235 bpobj_close(&spa->spa_deferred_bpobj); 1236 1237 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1238 1239 /* 1240 * Close all vdevs. 1241 */ 1242 if (spa->spa_root_vdev) 1243 vdev_free(spa->spa_root_vdev); 1244 ASSERT(spa->spa_root_vdev == NULL); 1245 1246 /* 1247 * Close the dsl pool. 1248 */ 1249 if (spa->spa_dsl_pool) { 1250 dsl_pool_close(spa->spa_dsl_pool); 1251 spa->spa_dsl_pool = NULL; 1252 spa->spa_meta_objset = NULL; 1253 } 1254 1255 ddt_unload(spa); 1256 1257 1258 /* 1259 * Drop and purge level 2 cache 1260 */ 1261 spa_l2cache_drop(spa); 1262 1263 for (i = 0; i < spa->spa_spares.sav_count; i++) 1264 vdev_free(spa->spa_spares.sav_vdevs[i]); 1265 if (spa->spa_spares.sav_vdevs) { 1266 kmem_free(spa->spa_spares.sav_vdevs, 1267 spa->spa_spares.sav_count * sizeof (void *)); 1268 spa->spa_spares.sav_vdevs = NULL; 1269 } 1270 if (spa->spa_spares.sav_config) { 1271 nvlist_free(spa->spa_spares.sav_config); 1272 spa->spa_spares.sav_config = NULL; 1273 } 1274 spa->spa_spares.sav_count = 0; 1275 1276 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1277 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1278 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1279 } 1280 if (spa->spa_l2cache.sav_vdevs) { 1281 kmem_free(spa->spa_l2cache.sav_vdevs, 1282 spa->spa_l2cache.sav_count * sizeof (void *)); 1283 spa->spa_l2cache.sav_vdevs = NULL; 1284 } 1285 if (spa->spa_l2cache.sav_config) { 1286 nvlist_free(spa->spa_l2cache.sav_config); 1287 spa->spa_l2cache.sav_config = NULL; 1288 } 1289 spa->spa_l2cache.sav_count = 0; 1290 1291 spa->spa_async_suspended = 0; 1292 1293 if (spa->spa_comment != NULL) { 1294 spa_strfree(spa->spa_comment); 1295 spa->spa_comment = NULL; 1296 } 1297 1298 spa_config_exit(spa, SCL_ALL, FTAG); 1299 } 1300 1301 /* 1302 * Load (or re-load) the current list of vdevs describing the active spares for 1303 * this pool. When this is called, we have some form of basic information in 1304 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1305 * then re-generate a more complete list including status information. 1306 */ 1307 static void 1308 spa_load_spares(spa_t *spa) 1309 { 1310 nvlist_t **spares; 1311 uint_t nspares; 1312 int i; 1313 vdev_t *vd, *tvd; 1314 1315 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1316 1317 /* 1318 * First, close and free any existing spare vdevs. 1319 */ 1320 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1321 vd = spa->spa_spares.sav_vdevs[i]; 1322 1323 /* Undo the call to spa_activate() below */ 1324 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1325 B_FALSE)) != NULL && tvd->vdev_isspare) 1326 spa_spare_remove(tvd); 1327 vdev_close(vd); 1328 vdev_free(vd); 1329 } 1330 1331 if (spa->spa_spares.sav_vdevs) 1332 kmem_free(spa->spa_spares.sav_vdevs, 1333 spa->spa_spares.sav_count * sizeof (void *)); 1334 1335 if (spa->spa_spares.sav_config == NULL) 1336 nspares = 0; 1337 else 1338 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1339 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1340 1341 spa->spa_spares.sav_count = (int)nspares; 1342 spa->spa_spares.sav_vdevs = NULL; 1343 1344 if (nspares == 0) 1345 return; 1346 1347 /* 1348 * Construct the array of vdevs, opening them to get status in the 1349 * process. For each spare, there is potentially two different vdev_t 1350 * structures associated with it: one in the list of spares (used only 1351 * for basic validation purposes) and one in the active vdev 1352 * configuration (if it's spared in). During this phase we open and 1353 * validate each vdev on the spare list. If the vdev also exists in the 1354 * active configuration, then we also mark this vdev as an active spare. 1355 */ 1356 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1357 KM_SLEEP); 1358 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1359 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1360 VDEV_ALLOC_SPARE) == 0); 1361 ASSERT(vd != NULL); 1362 1363 spa->spa_spares.sav_vdevs[i] = vd; 1364 1365 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1366 B_FALSE)) != NULL) { 1367 if (!tvd->vdev_isspare) 1368 spa_spare_add(tvd); 1369 1370 /* 1371 * We only mark the spare active if we were successfully 1372 * able to load the vdev. Otherwise, importing a pool 1373 * with a bad active spare would result in strange 1374 * behavior, because multiple pool would think the spare 1375 * is actively in use. 1376 * 1377 * There is a vulnerability here to an equally bizarre 1378 * circumstance, where a dead active spare is later 1379 * brought back to life (onlined or otherwise). Given 1380 * the rarity of this scenario, and the extra complexity 1381 * it adds, we ignore the possibility. 1382 */ 1383 if (!vdev_is_dead(tvd)) 1384 spa_spare_activate(tvd); 1385 } 1386 1387 vd->vdev_top = vd; 1388 vd->vdev_aux = &spa->spa_spares; 1389 1390 if (vdev_open(vd) != 0) 1391 continue; 1392 1393 if (vdev_validate_aux(vd) == 0) 1394 spa_spare_add(vd); 1395 } 1396 1397 /* 1398 * Recompute the stashed list of spares, with status information 1399 * this time. 1400 */ 1401 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1402 DATA_TYPE_NVLIST_ARRAY) == 0); 1403 1404 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1405 KM_SLEEP); 1406 for (i = 0; i < spa->spa_spares.sav_count; i++) 1407 spares[i] = vdev_config_generate(spa, 1408 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1409 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1410 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1411 for (i = 0; i < spa->spa_spares.sav_count; i++) 1412 nvlist_free(spares[i]); 1413 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1414 } 1415 1416 /* 1417 * Load (or re-load) the current list of vdevs describing the active l2cache for 1418 * this pool. When this is called, we have some form of basic information in 1419 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1420 * then re-generate a more complete list including status information. 1421 * Devices which are already active have their details maintained, and are 1422 * not re-opened. 1423 */ 1424 static void 1425 spa_load_l2cache(spa_t *spa) 1426 { 1427 nvlist_t **l2cache; 1428 uint_t nl2cache; 1429 int i, j, oldnvdevs; 1430 uint64_t guid; 1431 vdev_t *vd, **oldvdevs, **newvdevs; 1432 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1433 1434 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1435 1436 if (sav->sav_config != NULL) { 1437 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1438 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1439 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1440 } else { 1441 nl2cache = 0; 1442 newvdevs = NULL; 1443 } 1444 1445 oldvdevs = sav->sav_vdevs; 1446 oldnvdevs = sav->sav_count; 1447 sav->sav_vdevs = NULL; 1448 sav->sav_count = 0; 1449 1450 /* 1451 * Process new nvlist of vdevs. 1452 */ 1453 for (i = 0; i < nl2cache; i++) { 1454 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1455 &guid) == 0); 1456 1457 newvdevs[i] = NULL; 1458 for (j = 0; j < oldnvdevs; j++) { 1459 vd = oldvdevs[j]; 1460 if (vd != NULL && guid == vd->vdev_guid) { 1461 /* 1462 * Retain previous vdev for add/remove ops. 1463 */ 1464 newvdevs[i] = vd; 1465 oldvdevs[j] = NULL; 1466 break; 1467 } 1468 } 1469 1470 if (newvdevs[i] == NULL) { 1471 /* 1472 * Create new vdev 1473 */ 1474 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1475 VDEV_ALLOC_L2CACHE) == 0); 1476 ASSERT(vd != NULL); 1477 newvdevs[i] = vd; 1478 1479 /* 1480 * Commit this vdev as an l2cache device, 1481 * even if it fails to open. 1482 */ 1483 spa_l2cache_add(vd); 1484 1485 vd->vdev_top = vd; 1486 vd->vdev_aux = sav; 1487 1488 spa_l2cache_activate(vd); 1489 1490 if (vdev_open(vd) != 0) 1491 continue; 1492 1493 (void) vdev_validate_aux(vd); 1494 1495 if (!vdev_is_dead(vd)) 1496 l2arc_add_vdev(spa, vd); 1497 } 1498 } 1499 1500 /* 1501 * Purge vdevs that were dropped 1502 */ 1503 for (i = 0; i < oldnvdevs; i++) { 1504 uint64_t pool; 1505 1506 vd = oldvdevs[i]; 1507 if (vd != NULL) { 1508 ASSERT(vd->vdev_isl2cache); 1509 1510 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1511 pool != 0ULL && l2arc_vdev_present(vd)) 1512 l2arc_remove_vdev(vd); 1513 vdev_clear_stats(vd); 1514 vdev_free(vd); 1515 } 1516 } 1517 1518 if (oldvdevs) 1519 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1520 1521 if (sav->sav_config == NULL) 1522 goto out; 1523 1524 sav->sav_vdevs = newvdevs; 1525 sav->sav_count = (int)nl2cache; 1526 1527 /* 1528 * Recompute the stashed list of l2cache devices, with status 1529 * information this time. 1530 */ 1531 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1532 DATA_TYPE_NVLIST_ARRAY) == 0); 1533 1534 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1535 for (i = 0; i < sav->sav_count; i++) 1536 l2cache[i] = vdev_config_generate(spa, 1537 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1538 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1539 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1540 out: 1541 for (i = 0; i < sav->sav_count; i++) 1542 nvlist_free(l2cache[i]); 1543 if (sav->sav_count) 1544 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1545 } 1546 1547 static int 1548 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1549 { 1550 dmu_buf_t *db; 1551 char *packed = NULL; 1552 size_t nvsize = 0; 1553 int error; 1554 *value = NULL; 1555 1556 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1557 nvsize = *(uint64_t *)db->db_data; 1558 dmu_buf_rele(db, FTAG); 1559 1560 packed = kmem_alloc(nvsize, KM_SLEEP); 1561 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1562 DMU_READ_PREFETCH); 1563 if (error == 0) 1564 error = nvlist_unpack(packed, nvsize, value, 0); 1565 kmem_free(packed, nvsize); 1566 1567 return (error); 1568 } 1569 1570 /* 1571 * Checks to see if the given vdev could not be opened, in which case we post a 1572 * sysevent to notify the autoreplace code that the device has been removed. 1573 */ 1574 static void 1575 spa_check_removed(vdev_t *vd) 1576 { 1577 for (int c = 0; c < vd->vdev_children; c++) 1578 spa_check_removed(vd->vdev_child[c]); 1579 1580 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1581 !vd->vdev_ishole) { 1582 zfs_post_autoreplace(vd->vdev_spa, vd); 1583 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1584 } 1585 } 1586 1587 /* 1588 * Validate the current config against the MOS config 1589 */ 1590 static boolean_t 1591 spa_config_valid(spa_t *spa, nvlist_t *config) 1592 { 1593 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1594 nvlist_t *nv; 1595 1596 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1597 1598 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1599 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1600 1601 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1602 1603 /* 1604 * If we're doing a normal import, then build up any additional 1605 * diagnostic information about missing devices in this config. 1606 * We'll pass this up to the user for further processing. 1607 */ 1608 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1609 nvlist_t **child, *nv; 1610 uint64_t idx = 0; 1611 1612 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1613 KM_SLEEP); 1614 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1615 1616 for (int c = 0; c < rvd->vdev_children; c++) { 1617 vdev_t *tvd = rvd->vdev_child[c]; 1618 vdev_t *mtvd = mrvd->vdev_child[c]; 1619 1620 if (tvd->vdev_ops == &vdev_missing_ops && 1621 mtvd->vdev_ops != &vdev_missing_ops && 1622 mtvd->vdev_islog) 1623 child[idx++] = vdev_config_generate(spa, mtvd, 1624 B_FALSE, 0); 1625 } 1626 1627 if (idx) { 1628 VERIFY(nvlist_add_nvlist_array(nv, 1629 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1630 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1631 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1632 1633 for (int i = 0; i < idx; i++) 1634 nvlist_free(child[i]); 1635 } 1636 nvlist_free(nv); 1637 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1638 } 1639 1640 /* 1641 * Compare the root vdev tree with the information we have 1642 * from the MOS config (mrvd). Check each top-level vdev 1643 * with the corresponding MOS config top-level (mtvd). 1644 */ 1645 for (int c = 0; c < rvd->vdev_children; c++) { 1646 vdev_t *tvd = rvd->vdev_child[c]; 1647 vdev_t *mtvd = mrvd->vdev_child[c]; 1648 1649 /* 1650 * Resolve any "missing" vdevs in the current configuration. 1651 * If we find that the MOS config has more accurate information 1652 * about the top-level vdev then use that vdev instead. 1653 */ 1654 if (tvd->vdev_ops == &vdev_missing_ops && 1655 mtvd->vdev_ops != &vdev_missing_ops) { 1656 1657 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1658 continue; 1659 1660 /* 1661 * Device specific actions. 1662 */ 1663 if (mtvd->vdev_islog) { 1664 spa_set_log_state(spa, SPA_LOG_CLEAR); 1665 } else { 1666 /* 1667 * XXX - once we have 'readonly' pool 1668 * support we should be able to handle 1669 * missing data devices by transitioning 1670 * the pool to readonly. 1671 */ 1672 continue; 1673 } 1674 1675 /* 1676 * Swap the missing vdev with the data we were 1677 * able to obtain from the MOS config. 1678 */ 1679 vdev_remove_child(rvd, tvd); 1680 vdev_remove_child(mrvd, mtvd); 1681 1682 vdev_add_child(rvd, mtvd); 1683 vdev_add_child(mrvd, tvd); 1684 1685 spa_config_exit(spa, SCL_ALL, FTAG); 1686 vdev_load(mtvd); 1687 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1688 1689 vdev_reopen(rvd); 1690 } else if (mtvd->vdev_islog) { 1691 /* 1692 * Load the slog device's state from the MOS config 1693 * since it's possible that the label does not 1694 * contain the most up-to-date information. 1695 */ 1696 vdev_load_log_state(tvd, mtvd); 1697 vdev_reopen(tvd); 1698 } 1699 } 1700 vdev_free(mrvd); 1701 spa_config_exit(spa, SCL_ALL, FTAG); 1702 1703 /* 1704 * Ensure we were able to validate the config. 1705 */ 1706 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1707 } 1708 1709 /* 1710 * Check for missing log devices 1711 */ 1712 static boolean_t 1713 spa_check_logs(spa_t *spa) 1714 { 1715 boolean_t rv = B_FALSE; 1716 1717 switch (spa->spa_log_state) { 1718 case SPA_LOG_MISSING: 1719 /* need to recheck in case slog has been restored */ 1720 case SPA_LOG_UNKNOWN: 1721 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, 1722 NULL, DS_FIND_CHILDREN) != 0); 1723 if (rv) 1724 spa_set_log_state(spa, SPA_LOG_MISSING); 1725 break; 1726 } 1727 return (rv); 1728 } 1729 1730 static boolean_t 1731 spa_passivate_log(spa_t *spa) 1732 { 1733 vdev_t *rvd = spa->spa_root_vdev; 1734 boolean_t slog_found = B_FALSE; 1735 1736 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1737 1738 if (!spa_has_slogs(spa)) 1739 return (B_FALSE); 1740 1741 for (int c = 0; c < rvd->vdev_children; c++) { 1742 vdev_t *tvd = rvd->vdev_child[c]; 1743 metaslab_group_t *mg = tvd->vdev_mg; 1744 1745 if (tvd->vdev_islog) { 1746 metaslab_group_passivate(mg); 1747 slog_found = B_TRUE; 1748 } 1749 } 1750 1751 return (slog_found); 1752 } 1753 1754 static void 1755 spa_activate_log(spa_t *spa) 1756 { 1757 vdev_t *rvd = spa->spa_root_vdev; 1758 1759 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1760 1761 for (int c = 0; c < rvd->vdev_children; c++) { 1762 vdev_t *tvd = rvd->vdev_child[c]; 1763 metaslab_group_t *mg = tvd->vdev_mg; 1764 1765 if (tvd->vdev_islog) 1766 metaslab_group_activate(mg); 1767 } 1768 } 1769 1770 int 1771 spa_offline_log(spa_t *spa) 1772 { 1773 int error; 1774 1775 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1776 NULL, DS_FIND_CHILDREN); 1777 if (error == 0) { 1778 /* 1779 * We successfully offlined the log device, sync out the 1780 * current txg so that the "stubby" block can be removed 1781 * by zil_sync(). 1782 */ 1783 txg_wait_synced(spa->spa_dsl_pool, 0); 1784 } 1785 return (error); 1786 } 1787 1788 static void 1789 spa_aux_check_removed(spa_aux_vdev_t *sav) 1790 { 1791 for (int i = 0; i < sav->sav_count; i++) 1792 spa_check_removed(sav->sav_vdevs[i]); 1793 } 1794 1795 void 1796 spa_claim_notify(zio_t *zio) 1797 { 1798 spa_t *spa = zio->io_spa; 1799 1800 if (zio->io_error) 1801 return; 1802 1803 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1804 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1805 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1806 mutex_exit(&spa->spa_props_lock); 1807 } 1808 1809 typedef struct spa_load_error { 1810 uint64_t sle_meta_count; 1811 uint64_t sle_data_count; 1812 } spa_load_error_t; 1813 1814 static void 1815 spa_load_verify_done(zio_t *zio) 1816 { 1817 blkptr_t *bp = zio->io_bp; 1818 spa_load_error_t *sle = zio->io_private; 1819 dmu_object_type_t type = BP_GET_TYPE(bp); 1820 int error = zio->io_error; 1821 1822 if (error) { 1823 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1824 type != DMU_OT_INTENT_LOG) 1825 atomic_add_64(&sle->sle_meta_count, 1); 1826 else 1827 atomic_add_64(&sle->sle_data_count, 1); 1828 } 1829 zio_data_buf_free(zio->io_data, zio->io_size); 1830 } 1831 1832 /*ARGSUSED*/ 1833 static int 1834 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1835 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1836 { 1837 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) { 1838 zio_t *rio = arg; 1839 size_t size = BP_GET_PSIZE(bp); 1840 void *data = zio_data_buf_alloc(size); 1841 1842 zio_nowait(zio_read(rio, spa, bp, data, size, 1843 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1844 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1845 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1846 } 1847 return (0); 1848 } 1849 1850 static int 1851 spa_load_verify(spa_t *spa) 1852 { 1853 zio_t *rio; 1854 spa_load_error_t sle = { 0 }; 1855 zpool_rewind_policy_t policy; 1856 boolean_t verify_ok = B_FALSE; 1857 int error; 1858 1859 zpool_get_rewind_policy(spa->spa_config, &policy); 1860 1861 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1862 return (0); 1863 1864 rio = zio_root(spa, NULL, &sle, 1865 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1866 1867 error = traverse_pool(spa, spa->spa_verify_min_txg, 1868 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1869 1870 (void) zio_wait(rio); 1871 1872 spa->spa_load_meta_errors = sle.sle_meta_count; 1873 spa->spa_load_data_errors = sle.sle_data_count; 1874 1875 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1876 sle.sle_data_count <= policy.zrp_maxdata) { 1877 int64_t loss = 0; 1878 1879 verify_ok = B_TRUE; 1880 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1881 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1882 1883 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1884 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1885 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1886 VERIFY(nvlist_add_int64(spa->spa_load_info, 1887 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1888 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1889 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1890 } else { 1891 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1892 } 1893 1894 if (error) { 1895 if (error != ENXIO && error != EIO) 1896 error = SET_ERROR(EIO); 1897 return (error); 1898 } 1899 1900 return (verify_ok ? 0 : EIO); 1901 } 1902 1903 /* 1904 * Find a value in the pool props object. 1905 */ 1906 static void 1907 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1908 { 1909 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1910 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1911 } 1912 1913 /* 1914 * Find a value in the pool directory object. 1915 */ 1916 static int 1917 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1918 { 1919 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1920 name, sizeof (uint64_t), 1, val)); 1921 } 1922 1923 static int 1924 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1925 { 1926 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1927 return (err); 1928 } 1929 1930 /* 1931 * Fix up config after a partly-completed split. This is done with the 1932 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1933 * pool have that entry in their config, but only the splitting one contains 1934 * a list of all the guids of the vdevs that are being split off. 1935 * 1936 * This function determines what to do with that list: either rejoin 1937 * all the disks to the pool, or complete the splitting process. To attempt 1938 * the rejoin, each disk that is offlined is marked online again, and 1939 * we do a reopen() call. If the vdev label for every disk that was 1940 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1941 * then we call vdev_split() on each disk, and complete the split. 