1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2012 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * This file contains all the routines used when modifying on-disk SPA state. 30 * This includes opening, importing, destroying, exporting a pool, and syncing a 31 * pool. 32 */ 33 34 #include <sys/zfs_context.h> 35 #include <sys/fm/fs/zfs.h> 36 #include <sys/spa_impl.h> 37 #include <sys/zio.h> 38 #include <sys/zio_checksum.h> 39 #include <sys/dmu.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/zap.h> 42 #include <sys/zil.h> 43 #include <sys/ddt.h> 44 #include <sys/vdev_impl.h> 45 #include <sys/metaslab.h> 46 #include <sys/metaslab_impl.h> 47 #include <sys/uberblock_impl.h> 48 #include <sys/txg.h> 49 #include <sys/avl.h> 50 #include <sys/dmu_traverse.h> 51 #include <sys/dmu_objset.h> 52 #include <sys/unique.h> 53 #include <sys/dsl_pool.h> 54 #include <sys/dsl_dataset.h> 55 #include <sys/dsl_dir.h> 56 #include <sys/dsl_prop.h> 57 #include <sys/dsl_synctask.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/arc.h> 60 #include <sys/callb.h> 61 #include <sys/systeminfo.h> 62 #include <sys/spa_boot.h> 63 #include <sys/zfs_ioctl.h> 64 #include <sys/dsl_scan.h> 65 #include <sys/zfeature.h> 66 67 #ifdef _KERNEL 68 #include <sys/bootprops.h> 69 #include <sys/callb.h> 70 #include <sys/cpupart.h> 71 #include <sys/pool.h> 72 #include <sys/sysdc.h> 73 #include <sys/zone.h> 74 #endif /* _KERNEL */ 75 76 #include "zfs_prop.h" 77 #include "zfs_comutil.h" 78 79 typedef enum zti_modes { 80 zti_mode_fixed, /* value is # of threads (min 1) */ 81 zti_mode_online_percent, /* value is % of online CPUs */ 82 zti_mode_batch, /* cpu-intensive; value is ignored */ 83 zti_mode_null, /* don't create a taskq */ 84 zti_nmodes 85 } zti_modes_t; 86 87 #define ZTI_FIX(n) { zti_mode_fixed, (n) } 88 #define ZTI_PCT(n) { zti_mode_online_percent, (n) } 89 #define ZTI_BATCH { zti_mode_batch, 0 } 90 #define ZTI_NULL { zti_mode_null, 0 } 91 92 #define ZTI_ONE ZTI_FIX(1) 93 94 typedef struct zio_taskq_info { 95 enum zti_modes zti_mode; 96 uint_t zti_value; 97 } zio_taskq_info_t; 98 99 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 100 "issue", "issue_high", "intr", "intr_high" 101 }; 102 103 /* 104 * Define the taskq threads for the following I/O types: 105 * NULL, READ, WRITE, FREE, CLAIM, and IOCTL 106 */ 107 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 108 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 109 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 110 { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, 111 { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(8), ZTI_FIX(5) }, 112 { ZTI_FIX(100), ZTI_NULL, ZTI_ONE, ZTI_NULL }, 113 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 114 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 115 }; 116 117 static dsl_syncfunc_t spa_sync_version; 118 static dsl_syncfunc_t spa_sync_props; 119 static boolean_t spa_has_active_shared_spare(spa_t *spa); 120 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 121 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 122 char **ereport); 123 static void spa_vdev_resilver_done(spa_t *spa); 124 125 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */ 126 id_t zio_taskq_psrset_bind = PS_NONE; 127 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 128 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 129 130 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 131 132 /* 133 * This (illegal) pool name is used when temporarily importing a spa_t in order 134 * to get the vdev stats associated with the imported devices. 135 */ 136 #define TRYIMPORT_NAME "$import" 137 138 /* 139 * ========================================================================== 140 * SPA properties routines 141 * ========================================================================== 142 */ 143 144 /* 145 * Add a (source=src, propname=propval) list to an nvlist. 146 */ 147 static void 148 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 149 uint64_t intval, zprop_source_t src) 150 { 151 const char *propname = zpool_prop_to_name(prop); 152 nvlist_t *propval; 153 154 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 155 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 156 157 if (strval != NULL) 158 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 159 else 160 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 161 162 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 163 nvlist_free(propval); 164 } 165 166 /* 167 * Get property values from the spa configuration. 