1942 * 1943 * Otherwise we leave the config alone, with all the vdevs in place in 1944 * the original pool. 1945 */ 1946 static void 1947 spa_try_repair(spa_t *spa, nvlist_t *config) 1948 { 1949 uint_t extracted; 1950 uint64_t *glist; 1951 uint_t i, gcount; 1952 nvlist_t *nvl; 1953 vdev_t **vd; 1954 boolean_t attempt_reopen; 1955 1956 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1957 return; 1958 1959 /* check that the config is complete */ 1960 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1961 &glist, &gcount) != 0) 1962 return; 1963 1964 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1965 1966 /* attempt to online all the vdevs & validate */ 1967 attempt_reopen = B_TRUE; 1968 for (i = 0; i < gcount; i++) { 1969 if (glist[i] == 0) /* vdev is hole */ 1970 continue; 1971 1972 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1973 if (vd[i] == NULL) { 1974 /* 1975 * Don't bother attempting to reopen the disks; 1976 * just do the split. 1977 */ 1978 attempt_reopen = B_FALSE; 1979 } else { 1980 /* attempt to re-online it */ 1981 vd[i]->vdev_offline = B_FALSE; 1982 } 1983 } 1984 1985 if (attempt_reopen) { 1986 vdev_reopen(spa->spa_root_vdev); 1987 1988 /* check each device to see what state it's in */ 1989 for (extracted = 0, i = 0; i < gcount; i++) { 1990 if (vd[i] != NULL && 1991 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1992 break; 1993 ++extracted; 1994 } 1995 } 1996 1997 /* 1998 * If every disk has been moved to the new pool, or if we never 1999 * even attempted to look at them, then we split them off for 2000 * good. 2001 */ 2002 if (!attempt_reopen || gcount == extracted) { 2003 for (i = 0; i < gcount; i++) 2004 if (vd[i] != NULL) 2005 vdev_split(vd[i]); 2006 vdev_reopen(spa->spa_root_vdev); 2007 } 2008 2009 kmem_free(vd, gcount * sizeof (vdev_t *)); 2010 } 2011 2012 static int 2013 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2014 boolean_t mosconfig) 2015 { 2016 nvlist_t *config = spa->spa_config; 2017 char *ereport = FM_EREPORT_ZFS_POOL; 2018 char *comment; 2019 int error; 2020 uint64_t pool_guid; 2021 nvlist_t *nvl; 2022 2023 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2024 return (SET_ERROR(EINVAL)); 2025 2026 ASSERT(spa->spa_comment == NULL); 2027 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2028 spa->spa_comment = spa_strdup(comment); 2029 2030 /* 2031 * Versioning wasn't explicitly added to the label until later, so if 2032 * it's not present treat it as the initial version. 2033 */ 2034 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2035 &spa->spa_ubsync.ub_version) != 0) 2036 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2037 2038 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2039 &spa->spa_config_txg); 2040 2041 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2042 spa_guid_exists(pool_guid, 0)) { 2043 error = SET_ERROR(EEXIST); 2044 } else { 2045 spa->spa_config_guid = pool_guid; 2046 2047 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2048 &nvl) == 0) { 2049 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2050 KM_SLEEP) == 0); 2051 } 2052 2053 nvlist_free(spa->spa_load_info); 2054 spa->spa_load_info = fnvlist_alloc(); 2055 2056 gethrestime(&spa->spa_loaded_ts); 2057 error = spa_load_impl(spa, pool_guid, config, state, type, 2058 mosconfig, &ereport); 2059 } 2060 2061 spa->spa_minref = refcount_count(&spa->spa_refcount); 2062 if (error) { 2063 if (error != EEXIST) { 2064 spa->spa_loaded_ts.tv_sec = 0; 2065 spa->spa_loaded_ts.tv_nsec = 0; 2066 } 2067 if (error != EBADF) { 2068 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2069 } 2070 } 2071 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2072 spa->spa_ena = 0; 2073 2074 return (error); 2075 } 2076 2077 /* 2078 * Load an existing storage pool, using the pool's builtin spa_config as a 2079 * source of configuration information. 2080 */ 2081 static int 2082 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2083 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2084 char **ereport) 2085 { 2086 int error = 0; 2087 nvlist_t *nvroot = NULL; 2088 nvlist_t *label; 2089 vdev_t *rvd; 2090 uberblock_t *ub = &spa->spa_uberblock; 2091 uint64_t children, config_cache_txg = spa->spa_config_txg; 2092 int orig_mode = spa->spa_mode; 2093 int parse; 2094 uint64_t obj; 2095 boolean_t missing_feat_write = B_FALSE; 2096 2097 /* 2098 * If this is an untrusted config, access the pool in read-only mode. 2099 * This prevents things like resilvering recently removed devices. 2100 */ 2101 if (!mosconfig) 2102 spa->spa_mode = FREAD; 2103 2104 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2105 2106 spa->spa_load_state = state; 2107 2108 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2109 return (SET_ERROR(EINVAL)); 2110 2111 parse = (type == SPA_IMPORT_EXISTING ? 2112 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2113 2114 /* 2115 * Create "The Godfather" zio to hold all async IOs 2116 */ 2117 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2118 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2119 2120 /* 2121 * Parse the configuration into a vdev tree. We explicitly set the 2122 * value that will be returned by spa_version() since parsing the 2123 * configuration requires knowing the version number. 2124 */ 2125 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2126 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2127 spa_config_exit(spa, SCL_ALL, FTAG); 2128 2129 if (error != 0) 2130 return (error); 2131 2132 ASSERT(spa->spa_root_vdev == rvd); 2133 2134 if (type != SPA_IMPORT_ASSEMBLE) { 2135 ASSERT(spa_guid(spa) == pool_guid); 2136 } 2137 2138 /* 2139 * Try to open all vdevs, loading each label in the process. 2140 */ 2141 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2142 error = vdev_open(rvd); 2143 spa_config_exit(spa, SCL_ALL, FTAG); 2144 if (error != 0) 2145 return (error); 2146 2147 /* 2148 * We need to validate the vdev labels against the configuration that 2149 * we have in hand, which is dependent on the setting of mosconfig. If 2150 * mosconfig is true then we're validating the vdev labels based on 2151 * that config. Otherwise, we're validating against the cached config 2152 * (zpool.cache) that was read when we loaded the zfs module, and then 2153 * later we will recursively call spa_load() and validate against 2154 * the vdev config. 2155 * 2156 * If we're assembling a new pool that's been split off from an 2157 * existing pool, the labels haven't yet been updated so we skip 2158 * validation for now. 2159 */ 2160 if (type != SPA_IMPORT_ASSEMBLE) { 2161 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2162 error = vdev_validate(rvd, mosconfig); 2163 spa_config_exit(spa, SCL_ALL, FTAG); 2164 2165 if (error != 0) 2166 return (error); 2167 2168 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2169 return (SET_ERROR(ENXIO)); 2170 } 2171 2172 /* 2173 * Find the best uberblock. 2174 */ 2175 vdev_uberblock_load(rvd, ub, &label); 2176 2177 /* 2178 * If we weren't able to find a single valid uberblock, return failure. 2179 */ 2180 if (ub->ub_txg == 0) { 2181 nvlist_free(label); 2182 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2183 } 2184 2185 /* 2186 * If the pool has an unsupported version we can't open it. 2187 */ 2188 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2189 nvlist_free(label); 2190 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2191 } 2192 2193 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2194 nvlist_t *features; 2195 2196 /* 2197 * If we weren't able to find what's necessary for reading the 2198 * MOS in the label, return failure. 2199 */ 2200 if (label == NULL || nvlist_lookup_nvlist(label, 2201 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2202 nvlist_free(label); 2203 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2204 ENXIO)); 2205 } 2206 2207 /* 2208 * Update our in-core representation with the definitive values 2209 * from the label. 2210 */ 2211 nvlist_free(spa->spa_label_features); 2212 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2213 } 2214 2215 nvlist_free(label); 2216 2217 /* 2218 * Look through entries in the label nvlist's features_for_read. If 2219 * there is a feature listed there which we don't understand then we 2220 * cannot open a pool. 2221 */ 2222 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2223 nvlist_t *unsup_feat; 2224 2225 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2226 0); 2227 2228 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2229 NULL); nvp != NULL; 2230 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2231 if (!zfeature_is_supported(nvpair_name(nvp))) { 2232 VERIFY(nvlist_add_string(unsup_feat, 2233 nvpair_name(nvp), "") == 0); 2234 } 2235 } 2236 2237 if (!nvlist_empty(unsup_feat)) { 2238 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2239 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2240 nvlist_free(unsup_feat); 2241 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2242 ENOTSUP)); 2243 } 2244 2245 nvlist_free(unsup_feat); 2246 } 2247 2248 /* 2249 * If the vdev guid sum doesn't match the uberblock, we have an 2250 * incomplete configuration. We first check to see if the pool 2251 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2252 * If it is, defer the vdev_guid_sum check till later so we 2253 * can handle missing vdevs. 2254 */ 2255 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2256 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2257 rvd->vdev_guid_sum != ub->ub_guid_sum) 2258 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2259 2260 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2261 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2262 spa_try_repair(spa, config); 2263 spa_config_exit(spa, SCL_ALL, FTAG); 2264 nvlist_free(spa->spa_config_splitting); 2265 spa->spa_config_splitting = NULL; 2266 } 2267 2268 /* 2269 * Initialize internal SPA structures. 2270 */ 2271 spa->spa_state = POOL_STATE_ACTIVE; 2272 spa->spa_ubsync = spa->spa_uberblock; 2273 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2274 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2275 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2276 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2277 spa->spa_claim_max_txg = spa->spa_first_txg; 2278 spa->spa_prev_software_version = ub->ub_software_version; 2279 2280 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2281 if (error) 2282 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2283 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2284 2285 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2286 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2287 2288 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2289 boolean_t missing_feat_read = B_FALSE; 2290 nvlist_t *unsup_feat, *enabled_feat; 2291 2292 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2293 &spa->spa_feat_for_read_obj) != 0) { 2294 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2295 } 2296 2297 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2298 &spa->spa_feat_for_write_obj) != 0) { 2299 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2300 } 2301 2302 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2303 &spa->spa_feat_desc_obj) != 0) { 2304 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2305 } 2306 2307 enabled_feat = fnvlist_alloc(); 2308 unsup_feat = fnvlist_alloc(); 2309 2310 if (!spa_features_check(spa, B_FALSE, 2311 unsup_feat, enabled_feat)) 2312 missing_feat_read = B_TRUE; 2313 2314 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2315 if (!spa_features_check(spa, B_TRUE, 2316 unsup_feat, enabled_feat)) { 2317 missing_feat_write = B_TRUE; 2318 } 2319 } 2320 2321 fnvlist_add_nvlist(spa->spa_load_info, 2322 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2323 2324 if (!nvlist_empty(unsup_feat)) { 2325 fnvlist_add_nvlist(spa->spa_load_info, 2326 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2327 } 2328 2329 fnvlist_free(enabled_feat); 2330 fnvlist_free(unsup_feat); 2331 2332 if (!missing_feat_read) { 2333 fnvlist_add_boolean(spa->spa_load_info, 2334 ZPOOL_CONFIG_CAN_RDONLY); 2335 } 2336 2337 /* 2338 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2339 * twofold: to determine whether the pool is available for 2340 * import in read-write mode and (if it is not) whether the 2341 * pool is available for import in read-only mode. If the pool 2342 * is available for import in read-write mode, it is displayed 2343 * as available in userland; if it is not available for import 2344 * in read-only mode, it is displayed as unavailable in 2345 * userland. If the pool is available for import in read-only 2346 * mode but not read-write mode, it is displayed as unavailable 2347 * in userland with a special note that the pool is actually 2348 * available for open in read-only mode. 2349 * 2350 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2351 * missing a feature for write, we must first determine whether 2352 * the pool can be opened read-only before returning to 2353 * userland in order to know whether to display the 2354 * abovementioned note. 2355 */ 2356 if (missing_feat_read || (missing_feat_write && 2357 spa_writeable(spa))) { 2358 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2359 ENOTSUP)); 2360 } 2361 2362 /* 2363 * Load refcounts for ZFS features from disk into an in-memory 2364 * cache during SPA initialization. 2365 */ 2366 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2367 uint64_t refcount; 2368 2369 error = feature_get_refcount_from_disk(spa, 2370 &spa_feature_table[i], &refcount); 2371 if (error == 0) { 2372 spa->spa_feat_refcount_cache[i] = refcount; 2373 } else if (error == ENOTSUP) { 2374 spa->spa_feat_refcount_cache[i] = 2375 SPA_FEATURE_DISABLED; 2376 } else { 2377 return (spa_vdev_err(rvd, 2378 VDEV_AUX_CORRUPT_DATA, EIO)); 2379 } 2380 } 2381 } 2382 2383 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2384 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2385 &spa->spa_feat_enabled_txg_obj) != 0) 2386 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2387 } 2388 2389 spa->spa_is_initializing = B_TRUE; 2390 error = dsl_pool_open(spa->spa_dsl_pool); 2391 spa->spa_is_initializing = B_FALSE; 2392 if (error != 0) 2393 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2394 2395 if (!mosconfig) { 2396 uint64_t hostid; 2397 nvlist_t *policy = NULL, *nvconfig; 2398 2399 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2400 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2401 2402 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2403 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2404 char *hostname; 2405 unsigned long myhostid = 0; 2406 2407 VERIFY(nvlist_lookup_string(nvconfig, 2408 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2409 2410 #ifdef _KERNEL 2411 myhostid = zone_get_hostid(NULL); 2412 #else /* _KERNEL */ 2413 /* 2414 * We're emulating the system's hostid in userland, so 2415 * we can't use zone_get_hostid(). 2416 */ 2417 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2418 #endif /* _KERNEL */ 2419 if (hostid != 0 && myhostid != 0 && 2420 hostid != myhostid) { 2421 nvlist_free(nvconfig); 2422 cmn_err(CE_WARN, "pool '%s' could not be " 2423 "loaded as it was last accessed by " 2424 "another system (host: %s hostid: 0x%lx). " 2425 "See: http://illumos.org/msg/ZFS-8000-EY", 2426 spa_name(spa), hostname, 2427 (unsigned long)hostid); 2428 return (SET_ERROR(EBADF)); 2429 } 2430 } 2431 if (nvlist_lookup_nvlist(spa->spa_config, 2432 ZPOOL_REWIND_POLICY, &policy) == 0) 2433 VERIFY(nvlist_add_nvlist(nvconfig, 2434 ZPOOL_REWIND_POLICY, policy) == 0); 2435 2436 spa_config_set(spa, nvconfig); 2437 spa_unload(spa); 2438 spa_deactivate(spa); 2439 spa_activate(spa, orig_mode); 2440 2441 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2442 } 2443 2444 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2445 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2446 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2447 if (error != 0) 2448 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2449 2450 /* 2451 * Load the bit that tells us to use the new accounting function 2452 * (raid-z deflation). If we have an older pool, this will not 2453 * be present. 2454 */ 2455 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2456 if (error != 0 && error != ENOENT) 2457 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2458 2459 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2460 &spa->spa_creation_version); 2461 if (error != 0 && error != ENOENT) 2462 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2463 2464 /* 2465 * Load the persistent error log. If we have an older pool, this will 2466 * not be present. 2467 */ 2468 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2469 if (error != 0 && error != ENOENT) 2470 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2471 2472 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2473 &spa->spa_errlog_scrub); 2474 if (error != 0 && error != ENOENT) 2475 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2476 2477 /* 2478 * Load the history object. If we have an older pool, this 2479 * will not be present. 2480 */ 2481 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2482 if (error != 0 && error != ENOENT) 2483 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2484 2485 /* 2486 * If we're assembling the pool from the split-off vdevs of 2487 * an existing pool, we don't want to attach the spares & cache 2488 * devices. 2489 */ 2490 2491 /* 2492 * Load any hot spares for this pool. 2493 */ 2494 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2495 if (error != 0 && error != ENOENT) 2496 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2497 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2498 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2499 if (load_nvlist(spa, spa->spa_spares.sav_object, 2500 &spa->spa_spares.sav_config) != 0) 2501 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2502 2503 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2504 spa_load_spares(spa); 2505 spa_config_exit(spa, SCL_ALL, FTAG); 2506 } else if (error == 0) { 2507 spa->spa_spares.sav_sync = B_TRUE; 2508 } 2509 2510 /* 2511 * Load any level 2 ARC devices for this pool. 2512 */ 2513 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2514 &spa->spa_l2cache.sav_object); 2515 if (error != 0 && error != ENOENT) 2516 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2517 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2518 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2519 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2520 &spa->spa_l2cache.sav_config) != 0) 2521 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2522 2523 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2524 spa_load_l2cache(spa); 2525 spa_config_exit(spa, SCL_ALL, FTAG); 2526 } else if (error == 0) { 2527 spa->spa_l2cache.sav_sync = B_TRUE; 2528 } 2529 2530 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2531 2532 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2533 if (error && error != ENOENT) 2534 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2535 2536 if (error == 0) { 2537 uint64_t autoreplace; 2538 2539 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2540 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2541 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2542 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2543 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2544 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2545 &spa->spa_dedup_ditto); 2546 2547 spa->spa_autoreplace = (autoreplace != 0); 2548 } 2549 2550 /* 2551 * If the 'autoreplace' property is set, then post a resource notifying 2552 * the ZFS DE that it should not issue any faults for unopenable 2553 * devices. We also iterate over the vdevs, and post a sysevent for any 2554 * unopenable vdevs so that the normal autoreplace handler can take 2555 * over. 2556 */ 2557 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2558 spa_check_removed(spa->spa_root_vdev); 2559 /* 2560 * For the import case, this is done in spa_import(), because 2561 * at this point we're using the spare definitions from 2562 * the MOS config, not necessarily from the userland config. 2563 */ 2564 if (state != SPA_LOAD_IMPORT) { 2565 spa_aux_check_removed(&spa->spa_spares); 2566 spa_aux_check_removed(&spa->spa_l2cache); 2567 } 2568 } 2569 2570 /* 2571 * Load the vdev state for all toplevel vdevs. 2572 */ 2573 vdev_load(rvd); 2574 2575 /* 2576 * Propagate the leaf DTLs we just loaded all the way up the tree. 2577 */ 2578 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2579 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2580 spa_config_exit(spa, SCL_ALL, FTAG); 2581 2582 /* 2583 * Load the DDTs (dedup tables). 2584 */ 2585 error = ddt_load(spa); 2586 if (error != 0) 2587 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2588 2589 spa_update_dspace(spa); 2590 2591 /* 2592 * Validate the config, using the MOS config to fill in any 2593 * information which might be missing. If we fail to validate 2594 * the config then declare the pool unfit for use. If we're 2595 * assembling a pool from a split, the log is not transferred 2596 * over. 2597 */ 2598 if (type != SPA_IMPORT_ASSEMBLE) { 2599 nvlist_t *nvconfig; 2600 2601 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2602 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2603 2604 if (!spa_config_valid(spa, nvconfig)) { 2605 nvlist_free(nvconfig); 2606 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2607 ENXIO)); 2608 } 2609 nvlist_free(nvconfig); 2610 2611 /* 2612 * Now that we've validated the config, check the state of the 2613 * root vdev. If it can't be opened, it indicates one or 2614 * more toplevel vdevs are faulted. 2615 */ 2616 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2617 return (SET_ERROR(ENXIO)); 2618 2619 if (spa_check_logs(spa)) { 2620 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2621 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2622 } 2623 } 2624 2625 if (missing_feat_write) { 2626 ASSERT(state == SPA_LOAD_TRYIMPORT); 2627 2628 /* 2629 * At this point, we know that we can open the pool in 2630 * read-only mode but not read-write mode. We now have enough 2631 * information and can return to userland. 2632 */ 2633 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2634 } 2635 2636 /* 2637 * We've successfully opened the pool, verify that we're ready 2638 * to start pushing transactions. 2639 */ 2640 if (state != SPA_LOAD_TRYIMPORT) { 2641 if (error = spa_load_verify(spa)) 2642 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2643 error)); 2644 } 2645 2646 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2647 spa->spa_load_max_txg == UINT64_MAX)) { 2648 dmu_tx_t *tx; 2649 int need_update = B_FALSE; 2650 2651 ASSERT(state != SPA_LOAD_TRYIMPORT); 2652 2653 /* 2654 * Claim log blocks that haven't been committed yet. 2655 * This must all happen in a single txg. 2656 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2657 * invoked from zil_claim_log_block()'s i/o done callback. 2658 * Price of rollback is that we abandon the log. 2659 */ 2660 spa->spa_claiming = B_TRUE; 2661 2662 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2663 spa_first_txg(spa)); 2664 (void) dmu_objset_find(spa_name(spa), 2665 zil_claim, tx, DS_FIND_CHILDREN); 2666 dmu_tx_commit(tx); 2667 2668 spa->spa_claiming = B_FALSE; 2669 2670 spa_set_log_state(spa, SPA_LOG_GOOD); 2671 spa->spa_sync_on = B_TRUE; 2672 txg_sync_start(spa->spa_dsl_pool); 2673 2674 /* 2675 * Wait for all claims to sync. We sync up to the highest 2676 * claimed log block birth time so that claimed log blocks 2677 * don't appear to be from the future. spa_claim_max_txg 2678 * will have been set for us by either zil_check_log_chain() 2679 * (invoked from spa_check_logs()) or zil_claim() above. 2680 */ 2681 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2682 2683 /* 2684 * If the config cache is stale, or we have uninitialized 2685 * metaslabs (see spa_vdev_add()), then update the config. 2686 * 2687 * If this is a verbatim import, trust the current 2688 * in-core spa_config and update the disk labels. 2689 */ 2690 if (config_cache_txg != spa->spa_config_txg || 2691 state == SPA_LOAD_IMPORT || 2692 state == SPA_LOAD_RECOVER || 2693 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2694 need_update = B_TRUE; 2695 2696 for (int c = 0; c < rvd->vdev_children; c++) 2697 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2698 need_update = B_TRUE; 2699 2700 /* 2701 * Update the config cache asychronously in case we're the 2702 * root pool, in which case the config cache isn't writable yet. 2703 */ 2704 if (need_update) 2705 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2706 2707 /* 2708 * Check all DTLs to see if anything needs resilvering. 2709 */ 2710 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2711 vdev_resilver_needed(rvd, NULL, NULL)) 2712 spa_async_request(spa, SPA_ASYNC_RESILVER); 2713 2714 /* 2715 * Log the fact that we booted up (so that we can detect if 2716 * we rebooted in the middle of an operation). 2717 */ 2718 spa_history_log_version(spa, "open"); 2719 2720 /* 2721 * Delete any inconsistent datasets. 2722 */ 2723 (void) dmu_objset_find(spa_name(spa), 2724 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2725 2726 /* 2727 * Clean up any stale temporary dataset userrefs. 2728 */ 2729 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2730 } 2731 2732 return (0); 2733 } 2734 2735 static int 2736 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2737 { 2738 int mode = spa->spa_mode; 2739 2740 spa_unload(spa); 2741 spa_deactivate(spa); 2742 2743 spa->spa_load_max_txg--; 2744 2745 spa_activate(spa, mode); 2746 spa_async_suspend(spa); 2747 2748 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2749 } 2750 2751 /* 2752 * If spa_load() fails this function will try loading prior txg's. If 2753 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2754 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2755 * function will not rewind the pool and will return the same error as 2756 * spa_load(). 2757 */ 2758 static int 2759 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2760 uint64_t max_request, int rewind_flags) 2761 { 2762 nvlist_t *loadinfo = NULL; 2763 nvlist_t *config = NULL; 2764 int load_error, rewind_error; 2765 uint64_t safe_rewind_txg; 2766 uint64_t min_txg; 2767 2768 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2769 spa->spa_load_max_txg = spa->spa_load_txg; 2770 spa_set_log_state(spa, SPA_LOG_CLEAR); 2771 } else { 2772 spa->spa_load_max_txg = max_request; 2773 } 2774 2775 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2776 mosconfig); 2777 if (load_error == 0) 2778 return (0); 2779 2780 if (spa->spa_root_vdev != NULL) 2781 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2782 2783 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2784 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2785 2786 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2787 nvlist_free(config); 2788 return (load_error); 2789 } 2790 2791 if (state == SPA_LOAD_RECOVER) { 2792 /* Price of rolling back is discarding txgs, including log */ 2793 spa_set_log_state(spa, SPA_LOG_CLEAR); 2794 } else { 2795 /* 2796 * If we aren't rolling back save the load info from our first 2797 * import attempt so that we can restore it after attempting 2798 * to rewind. 2799 */ 2800 loadinfo = spa->spa_load_info; 2801 spa->spa_load_info = fnvlist_alloc(); 2802 } 2803 2804 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2805 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2806 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2807 TXG_INITIAL : safe_rewind_txg; 2808 2809 /* 2810 * Continue as long as we're finding errors, we're still within 2811 * the acceptable rewind range, and we're still finding uberblocks 2812 */ 2813 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2814 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2815 if (spa->spa_load_max_txg < safe_rewind_txg) 2816 spa->spa_extreme_rewind = B_TRUE; 2817 rewind_error = spa_load_retry(spa, state, mosconfig); 2818 } 2819 2820 spa->spa_extreme_rewind = B_FALSE; 2821 spa->spa_load_max_txg = UINT64_MAX; 2822 2823 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2824 spa_config_set(spa, config); 2825 2826 if (state == SPA_LOAD_RECOVER) { 2827 ASSERT3P(loadinfo, ==, NULL); 2828 return (rewind_error); 2829 } else { 2830 /* Store the rewind info as part of the initial load info */ 2831 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2832 spa->spa_load_info); 2833 2834 /* Restore the initial load info */ 2835 fnvlist_free(spa->spa_load_info); 2836 spa->spa_load_info = loadinfo; 2837 2838 return (load_error); 2839 } 2840 } 2841 2842 /* 2843 * Pool Open/Import 2844 * 2845 * The import case is identical to an open except that the configuration is sent 2846 * down from userland, instead of grabbed from the configuration cache. For the 2847 * case of an open, the pool configuration will exist in the 2848 * POOL_STATE_UNINITIALIZED state. 2849 * 2850 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2851 * the same time open the pool, without having to keep around the spa_t in some 2852 * ambiguous state. 2853 */ 2854 static int 2855 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2856 nvlist_t **config) 2857 { 2858 spa_t *spa; 2859 spa_load_state_t state = SPA_LOAD_OPEN; 2860 int error; 2861 int locked = B_FALSE; 2862 2863 *spapp = NULL; 2864 2865 /* 2866 * As disgusting as this is, we need to support recursive calls to this 2867 * function because dsl_dir_open() is called during spa_load(), and ends 2868 * up calling spa_open() again. The real fix is to figure out how to 2869 * avoid dsl_dir_open() calling this in the first place. 2870 */ 2871 if (mutex_owner(&spa_namespace_lock) != curthread) { 2872 mutex_enter(&spa_namespace_lock); 2873 locked = B_TRUE; 2874 } 2875 2876 if ((spa = spa_lookup(pool)) == NULL) { 2877 if (locked) 2878 mutex_exit(&spa_namespace_lock); 2879 return (SET_ERROR(ENOENT)); 2880 } 2881 2882 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2883 zpool_rewind_policy_t policy; 2884 2885 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2886 &policy); 2887 if (policy.zrp_request & ZPOOL_DO_REWIND) 2888 state = SPA_LOAD_RECOVER; 2889 2890 spa_activate(spa, spa_mode_global); 2891 2892 if (state != SPA_LOAD_RECOVER) 2893 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2894 2895 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2896 policy.zrp_request); 2897 2898 if (error == EBADF) { 2899 /* 2900 * If vdev_validate() returns failure (indicated by 2901 * EBADF), it indicates that one of the vdevs indicates 2902 * that the pool has been exported or destroyed. If 2903 * this is the case, the config cache is out of sync and 2904 * we should remove the pool from the namespace. 2905 */ 2906 spa_unload(spa); 2907 spa_deactivate(spa); 2908 spa_config_sync(spa, B_TRUE, B_TRUE); 2909 spa_remove(spa); 2910 if (locked) 2911 mutex_exit(&spa_namespace_lock); 2912 return (SET_ERROR(ENOENT)); 2913 } 2914 2915 if (error) { 2916 /* 2917 * We can't open the pool, but we still have useful 2918 * information: the state of each vdev after the 2919 * attempted vdev_open(). Return this to the user. 2920 */ 2921 if (config != NULL && spa->spa_config) { 2922 VERIFY(nvlist_dup(spa->spa_config, config, 2923 KM_SLEEP) == 0); 2924 VERIFY(nvlist_add_nvlist(*config, 2925 ZPOOL_CONFIG_LOAD_INFO, 2926 spa->spa_load_info) == 0); 2927 } 2928 spa_unload(spa); 2929 spa_deactivate(spa); 2930 spa->spa_last_open_failed = error; 2931 if (locked) 2932 mutex_exit(&spa_namespace_lock); 2933 *spapp = NULL; 2934 return (error); 2935 } 2936 } 2937 2938 spa_open_ref(spa, tag); 2939 2940 if (config != NULL) 2941 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2942 2943 /* 2944 * If we've recovered the pool, pass back any information we 2945 * gathered while doing the load. 2946 */ 2947 if (state == SPA_LOAD_RECOVER) { 2948 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2949 spa->spa_load_info) == 0); 2950 } 2951 2952 if (locked) { 2953 spa->spa_last_open_failed = 0; 2954 spa->spa_last_ubsync_txg = 0; 2955 spa->spa_load_txg = 0; 2956 mutex_exit(&spa_namespace_lock); 2957 } 2958 2959 *spapp = spa; 2960 2961 return (0); 2962 } 2963 2964 int 2965 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2966 nvlist_t **config) 2967 { 2968 return (spa_open_common(name, spapp, tag, policy, config)); 2969 } 2970 2971 int 2972 spa_open(const char *name, spa_t **spapp, void *tag) 2973 { 2974 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2975 } 2976 2977 /* 2978 * Lookup the given spa_t, incrementing the inject count in the process, 2979 * preventing it from being exported or destroyed. 2980 */ 2981 spa_t * 2982 spa_inject_addref(char *name) 2983 { 2984 spa_t *spa; 2985 2986 mutex_enter(&spa_namespace_lock); 2987 if ((spa = spa_lookup(name)) == NULL) { 2988 mutex_exit(&spa_namespace_lock); 2989 return (NULL); 2990 } 2991 spa->spa_inject_ref++; 2992 mutex_exit(&spa_namespace_lock); 2993 2994 return (spa); 2995 } 2996 2997 void 2998 spa_inject_delref(spa_t *spa) 2999 { 3000 mutex_enter(&spa_namespace_lock); 3001 spa->spa_inject_ref--; 3002 mutex_exit(&spa_namespace_lock); 3003 } 3004 3005 /* 3006 * Add spares device information to the nvlist. 3007 */ 3008 static void 3009 spa_add_spares(spa_t *spa, nvlist_t *config) 3010 { 3011 nvlist_t **spares; 3012 uint_t i, nspares; 3013 nvlist_t *nvroot; 3014 uint64_t guid; 3015 vdev_stat_t *vs; 3016 uint_t vsc; 3017 uint64_t pool; 3018 3019 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3020 3021 if (spa->spa_spares.sav_count == 0) 3022 return; 3023 3024 VERIFY(nvlist_lookup_nvlist(config, 3025 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3026 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3027 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3028 if (nspares != 0) { 3029 VERIFY(nvlist_add_nvlist_array(nvroot, 3030 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3031 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3032 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3033 3034 /* 3035 * Go through and find any spares which have since been 3036 * repurposed as an active spare. If this is the case, update 3037 * their status appropriately. 3038 */ 3039 for (i = 0; i < nspares; i++) { 3040 VERIFY(nvlist_lookup_uint64(spares[i], 3041 ZPOOL_CONFIG_GUID, &guid) == 0); 3042 if (spa_spare_exists(guid, &pool, NULL) && 3043 pool != 0ULL) { 3044 VERIFY(nvlist_lookup_uint64_array( 3045 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3046 (uint64_t **)&vs, &vsc) == 0); 3047 vs->vs_state = VDEV_STATE_CANT_OPEN; 3048 vs->vs_aux = VDEV_AUX_SPARED; 3049 } 3050 } 3051 } 3052 } 3053 3054 /* 3055 * Add l2cache device information to the nvlist, including vdev stats. 3056 */ 3057 static void 3058 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3059 { 3060 nvlist_t **l2cache; 3061 uint_t i, j, nl2cache; 3062 nvlist_t *nvroot; 3063 uint64_t guid; 3064 vdev_t *vd; 3065 vdev_stat_t *vs; 3066 uint_t vsc; 3067 3068 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3069 3070 if (spa->spa_l2cache.sav_count == 0) 3071 return; 3072 3073 VERIFY(nvlist_lookup_nvlist(config, 3074 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3075 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3076 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3077 if (nl2cache != 0) { 3078 VERIFY(nvlist_add_nvlist_array(nvroot, 3079 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3080 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3081 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3082 3083 /* 3084 * Update level 2 cache device stats. 3085 */ 3086 3087 for (i = 0; i < nl2cache; i++) { 3088 VERIFY(nvlist_lookup_uint64(l2cache[i], 3089 ZPOOL_CONFIG_GUID, &guid) == 0); 3090 3091 vd = NULL; 3092 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3093 if (guid == 3094 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3095 vd = spa->spa_l2cache.sav_vdevs[j]; 3096 break; 3097 } 3098 } 3099 ASSERT(vd != NULL); 3100 3101 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3102 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3103 == 0); 3104 vdev_get_stats(vd, vs); 3105 } 3106 } 3107 } 3108 3109 static void 3110 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3111 { 3112 nvlist_t *features; 3113 zap_cursor_t zc; 3114 zap_attribute_t za; 3115 3116 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3117 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3118 3119 if (spa->spa_feat_for_read_obj != 0) { 3120 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3121 spa->spa_feat_for_read_obj); 3122 zap_cursor_retrieve(&zc, &za) == 0; 3123 zap_cursor_advance(&zc)) { 3124 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3125 za.za_num_integers == 1); 3126 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3127 za.za_first_integer)); 3128 } 3129 zap_cursor_fini(&zc); 3130 } 3131 3132 if (spa->spa_feat_for_write_obj != 0) { 3133 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3134 spa->spa_feat_for_write_obj); 3135 zap_cursor_retrieve(&zc, &za) == 0; 3136 zap_cursor_advance(&zc)) { 3137 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3138 za.za_num_integers == 1); 3139 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3140 za.za_first_integer)); 3141 } 3142 zap_cursor_fini(&zc); 3143 } 3144 3145 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3146 features) == 0); 3147 nvlist_free(features); 3148 } 3149 3150 int 3151 spa_get_stats(const char *name, nvlist_t **config, 3152 char *altroot, size_t buflen) 3153 { 3154 int error; 3155 spa_t *spa; 3156 3157 *config = NULL; 3158 error = spa_open_common(name, &spa, FTAG, NULL, config); 3159 3160 if (spa != NULL) { 3161 /* 3162 * This still leaves a window of inconsistency where the spares 3163 * or l2cache devices could change and the config would be 3164 * self-inconsistent. 3165 */ 3166 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3167 3168 if (*config != NULL) { 3169 uint64_t loadtimes[2]; 3170 3171 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3172 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3173 VERIFY(nvlist_add_uint64_array(*config, 3174 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3175 3176 VERIFY(nvlist_add_uint64(*config, 3177 ZPOOL_CONFIG_ERRCOUNT, 3178 spa_get_errlog_size(spa)) == 0); 3179 3180 if (spa_suspended(spa)) 3181 VERIFY(nvlist_add_uint64(*config, 3182 ZPOOL_CONFIG_SUSPENDED, 3183 spa->spa_failmode) == 0); 3184 3185 spa_add_spares(spa, *config); 3186 spa_add_l2cache(spa, *config); 3187 spa_add_feature_stats(spa, *config); 3188 } 3189 } 3190 3191 /* 3192 * We want to get the alternate root even for faulted pools, so we cheat 3193 * and call spa_lookup() directly. 3194 */ 3195 if (altroot) { 3196 if (spa == NULL) { 3197 mutex_enter(&spa_namespace_lock); 3198 spa = spa_lookup(name); 3199 if (spa) 3200 spa_altroot(spa, altroot, buflen); 3201 else 3202 altroot[0] = '\0'; 3203 spa = NULL; 3204 mutex_exit(&spa_namespace_lock); 3205 } else { 3206 spa_altroot(spa, altroot, buflen); 3207 } 3208 } 3209 3210 if (spa != NULL) { 3211 spa_config_exit(spa, SCL_CONFIG, FTAG); 3212 spa_close(spa, FTAG); 3213 } 3214 3215 return (error); 3216 } 3217 3218 /* 3219 * Validate that the auxiliary device array is well formed. We must have an 3220 * array of nvlists, each which describes a valid leaf vdev. If this is an 3221 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3222 * specified, as long as they are well-formed. 