168 */ 169 static void 170 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 171 { 172 vdev_t *rvd = spa->spa_root_vdev; 173 dsl_pool_t *pool = spa->spa_dsl_pool; 174 uint64_t size; 175 uint64_t alloc; 176 uint64_t space; 177 uint64_t cap, version; 178 zprop_source_t src = ZPROP_SRC_NONE; 179 spa_config_dirent_t *dp; 180 181 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 182 183 if (rvd != NULL) { 184 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 185 size = metaslab_class_get_space(spa_normal_class(spa)); 186 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 187 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 188 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 189 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 190 size - alloc, src); 191 192 space = 0; 193 for (int c = 0; c < rvd->vdev_children; c++) { 194 vdev_t *tvd = rvd->vdev_child[c]; 195 space += tvd->vdev_max_asize - tvd->vdev_asize; 196 } 197 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space, 198 src); 199 200 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 201 (spa_mode(spa) == FREAD), src); 202 203 cap = (size == 0) ? 0 : (alloc * 100 / size); 204 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 205 206 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 207 ddt_get_pool_dedup_ratio(spa), src); 208 209 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 210 rvd->vdev_state, src); 211 212 version = spa_version(spa); 213 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 214 src = ZPROP_SRC_DEFAULT; 215 else 216 src = ZPROP_SRC_LOCAL; 217 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 218 } 219 220 if (pool != NULL) { 221 dsl_dir_t *freedir = pool->dp_free_dir; 222 223 /* 224 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 225 * when opening pools before this version freedir will be NULL. 226 */ 227 if (freedir != NULL) { 228 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 229 freedir->dd_phys->dd_used_bytes, src); 230 } else { 231 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 232 NULL, 0, src); 233 } 234 } 235 236 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 237 238 if (spa->spa_comment != NULL) { 239 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 240 0, ZPROP_SRC_LOCAL); 241 } 242 243 if (spa->spa_root != NULL) 244 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 245 0, ZPROP_SRC_LOCAL); 246 247 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 248 if (dp->scd_path == NULL) { 249 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 250 "none", 0, ZPROP_SRC_LOCAL); 251 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 252 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 253 dp->scd_path, 0, ZPROP_SRC_LOCAL); 254 } 255 } 256 } 257 258 /* 259 * Get zpool property values. 260 */ 261 int 262 spa_prop_get(spa_t *spa, nvlist_t **nvp) 263 { 264 objset_t *mos = spa->spa_meta_objset; 265 zap_cursor_t zc; 266 zap_attribute_t za; 267 int err; 268 269 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 270 271 mutex_enter(&spa->spa_props_lock); 272 273 /* 274 * Get properties from the spa config. 275 */ 276 spa_prop_get_config(spa, nvp); 277 278 /* If no pool property object, no more prop to get. */ 279 if (mos == NULL || spa->spa_pool_props_object == 0) { 280 mutex_exit(&spa->spa_props_lock); 281 return (0); 282 } 283 284 /* 285 * Get properties from the MOS pool property object. 286 */ 287 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 288 (err = zap_cursor_retrieve(&zc, &za)) == 0; 289 zap_cursor_advance(&zc)) { 290 uint64_t intval = 0; 291 char *strval = NULL; 292 zprop_source_t src = ZPROP_SRC_DEFAULT; 293 zpool_prop_t prop; 294 295 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 296 continue; 297 298 switch (za.za_integer_length) { 299 case 8: 300 /* integer property */ 301 if (za.za_first_integer != 302 zpool_prop_default_numeric(prop)) 303 src = ZPROP_SRC_LOCAL; 304 305 if (prop == ZPOOL_PROP_BOOTFS) { 306 dsl_pool_t *dp; 307 dsl_dataset_t *ds = NULL; 308 309 dp = spa_get_dsl(spa); 310 rw_enter(&dp->dp_config_rwlock, RW_READER); 311 if (err = dsl_dataset_hold_obj(dp, 312 za.za_first_integer, FTAG, &ds)) { 313 rw_exit(&dp->dp_config_rwlock); 314 break; 315 } 316 317 strval = kmem_alloc( 318 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 319 KM_SLEEP); 320 dsl_dataset_name(ds, strval); 321 dsl_dataset_rele(ds, FTAG); 322 rw_exit(&dp->dp_config_rwlock); 323 } else { 324 strval = NULL; 325 intval = za.za_first_integer; 326 } 327 328 spa_prop_add_list(*nvp, prop, strval, intval, src); 329 330 if (strval != NULL) 331 kmem_free(strval, 332 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 333 334 break; 335 336 case 1: 337 /* string property */ 338 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 339 err = zap_lookup(mos, spa->spa_pool_props_object, 340 za.za_name, 1, za.za_num_integers, strval); 341 if (err) { 342 kmem_free(strval, za.za_num_integers); 343 