3223 */ 3224 static int 3225 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3226 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3227 vdev_labeltype_t label) 3228 { 3229 nvlist_t **dev; 3230 uint_t i, ndev; 3231 vdev_t *vd; 3232 int error; 3233 3234 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3235 3236 /* 3237 * It's acceptable to have no devs specified. 3238 */ 3239 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3240 return (0); 3241 3242 if (ndev == 0) 3243 return (SET_ERROR(EINVAL)); 3244 3245 /* 3246 * Make sure the pool is formatted with a version that supports this 3247 * device type. 3248 */ 3249 if (spa_version(spa) < version) 3250 return (SET_ERROR(ENOTSUP)); 3251 3252 /* 3253 * Set the pending device list so we correctly handle device in-use 3254 * checking. 3255 */ 3256 sav->sav_pending = dev; 3257 sav->sav_npending = ndev; 3258 3259 for (i = 0; i < ndev; i++) { 3260 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3261 mode)) != 0) 3262 goto out; 3263 3264 if (!vd->vdev_ops->vdev_op_leaf) { 3265 vdev_free(vd); 3266 error = SET_ERROR(EINVAL); 3267 goto out; 3268 } 3269 3270 /* 3271 * The L2ARC currently only supports disk devices in 3272 * kernel context. For user-level testing, we allow it. 3273 */ 3274 #ifdef _KERNEL 3275 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3276 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3277 error = SET_ERROR(ENOTBLK); 3278 vdev_free(vd); 3279 goto out; 3280 } 3281 #endif 3282 vd->vdev_top = vd; 3283 3284 if ((error = vdev_open(vd)) == 0 && 3285 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3286 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3287 vd->vdev_guid) == 0); 3288 } 3289 3290 vdev_free(vd); 3291 3292 if (error && 3293 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3294 goto out; 3295 else 3296 error = 0; 3297 } 3298 3299 out: 3300 sav->sav_pending = NULL; 3301 sav->sav_npending = 0; 3302 return (error); 3303 } 3304 3305 static int 3306 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3307 { 3308 int error; 3309 3310 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3311 3312 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3313 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3314 VDEV_LABEL_SPARE)) != 0) { 3315 return (error); 3316 } 3317 3318 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3319 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3320 VDEV_LABEL_L2CACHE)); 3321 } 3322 3323 static void 3324 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3325 const char *config) 3326 { 3327 int i; 3328 3329 if (sav->sav_config != NULL) { 3330 nvlist_t **olddevs; 3331 uint_t oldndevs; 3332 nvlist_t **newdevs; 3333 3334 /* 3335 * Generate new dev list by concatentating with the 3336 * current dev list. 3337 */ 3338 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3339 &olddevs, &oldndevs) == 0); 3340 3341 newdevs = kmem_alloc(sizeof (void *) * 3342 (ndevs + oldndevs), KM_SLEEP); 3343 for (i = 0; i < oldndevs; i++) 3344 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3345 KM_SLEEP) == 0); 3346 for (i = 0; i < ndevs; i++) 3347 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3348 KM_SLEEP) == 0); 3349 3350 VERIFY(nvlist_remove(sav->sav_config, config, 3351 DATA_TYPE_NVLIST_ARRAY) == 0); 3352 3353 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3354 config, newdevs, ndevs + oldndevs) == 0); 3355 for (i = 0; i < oldndevs + ndevs; i++) 3356 nvlist_free(newdevs[i]); 3357 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3358 } else { 3359 /* 3360 * Generate a new dev list. 3361 */ 3362 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3363 KM_SLEEP) == 0); 3364 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3365 devs, ndevs) == 0); 3366 } 3367 } 3368 3369 /* 3370 * Stop and drop level 2 ARC devices 3371 */ 3372 void 3373 spa_l2cache_drop(spa_t *spa) 3374 { 3375 vdev_t *vd; 3376 int i; 3377 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3378 3379 for (i = 0; i < sav->sav_count; i++) { 3380 uint64_t pool; 3381 3382 vd = sav->sav_vdevs[i]; 3383 ASSERT(vd != NULL); 3384 3385 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3386 pool != 0ULL && l2arc_vdev_present(vd)) 3387 l2arc_remove_vdev(vd); 3388 } 3389 } 3390 3391 /* 3392 * Pool Creation 3393 */ 3394 int 3395 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3396 nvlist_t *zplprops) 3397 { 3398 spa_t *spa; 3399 char *altroot = NULL; 3400 vdev_t *rvd; 3401 dsl_pool_t *dp; 3402 dmu_tx_t *tx; 3403 int error = 0; 3404 uint64_t txg = TXG_INITIAL; 3405 nvlist_t **spares, **l2cache; 3406 uint_t nspares, nl2cache; 3407 uint64_t version, obj; 3408 boolean_t has_features; 3409 3410 /* 3411 * If this pool already exists, return failure. 3412 */ 3413 mutex_enter(&spa_namespace_lock); 3414 if (spa_lookup(pool) != NULL) { 3415 mutex_exit(&spa_namespace_lock); 3416 return (SET_ERROR(EEXIST)); 3417 } 3418 3419 /* 3420 * Allocate a new spa_t structure. 3421 */ 3422 (void) nvlist_lookup_string(props, 3423 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3424 spa = spa_add(pool, NULL, altroot); 3425 spa_activate(spa, spa_mode_global); 3426 3427 if (props && (error = spa_prop_validate(spa, props))) { 3428 spa_deactivate(spa); 3429 spa_remove(spa); 3430 mutex_exit(&spa_namespace_lock); 3431 return (error); 3432 } 3433 3434 has_features = B_FALSE; 3435 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3436 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3437 if (zpool_prop_feature(nvpair_name(elem))) 3438 has_features = B_TRUE; 3439 } 3440 3441 if (has_features || nvlist_lookup_uint64(props, 3442 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3443 version = SPA_VERSION; 3444 } 3445 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3446 3447 spa->spa_first_txg = txg; 3448 spa->spa_uberblock.ub_txg = txg - 1; 3449 spa->spa_uberblock.ub_version = version; 3450 spa->spa_ubsync = spa->spa_uberblock; 3451 3452 /* 3453 * Create "The Godfather" zio to hold all async IOs 3454 */ 3455 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 3456 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 3457 3458 /* 3459 * Create the root vdev. 3460 */ 3461 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3462 3463 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3464 3465 ASSERT(error != 0 || rvd != NULL); 3466 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3467 3468 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3469 error = SET_ERROR(EINVAL); 3470 3471 if (error == 0 && 3472 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3473 (error = spa_validate_aux(spa, nvroot, txg, 3474 VDEV_ALLOC_ADD)) == 0) { 3475 for (int c = 0; c < rvd->vdev_children; c++) { 3476 vdev_metaslab_set_size(rvd->vdev_child[c]); 3477 vdev_expand(rvd->vdev_child[c], txg); 3478 } 3479 } 3480 3481 spa_config_exit(spa, SCL_ALL, FTAG); 3482 3483 if (error != 0) { 3484 spa_unload(spa); 3485 spa_deactivate(spa); 3486 spa_remove(spa); 3487 mutex_exit(&spa_namespace_lock); 3488 return (error); 3489 } 3490 3491 /* 3492 * Get the list of spares, if specified. 3493 */ 3494 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3495 &spares, &nspares) == 0) { 3496 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3497 KM_SLEEP) == 0); 3498 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3499 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3500 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3501 spa_load_spares(spa); 3502 spa_config_exit(spa, SCL_ALL, FTAG); 3503 spa->spa_spares.sav_sync = B_TRUE; 3504 } 3505 3506 /* 3507 * Get the list of level 2 cache devices, if specified. 3508 */ 3509 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3510 &l2cache, &nl2cache) == 0) { 3511 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3512 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3513 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3514 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3515 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3516 spa_load_l2cache(spa); 3517 spa_config_exit(spa, SCL_ALL, FTAG); 3518 spa->spa_l2cache.sav_sync = B_TRUE; 3519 } 3520 3521 spa->spa_is_initializing = B_TRUE; 3522 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3523 spa->spa_meta_objset = dp->dp_meta_objset; 3524 spa->spa_is_initializing = B_FALSE; 3525 3526 /* 3527 * Create DDTs (dedup tables). 3528 */ 3529 ddt_create(spa); 3530 3531 spa_update_dspace(spa); 3532 3533 tx = dmu_tx_create_assigned(dp, txg); 3534 3535 /* 3536 * Create the pool config object. 3537 */ 3538 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3539 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3540 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3541 3542 if (zap_add(spa->spa_meta_objset, 3543 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3544 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3545 cmn_err(CE_PANIC, "failed to add pool config"); 3546 } 3547 3548 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3549 spa_feature_create_zap_objects(spa, tx); 3550 3551 if (zap_add(spa->spa_meta_objset, 3552 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3553 sizeof (uint64_t), 1, &version, tx) != 0) { 3554 cmn_err(CE_PANIC, "failed to add pool version"); 3555 } 3556 3557 /* Newly created pools with the right version are always deflated. */ 3558 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3559 spa->spa_deflate = TRUE; 3560 if (zap_add(spa->spa_meta_objset, 3561 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3562 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3563 cmn_err(CE_PANIC, "failed to add deflate"); 3564 } 3565 } 3566 3567 /* 3568 * Create the deferred-free bpobj. Turn off compression 3569 * because sync-to-convergence takes longer if the blocksize 3570 * keeps changing. 3571 */ 3572 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3573 dmu_object_set_compress(spa->spa_meta_objset, obj, 3574 ZIO_COMPRESS_OFF, tx); 3575 if (zap_add(spa->spa_meta_objset, 3576 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3577 sizeof (uint64_t), 1, &obj, tx) != 0) { 3578 cmn_err(CE_PANIC, "failed to add bpobj"); 3579 } 3580 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3581 spa->spa_meta_objset, obj)); 3582 3583 /* 3584 * Create the pool's history object. 3585 */ 3586 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3587 spa_history_create_obj(spa, tx); 3588 3589 /* 3590 * Set pool properties. 3591 */ 3592 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3593 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3594 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3595 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3596 3597 if (props != NULL) { 3598 spa_configfile_set(spa, props, B_FALSE); 3599 spa_sync_props(props, tx); 3600 } 3601 3602 dmu_tx_commit(tx); 3603 3604 spa->spa_sync_on = B_TRUE; 3605 txg_sync_start(spa->spa_dsl_pool); 3606 3607 /* 3608 * We explicitly wait for the first transaction to complete so that our 3609 * bean counters are appropriately updated. 3610 */ 3611 txg_wait_synced(spa->spa_dsl_pool, txg); 3612 3613 spa_config_sync(spa, B_FALSE, B_TRUE); 3614 3615 spa_history_log_version(spa, "create"); 3616 3617 spa->spa_minref = refcount_count(&spa->spa_refcount); 3618 3619 mutex_exit(&spa_namespace_lock); 3620 3621 return (0); 3622 } 3623 3624 #ifdef _KERNEL 3625 /* 3626 * Get the root pool information from the root disk, then import the root pool 3627 * during the system boot up time. 3628 */ 3629 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3630 3631 static nvlist_t * 3632 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3633 { 3634 nvlist_t *config; 3635 nvlist_t *nvtop, *nvroot; 3636 uint64_t pgid; 3637 3638 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3639 return (NULL); 3640 3641 /* 3642 * Add this top-level vdev to the child array. 3643 */ 3644 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3645 &nvtop) == 0); 3646 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3647 &pgid) == 0); 3648 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3649 3650 /* 3651 * Put this pool's top-level vdevs into a root vdev. 3652 */ 3653 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3654 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3655 VDEV_TYPE_ROOT) == 0); 3656 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3657 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3658 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3659 &nvtop, 1) == 0); 3660 3661 /* 3662 * Replace the existing vdev_tree with the new root vdev in 3663 * this pool's configuration (remove the old, add the new). 3664 */ 3665 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3666 nvlist_free(nvroot); 3667 return (config); 3668 } 3669 3670 /* 3671 * Walk the vdev tree and see if we can find a device with "better" 3672 * configuration. A configuration is "better" if the label on that 3673 * device has a more recent txg. 3674 */ 3675 static void 3676 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3677 { 3678 for (int c = 0; c < vd->vdev_children; c++) 3679 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3680 3681 if (vd->vdev_ops->vdev_op_leaf) { 3682 nvlist_t *label; 3683 uint64_t label_txg; 3684 3685 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3686 &label) != 0) 3687 return; 3688 3689 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3690 &label_txg) == 0); 3691 3692 /* 3693 * Do we have a better boot device? 3694 */ 3695 if (label_txg > *txg) { 3696 *txg = label_txg; 3697 *avd = vd; 3698 } 3699 nvlist_free(label); 3700 } 3701 } 3702 3703 /* 3704 * Import a root pool. 3705 * 3706 * For x86. devpath_list will consist of devid and/or physpath name of 3707 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3708 * The GRUB "findroot" command will return the vdev we should boot. 3709 * 3710 * For Sparc, devpath_list consists the physpath name of the booting device 3711 * no matter the rootpool is a single device pool or a mirrored pool. 3712 * e.g. 3713 * "/pci@1f,0/ide@d/disk@0,0:a" 3714 */ 3715 int 3716 spa_import_rootpool(char *devpath, char *devid) 3717 { 3718 spa_t *spa; 3719 vdev_t *rvd, *bvd, *avd = NULL; 3720 nvlist_t *config, *nvtop; 3721 uint64_t guid, txg; 3722 char *pname; 3723 int error; 3724 3725 /* 3726 * Read the label from the boot device and generate a configuration. 3727 */ 3728 config = spa_generate_rootconf(devpath, devid, &guid); 3729 #if defined(_OBP) && defined(_KERNEL) 3730 if (config == NULL) { 3731 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3732 /* iscsi boot */ 3733 get_iscsi_bootpath_phy(devpath); 3734 config = spa_generate_rootconf(devpath, devid, &guid); 3735 } 3736 } 3737 #endif 3738 if (config == NULL) { 3739 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3740 devpath); 3741 return (SET_ERROR(EIO)); 3742 } 3743 3744 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3745 &pname) == 0); 3746 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3747 3748 mutex_enter(&spa_namespace_lock); 3749 if ((spa = spa_lookup(pname)) != NULL) { 3750 /* 3751 * Remove the existing root pool from the namespace so that we 3752 * can replace it with the correct config we just read in. 3753 */ 3754 spa_remove(spa); 3755 } 3756 3757 spa = spa_add(pname, config, NULL); 3758 spa->spa_is_root = B_TRUE; 3759 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3760 3761 /* 3762 * Build up a vdev tree based on the boot device's label config. 3763 */ 3764 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3765 &nvtop) == 0); 3766 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3767 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3768 VDEV_ALLOC_ROOTPOOL); 3769 spa_config_exit(spa, SCL_ALL, FTAG); 3770 if (error) { 3771 mutex_exit(&spa_namespace_lock); 3772 nvlist_free(config); 3773 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3774 pname); 3775 return (error); 3776 } 3777 3778 /* 3779 * Get the boot vdev. 3780 */ 3781 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3782 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3783 (u_longlong_t)guid); 3784 error = SET_ERROR(ENOENT); 3785 goto out; 3786 } 3787 3788 /* 3789 * Determine if there is a better boot device. 3790 */ 3791 avd = bvd; 3792 spa_alt_rootvdev(rvd, &avd, &txg); 3793 if (avd != bvd) { 3794 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3795 "try booting from '%s'", avd->vdev_path); 3796 error = SET_ERROR(EINVAL); 3797 goto out; 3798 } 3799 3800 /* 3801 * If the boot device is part of a spare vdev then ensure that 3802 * we're booting off the active spare. 3803 */ 3804 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3805 !bvd->vdev_isspare) { 3806 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3807 "try booting from '%s'", 3808 bvd->vdev_parent-> 3809 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3810 error = SET_ERROR(EINVAL); 3811 goto out; 3812 } 3813 3814 error = 0; 3815 out: 3816 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3817 vdev_free(rvd); 3818 spa_config_exit(spa, SCL_ALL, FTAG); 3819 mutex_exit(&spa_namespace_lock); 3820 3821 nvlist_free(config); 3822 return (error); 3823 } 3824 3825 #endif 3826 3827 /* 3828 * Import a non-root pool into the system. 3829 */ 3830 int 3831 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3832 { 3833 spa_t *spa; 3834 char *altroot = NULL; 3835 spa_load_state_t state = SPA_LOAD_IMPORT; 3836 zpool_rewind_policy_t policy; 3837 uint64_t mode = spa_mode_global; 3838 uint64_t readonly = B_FALSE; 3839 int error; 3840 nvlist_t *nvroot; 3841 nvlist_t **spares, **l2cache; 3842 uint_t nspares, nl2cache; 3843 3844 /* 3845 * If a pool with this name exists, return failure. 3846 */ 3847 mutex_enter(&spa_namespace_lock); 3848 if (spa_lookup(pool) != NULL) { 3849 mutex_exit(&spa_namespace_lock); 3850 return (SET_ERROR(EEXIST)); 3851 } 3852 3853 /* 3854 * Create and initialize the spa structure. 3855 */ 3856 (void) nvlist_lookup_string(props, 3857 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3858 (void) nvlist_lookup_uint64(props, 3859 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3860 if (readonly) 3861 mode = FREAD; 3862 spa = spa_add(pool, config, altroot); 3863 spa->spa_import_flags = flags; 3864 3865 /* 3866 * Verbatim import - Take a pool and insert it into the namespace 3867 * as if it had been loaded at boot. 3868 */ 3869 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3870 if (props != NULL) 3871 spa_configfile_set(spa, props, B_FALSE); 3872 3873 spa_config_sync(spa, B_FALSE, B_TRUE); 3874 3875 mutex_exit(&spa_namespace_lock); 3876 return (0); 3877 } 3878 3879 spa_activate(spa, mode); 3880 3881 /* 3882 * Don't start async tasks until we know everything is healthy. 3883 */ 3884 spa_async_suspend(spa); 3885 3886 zpool_get_rewind_policy(config, &policy); 3887 if (policy.zrp_request & ZPOOL_DO_REWIND) 3888 state = SPA_LOAD_RECOVER; 3889 3890 /* 3891 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3892 * because the user-supplied config is actually the one to trust when 3893 * doing an import. 3894 */ 3895 if (state != SPA_LOAD_RECOVER) 3896 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3897 3898 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3899 policy.zrp_request); 3900 3901 /* 3902 * Propagate anything learned while loading the pool and pass it 3903 * back to caller (i.e. rewind info, missing devices, etc). 3904 */ 3905 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3906 spa->spa_load_info) == 0); 3907 3908 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3909 /* 3910 * Toss any existing sparelist, as it doesn't have any validity 3911 * anymore, and conflicts with spa_has_spare(). 