break; 344 } 345 spa_prop_add_list(*nvp, prop, strval, 0, src); 346 kmem_free(strval, za.za_num_integers); 347 break; 348 349 default: 350 break; 351 } 352 } 353 zap_cursor_fini(&zc); 354 mutex_exit(&spa->spa_props_lock); 355 out: 356 if (err && err != ENOENT) { 357 nvlist_free(*nvp); 358 *nvp = NULL; 359 return (err); 360 } 361 362 return (0); 363 } 364 365 /* 366 * Validate the given pool properties nvlist and modify the list 367 * for the property values to be set. 368 */ 369 static int 370 spa_prop_validate(spa_t *spa, nvlist_t *props) 371 { 372 nvpair_t *elem; 373 int error = 0, reset_bootfs = 0; 374 uint64_t objnum; 375 boolean_t has_feature = B_FALSE; 376 377 elem = NULL; 378 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 379 uint64_t intval; 380 char *strval, *slash, *check, *fname; 381 const char *propname = nvpair_name(elem); 382 zpool_prop_t prop = zpool_name_to_prop(propname); 383 384 switch (prop) { 385 case ZPROP_INVAL: 386 if (!zpool_prop_feature(propname)) { 387 error = EINVAL; 388 break; 389 } 390 391 /* 392 * Sanitize the input. 393 */ 394 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 395 error = EINVAL; 396 break; 397 } 398 399 if (nvpair_value_uint64(elem, &intval) != 0) { 400 error = EINVAL; 401 break; 402 } 403 404 if (intval != 0) { 405 error = EINVAL; 406 break; 407 } 408 409 fname = strchr(propname, '@') + 1; 410 if (zfeature_lookup_name(fname, NULL) != 0) { 411 error = EINVAL; 412 break; 413 } 414 415 has_feature = B_TRUE; 416 break; 417 418 case ZPOOL_PROP_VERSION: 419 error = nvpair_value_uint64(elem, &intval); 420 if (!error && 421 (intval < spa_version(spa) || 422 intval > SPA_VERSION_BEFORE_FEATURES || 423 has_feature)) 424 error = EINVAL; 425 break; 426 427 case ZPOOL_PROP_DELEGATION: 428 case ZPOOL_PROP_AUTOREPLACE: 429 case ZPOOL_PROP_LISTSNAPS: 430 case ZPOOL_PROP_AUTOEXPAND: 431 error = nvpair_value_uint64(elem, &intval); 432 if (!error && intval > 1) 433 error = EINVAL; 434 break; 435 436 case ZPOOL_PROP_BOOTFS: 437 /* 438 * If the pool version is less than SPA_VERSION_BOOTFS, 439 * or the pool is still being created (version == 0), 440 * the bootfs property cannot be set. 441 */ 442 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 443 error = ENOTSUP; 444 break; 445 } 446 447 /* 448 * Make sure the vdev config is bootable 449 */ 450 if (!vdev_is_bootable(spa->spa_root_vdev)) { 451 error = ENOTSUP; 452 break; 453 } 454 455 reset_bootfs = 1; 456 457 error = nvpair_value_string(elem, &strval); 458 459 if (!error) { 460 objset_t *os; 461 uint64_t compress; 462 463 if (strval == NULL || strval[0] == '\0') { 464 objnum = zpool_prop_default_numeric( 465 ZPOOL_PROP_BOOTFS); 466 break; 467 } 468 469 if (error = dmu_objset_hold(strval, FTAG, &os)) 470 break; 471 472 /* Must be ZPL and not gzip compressed. */ 473 474 if (dmu_objset_type(os) != DMU_OST_ZFS) { 475 error = ENOTSUP; 476 } else if ((error = dsl_prop_get_integer(strval, 477 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 478 &compress, NULL)) == 0 && 479 !BOOTFS_COMPRESS_VALID(compress)) { 480 error = ENOTSUP; 481 } else { 482 objnum = dmu_objset_id(os); 483 } 484 dmu_objset_rele(os, FTAG); 485 } 486 break; 487 488 case ZPOOL_PROP_FAILUREMODE: 489 error = nvpair_value_uint64(elem, &intval); 490 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 491 intval > ZIO_FAILURE_MODE_PANIC)) 492 error = EINVAL; 493 494 /* 495 * This is a special case which only occurs when 496 * the pool has completely failed. This allows 497 * the user to change the in-core failmode property 498 * without syncing it out to disk (I/Os might 499 * currently be blocked). We do this by returning 500 * EIO to the caller (spa_prop_set) to trick it 501 * into thinking we encountered a property validation 502 * error. 503 */ 504 if (!error && spa_suspended(spa)) { 505 spa->spa_failmode = intval; 506 error = EIO; 507 } 508 break; 509 510 case ZPOOL_PROP_CACHEFILE: 511 if ((error = nvpair_value_string(elem, &strval)) != 0) 512 break; 513 514 if (strval[0] == '\0') 515 break; 516 517 if (strcmp(strval, "none") == 0) 518 break; 519 520 if (strval[0] != '/') { 521 error = EINVAL; 522 break; 523 } 524 525 slash = strrchr(strval, '/'); 526 ASSERT(slash != NULL); 527 528 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 529 strcmp(slash, "/..") == 0) 530 error = EINVAL; 531 break; 532 533 case ZPOOL_PROP_COMMENT: 534 if ((error = nvpair_value_string(elem, &strval)) != 0) 535 break; 536 for (check = strval; *check != '\0'; check++) { 537 /* 538 * The kernel doesn't have an easy isprint() 539 * check. For this kernel check, we merely 540 * check ASCII apart from DEL. Fix this if 541 * there is an easy-to-use kernel isprint(). 542 */ 543 if (*check >= 0x7f) { 544 error = EINVAL; 545 break; 546 } 547 check++; 548 } 549 if (strlen(strval) > ZPROP_MAX_COMMENT) 550 error = E2BIG; 551 break; 552 553 case ZPOOL_PROP_DEDUPDITTO: 554 if (spa_version(spa) < SPA_VERSION_DEDUP) 555 error = ENOTSUP; 556 else 557 error = nvpair_value_uint64(elem, &intval); 558 if (error == 0 && 559 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 560 error = EINVAL; 561 break; 562 } 563 564 if (error) 565 break; 566 } 567 568 if (!error && reset_bootfs) { 569 error = nvlist_remove(props, 570 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 571 572 if (!error) { 573 error = nvlist_add_uint64(props, 574 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 575 } 576 } 577 578 return (error); 579 } 580 581 void 582 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 583 { 584 char *cachefile; 585 spa_config_dirent_t *dp; 586 587 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 588 &cachefile) != 0) 589 return; 590 591 dp = kmem_alloc(sizeof (spa_config_dirent_t), 592 KM_SLEEP); 593 594 if (cachefile[0] == '\0') 595 dp->scd_path = spa_strdup(spa_config_path); 596 else if (strcmp(cachefile, "none") == 0) 597 dp->scd_path = NULL; 598 else 599 dp->scd_path = spa_strdup(cachefile); 600 601 list_insert_head(&spa->spa_config_list, dp); 602 if (need_sync) 603 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 604 } 605 606 int 607 spa_prop_set(spa_t *spa, nvlist_t *nvp) 608 { 609 int error; 610 nvpair_t *elem = NULL; 611 boolean_t need_sync = B_FALSE; 612 613 if ((error = spa_prop_validate(spa, nvp)) != 0) 614 return (error); 615 616 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 617 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 618 619 if (prop == ZPOOL_PROP_CACHEFILE || 620 prop == ZPOOL_PROP_ALTROOT || 621 prop == ZPOOL_PROP_READONLY) 622 continue; 623 624 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 625 uint64_t ver; 626 627 if (prop == ZPOOL_PROP_VERSION) { 628 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 629 } else { 630 ASSERT(zpool_prop_feature(nvpair_name(elem))); 631 ver = SPA_VERSION_FEATURES; 632 need_sync = B_TRUE; 633 } 634 635 /* Save time if the version is already set. */ 636 if (ver == spa_version(spa)) 637 continue; 638 639 /* 640 * In addition to the pool directory object, we might 641 * create the pool properties object, the features for 642 * read object, the features for write object, or the 643 * feature descriptions object. 644 */ 645 error = dsl_sync_task_do(spa_get_dsl(spa), NULL, 646 spa_sync_version, spa, &ver, 6); 647 if (error) 648 return (error); 649 continue; 650 } 651 652 need_sync = B_TRUE; 653 break; 654 } 655 656 if (need_sync) { 657 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 658 spa, nvp, 6)); 659 } 660 661 return (0); 662 } 663 664 /* 665 * If the bootfs property value is dsobj, clear it. 666 */ 667 void 668 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 669 { 670 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 671 VERIFY(zap_remove(spa->spa_meta_objset, 672 spa->spa_pool_props_object, 673 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 674 spa->spa_bootfs = 0; 675 } 676 } 677 678 /* 679 * Change the GUID for the pool. This is done so that we can later 680 * re-import a pool built from a clone of our own vdevs. We will modify 681 * the root vdev's guid, our own pool guid, and then mark all of our 682 * vdevs dirty. Note that we must make sure that all our vdevs are 683 * online when we do this, or else any vdevs that weren't present 684 * would be orphaned from our pool. We are also going to issue a 685 * sysevent to update any watchers. 686 */ 687 int 688 spa_change_guid(spa_t *spa) 689 { 690 uint64_t oldguid, newguid; 691 uint64_t txg; 692 693 if (!(spa_mode_global & FWRITE)) 694 return (EROFS); 695 696 txg = spa_vdev_enter(spa); 697 698 if (spa->spa_root_vdev->vdev_state != VDEV_STATE_HEALTHY) 699 return (spa_vdev_exit(spa, NULL, txg, ENXIO)); 700 701 oldguid = spa_guid(spa); 702 newguid = spa_generate_guid(NULL); 703 ASSERT3U(oldguid, !=, newguid); 704 705 spa->spa_root_vdev->vdev_guid = newguid; 706 spa->spa_root_vdev->vdev_guid_sum += (newguid - oldguid); 707 708 vdev_config_dirty(spa->spa_root_vdev); 709 710 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 711 712 return (spa_vdev_exit(spa, NULL, txg, 0)); 713 } 714 715 /* 716 * ========================================================================== 717 * SPA state manipulation (open/create/destroy/import/export) 718 * ========================================================================== 719 */ 720 721 static int 722 spa_error_entry_compare(const void *a, const void *b) 723 { 724 spa_error_entry_t *sa = (spa_error_entry_t *)a; 725 spa_error_entry_t *sb = (spa_error_entry_t *)b; 726 int ret; 727 728 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 729 sizeof (zbookmark_t)); 730 731 if (ret < 0) 732 return (-1); 733 else if (ret > 0) 734 return (1); 735 else 736 return (0); 737 } 738 739 /* 740 * Utility function which retrieves copies of the current logs and 741 * re-initializes them in the process. 