3912 */ 3913 if (spa->spa_spares.sav_config) { 3914 nvlist_free(spa->spa_spares.sav_config); 3915 spa->spa_spares.sav_config = NULL; 3916 spa_load_spares(spa); 3917 } 3918 if (spa->spa_l2cache.sav_config) { 3919 nvlist_free(spa->spa_l2cache.sav_config); 3920 spa->spa_l2cache.sav_config = NULL; 3921 spa_load_l2cache(spa); 3922 } 3923 3924 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3925 &nvroot) == 0); 3926 if (error == 0) 3927 error = spa_validate_aux(spa, nvroot, -1ULL, 3928 VDEV_ALLOC_SPARE); 3929 if (error == 0) 3930 error = spa_validate_aux(spa, nvroot, -1ULL, 3931 VDEV_ALLOC_L2CACHE); 3932 spa_config_exit(spa, SCL_ALL, FTAG); 3933 3934 if (props != NULL) 3935 spa_configfile_set(spa, props, B_FALSE); 3936 3937 if (error != 0 || (props && spa_writeable(spa) && 3938 (error = spa_prop_set(spa, props)))) { 3939 spa_unload(spa); 3940 spa_deactivate(spa); 3941 spa_remove(spa); 3942 mutex_exit(&spa_namespace_lock); 3943 return (error); 3944 } 3945 3946 spa_async_resume(spa); 3947 3948 /* 3949 * Override any spares and level 2 cache devices as specified by 3950 * the user, as these may have correct device names/devids, etc. 3951 */ 3952 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3953 &spares, &nspares) == 0) { 3954 if (spa->spa_spares.sav_config) 3955 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3956 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3957 else 3958 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3959 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3960 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3961 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3962 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3963 spa_load_spares(spa); 3964 spa_config_exit(spa, SCL_ALL, FTAG); 3965 spa->spa_spares.sav_sync = B_TRUE; 3966 } 3967 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3968 &l2cache, &nl2cache) == 0) { 3969 if (spa->spa_l2cache.sav_config) 3970 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3971 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3972 else 3973 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3974 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3975 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3976 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3977 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3978 spa_load_l2cache(spa); 3979 spa_config_exit(spa, SCL_ALL, FTAG); 3980 spa->spa_l2cache.sav_sync = B_TRUE; 3981 } 3982 3983 /* 3984 * Check for any removed devices. 3985 */ 3986 if (spa->spa_autoreplace) { 3987 spa_aux_check_removed(&spa->spa_spares); 3988 spa_aux_check_removed(&spa->spa_l2cache); 3989 } 3990 3991 if (spa_writeable(spa)) { 3992 /* 3993 * Update the config cache to include the newly-imported pool. 3994 */ 3995 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3996 } 3997 3998 /* 3999 * It's possible that the pool was expanded while it was exported. 4000 * We kick off an async task to handle this for us. 4001 */ 4002 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4003 4004 mutex_exit(&spa_namespace_lock); 4005 spa_history_log_version(spa, "import"); 4006 4007 return (0); 4008 } 4009 4010 nvlist_t * 4011 spa_tryimport(nvlist_t *tryconfig) 4012 { 4013 nvlist_t *config = NULL; 4014 char *poolname; 4015 spa_t *spa; 4016 uint64_t state; 4017 int error; 4018 4019 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4020 return (NULL); 4021 4022 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4023 return (NULL); 4024 4025 /* 4026 * Create and initialize the spa structure. 4027 */ 4028 mutex_enter(&spa_namespace_lock); 4029 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4030 spa_activate(spa, FREAD); 4031 4032 /* 4033 * Pass off the heavy lifting to spa_load(). 4034 * Pass TRUE for mosconfig because the user-supplied config 4035 * is actually the one to trust when doing an import. 4036 */ 4037 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4038 4039 /* 4040 * If 'tryconfig' was at least parsable, return the current config. 4041 */ 4042 if (spa->spa_root_vdev != NULL) { 4043 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4044 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4045 poolname) == 0); 4046 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4047 state) == 0); 4048 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4049 spa->spa_uberblock.ub_timestamp) == 0); 4050 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4051 spa->spa_load_info) == 0); 4052 4053 /* 4054 * If the bootfs property exists on this pool then we 4055 * copy it out so that external consumers can tell which 4056 * pools are bootable. 4057 */ 4058 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4059 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4060 4061 /* 4062 * We have to play games with the name since the 4063 * pool was opened as TRYIMPORT_NAME. 4064 */ 4065 if (dsl_dsobj_to_dsname(spa_name(spa), 4066 spa->spa_bootfs, tmpname) == 0) { 4067 char *cp; 4068 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4069 4070 cp = strchr(tmpname, '/'); 4071 if (cp == NULL) { 4072 (void) strlcpy(dsname, tmpname, 4073 MAXPATHLEN); 4074 } else { 4075 (void) snprintf(dsname, MAXPATHLEN, 4076 "%s/%s", poolname, ++cp); 4077 } 4078 VERIFY(nvlist_add_string(config, 4079 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4080 kmem_free(dsname, MAXPATHLEN); 4081 } 4082 kmem_free(tmpname, MAXPATHLEN); 4083 } 4084 4085 /* 4086 * Add the list of hot spares and level 2 cache devices. 4087 */ 4088 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4089 spa_add_spares(spa, config); 4090 spa_add_l2cache(spa, config); 4091 spa_config_exit(spa, SCL_CONFIG, FTAG); 4092 } 4093 4094 spa_unload(spa); 4095 spa_deactivate(spa); 4096 spa_remove(spa); 4097 mutex_exit(&spa_namespace_lock); 4098 4099 return (config); 4100 } 4101 4102 /* 4103 * Pool export/destroy 4104 * 4105 * The act of destroying or exporting a pool is very simple. We make sure there 4106 * is no more pending I/O and any references to the pool are gone. Then, we 4107 * update the pool state and sync all the labels to disk, removing the 4108 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4109 * we don't sync the labels or remove the configuration cache. 4110 */ 4111 static int 4112 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4113 boolean_t force, boolean_t hardforce) 4114 { 4115 spa_t *spa; 4116 4117 if (oldconfig) 4118 *oldconfig = NULL; 4119 4120 if (!(spa_mode_global & FWRITE)) 4121 return (SET_ERROR(EROFS)); 4122 4123 mutex_enter(&spa_namespace_lock); 4124 if ((spa = spa_lookup(pool)) == NULL) { 4125 mutex_exit(&spa_namespace_lock); 4126 return (SET_ERROR(ENOENT)); 4127 } 4128 4129 /* 4130 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4131 * reacquire the namespace lock, and see if we can export. 4132 */ 4133 spa_open_ref(spa, FTAG); 4134 mutex_exit(&spa_namespace_lock); 4135 spa_async_suspend(spa); 4136 mutex_enter(&spa_namespace_lock); 4137 spa_close(spa, FTAG); 4138 4139 /* 4140 * The pool will be in core if it's openable, 4141 * in which case we can modify its state. 4142 */ 4143 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4144 /* 4145 * Objsets may be open only because they're dirty, so we 4146 * have to force it to sync before checking spa_refcnt. 4147 */ 4148 txg_wait_synced(spa->spa_dsl_pool, 0); 4149 4150 /* 4151 * A pool cannot be exported or destroyed if there are active 4152 * references. If we are resetting a pool, allow references by 4153 * fault injection handlers. 4154 */ 4155 if (!spa_refcount_zero(spa) || 4156 (spa->spa_inject_ref != 0 && 4157 new_state != POOL_STATE_UNINITIALIZED)) { 4158 spa_async_resume(spa); 4159 mutex_exit(&spa_namespace_lock); 4160 return (SET_ERROR(EBUSY)); 4161 } 4162 4163 /* 4164 * A pool cannot be exported if it has an active shared spare. 4165 * This is to prevent other pools stealing the active spare 4166 * from an exported pool. At user's own will, such pool can 4167 * be forcedly exported. 4168 */ 4169 if (!force && new_state == POOL_STATE_EXPORTED && 4170 spa_has_active_shared_spare(spa)) { 4171 spa_async_resume(spa); 4172 mutex_exit(&spa_namespace_lock); 4173 return (SET_ERROR(EXDEV)); 4174 } 4175 4176 /* 4177 * We want this to be reflected on every label, 4178 * so mark them all dirty. spa_unload() will do the 4179 * final sync that pushes these changes out. 4180 */ 4181 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4182 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4183 spa->spa_state = new_state; 4184 spa->spa_final_txg = spa_last_synced_txg(spa) + 4185 TXG_DEFER_SIZE + 1; 4186 vdev_config_dirty(spa->spa_root_vdev); 4187 spa_config_exit(spa, SCL_ALL, FTAG); 4188 } 4189 } 4190 4191 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4192 4193 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4194 spa_unload(spa); 4195 spa_deactivate(spa); 4196 } 4197 4198 if (oldconfig && spa->spa_config) 4199 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4200 4201 if (new_state != POOL_STATE_UNINITIALIZED) { 4202 if (!hardforce) 4203 spa_config_sync(spa, B_TRUE, B_TRUE); 4204 spa_remove(spa); 4205 } 4206 mutex_exit(&spa_namespace_lock); 4207 4208 return (0); 4209 } 4210 4211 /* 4212 * Destroy a storage pool. 4213 */ 4214 int 4215 spa_destroy(char *pool) 4216 { 4217 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4218 B_FALSE, B_FALSE)); 4219 } 4220 4221 /* 4222 * Export a storage pool. 4223 */ 4224 int 4225 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4226 boolean_t hardforce) 4227 { 4228 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4229 force, hardforce)); 4230 } 4231 4232 /* 4233 * Similar to spa_export(), this unloads the spa_t without actually removing it 4234 * from the namespace in any way. 4235 */ 4236 int 4237 spa_reset(char *pool) 4238 { 4239 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4240 B_FALSE, B_FALSE)); 4241 } 4242 4243 /* 4244 * ========================================================================== 4245 * Device manipulation 4246 * ========================================================================== 4247 */ 4248 4249 /* 4250 * Add a device to a storage pool. 4251 */ 4252 int 4253 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4254 { 4255 uint64_t txg, id; 4256 int error; 4257 vdev_t *rvd = spa->spa_root_vdev; 4258 vdev_t *vd, *tvd; 4259 nvlist_t **spares, **l2cache; 4260 uint_t nspares, nl2cache; 4261 4262 ASSERT(spa_writeable(spa)); 4263 4264 txg = spa_vdev_enter(spa); 4265 4266 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4267 VDEV_ALLOC_ADD)) != 0) 4268 return (spa_vdev_exit(spa, NULL, txg, error)); 4269 4270 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4271 4272 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4273 &nspares) != 0) 4274 nspares = 0; 4275 4276 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4277 &nl2cache) != 0) 4278 nl2cache = 0; 4279 4280 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4281 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4282 4283 if (vd->vdev_children != 0 && 4284 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4285 return (spa_vdev_exit(spa, vd, txg, error)); 4286 4287 /* 4288 * We must validate the spares and l2cache devices after checking the 4289 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4290 */ 4291 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4292 return (spa_vdev_exit(spa, vd, txg, error)); 4293 4294 /* 4295 * Transfer each new top-level vdev from vd to rvd. 4296 */ 4297 for (int c = 0; c < vd->vdev_children; c++) { 4298 4299 /* 4300 * Set the vdev id to the first hole, if one exists. 4301 */ 4302 for (id = 0; id < rvd->vdev_children; id++) { 4303 if (rvd->vdev_child[id]->vdev_ishole) { 4304 vdev_free(rvd->vdev_child[id]); 4305 break; 4306 } 4307 } 4308 tvd = vd->vdev_child[c]; 4309 vdev_remove_child(vd, tvd); 4310 tvd->vdev_id = id; 4311 vdev_add_child(rvd, tvd); 4312 vdev_config_dirty(tvd); 4313 } 4314 4315 if (nspares != 0) { 4316 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4317 ZPOOL_CONFIG_SPARES); 4318 spa_load_spares(spa); 4319 spa->spa_spares.sav_sync = B_TRUE; 4320 } 4321 4322 if (nl2cache != 0) { 4323 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4324 ZPOOL_CONFIG_L2CACHE); 4325 spa_load_l2cache(spa); 4326 spa->spa_l2cache.sav_sync = B_TRUE; 4327 } 4328 4329 /* 4330 * We have to be careful when adding new vdevs to an existing pool. 4331 * If other threads start allocating from these vdevs before we 4332 * sync the config cache, and we lose power, then upon reboot we may 4333 * fail to open the pool because there are DVAs that the config cache 4334 * can't translate. Therefore, we first add the vdevs without 4335 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4336 * and then let spa_config_update() initialize the new metaslabs. 4337 * 4338 * spa_load() checks for added-but-not-initialized vdevs, so that 4339 * if we lose power at any point in this sequence, the remaining 4340 * steps will be completed the next time we load the pool. 4341 */ 4342 (void) spa_vdev_exit(spa, vd, txg, 0); 4343 4344 mutex_enter(&spa_namespace_lock); 4345 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4346 mutex_exit(&spa_namespace_lock); 4347 4348 return (0); 4349 } 4350 4351 /* 4352 * Attach a device to a mirror. The arguments are the path to any device 4353 * in the mirror, and the nvroot for the new device. If the path specifies 4354 * a device that is not mirrored, we automatically insert the mirror vdev. 4355 * 4356 * If 'replacing' is specified, the new device is intended to replace the 4357 * existing device; in this case the two devices are made into their own 4358 * mirror using the 'replacing' vdev, which is functionally identical to 4359 * the mirror vdev (it actually reuses all the same ops) but has a few 4360 * extra rules: you can't attach to it after it's been created, and upon 4361 * completion of resilvering, the first disk (the one being replaced) 4362 * is automatically detached. 4363 */ 4364 int 4365 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4366 { 4367 uint64_t txg, dtl_max_txg; 4368 vdev_t *rvd = spa->spa_root_vdev; 4369 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4370 vdev_ops_t *pvops; 4371 char *oldvdpath, *newvdpath; 4372 int newvd_isspare; 4373 int error; 4374 4375 ASSERT(spa_writeable(spa)); 4376 4377 txg = spa_vdev_enter(spa); 4378 4379 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4380 4381 if (oldvd == NULL) 4382 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4383 4384 if (!oldvd->vdev_ops->vdev_op_leaf) 4385 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4386 4387 pvd = oldvd->vdev_parent; 4388 4389 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4390 VDEV_ALLOC_ATTACH)) != 0) 4391 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4392 4393 if (newrootvd->vdev_children != 1) 4394 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4395 4396 newvd = newrootvd->vdev_child[0]; 4397 4398 if (!newvd->vdev_ops->vdev_op_leaf) 4399 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4400 4401 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4402 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4403 4404 /* 4405 * Spares can't replace logs 4406 */ 4407 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4408 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4409 4410 if (!replacing) { 4411 /* 4412 * For attach, the only allowable parent is a mirror or the root 4413 * vdev. 4414 */ 4415 if (pvd->vdev_ops != &vdev_mirror_ops && 4416 pvd->vdev_ops != &vdev_root_ops) 4417 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4418 4419 pvops = &vdev_mirror_ops; 4420 } else { 4421 /* 4422 * Active hot spares can only be replaced by inactive hot 4423 * spares. 4424 */ 4425 if (pvd->vdev_ops == &vdev_spare_ops && 4426 oldvd->vdev_isspare && 4427 !spa_has_spare(spa, newvd->vdev_guid)) 4428 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4429 4430 /* 4431 * If the source is a hot spare, and the parent isn't already a 4432 * spare, then we want to create a new hot spare. Otherwise, we 4433 * want to create a replacing vdev. The user is not allowed to 4434 * attach to a spared vdev child unless the 'isspare' state is 4435 * the same (spare replaces spare, non-spare replaces 4436 * non-spare). 4437 */ 4438 if (pvd->vdev_ops == &vdev_replacing_ops && 4439 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4440 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4441 } else if (pvd->vdev_ops == &vdev_spare_ops && 4442 newvd->vdev_isspare != oldvd->vdev_isspare) { 4443 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4444 } 4445 4446 if (newvd->vdev_isspare) 4447 pvops = &vdev_spare_ops; 4448 else 4449 pvops = &vdev_replacing_ops; 4450 } 4451 4452 /* 4453 * Make sure the new device is big enough. 4454 */ 4455 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4456 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4457 4458 /* 4459 * The new device cannot have a higher alignment requirement 4460 * than the top-level vdev. 4461 */ 4462 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4463 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4464 4465 /* 4466 * If this is an in-place replacement, update oldvd's path and devid 4467 * to make it distinguishable from newvd, and unopenable from now on. 4468 */ 4469 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4470 spa_strfree(oldvd->vdev_path); 4471 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4472 KM_SLEEP); 4473 (void) sprintf(oldvd->vdev_path, "%s/%s", 4474 newvd->vdev_path, "old"); 4475 if (oldvd->vdev_devid != NULL) { 4476 spa_strfree(oldvd->vdev_devid); 4477 oldvd->vdev_devid = NULL; 4478 } 4479 } 4480 4481 /* mark the device being resilvered */ 4482 newvd->vdev_resilver_txg = txg; 4483 4484 /* 4485 * If the parent is not a mirror, or if we're replacing, insert the new 4486 * mirror/replacing/spare vdev above oldvd. 4487 */ 4488 if (pvd->vdev_ops != pvops) 4489 pvd = vdev_add_parent(oldvd, pvops); 4490 4491 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4492 ASSERT(pvd->vdev_ops == pvops); 4493 ASSERT(oldvd->vdev_parent == pvd); 4494 4495 /* 4496 * Extract the new device from its root and add it to pvd. 4497 */ 4498 vdev_remove_child(newrootvd, newvd); 4499 newvd->vdev_id = pvd->vdev_children; 4500 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4501 vdev_add_child(pvd, newvd); 4502 4503 tvd = newvd->vdev_top; 4504 ASSERT(pvd->vdev_top == tvd); 4505 ASSERT(tvd->vdev_parent == rvd); 4506 4507 vdev_config_dirty(tvd); 4508 4509 /* 4510 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4511 * for any dmu_sync-ed blocks. It will propagate upward when 4512 * spa_vdev_exit() calls vdev_dtl_reassess(). 4513 */ 4514 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4515 4516 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4517 dtl_max_txg - TXG_INITIAL); 4518 4519 if (newvd->vdev_isspare) { 4520 spa_spare_activate(newvd); 4521 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4522 } 4523 4524 oldvdpath = spa_strdup(oldvd->vdev_path); 4525 newvdpath = spa_strdup(newvd->vdev_path); 4526 newvd_isspare = newvd->vdev_isspare; 4527 4528 /* 4529 * Mark newvd's DTL dirty in this txg. 4530 */ 4531 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4532 4533 /* 4534 * Schedule the resilver to restart in the future. We do this to 4535 * ensure that dmu_sync-ed blocks have been stitched into the 4536 * respective datasets. 