742 */ 743 void 744 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 745 { 746 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 747 748 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 749 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 750 751 avl_create(&spa->spa_errlist_scrub, 752 spa_error_entry_compare, sizeof (spa_error_entry_t), 753 offsetof(spa_error_entry_t, se_avl)); 754 avl_create(&spa->spa_errlist_last, 755 spa_error_entry_compare, sizeof (spa_error_entry_t), 756 offsetof(spa_error_entry_t, se_avl)); 757 } 758 759 static taskq_t * 760 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode, 761 uint_t value) 762 { 763 uint_t flags = 0; 764 boolean_t batch = B_FALSE; 765 766 switch (mode) { 767 case zti_mode_null: 768 return (NULL); /* no taskq needed */ 769 770 case zti_mode_fixed: 771 ASSERT3U(value, >=, 1); 772 value = MAX(value, 1); 773 break; 774 775 case zti_mode_batch: 776 batch = B_TRUE; 777 flags |= TASKQ_THREADS_CPU_PCT; 778 value = zio_taskq_batch_pct; 779 break; 780 781 case zti_mode_online_percent: 782 flags |= TASKQ_THREADS_CPU_PCT; 783 break; 784 785 default: 786 panic("unrecognized mode for %s taskq (%u:%u) in " 787 "spa_activate()", 788 name, mode, value); 789 break; 790 } 791 792 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 793 if (batch) 794 flags |= TASKQ_DC_BATCH; 795 796 return (taskq_create_sysdc(name, value, 50, INT_MAX, 797 spa->spa_proc, zio_taskq_basedc, flags)); 798 } 799 return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX, 800 spa->spa_proc, flags)); 801 } 802 803 static void 804 spa_create_zio_taskqs(spa_t *spa) 805 { 806 for (int t = 0; t < ZIO_TYPES; t++) { 807 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 808 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 809 enum zti_modes mode = ztip->zti_mode; 810 uint_t value = ztip->zti_value; 811 char name[32]; 812 813 (void) snprintf(name, sizeof (name), 814 "%s_%s", zio_type_name[t], zio_taskq_types[q]); 815 816 spa->spa_zio_taskq[t][q] = 817 spa_taskq_create(spa, name, mode, value); 818 } 819 } 820 } 821 822 #ifdef _KERNEL 823 static void 824 spa_thread(void *arg) 825 { 826 callb_cpr_t cprinfo; 827 828 spa_t *spa = arg; 829 user_t *pu = PTOU(curproc); 830 831 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 832 spa->spa_name); 833 834 ASSERT(curproc != &p0); 835 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 836 "zpool-%s", spa->spa_name); 837 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 838 839 /* bind this thread to the requested psrset */ 840 if (zio_taskq_psrset_bind != PS_NONE) { 841 pool_lock(); 842 mutex_enter(&cpu_lock); 843 mutex_enter(&pidlock); 844 mutex_enter(&curproc->p_lock); 845 846 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 847 0, NULL, NULL) == 0) { 848 curthread->t_bind_pset = zio_taskq_psrset_bind; 849 } else { 850 cmn_err(CE_WARN, 851 "Couldn't bind process for zfs pool \"%s\" to " 852 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 853 } 854 855 mutex_exit(&curproc->p_lock); 856 mutex_exit(&pidlock); 857 mutex_exit(&cpu_lock); 858 pool_unlock(); 859 } 860 861 if (zio_taskq_sysdc) { 862 sysdc_thread_enter(curthread, 100, 0); 863 } 864 865 spa->spa_proc = curproc; 866 spa->spa_did = curthread->t_did; 867 868 spa_create_zio_taskqs(spa); 869 870 mutex_enter(&spa->spa_proc_lock); 871 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 872 873 spa->spa_proc_state = SPA_PROC_ACTIVE; 874 cv_broadcast(&spa->spa_proc_cv); 875 876 CALLB_CPR_SAFE_BEGIN(&cprinfo); 877 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 878 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 879 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 880 881 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 882 spa->spa_proc_state = SPA_PROC_GONE; 883 spa->spa_proc = &p0; 884 cv_broadcast(&spa->spa_proc_cv); 885 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 886 887 mutex_enter(&curproc->p_lock); 888 lwp_exit(); 889 } 890 #endif 891 892 /* 893 * Activate an uninitialized pool. 894 */ 895 static void 896 spa_activate(spa_t *spa, int mode) 897 { 898 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 899 900 spa->spa_state = POOL_STATE_ACTIVE; 901 spa->spa_mode = mode; 902 903 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 904 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 905 906 /* Try to create a covering process */ 907 mutex_enter(&spa->spa_proc_lock); 908 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 909 ASSERT(spa->spa_proc == &p0); 910 spa->spa_did = 0; 911 912 /* Only create a process if we're going to be around a while. */ 913 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 914 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 915 NULL, 0) == 0) { 916 spa->spa_proc_state = SPA_PROC_CREATED; 917 while (spa->spa_proc_state == SPA_PROC_CREATED) { 918 cv_wait(&spa->spa_proc_cv, 919 &spa->spa_proc_lock); 920 } 921 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 922 ASSERT(spa->spa_proc != &p0); 923 ASSERT(spa->spa_did != 0); 924 } else { 925 #ifdef _KERNEL 926 cmn_err(CE_WARN, 927 "Couldn't create process for zfs pool \"%s\"\n", 928 spa->spa_name); 929 #endif 930 } 931 } 932 mutex_exit(&spa->spa_proc_lock); 933 934 /* If we didn't create a process, we need to create our taskqs. */ 935 if (spa->spa_proc == &p0) { 936 spa_create_zio_taskqs(spa); 937 } 938 939 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 940 offsetof(vdev_t, vdev_config_dirty_node)); 941 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 942 offsetof(vdev_t, vdev_state_dirty_node)); 943 944 txg_list_create(&spa->spa_vdev_txg_list, 945 offsetof(struct vdev, vdev_txg_node)); 946 947 avl_create(&spa->spa_errlist_scrub, 948 spa_error_entry_compare, sizeof (spa_error_entry_t), 949 offsetof(spa_error_entry_t, se_avl)); 950 avl_create(&spa->spa_errlist_last, 951 spa_error_entry_compare, sizeof (spa_error_entry_t), 952 offsetof(spa_error_entry_t, se_avl)); 953 } 954 955 /* 956 * Opposite of spa_activate(). 957 */ 958 static void 959 spa_deactivate(spa_t *spa) 960 { 961 ASSERT(spa->spa_sync_on == B_FALSE); 962 ASSERT(spa->spa_dsl_pool == NULL); 963 ASSERT(spa->spa_root_vdev == NULL); 964 ASSERT(spa->spa_async_zio_root == NULL); 965 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 966 967 txg_list_destroy(&spa->spa_vdev_txg_list); 968 969 list_destroy(&spa->spa_config_dirty_list); 970 list_destroy(&spa->spa_state_dirty_list); 971 972 for (int t = 0; t < ZIO_TYPES; t++) { 973 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 974 if (spa->spa_zio_taskq[t][q] != NULL) 975 taskq_destroy(spa->spa_zio_taskq[t][q]); 976 spa->spa_zio_taskq[t][q] = NULL; 977 } 978 } 979 980 metaslab_class_destroy(spa->spa_normal_class); 981 spa->spa_normal_class = NULL; 982 983 metaslab_class_destroy(spa->spa_log_class); 984 spa->spa_log_class = NULL; 985 986 /* 987 * If this was part of an import or the open otherwise failed, we may 988 * still have errors left in the queues. Empty them just in case. 989 */ 990 spa_errlog_drain(spa); 991 992 avl_destroy(&spa->spa_errlist_scrub); 993 avl_destroy(&spa->spa_errlist_last); 994 995 spa->spa_state = POOL_STATE_UNINITIALIZED; 996 997 mutex_enter(&spa->spa_proc_lock); 998 if (spa->spa_proc_state != SPA_PROC_NONE) { 999 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1000 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1001 cv_broadcast(&spa->spa_proc_cv); 1002 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1003 ASSERT(spa->spa_proc != &p0); 1004 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1005 } 1006 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1007 spa->spa_proc_state = SPA_PROC_NONE; 1008 } 1009 ASSERT(spa->spa_proc == &p0); 1010 mutex_exit(&spa->spa_proc_lock); 1011 1012 /* 1013 * We want to make sure spa_thread() has actually exited the ZFS 1014 * module, so that the module can't be unloaded out from underneath 1015 * it. 1016 */ 1017 if (spa->spa_did != 0) { 1018 thread_join(spa->spa_did); 1019 spa->spa_did = 0; 1020 } 1021 } 1022 1023 /* 1024 * Verify a pool configuration, and construct the vdev tree appropriately. This 1025 * will create all the necessary vdevs in the appropriate layout, with each vdev 1026 * in the CLOSED state. This will prep the pool before open/creation/import. 1027 * All vdev validation is done by the vdev_alloc() routine. 1028 */ 1029 static int 1030 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1031 uint_t id, int atype) 1032 { 1033 nvlist_t **child; 1034 uint_t children; 1035 int error; 1036 1037 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1038 return (error); 1039 1040 if ((*vdp)->vdev_ops->vdev_op_leaf) 1041 return (0); 1042 1043 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1044 &child, &children); 1045 1046 if (error == ENOENT) 1047 return (0); 1048 1049 if (error) { 1050 vdev_free(*vdp); 1051 *vdp = NULL; 1052 return (EINVAL); 1053 } 1054 1055 for (int c = 0; c < children; c++) { 1056 vdev_t *vd; 1057 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1058 atype)) != 0) { 1059 vdev_free(*vdp); 1060 *vdp = NULL; 1061 return (error); 1062 } 1063 } 1064 1065 ASSERT(*vdp != NULL); 1066 1067 return (0); 1068 } 1069 1070 /* 1071 * Opposite of spa_load(). 