4537 */ 4538 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4539 4540 /* 4541 * Commit the config 4542 */ 4543 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4544 4545 spa_history_log_internal(spa, "vdev attach", NULL, 4546 "%s vdev=%s %s vdev=%s", 4547 replacing && newvd_isspare ? "spare in" : 4548 replacing ? "replace" : "attach", newvdpath, 4549 replacing ? "for" : "to", oldvdpath); 4550 4551 spa_strfree(oldvdpath); 4552 spa_strfree(newvdpath); 4553 4554 if (spa->spa_bootfs) 4555 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4556 4557 return (0); 4558 } 4559 4560 /* 4561 * Detach a device from a mirror or replacing vdev. 4562 * 4563 * If 'replace_done' is specified, only detach if the parent 4564 * is a replacing vdev. 4565 */ 4566 int 4567 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4568 { 4569 uint64_t txg; 4570 int error; 4571 vdev_t *rvd = spa->spa_root_vdev; 4572 vdev_t *vd, *pvd, *cvd, *tvd; 4573 boolean_t unspare = B_FALSE; 4574 uint64_t unspare_guid = 0; 4575 char *vdpath; 4576 4577 ASSERT(spa_writeable(spa)); 4578 4579 txg = spa_vdev_enter(spa); 4580 4581 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4582 4583 if (vd == NULL) 4584 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4585 4586 if (!vd->vdev_ops->vdev_op_leaf) 4587 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4588 4589 pvd = vd->vdev_parent; 4590 4591 /* 4592 * If the parent/child relationship is not as expected, don't do it. 4593 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4594 * vdev that's replacing B with C. The user's intent in replacing 4595 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4596 * the replace by detaching C, the expected behavior is to end up 4597 * M(A,B). But suppose that right after deciding to detach C, 4598 * the replacement of B completes. We would have M(A,C), and then 4599 * ask to detach C, which would leave us with just A -- not what 4600 * the user wanted. To prevent this, we make sure that the 4601 * parent/child relationship hasn't changed -- in this example, 4602 * that C's parent is still the replacing vdev R. 4603 */ 4604 if (pvd->vdev_guid != pguid && pguid != 0) 4605 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4606 4607 /* 4608 * Only 'replacing' or 'spare' vdevs can be replaced. 4609 */ 4610 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4611 pvd->vdev_ops != &vdev_spare_ops) 4612 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4613 4614 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4615 spa_version(spa) >= SPA_VERSION_SPARES); 4616 4617 /* 4618 * Only mirror, replacing, and spare vdevs support detach. 4619 */ 4620 if (pvd->vdev_ops != &vdev_replacing_ops && 4621 pvd->vdev_ops != &vdev_mirror_ops && 4622 pvd->vdev_ops != &vdev_spare_ops) 4623 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4624 4625 /* 4626 * If this device has the only valid copy of some data, 4627 * we cannot safely detach it. 4628 */ 4629 if (vdev_dtl_required(vd)) 4630 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4631 4632 ASSERT(pvd->vdev_children >= 2); 4633 4634 /* 4635 * If we are detaching the second disk from a replacing vdev, then 4636 * check to see if we changed the original vdev's path to have "/old" 4637 * at the end in spa_vdev_attach(). If so, undo that change now. 4638 */ 4639 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4640 vd->vdev_path != NULL) { 4641 size_t len = strlen(vd->vdev_path); 4642 4643 for (int c = 0; c < pvd->vdev_children; c++) { 4644 cvd = pvd->vdev_child[c]; 4645 4646 if (cvd == vd || cvd->vdev_path == NULL) 4647 continue; 4648 4649 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4650 strcmp(cvd->vdev_path + len, "/old") == 0) { 4651 spa_strfree(cvd->vdev_path); 4652 cvd->vdev_path = spa_strdup(vd->vdev_path); 4653 break; 4654 } 4655 } 4656 } 4657 4658 /* 4659 * If we are detaching the original disk from a spare, then it implies 4660 * that the spare should become a real disk, and be removed from the 4661 * active spare list for the pool. 4662 */ 4663 if (pvd->vdev_ops == &vdev_spare_ops && 4664 vd->vdev_id == 0 && 4665 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4666 unspare = B_TRUE; 4667 4668 /* 4669 * Erase the disk labels so the disk can be used for other things. 4670 * This must be done after all other error cases are handled, 4671 * but before we disembowel vd (so we can still do I/O to it). 4672 * But if we can't do it, don't treat the error as fatal -- 4673 * it may be that the unwritability of the disk is the reason 4674 * it's being detached! 4675 */ 4676 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4677 4678 /* 4679 * Remove vd from its parent and compact the parent's children. 4680 */ 4681 vdev_remove_child(pvd, vd); 4682 vdev_compact_children(pvd); 4683 4684 /* 4685 * Remember one of the remaining children so we can get tvd below. 4686 */ 4687 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4688 4689 /* 4690 * If we need to remove the remaining child from the list of hot spares, 4691 * do it now, marking the vdev as no longer a spare in the process. 4692 * We must do this before vdev_remove_parent(), because that can 4693 * change the GUID if it creates a new toplevel GUID. For a similar 4694 * reason, we must remove the spare now, in the same txg as the detach; 4695 * otherwise someone could attach a new sibling, change the GUID, and 4696 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4697 */ 4698 if (unspare) { 4699 ASSERT(cvd->vdev_isspare); 4700 spa_spare_remove(cvd); 4701 unspare_guid = cvd->vdev_guid; 4702 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4703 cvd->vdev_unspare = B_TRUE; 4704 } 4705 4706 /* 4707 * If the parent mirror/replacing vdev only has one child, 4708 * the parent is no longer needed. Remove it from the tree. 4709 */ 4710 if (pvd->vdev_children == 1) { 4711 if (pvd->vdev_ops == &vdev_spare_ops) 4712 cvd->vdev_unspare = B_FALSE; 4713 vdev_remove_parent(cvd); 4714 } 4715 4716 4717 /* 4718 * We don't set tvd until now because the parent we just removed 4719 * may have been the previous top-level vdev. 4720 */ 4721 tvd = cvd->vdev_top; 4722 ASSERT(tvd->vdev_parent == rvd); 4723 4724 /* 4725 * Reevaluate the parent vdev state. 4726 */ 4727 vdev_propagate_state(cvd); 4728 4729 /* 4730 * If the 'autoexpand' property is set on the pool then automatically 4731 * try to expand the size of the pool. For example if the device we 4732 * just detached was smaller than the others, it may be possible to 4733 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4734 * first so that we can obtain the updated sizes of the leaf vdevs. 4735 */ 4736 if (spa->spa_autoexpand) { 4737 vdev_reopen(tvd); 4738 vdev_expand(tvd, txg); 4739 } 4740 4741 vdev_config_dirty(tvd); 4742 4743 /* 4744 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4745 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4746 * But first make sure we're not on any *other* txg's DTL list, to 4747 * prevent vd from being accessed after it's freed. 4748 */ 4749 vdpath = spa_strdup(vd->vdev_path); 4750 for (int t = 0; t < TXG_SIZE; t++) 4751 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4752 vd->vdev_detached = B_TRUE; 4753 vdev_dirty(tvd, VDD_DTL, vd, txg); 4754 4755 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4756 4757 /* hang on to the spa before we release the lock */ 4758 spa_open_ref(spa, FTAG); 4759 4760 error = spa_vdev_exit(spa, vd, txg, 0); 4761 4762 spa_history_log_internal(spa, "detach", NULL, 4763 "vdev=%s", vdpath); 4764 spa_strfree(vdpath); 4765 4766 /* 4767 * If this was the removal of the original device in a hot spare vdev, 4768 * then we want to go through and remove the device from the hot spare 4769 * list of every other pool. 4770 */ 4771 if (unspare) { 4772 spa_t *altspa = NULL; 4773 4774 mutex_enter(&spa_namespace_lock); 4775 while ((altspa = spa_next(altspa)) != NULL) { 4776 if (altspa->spa_state != POOL_STATE_ACTIVE || 4777 altspa == spa) 4778 continue; 4779 4780 spa_open_ref(altspa, FTAG); 4781 mutex_exit(&spa_namespace_lock); 4782 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4783 mutex_enter(&spa_namespace_lock); 4784 spa_close(altspa, FTAG); 4785 } 4786 mutex_exit(&spa_namespace_lock); 4787 4788 /* search the rest of the vdevs for spares to remove */ 4789 spa_vdev_resilver_done(spa); 4790 } 4791 4792 /* all done with the spa; OK to release */ 4793 mutex_enter(&spa_namespace_lock); 4794 spa_close(spa, FTAG); 4795 mutex_exit(&spa_namespace_lock); 4796 4797 return (error); 4798 } 4799 4800 /* 4801 * Split a set of devices from their mirrors, and create a new pool from them. 4802 */ 4803 int 4804 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4805 nvlist_t *props, boolean_t exp) 4806 { 4807 int error = 0; 4808 uint64_t txg, *glist; 4809 spa_t *newspa; 4810 uint_t c, children, lastlog; 4811 nvlist_t **child, *nvl, *tmp; 4812 dmu_tx_t *tx; 4813 char *altroot = NULL; 4814 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4815 boolean_t activate_slog; 4816 4817 ASSERT(spa_writeable(spa)); 4818 4819 txg = spa_vdev_enter(spa); 4820 4821 /* clear the log and flush everything up to now */ 4822 activate_slog = spa_passivate_log(spa); 4823 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4824 error = spa_offline_log(spa); 4825 txg = spa_vdev_config_enter(spa); 4826 4827 if (activate_slog) 4828 spa_activate_log(spa); 4829 4830 if (error != 0) 4831 return (spa_vdev_exit(spa, NULL, txg, error)); 4832 4833 /* check new spa name before going any further */ 4834 if (spa_lookup(newname) != NULL) 4835 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4836 4837 /* 4838 * scan through all the children to ensure they're all mirrors 4839 */ 4840 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4841 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4842 &children) != 0) 4843 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4844 4845 /* first, check to ensure we've got the right child count */ 4846 rvd = spa->spa_root_vdev; 4847 lastlog = 0; 4848 for (c = 0; c < rvd->vdev_children; c++) { 4849 vdev_t *vd = rvd->vdev_child[c]; 4850 4851 /* don't count the holes & logs as children */ 4852 if (vd->vdev_islog || vd->vdev_ishole) { 4853 if (lastlog == 0) 4854 lastlog = c; 4855 continue; 4856 } 4857 4858 lastlog = 0; 4859 } 4860 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4861 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4862 4863 /* next, ensure no spare or cache devices are part of the split */ 4864 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4865 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4866 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4867 4868 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4869 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4870 4871 /* then, loop over each vdev and validate it */ 4872 for (c = 0; c < children; c++) { 4873 uint64_t is_hole = 0; 4874 4875 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4876 &is_hole); 4877 4878 if (is_hole != 0) { 4879 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4880 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4881 continue; 4882 } else { 4883 error = SET_ERROR(EINVAL); 4884 break; 4885 } 4886 } 4887 4888 /* which disk is going to be split? */ 4889 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4890 &glist[c]) != 0) { 4891 error = SET_ERROR(EINVAL); 4892 break; 4893 } 4894 4895 /* look it up in the spa */ 4896 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4897 if (vml[c] == NULL) { 4898 error = SET_ERROR(ENODEV); 4899 break; 4900 } 4901 4902 /* make sure there's nothing stopping the split */ 4903 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4904 vml[c]->vdev_islog || 4905 vml[c]->vdev_ishole || 4906 vml[c]->vdev_isspare || 4907 vml[c]->vdev_isl2cache || 4908 !vdev_writeable(vml[c]) || 4909 vml[c]->vdev_children != 0 || 4910 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4911 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4912 error = SET_ERROR(EINVAL); 4913 break; 4914 } 4915 4916 if (vdev_dtl_required(vml[c])) { 4917 error = SET_ERROR(EBUSY); 4918 break; 4919 } 4920 4921 /* we need certain info from the top level */ 4922 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4923 vml[c]->vdev_top->vdev_ms_array) == 0); 4924 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4925 vml[c]->vdev_top->vdev_ms_shift) == 0); 4926 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4927 vml[c]->vdev_top->vdev_asize) == 0); 4928 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4929 vml[c]->vdev_top->vdev_ashift) == 0); 4930 } 4931 4932 if (error != 0) { 4933 kmem_free(vml, children * sizeof (vdev_t *)); 4934 kmem_free(glist, children * sizeof (uint64_t)); 4935 return (spa_vdev_exit(spa, NULL, txg, error)); 4936 } 4937 4938 /* stop writers from using the disks */ 4939 for (c = 0; c < children; c++) { 4940 if (vml[c] != NULL) 4941 vml[c]->vdev_offline = B_TRUE; 4942 } 4943 vdev_reopen(spa->spa_root_vdev); 4944 4945 /* 4946 * Temporarily record the splitting vdevs in the spa config. This 4947 * will disappear once the config is regenerated. 4948 */ 4949 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4950 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4951 glist, children) == 0); 4952 kmem_free(glist, children * sizeof (uint64_t)); 4953 4954 mutex_enter(&spa->spa_props_lock); 4955 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4956 nvl) == 0); 4957 mutex_exit(&spa->spa_props_lock); 4958 spa->spa_config_splitting = nvl; 4959 vdev_config_dirty(spa->spa_root_vdev); 4960 4961 /* configure and create the new pool */ 4962 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4963 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4964 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4965 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4966 spa_version(spa)) == 0); 4967 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4968 spa->spa_config_txg) == 0); 4969 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4970 spa_generate_guid(NULL)) == 0); 4971 (void) nvlist_lookup_string(props, 4972 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4973 4974 /* add the new pool to the namespace */ 4975 newspa = spa_add(newname, config, altroot); 4976 newspa->spa_config_txg = spa->spa_config_txg; 4977 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4978 4979 /* release the spa config lock, retaining the namespace lock */ 4980 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4981 4982 if (zio_injection_enabled) 4983 zio_handle_panic_injection(spa, FTAG, 1); 4984 4985 spa_activate(newspa, spa_mode_global); 4986 spa_async_suspend(newspa); 4987 4988 /* create the new pool from the disks of the original pool */ 4989 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4990 if (error) 4991 goto out; 4992 4993 /* if that worked, generate a real config for the new pool */ 4994 if (newspa->spa_root_vdev != NULL) { 4995 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4996 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4997 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4998 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4999 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 5000 B_TRUE)); 5001 } 5002 5003 /* set the props */ 5004 if (props != NULL) { 5005 spa_configfile_set(newspa, props, B_FALSE); 5006 error = spa_prop_set(newspa, props); 5007 if (error) 5008 goto out; 5009 } 5010 5011 /* flush everything */ 5012 txg = spa_vdev_config_enter(newspa); 5013 vdev_config_dirty(newspa->spa_root_vdev); 5014 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5015 5016 if (zio_injection_enabled) 5017 zio_handle_panic_injection(spa, FTAG, 2); 5018 5019 spa_async_resume(newspa); 5020 5021 /* finally, update the original pool's config */ 5022 txg = spa_vdev_config_enter(spa); 5023 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5024 error = dmu_tx_assign(tx, TXG_WAIT); 5025 if (error != 0) 5026 dmu_tx_abort(tx); 5027 for (c = 0; c < children; c++) { 5028 if (vml[c] != NULL) { 5029 vdev_split(vml[c]); 5030 if (error == 0) 5031 spa_history_log_internal(spa, "detach", tx, 5032 "vdev=%s", vml[c]->vdev_path); 5033 vdev_free(vml[c]); 5034 } 5035 } 5036 vdev_config_dirty(spa->spa_root_vdev); 5037 spa->spa_config_splitting = NULL; 5038 nvlist_free(nvl); 5039 if (error == 0) 5040 dmu_tx_commit(tx); 5041 (void) spa_vdev_exit(spa, NULL, txg, 0); 5042 5043 if (zio_injection_enabled) 5044 zio_handle_panic_injection(spa, FTAG, 3); 5045 5046 /* split is complete; log a history record */ 5047 spa_history_log_internal(newspa, "split", NULL, 5048 "from pool %s", spa_name(spa)); 5049 5050 kmem_free(vml, children * sizeof (vdev_t *)); 5051 5052 /* if we're not going to mount the filesystems in userland, export */ 5053 if (exp) 5054 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5055 B_FALSE, B_FALSE); 5056 5057 return (error); 5058 5059 out: 5060 spa_unload(newspa); 5061 spa_deactivate(newspa); 5062 spa_remove(newspa); 5063 5064 txg = spa_vdev_config_enter(spa); 5065 5066 /* re-online all offlined disks */ 5067 for (c = 0; c < children; c++) { 5068 if (vml[c] != NULL) 5069 vml[c]->vdev_offline = B_FALSE; 5070 } 5071 vdev_reopen(spa->spa_root_vdev); 5072 5073 nvlist_free(spa->spa_config_splitting); 5074 spa->spa_config_splitting = NULL; 5075 (void) spa_vdev_exit(spa, NULL, txg, error); 5076 5077 kmem_free(vml, children * sizeof (vdev_t *)); 5078 return (error); 5079 } 5080 5081 static nvlist_t * 5082 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5083 { 5084 for (int i = 0; i < count; i++) { 5085 uint64_t guid; 5086 5087 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5088 &guid) == 0); 5089 5090 if (guid == target_guid) 5091 return (nvpp[i]); 5092 } 5093 5094 return (NULL); 5095 } 5096 5097 static void 5098 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5099 nvlist_t *dev_to_remove) 5100 { 5101 nvlist_t **newdev = NULL; 5102 5103 if (count > 1) 5104 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5105 5106 for (int i = 0, j = 0; i < count; i++) { 5107 if (dev[i] == dev_to_remove) 5108 continue; 5109 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5110 } 5111 5112 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5113 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5114 5115 for (int i = 0; i < count - 1; i++) 5116 nvlist_free(newdev[i]); 5117 5118 if (count > 1) 5119 kmem_free(newdev, (count - 1) * sizeof (void *)); 5120 } 5121 5122 /* 5123 * Evacuate the device. 5124 */ 5125 static int 5126 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5127 { 5128 uint64_t txg; 5129 int error = 0; 5130 5131 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5132 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5133 ASSERT(vd == vd->vdev_top); 5134 5135 /* 5136 * Evacuate the device. We don't hold the config lock as writer 5137 * since we need to do I/O but we do keep the 5138 * spa_namespace_lock held. Once this completes the device 5139 * should no longer have any blocks allocated on it. 5140 */ 5141 if (vd->vdev_islog) { 5142 if (vd->vdev_stat.vs_alloc != 0) 5143 error = spa_offline_log(spa); 5144 } else { 5145 error = SET_ERROR(ENOTSUP); 5146 } 5147 5148 if (error) 5149 return (error); 5150 5151 /* 5152 * The evacuation succeeded. Remove any remaining MOS metadata 5153 * associated with this vdev, and wait for these changes to sync. 5154 */ 5155 ASSERT0(vd->vdev_stat.vs_alloc); 5156 txg = spa_vdev_config_enter(spa); 5157 vd->vdev_removing = B_TRUE; 5158 vdev_dirty_leaves(vd, VDD_DTL, txg); 5159 vdev_config_dirty(vd); 5160 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5161 5162 return (0); 5163 } 5164 5165 /* 5166 * Complete the removal by cleaning up the namespace. 5167 */ 5168 static void 5169 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5170 { 5171 vdev_t *rvd = spa->spa_root_vdev; 5172 uint64_t id = vd->vdev_id; 5173 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5174 5175 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5176 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5177 ASSERT(vd == vd->vdev_top); 5178 5179 /* 5180 * Only remove any devices which are empty. 