1072 */ 1073 static void 1074 spa_unload(spa_t *spa) 1075 { 1076 int i; 1077 1078 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1079 1080 /* 1081 * Stop async tasks. 1082 */ 1083 spa_async_suspend(spa); 1084 1085 /* 1086 * Stop syncing. 1087 */ 1088 if (spa->spa_sync_on) { 1089 txg_sync_stop(spa->spa_dsl_pool); 1090 spa->spa_sync_on = B_FALSE; 1091 } 1092 1093 /* 1094 * Wait for any outstanding async I/O to complete. 1095 */ 1096 if (spa->spa_async_zio_root != NULL) { 1097 (void) zio_wait(spa->spa_async_zio_root); 1098 spa->spa_async_zio_root = NULL; 1099 } 1100 1101 bpobj_close(&spa->spa_deferred_bpobj); 1102 1103 /* 1104 * Close the dsl pool. 1105 */ 1106 if (spa->spa_dsl_pool) { 1107 dsl_pool_close(spa->spa_dsl_pool); 1108 spa->spa_dsl_pool = NULL; 1109 spa->spa_meta_objset = NULL; 1110 } 1111 1112 ddt_unload(spa); 1113 1114 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1115 1116 /* 1117 * Drop and purge level 2 cache 1118 */ 1119 spa_l2cache_drop(spa); 1120 1121 /* 1122 * Close all vdevs. 1123 */ 1124 if (spa->spa_root_vdev) 1125 vdev_free(spa->spa_root_vdev); 1126 ASSERT(spa->spa_root_vdev == NULL); 1127 1128 for (i = 0; i < spa->spa_spares.sav_count; i++) 1129 vdev_free(spa->spa_spares.sav_vdevs[i]); 1130 if (spa->spa_spares.sav_vdevs) { 1131 kmem_free(spa->spa_spares.sav_vdevs, 1132 spa->spa_spares.sav_count * sizeof (void *)); 1133 spa->spa_spares.sav_vdevs = NULL; 1134 } 1135 if (spa->spa_spares.sav_config) { 1136 nvlist_free(spa->spa_spares.sav_config); 1137 spa->spa_spares.sav_config = NULL; 1138 } 1139 spa->spa_spares.sav_count = 0; 1140 1141 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1142 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1143 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1144 } 1145 if (spa->spa_l2cache.sav_vdevs) { 1146 kmem_free(spa->spa_l2cache.sav_vdevs, 1147 spa->spa_l2cache.sav_count * sizeof (void *)); 1148 spa->spa_l2cache.sav_vdevs = NULL; 1149 } 1150 if (spa->spa_l2cache.sav_config) { 1151 nvlist_free(spa->spa_l2cache.sav_config); 1152 spa->spa_l2cache.sav_config = NULL; 1153 } 1154 spa->spa_l2cache.sav_count = 0; 1155 1156 spa->spa_async_suspended = 0; 1157 1158 if (spa->spa_comment != NULL) { 1159 spa_strfree(spa->spa_comment); 1160 spa->spa_comment = NULL; 1161 } 1162 1163 spa_config_exit(spa, SCL_ALL, FTAG); 1164 } 1165 1166 /* 1167 * Load (or re-load) the current list of vdevs describing the active spares for 1168 * this pool. When this is called, we have some form of basic information in 1169 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1170 * then re-generate a more complete list including status information. 1171 */ 1172 static void 1173 spa_load_spares(spa_t *spa) 1174 { 1175 nvlist_t **spares; 1176 uint_t nspares; 1177 int i; 1178 vdev_t *vd, *tvd; 1179 1180 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1181 1182 /* 1183 * First, close and free any existing spare vdevs. 1184 */ 1185 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1186 vd = spa->spa_spares.sav_vdevs[i]; 1187 1188 /* Undo the call to spa_activate() below */ 1189 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1190 B_FALSE)) != NULL && tvd->vdev_isspare) 1191 spa_spare_remove(tvd); 1192 vdev_close(vd); 1193 vdev_free(vd); 1194 } 1195 1196 if (spa->spa_spares.sav_vdevs) 1197 kmem_free(spa->spa_spares.sav_vdevs, 1198 spa->spa_spares.sav_count * sizeof (void *)); 1199 1200 if (spa->spa_spares.sav_config == NULL) 1201 nspares = 0; 1202 else 1203 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1204 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1205 1206 spa->spa_spares.sav_count = (int)nspares; 1207 spa->spa_spares.sav_vdevs = NULL; 1208 1209 if (nspares == 0) 1210 return; 1211 1212 /* 1213 * Construct the array of vdevs, opening them to get status in the 1214 * process. For each spare, there is potentially two different vdev_t 1215 * structures associated with it: one in the list of spares (used only 1216 * for basic validation purposes) and one in the active vdev 1217 * configuration (if it's spared in). During this phase we open and 1218 * validate each vdev on the spare list. If the vdev also exists in the 1219 * active configuration, then we also mark this vdev as an active spare. 1220 */ 1221 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1222 KM_SLEEP); 1223 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1224 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1225 VDEV_ALLOC_SPARE) == 0); 1226 ASSERT(vd != NULL); 1227 1228 spa->spa_spares.sav_vdevs[i] = vd; 1229 1230 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1231 B_FALSE)) != NULL) { 1232 if (!tvd->vdev_isspare) 1233 spa_spare_add(tvd); 1234 1235 /* 1236 * We only mark the spare active if we were successfully 1237 * able to load the vdev. Otherwise, importing a pool 1238 * with a bad active spare would result in strange 1239 * behavior, because multiple pool would think the spare 1240 * is actively in use. 1241 * 1242 * There is a vulnerability here to an equally bizarre 1243 * circumstance, where a dead active spare is later 1244 * brought back to life (onlined or otherwise). Given 1245 * the rarity of this scenario, and the extra complexity 1246 * it adds, we ignore the possibility. 