5181 */ 5182 if (vd->vdev_stat.vs_alloc != 0) 5183 return; 5184 5185 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5186 5187 if (list_link_active(&vd->vdev_state_dirty_node)) 5188 vdev_state_clean(vd); 5189 if (list_link_active(&vd->vdev_config_dirty_node)) 5190 vdev_config_clean(vd); 5191 5192 vdev_free(vd); 5193 5194 if (last_vdev) { 5195 vdev_compact_children(rvd); 5196 } else { 5197 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5198 vdev_add_child(rvd, vd); 5199 } 5200 vdev_config_dirty(rvd); 5201 5202 /* 5203 * Reassess the health of our root vdev. 5204 */ 5205 vdev_reopen(rvd); 5206 } 5207 5208 /* 5209 * Remove a device from the pool - 5210 * 5211 * Removing a device from the vdev namespace requires several steps 5212 * and can take a significant amount of time. As a result we use 5213 * the spa_vdev_config_[enter/exit] functions which allow us to 5214 * grab and release the spa_config_lock while still holding the namespace 5215 * lock. During each step the configuration is synced out. 5216 * 5217 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5218 * devices. 5219 */ 5220 int 5221 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5222 { 5223 vdev_t *vd; 5224 metaslab_group_t *mg; 5225 nvlist_t **spares, **l2cache, *nv; 5226 uint64_t txg = 0; 5227 uint_t nspares, nl2cache; 5228 int error = 0; 5229 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5230 5231 ASSERT(spa_writeable(spa)); 5232 5233 if (!locked) 5234 txg = spa_vdev_enter(spa); 5235 5236 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5237 5238 if (spa->spa_spares.sav_vdevs != NULL && 5239 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5240 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5241 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5242 /* 5243 * Only remove the hot spare if it's not currently in use 5244 * in this pool. 5245 */ 5246 if (vd == NULL || unspare) { 5247 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5248 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5249 spa_load_spares(spa); 5250 spa->spa_spares.sav_sync = B_TRUE; 5251 } else { 5252 error = SET_ERROR(EBUSY); 5253 } 5254 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5255 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5256 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5257 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5258 /* 5259 * Cache devices can always be removed. 5260 */ 5261 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5262 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5263 spa_load_l2cache(spa); 5264 spa->spa_l2cache.sav_sync = B_TRUE; 5265 } else if (vd != NULL && vd->vdev_islog) { 5266 ASSERT(!locked); 5267 ASSERT(vd == vd->vdev_top); 5268 5269 mg = vd->vdev_mg; 5270 5271 /* 5272 * Stop allocating from this vdev. 5273 */ 5274 metaslab_group_passivate(mg); 5275 5276 /* 5277 * Wait for the youngest allocations and frees to sync, 5278 * and then wait for the deferral of those frees to finish. 5279 */ 5280 spa_vdev_config_exit(spa, NULL, 5281 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5282 5283 /* 5284 * Attempt to evacuate the vdev. 5285 */ 5286 error = spa_vdev_remove_evacuate(spa, vd); 5287 5288 txg = spa_vdev_config_enter(spa); 5289 5290 /* 5291 * If we couldn't evacuate the vdev, unwind. 5292 */ 5293 if (error) { 5294 metaslab_group_activate(mg); 5295 return (spa_vdev_exit(spa, NULL, txg, error)); 5296 } 5297 5298 /* 5299 * Clean up the vdev namespace. 5300 */ 5301 spa_vdev_remove_from_namespace(spa, vd); 5302 5303 } else if (vd != NULL) { 5304 /* 5305 * Normal vdevs cannot be removed (yet). 5306 */ 5307 error = SET_ERROR(ENOTSUP); 5308 } else { 5309 /* 5310 * There is no vdev of any kind with the specified guid. 5311 */ 5312 error = SET_ERROR(ENOENT); 5313 } 5314 5315 if (!locked) 5316 return (spa_vdev_exit(spa, NULL, txg, error)); 5317 5318 return (error); 5319 } 5320 5321 /* 5322 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5323 * currently spared, so we can detach it. 5324 */ 5325 static vdev_t * 5326 spa_vdev_resilver_done_hunt(vdev_t *vd) 5327 { 5328 vdev_t *newvd, *oldvd; 5329 5330 for (int c = 0; c < vd->vdev_children; c++) { 5331 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5332 if (oldvd != NULL) 5333 return (oldvd); 5334 } 5335 5336 /* 5337 * Check for a completed replacement. We always consider the first 5338 * vdev in the list to be the oldest vdev, and the last one to be 5339 * the newest (see spa_vdev_attach() for how that works). In 5340 * the case where the newest vdev is faulted, we will not automatically 5341 * remove it after a resilver completes. This is OK as it will require 5342 * user intervention to determine which disk the admin wishes to keep. 5343 */ 5344 if (vd->vdev_ops == &vdev_replacing_ops) { 5345 ASSERT(vd->vdev_children > 1); 5346 5347 newvd = vd->vdev_child[vd->vdev_children - 1]; 5348 oldvd = vd->vdev_child[0]; 5349 5350 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5351 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5352 !vdev_dtl_required(oldvd)) 5353 return (oldvd); 5354 } 5355 5356 /* 5357 * Check for a completed resilver with the 'unspare' flag set. 5358 */ 5359 if (vd->vdev_ops == &vdev_spare_ops) { 5360 vdev_t *first = vd->vdev_child[0]; 5361 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5362 5363 if (last->vdev_unspare) { 5364 oldvd = first; 5365 newvd = last; 5366 } else if (first->vdev_unspare) { 5367 oldvd = last; 5368 newvd = first; 5369 } else { 5370 oldvd = NULL; 5371 } 5372 5373 if (oldvd != NULL && 5374 vdev_dtl_empty(newvd, DTL_MISSING) && 5375 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5376 !vdev_dtl_required(oldvd)) 5377 return (oldvd); 5378 5379 /* 5380 * If there are more than two spares attached to a disk, 5381 * and those spares are not required, then we want to 5382 * attempt to free them up now so that they can be used 5383 * by other pools. Once we're back down to a single 5384 * disk+spare, we stop removing them. 5385 */ 5386 if (vd->vdev_children > 2) { 5387 newvd = vd->vdev_child[1]; 5388 5389 if (newvd->vdev_isspare && last->vdev_isspare && 5390 vdev_dtl_empty(last, DTL_MISSING) && 5391 vdev_dtl_empty(last, DTL_OUTAGE) && 5392 !vdev_dtl_required(newvd)) 5393 return (newvd); 5394 } 5395 } 5396 5397 return (NULL); 5398 } 5399 5400 static void 5401 spa_vdev_resilver_done(spa_t *spa) 5402 { 5403 vdev_t *vd, *pvd, *ppvd; 5404 uint64_t guid, sguid, pguid, ppguid; 5405 5406 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5407 5408 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5409 pvd = vd->vdev_parent; 5410 ppvd = pvd->vdev_parent; 5411 guid = vd->vdev_guid; 5412 pguid = pvd->vdev_guid; 5413 ppguid = ppvd->vdev_guid; 5414 sguid = 0; 5415 /* 5416 * If we have just finished replacing a hot spared device, then 5417 * we need to detach the parent's first child (the original hot 5418 * spare) as well. 5419 */ 5420 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5421 ppvd->vdev_children == 2) { 5422 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5423 sguid = ppvd->vdev_child[1]->vdev_guid; 5424 } 5425 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5426 5427 spa_config_exit(spa, SCL_ALL, FTAG); 5428 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5429 return; 5430 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5431 return; 5432 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5433 } 5434 5435 spa_config_exit(spa, SCL_ALL, FTAG); 5436 } 5437 5438 /* 5439 * Update the stored path or FRU for this vdev. 5440 */ 5441 int 5442 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5443 boolean_t ispath) 5444 { 5445 vdev_t *vd; 5446 boolean_t sync = B_FALSE; 5447 5448 ASSERT(spa_writeable(spa)); 5449 5450 spa_vdev_state_enter(spa, SCL_ALL); 5451 5452 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5453 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5454 5455 if (!vd->vdev_ops->vdev_op_leaf) 5456 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5457 5458 if (ispath) { 5459 if (strcmp(value, vd->vdev_path) != 0) { 5460 spa_strfree(vd->vdev_path); 5461 vd->vdev_path = spa_strdup(value); 5462 sync = B_TRUE; 5463 } 5464 } else { 5465 if (vd->vdev_fru == NULL) { 5466 vd->vdev_fru = spa_strdup(value); 5467 sync = B_TRUE; 5468 } else if (strcmp(value, vd->vdev_fru) != 0) { 5469 spa_strfree(vd->vdev_fru); 5470 vd->vdev_fru = spa_strdup(value); 5471 sync = B_TRUE; 5472 } 5473 } 5474 5475 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5476 } 5477 5478 int 5479 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5480 { 5481 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5482 } 5483 5484 int 5485 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5486 { 5487 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5488 } 5489 5490 /* 5491 * ========================================================================== 5492 * SPA Scanning 5493 * ========================================================================== 5494 */ 5495 5496 int 5497 spa_scan_stop(spa_t *spa) 5498 { 5499 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5500 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5501 return (SET_ERROR(EBUSY)); 5502 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5503 } 5504 5505 int 5506 spa_scan(spa_t *spa, pool_scan_func_t func) 5507 { 5508 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5509 5510 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5511 return (SET_ERROR(ENOTSUP)); 5512 5513 /* 5514 * If a resilver was requested, but there is no DTL on a 5515 * writeable leaf device, we have nothing to do. 5516 */ 5517 if (func == POOL_SCAN_RESILVER && 5518 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5519 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5520 return (0); 5521 } 5522 5523 return (dsl_scan(spa->spa_dsl_pool, func)); 5524 } 5525 5526 /* 5527 * ========================================================================== 5528 * SPA async task processing 5529 * ========================================================================== 5530 */ 5531 5532 static void 5533 spa_async_remove(spa_t *spa, vdev_t *vd) 5534 { 5535 if (vd->vdev_remove_wanted) { 5536 vd->vdev_remove_wanted = B_FALSE; 5537 vd->vdev_delayed_close = B_FALSE; 5538 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5539 5540 /* 5541 * We want to clear the stats, but we don't want to do a full 5542 * vdev_clear() as that will cause us to throw away 5543 * degraded/faulted state as well as attempt to reopen the 5544 * device, all of which is a waste. 5545 */ 5546 vd->vdev_stat.vs_read_errors = 0; 5547 vd->vdev_stat.vs_write_errors = 0; 5548 vd->vdev_stat.vs_checksum_errors = 0; 5549 5550 vdev_state_dirty(vd->vdev_top); 5551 } 5552 5553 for (int c = 0; c < vd->vdev_children; c++) 5554 spa_async_remove(spa, vd->vdev_child[c]); 5555 } 5556 5557 static void 5558 spa_async_probe(spa_t *spa, vdev_t *vd) 5559 { 5560 if (vd->vdev_probe_wanted) { 5561 vd->vdev_probe_wanted = B_FALSE; 5562 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5563 } 5564 5565 for (int c = 0; c < vd->vdev_children; c++) 5566 spa_async_probe(spa, vd->vdev_child[c]); 5567 } 5568 5569 static void 5570 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5571 { 5572 sysevent_id_t eid; 5573 nvlist_t *attr; 5574 char *physpath; 5575 5576 if (!spa->spa_autoexpand) 5577 return; 5578 5579 for (int c = 0; c < vd->vdev_children; c++) { 5580 vdev_t *cvd = vd->vdev_child[c]; 5581 spa_async_autoexpand(spa, cvd); 5582 } 5583 5584 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5585 return; 5586 5587 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5588 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5589 5590 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5591 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5592 5593 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5594 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5595 5596 nvlist_free(attr); 5597 kmem_free(physpath, MAXPATHLEN); 5598 } 5599 5600 static void 5601 spa_async_thread(spa_t *spa) 5602 { 5603 int tasks; 5604 5605 ASSERT(spa->spa_sync_on); 5606 5607 mutex_enter(&spa->spa_async_lock); 5608 tasks = spa->spa_async_tasks; 5609 spa->spa_async_tasks = 0; 5610 mutex_exit(&spa->spa_async_lock); 5611 5612 /* 5613 * See if the config needs to be updated. 5614 */ 5615 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5616 uint64_t old_space, new_space; 5617 5618 mutex_enter(&spa_namespace_lock); 5619 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5620 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5621 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5622 mutex_exit(&spa_namespace_lock); 5623 5624 /* 5625 * If the pool grew as a result of the config update, 5626 * then log an internal history event. 5627 */ 5628 if (new_space != old_space) { 5629 spa_history_log_internal(spa, "vdev online", NULL, 5630 "pool '%s' size: %llu(+%llu)", 5631 spa_name(spa), new_space, new_space - old_space); 5632 } 5633 } 5634 5635 /* 5636 * See if any devices need to be marked REMOVED. 5637 */ 5638 if (tasks & SPA_ASYNC_REMOVE) { 5639 spa_vdev_state_enter(spa, SCL_NONE); 5640 spa_async_remove(spa, spa->spa_root_vdev); 5641 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5642 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5643 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5644 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5645 (void) spa_vdev_state_exit(spa, NULL, 0); 5646 } 5647 5648 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5649 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5650 spa_async_autoexpand(spa, spa->spa_root_vdev); 5651 spa_config_exit(spa, SCL_CONFIG, FTAG); 5652 } 5653 5654 /* 5655 * See if any devices need to be probed. 5656 */ 5657 if (tasks & SPA_ASYNC_PROBE) { 5658 spa_vdev_state_enter(spa, SCL_NONE); 5659 spa_async_probe(spa, spa->spa_root_vdev); 5660 (void) spa_vdev_state_exit(spa, NULL, 0); 5661 } 5662 5663 /* 5664 * If any devices are done replacing, detach them. 5665 */ 5666 if (tasks & SPA_ASYNC_RESILVER_DONE) 5667 spa_vdev_resilver_done(spa); 5668 5669 /* 5670 * Kick off a resilver. 5671 */ 5672 if (tasks & SPA_ASYNC_RESILVER) 5673 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5674 5675 /* 5676 * Let the world know that we're done. 5677 */ 5678 mutex_enter(&spa->spa_async_lock); 5679 spa->spa_async_thread = NULL; 5680 cv_broadcast(&spa->spa_async_cv); 5681 mutex_exit(&spa->spa_async_lock); 5682 thread_exit(); 5683 } 5684 5685 void 5686 spa_async_suspend(spa_t *spa) 5687 { 5688 mutex_enter(&spa->spa_async_lock); 5689 spa->spa_async_suspended++; 5690 while (spa->spa_async_thread != NULL) 5691 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5692 mutex_exit(&spa->spa_async_lock); 5693 } 5694 5695 void 5696 spa_async_resume(spa_t *spa) 5697 { 5698 mutex_enter(&spa->spa_async_lock); 5699 ASSERT(spa->spa_async_suspended != 0); 5700 spa->spa_async_suspended--; 5701 mutex_exit(&spa->spa_async_lock); 5702 } 5703 5704 static boolean_t 5705 spa_async_tasks_pending(spa_t *spa) 5706 { 5707 uint_t non_config_tasks; 5708 uint_t config_task; 5709 boolean_t config_task_suspended; 5710 5711 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5712 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5713 if (spa->spa_ccw_fail_time == 0) { 5714 config_task_suspended = B_FALSE; 5715 } else { 5716 config_task_suspended = 5717 (gethrtime() - spa->spa_ccw_fail_time) < 5718 (zfs_ccw_retry_interval * NANOSEC); 5719 } 5720 5721 return (non_config_tasks || (config_task && !config_task_suspended)); 5722 } 5723 5724 static void 5725 spa_async_dispatch(spa_t *spa) 5726 { 5727 mutex_enter(&spa->spa_async_lock); 5728 if (spa_async_tasks_pending(spa) && 5729 !spa->spa_async_suspended && 5730 spa->spa_async_thread == NULL && 5731 rootdir != NULL) 5732 spa->spa_async_thread = thread_create(NULL, 0, 5733 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5734 mutex_exit(&spa->spa_async_lock); 5735 } 5736 5737 void 5738 spa_async_request(spa_t *spa, int task) 5739 { 5740 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5741 mutex_enter(&spa->spa_async_lock); 5742 spa->spa_async_tasks |= task; 5743 mutex_exit(&spa->spa_async_lock); 5744 } 5745 5746 /* 5747 * ========================================================================== 5748 * SPA syncing routines 5749 * ========================================================================== 5750 */ 5751 5752 static int 5753 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5754 { 5755 bpobj_t *bpo = arg; 5756 bpobj_enqueue(bpo, bp, tx); 5757 return (0); 5758 } 5759 5760 static int 5761 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5762 { 5763 zio_t *zio = arg; 5764 5765 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5766 zio->io_flags)); 5767 return (0); 5768 } 5769 5770 /* 5771 * Note: this simple function is not inlined to make it easier to dtrace the 5772 * amount of time spent syncing frees. 5773 */ 5774 static void 5775 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 5776 { 5777 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5778 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 5779 VERIFY(zio_wait(zio) == 0); 5780 } 5781 5782 /* 5783 * Note: this simple function is not inlined to make it easier to dtrace the 5784 * amount of time spent syncing deferred frees. 5785 */ 5786 static void 5787 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 5788 { 5789 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5790 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 5791 spa_free_sync_cb, zio, tx), ==, 0); 5792 VERIFY0(zio_wait(zio)); 5793 } 5794 5795 5796 static void 5797 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5798 { 5799 char *packed = NULL; 5800 size_t bufsize; 5801 size_t nvsize = 0; 5802 dmu_buf_t *db; 5803 5804 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5805 5806 /* 5807 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5808 * information. This avoids the dmu_buf_will_dirty() path and 5809 * saves us a pre-read to get data we don't actually care about. 5810 */ 5811 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5812 packed = kmem_alloc(bufsize, KM_SLEEP); 5813 5814 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5815 KM_SLEEP) == 0); 5816 bzero(packed + nvsize, bufsize - nvsize); 5817 5818 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5819 5820 kmem_free(packed, bufsize); 5821 5822 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5823 dmu_buf_will_dirty(db, tx); 5824 *(uint64_t *)db->db_data = nvsize; 5825 dmu_buf_rele(db, FTAG); 5826 } 5827 5828 static void 5829 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5830 const char *config, const char *entry) 5831 { 5832 nvlist_t *nvroot; 5833 nvlist_t **list; 5834 int i; 5835 5836 if (!sav->sav_sync) 5837 return; 5838 5839 /* 5840 * Update the MOS nvlist describing the list of available devices. 5841 * spa_validate_aux() will have already made sure this nvlist is 5842 * valid and the vdevs are labeled appropriately. 5843 */ 5844 if (sav->sav_object == 0) { 5845 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5846 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5847 sizeof (uint64_t), tx); 5848 VERIFY(zap_update(spa->spa_meta_objset, 5849 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5850 &sav->sav_object, tx) == 0); 5851 } 5852 5853 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5854 if (sav->sav_count == 0) { 5855 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5856 } else { 5857 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5858 for (i = 0; i < sav->sav_count; i++) 5859 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5860 B_FALSE, VDEV_CONFIG_L2CACHE); 5861 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5862 sav->sav_count) == 0); 5863 for (i = 0; i < sav->sav_count; i++) 5864 nvlist_free(list[i]); 5865 kmem_free(list, sav->sav_count * sizeof (void *)); 5866 } 5867 5868 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5869 nvlist_free(nvroot); 5870 5871 sav->sav_sync = B_FALSE; 5872 } 5873 5874 static void 5875 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5876 { 5877 nvlist_t *config; 5878 5879 if (list_is_empty(&spa->spa_config_dirty_list)) 5880 return; 5881 5882 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5883 5884 config = spa_config_generate(spa, spa->spa_root_vdev, 5885 dmu_tx_get_txg(tx), B_FALSE); 5886 5887 /* 5888 * If we're upgrading the spa version then make sure that 5889 * the config object gets updated with the correct version. 5890 */ 5891 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5892 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5893 spa->spa_uberblock.ub_version); 5894 5895 spa_config_exit(spa, SCL_STATE, FTAG); 5896 5897 if (spa->spa_config_syncing) 5898 nvlist_free(spa->spa_config_syncing); 5899 spa->spa_config_syncing = config; 5900 5901 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5902 } 5903 5904 static void 5905 spa_sync_version(void *arg, dmu_tx_t *tx) 5906 { 5907 uint64_t *versionp = arg; 5908 uint64_t version = *versionp; 5909 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5910 5911 /* 5912 * Setting the version is special cased when first creating the pool. 5913 */ 5914 ASSERT(tx->tx_txg != TXG_INITIAL); 5915 5916 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5917 ASSERT(version >= spa_version(spa)); 5918 5919 spa->spa_uberblock.ub_version = version; 5920 vdev_config_dirty(spa->spa_root_vdev); 5921 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5922 } 5923 5924 /* 5925 * Set zpool properties. 5926 */ 5927 static void 5928 spa_sync_props(void *arg, dmu_tx_t *tx) 5929 { 5930 nvlist_t *nvp = arg; 5931 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5932 objset_t *mos = spa->spa_meta_objset; 5933 nvpair_t *elem = NULL; 5934 5935 mutex_enter(&spa->spa_props_lock); 5936 5937 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5938 uint64_t intval; 5939 char *strval, *fname; 5940 zpool_prop_t prop; 5941 const char *propname; 5942 zprop_type_t proptype; 5943 spa_feature_t fid; 5944 5945 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5946 case ZPROP_INVAL: 5947 /* 5948 * We checked this earlier in spa_prop_validate(). 5949 */ 5950 ASSERT(zpool_prop_feature(nvpair_name(elem))); 5951 5952 fname = strchr(nvpair_name(elem), '@') + 1; 5953 VERIFY0(zfeature_lookup_name(fname, &fid)); 5954 5955 spa_feature_enable(spa, fid, tx); 5956 spa_history_log_internal(spa, "set", tx, 5957 "%s=enabled", nvpair_name(elem)); 5958 break; 5959 5960 case ZPOOL_PROP_VERSION: 5961 intval = fnvpair_value_uint64(elem); 5962 /* 5963 * The version is synced seperatly before other 5964 * properties and should be correct by now. 5965 */ 5966 ASSERT3U(spa_version(spa), >=, intval); 5967 break; 5968 5969 case ZPOOL_PROP_ALTROOT: 5970 /* 5971 * 'altroot' is a non-persistent property. It should 5972 * have been set temporarily at creation or import time. 5973 */ 5974 ASSERT(spa->spa_root != NULL); 5975 break; 5976 5977 case ZPOOL_PROP_READONLY: 5978 case ZPOOL_PROP_CACHEFILE: 5979 /* 5980 * 'readonly' and 'cachefile' are also non-persisitent 5981 * properties. 5982 */ 5983 break; 5984 case ZPOOL_PROP_COMMENT: 5985 strval = fnvpair_value_string(elem); 5986 if (spa->spa_comment != NULL) 5987 spa_strfree(spa->spa_comment); 5988 spa->spa_comment = spa_strdup(strval); 5989 /* 5990 * We need to dirty the configuration on all the vdevs 5991 * so that their labels get updated. It's unnecessary 5992 * to do this for pool creation since the vdev's 5993 * configuratoin has already been dirtied. 5994 */ 5995 if (tx->tx_txg != TXG_INITIAL) 5996 vdev_config_dirty(spa->spa_root_vdev); 5997 spa_history_log_internal(spa, "set", tx, 5998 "%s=%s", nvpair_name(elem), strval); 5999 break; 6000 default: 6001 /* 6002 * Set pool property values in the poolprops mos object. 6003 */ 6004 if (spa->spa_pool_props_object == 0) { 6005 spa->spa_pool_props_object = 6006 zap_create_link(mos, DMU_OT_POOL_PROPS, 6007 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6008 tx); 6009 } 6010 6011 /* normalize the property name */ 6012 propname = zpool_prop_to_name(prop); 6013 proptype = zpool_prop_get_type(prop); 6014 6015 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6016 ASSERT(proptype == PROP_TYPE_STRING); 6017 strval = fnvpair_value_string(elem); 6018 VERIFY0(zap_update(mos, 6019 spa->spa_pool_props_object, propname, 6020 1, strlen(strval) + 1, strval, tx)); 6021 spa_history_log_internal(spa, "set", tx, 6022 "%s=%s", nvpair_name(elem), strval); 6023 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6024 intval = fnvpair_value_uint64(elem); 6025 6026 if (proptype == PROP_TYPE_INDEX) { 6027 const char *unused; 6028 VERIFY0(zpool_prop_index_to_string( 6029 prop, intval, &unused)); 6030 } 6031 VERIFY0(zap_update(mos, 6032 spa->spa_pool_props_object, propname, 6033 8, 1, &intval, tx)); 6034 spa_history_log_internal(spa, "set", tx, 6035 "%s=%lld", nvpair_name(elem), intval); 6036 } else { 6037 ASSERT(0); /* not allowed */ 6038 } 6039 6040 switch (prop) { 6041 case ZPOOL_PROP_DELEGATION: 6042 spa->spa_delegation = intval; 6043 break; 6044 case ZPOOL_PROP_BOOTFS: 6045 spa->spa_bootfs = intval; 6046 break; 6047 case ZPOOL_PROP_FAILUREMODE: 6048 spa->spa_failmode = intval; 6049 break; 6050 case ZPOOL_PROP_AUTOEXPAND: 6051 spa->spa_autoexpand = intval; 6052 if (tx->tx_txg != TXG_INITIAL) 6053 spa_async_request(spa, 6054 SPA_ASYNC_AUTOEXPAND); 6055 break; 6056 case ZPOOL_PROP_DEDUPDITTO: 6057 spa->spa_dedup_ditto = intval; 6058 break; 6059 default: 6060 break; 6061 } 6062 } 6063 6064 } 6065 6066 mutex_exit(&spa->spa_props_lock); 6067 } 6068 6069 /* 6070 * Perform one-time upgrade on-disk changes. spa_version() does not 6071 * reflect the new version this txg, so there must be no changes this 6072 * txg to anything that the upgrade code depends on after it executes. 6073 * Therefore this must be called after dsl_pool_sync() does the sync 6074 * tasks. 6075 */ 6076 static void 6077 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6078 { 6079 dsl_pool_t *dp = spa->spa_dsl_pool; 6080 6081 ASSERT(spa->spa_sync_pass == 1); 6082 6083 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6084 6085 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6086 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6087 dsl_pool_create_origin(dp, tx); 6088 6089 /* Keeping the origin open increases spa_minref */ 6090 spa->spa_minref += 3; 6091 } 6092 6093 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6094 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6095 dsl_pool_upgrade_clones(dp, tx); 6096 } 6097 6098 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6099 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6100 dsl_pool_upgrade_dir_clones(dp, tx); 6101 6102 /* Keeping the freedir open increases spa_minref */ 6103 spa->spa_minref += 3; 6104 } 6105 6106 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6107 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6108 spa_feature_create_zap_objects(spa, tx); 6109 } 6110 6111 /* 6112 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 6113 * when possibility to use lz4 compression for metadata was added 6114 * Old pools that have this feature enabled must be upgraded to have 6115 * this feature active 6116 */ 6117 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6118 boolean_t lz4_en = spa_feature_is_enabled(spa, 6119 SPA_FEATURE_LZ4_COMPRESS); 6120 boolean_t lz4_ac = spa_feature_is_active(spa, 6121 SPA_FEATURE_LZ4_COMPRESS); 6122 6123 if (lz4_en && !lz4_ac) 6124 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 6125 } 6126 rrw_exit(&dp->dp_config_rwlock, FTAG); 6127 } 6128 6129 /* 6130 * Sync the specified transaction group. New blocks may be dirtied as 6131 * part of the process, so we iterate until it converges. 6132 */ 6133 void 6134 spa_sync(spa_t *spa, uint64_t txg) 6135 { 6136 dsl_pool_t *dp = spa->spa_dsl_pool; 6137 objset_t *mos = spa->spa_meta_objset; 6138 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6139 vdev_t *rvd = spa->spa_root_vdev; 6140 vdev_t *vd; 6141 dmu_tx_t *tx; 6142 int error; 6143 6144 VERIFY(spa_writeable(spa)); 6145 6146 /* 6147 * Lock out configuration changes. 6148 */ 6149 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6150 6151 spa->spa_syncing_txg = txg; 6152 spa->spa_sync_pass = 0; 6153 6154 /* 6155 * If there are any pending vdev state changes, convert them 6156 * into config changes that go out with this transaction group. 6157 */ 6158 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6159 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6160 /* 6161 * We need the write lock here because, for aux vdevs, 6162 * calling vdev_config_dirty() modifies sav_config. 6163 * This is ugly and will become unnecessary when we 6164 * eliminate the aux vdev wart by integrating all vdevs 6165 * into the root vdev tree. 6166 */ 6167 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6168 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6169 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6170 vdev_state_clean(vd); 6171 vdev_config_dirty(vd); 6172 } 6173 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6174 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6175 } 6176 spa_config_exit(spa, SCL_STATE, FTAG); 6177 6178 tx = dmu_tx_create_assigned(dp, txg); 6179 6180 spa->spa_sync_starttime = gethrtime(); 6181 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6182 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6183 6184 /* 6185 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6186 * set spa_deflate if we have no raid-z vdevs. 6187 */ 6188 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6189 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6190 int i; 6191 6192 for (i = 0; i < rvd->vdev_children; i++) { 6193 vd = rvd->vdev_child[i]; 6194 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6195 break; 6196 } 6197 if (i == rvd->vdev_children) { 6198 spa->spa_deflate = TRUE; 6199 VERIFY(0 == zap_add(spa->spa_meta_objset, 6200 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6201 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6202 } 6203 } 6204 6205 /* 6206 * If anything has changed in this txg, or if someone is waiting 6207 * for this txg to sync (eg, spa_vdev_remove()), push the 6208 * deferred frees from the previous txg. If not, leave them 6209 * alone so that we don't generate work on an otherwise idle 6210 * system. 6211 */ 6212 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 6213 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 6214 !txg_list_empty(&dp->dp_sync_tasks, txg) || 6215 ((dsl_scan_active(dp->dp_scan) || 6216 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 6217 spa_sync_deferred_frees(spa, tx); 6218 } 6219 6220 /* 6221 * Iterate to convergence. 6222 */ 6223 do { 6224 int pass = ++spa->spa_sync_pass; 6225 6226 spa_sync_config_object(spa, tx); 6227 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6228 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6229 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6230 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6231 spa_errlog_sync(spa, txg); 6232 dsl_pool_sync(dp, txg); 6233 6234 if (pass < zfs_sync_pass_deferred_free) { 6235 spa_sync_frees(spa, free_bpl, tx); 6236 } else { 6237 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6238 &spa->spa_deferred_bpobj, tx); 6239 } 6240 6241 ddt_sync(spa, txg); 6242 dsl_scan_sync(dp, tx); 6243 6244 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6245 vdev_sync(vd, txg); 6246 6247 if (pass == 1) 6248 spa_sync_upgrades(spa, tx); 6249 6250 } while (dmu_objset_is_dirty(mos, txg)); 6251 6252 /* 6253 * Rewrite the vdev configuration (which includes the uberblock) 6254 * to commit the transaction group. 6255 * 6256 * If there are no dirty vdevs, we sync the uberblock to a few 6257 * random top-level vdevs that are known to be visible in the 6258 * config cache (see spa_vdev_add() for a complete description). 6259 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6260 */ 6261 for (;;) { 6262 /* 6263 * We hold SCL_STATE to prevent vdev open/close/etc. 6264 * while we're attempting to write the vdev labels. 6265 */ 6266 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6267 6268 if (list_is_empty(&spa->spa_config_dirty_list)) { 6269 vdev_t *svd[SPA_DVAS_PER_BP]; 6270 int svdcount = 0; 6271 int children = rvd->vdev_children; 6272 int c0 = spa_get_random(children); 6273 6274 for (int c = 0; c < children; c++) { 6275 vd = rvd->vdev_child[(c0 + c) % children]; 6276 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6277 continue; 6278 svd[svdcount++] = vd; 6279 if (svdcount == SPA_DVAS_PER_BP) 6280 break; 6281 } 6282 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6283 if (error != 0) 6284 error = vdev_config_sync(svd, svdcount, txg, 6285 B_TRUE); 6286 } else { 6287 error = vdev_config_sync(rvd->vdev_child, 6288 rvd->vdev_children, txg, B_FALSE); 6289 if (error != 0) 6290 error = vdev_config_sync(rvd->vdev_child, 6291 rvd->vdev_children, txg, B_TRUE); 6292 } 6293 6294 if (error == 0) 6295 spa->spa_last_synced_guid = rvd->vdev_guid; 6296 6297 spa_config_exit(spa, SCL_STATE, FTAG); 6298 6299 if (error == 0) 6300 break; 6301 zio_suspend(spa, NULL); 6302 zio_resume_wait(spa); 6303 } 6304 dmu_tx_commit(tx); 6305 6306 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6307 6308 /* 6309 * Clear the dirty config list. 6310 */ 6311 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6312 vdev_config_clean(vd); 6313 6314 /* 6315 * Now that the new config has synced transactionally, 6316 * let it become visible to the config cache. 6317 */ 6318 if (spa->spa_config_syncing != NULL) { 6319 spa_config_set(spa, spa->spa_config_syncing); 6320 spa->spa_config_txg = txg; 6321 spa->spa_config_syncing = NULL; 6322 } 6323 6324 spa->spa_ubsync = spa->spa_uberblock; 6325 6326 dsl_pool_sync_done(dp, txg); 6327 6328 /* 6329 * Update usable space statistics. 6330 */ 6331 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6332 vdev_sync_done(vd, txg); 6333 6334 spa_update_dspace(spa); 6335 6336 /* 6337 * It had better be the case that we didn't dirty anything 6338 * since vdev_config_sync(). 6339 */ 6340 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6341 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6342 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6343 6344 spa->spa_sync_pass = 0; 6345 6346 spa_config_exit(spa, SCL_CONFIG, FTAG); 6347 6348 spa_handle_ignored_writes(spa); 6349 6350 /* 6351 * If any async tasks have been requested, kick them off. 6352 */ 6353 spa_async_dispatch(spa); 6354 } 6355 6356 /* 6357 * Sync all pools. We don't want to hold the namespace lock across these 6358 * operations, so we take a reference on the spa_t and drop the lock during the 6359 * sync. 6360 */ 6361 void 6362 spa_sync_allpools(void) 6363 { 6364 spa_t *spa = NULL; 6365 mutex_enter(&spa_namespace_lock); 6366 while ((spa = spa_next(spa)) != NULL) { 6367 if (spa_state(spa) != POOL_STATE_ACTIVE || 6368 !spa_writeable(spa) || spa_suspended(spa)) 6369 continue; 6370 spa_open_ref(spa, FTAG); 6371 mutex_exit(&spa_namespace_lock); 6372 txg_wait_synced(spa_get_dsl(spa), 0); 6373 mutex_enter(&spa_namespace_lock); 6374 spa_close(spa, FTAG); 6375 } 6376 mutex_exit(&spa_namespace_lock); 6377 } 6378 6379 /* 6380 * ========================================================================== 6381 * Miscellaneous routines 6382 * ========================================================================== 6383 */ 6384 6385 /* 6386 * Remove all pools in the system. 6387 */ 6388 void 6389 spa_evict_all(void) 6390 { 6391 spa_t *spa; 6392 6393 /* 6394 * Remove all cached state. All pools should be closed now, 6395 * so every spa in the AVL tree should be unreferenced. 6396 */ 6397 mutex_enter(&spa_namespace_lock); 6398 while ((spa = spa_next(NULL)) != NULL) { 6399 /* 6400 * Stop async tasks. The async thread may need to detach 6401 * a device that's been replaced, which requires grabbing 6402 * spa_namespace_lock, so we must drop it here. 6403 */ 6404 spa_open_ref(spa, FTAG); 6405 mutex_exit(&spa_namespace_lock); 6406 spa_async_suspend(spa); 6407 mutex_enter(&spa_namespace_lock); 6408 spa_close(spa, FTAG); 6409 6410 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6411 spa_unload(spa); 6412 spa_deactivate(spa); 6413 } 6414 spa_remove(spa); 6415 } 6416 mutex_exit(&spa_namespace_lock); 6417 } 6418 6419 vdev_t * 6420 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6421 { 6422 vdev_t *vd; 6423 int i; 6424 6425 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6426 return (vd); 6427 6428 if (aux) { 6429 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6430 vd = spa->spa_l2cache.sav_vdevs[i]; 6431 if (vd->vdev_guid == guid) 6432 return (vd); 6433 } 6434 6435 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6436 vd = spa->spa_spares.sav_vdevs[i]; 6437 if (vd->vdev_guid == guid) 6438 return (vd); 6439 } 6440 } 6441 6442 return (NULL); 6443 } 6444 6445 void 6446 spa_upgrade(spa_t *spa, uint64_t version) 6447 { 6448 ASSERT(spa_writeable(spa)); 6449 6450 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6451 6452 /* 6453 * This should only be called for a non-faulted pool, and since a 6454 * future version would result in an unopenable pool, this shouldn't be 6455 * possible. 6456 */ 6457 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6458 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 6459 6460 spa->spa_uberblock.ub_version = version; 6461 vdev_config_dirty(spa->spa_root_vdev); 6462 6463 spa_config_exit(spa, SCL_ALL, FTAG); 6464 6465 txg_wait_synced(spa_get_dsl(spa), 0); 6466 } 6467 6468 boolean_t 6469 spa_has_spare(spa_t *spa, uint64_t guid) 6470 { 6471 int i; 6472 uint64_t spareguid; 6473 spa_aux_vdev_t *sav = &spa->spa_spares; 6474 6475 for (i = 0; i < sav->sav_count; i++) 6476 if (sav->sav_vdevs[i]->vdev_guid == guid) 6477 return (B_TRUE); 6478 6479 for (i = 0; i < sav->sav_npending; i++) { 6480 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6481 &spareguid) == 0 && spareguid == guid) 6482 return (B_TRUE); 6483 } 6484 6485 return (B_FALSE); 6486 } 6487 6488 /* 6489 * Check if a pool has an active shared spare device. 6490 * Note: reference count of an active spare is 2, as a spare and as a replace 6491 */ 6492 static boolean_t 6493 spa_has_active_shared_spare(spa_t *spa) 6494 { 6495 int i, refcnt; 6496 uint64_t pool; 6497 spa_aux_vdev_t *sav = &spa->spa_spares; 6498 6499 for (i = 0; i < sav->sav_count; i++) { 6500 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6501 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6502 refcnt > 2) 6503 return (B_TRUE); 6504 } 6505 6506 return (B_FALSE); 6507 } 6508 6509 /* 6510 * Post a sysevent corresponding to the given event. The 'name' must be one of 6511 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6512 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6513 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6514 * or zdb as real changes. 6515 */ 6516 void 6517 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6518 { 6519 #ifdef _KERNEL 6520 sysevent_t *ev; 6521 sysevent_attr_list_t *attr = NULL; 6522 sysevent_value_t value; 6523 sysevent_id_t eid; 6524 6525 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6526 SE_SLEEP); 6527 6528 value.value_type = SE_DATA_TYPE_STRING; 6529 value.value.sv_string = spa_name(spa); 6530 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6531 goto done; 6532 6533 value.value_type = SE_DATA_TYPE_UINT64; 6534 value.value.sv_uint64 = spa_guid(spa); 6535 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6536 goto done; 6537 6538 if (vd) { 6539 value.value_type = SE_DATA_TYPE_UINT64; 6540 value.value.sv_uint64 = vd->vdev_guid; 6541 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6542 SE_SLEEP) != 0) 6543 goto done; 6544 6545 if (vd->vdev_path) { 6546 value.value_type = SE_DATA_TYPE_STRING; 6547 value.value.sv_string = vd->vdev_path; 6548 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6549 &value, SE_SLEEP) != 0) 6550 goto done; 6551 } 6552 } 6553 6554 if (sysevent_attach_attributes(ev, attr) != 0) 6555 goto done; 6556 attr = NULL; 6557 6558 (void) log_sysevent(ev, SE_SLEEP, &eid); 6559 6560 done: 6561 if (attr) 6562 sysevent_free_attr(attr); 6563 sysevent_free(ev); 6564 #endif 6565 } 6566