1247 */ 1248 if (!vdev_is_dead(tvd)) 1249 spa_spare_activate(tvd); 1250 } 1251 1252 vd->vdev_top = vd; 1253 vd->vdev_aux = &spa->spa_spares; 1254 1255 if (vdev_open(vd) != 0) 1256 continue; 1257 1258 if (vdev_validate_aux(vd) == 0) 1259 spa_spare_add(vd); 1260 } 1261 1262 /* 1263 * Recompute the stashed list of spares, with status information 1264 * this time. 1265 */ 1266 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1267 DATA_TYPE_NVLIST_ARRAY) == 0); 1268 1269 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1270 KM_SLEEP); 1271 for (i = 0; i < spa->spa_spares.sav_count; i++) 1272 spares[i] = vdev_config_generate(spa, 1273 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1274 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1275 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1276 for (i = 0; i < spa->spa_spares.sav_count; i++) 1277 nvlist_free(spares[i]); 1278 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1279 } 1280 1281 /* 1282 * Load (or re-load) the current list of vdevs describing the active l2cache for 1283 * this pool. When this is called, we have some form of basic information in 1284 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1285 * then re-generate a more complete list including status information. 1286 * Devices which are already active have their details maintained, and are 1287 * not re-opened. 1288 */ 1289 static void 1290 spa_load_l2cache(spa_t *spa) 1291 { 1292 nvlist_t **l2cache; 1293 uint_t nl2cache; 1294 int i, j, oldnvdevs; 1295 uint64_t guid; 1296 vdev_t *vd, **oldvdevs, **newvdevs; 1297 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1298 1299 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1300 1301 if (sav->sav_config != NULL) { 1302 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1303 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1304 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1305 } else { 1306 nl2cache = 0; 1307 } 1308 1309 oldvdevs = sav->sav_vdevs; 1310 oldnvdevs = sav->sav_count; 1311 sav->sav_vdevs = NULL; 1312 sav->sav_count = 0; 1313 1314 /* 1315 * Process new nvlist of vdevs. 1316 */ 1317 for (i = 0; i < nl2cache; i++) { 1318 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1319 &guid) == 0); 1320 1321 newvdevs[i] = NULL; 1322 for (j = 0; j < oldnvdevs; j++) { 1323 vd = oldvdevs[j]; 1324 if (vd != NULL && guid == vd->vdev_guid) { 1325 /* 1326 * Retain previous vdev for add/remove ops. 1327 */ 1328 newvdevs[i] = vd; 1329 oldvdevs[j] = NULL; 1330 break; 1331 } 1332 } 1333 1334 if (newvdevs[i] == NULL) { 1335 /* 1336 * Create new vdev 1337 */ 1338 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1339 VDEV_ALLOC_L2CACHE) == 0); 1340 ASSERT(vd != NULL); 1341 newvdevs[i] = vd; 1342 1343 /* 1344 * Commit this vdev as an l2cache device, 1345 * even if it fails to open. 1346 */ 1347 spa_l2cache_add(vd); 1348 1349 vd->vdev_top = vd; 1350 vd->vdev_aux = sav; 1351 1352 spa_l2cache_activate(vd); 1353 1354 if (vdev_open(vd) != 0) 1355 continue; 1356 1357 (void) vdev_validate_aux(vd); 1358 1359 if (!vdev_is_dead(vd)) 1360 l2arc_add_vdev(spa, vd); 1361 } 1362 } 1363 1364 /* 1365 * Purge vdevs that were dropped 1366 */ 1367 for (i = 0; i < oldnvdevs; i++) { 1368 uint64_t pool; 1369 1370 vd = oldvdevs[i]; 1371 if (vd != NULL) { 1372 ASSERT(vd->vdev_isl2cache); 1373 1374 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1375 pool != 0ULL && l2arc_vdev_present(vd)) 1376 l2arc_remove_vdev(vd); 1377 vdev_clear_stats(vd); 1378 vdev_free(vd); 1379 } 1380 } 1381 1382 if (oldvdevs) 1383 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1384 1385 if (sav->sav_config == NULL) 1386 goto out; 1387 1388 sav->sav_vdevs = newvdevs; 1389 sav->sav_count = (int)nl2cache; 1390 1391 /* 1392 * Recompute the stashed list of l2cache devices, with status 1393 * information this time. 1394 */ 1395 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1396 DATA_TYPE_NVLIST_ARRAY) == 0); 1397 1398 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1399 for (i = 0; i < sav->sav_count; i++) 1400 l2cache[i] = vdev_config_generate(spa, 1401 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1402 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1403 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1404 out: 1405 for (i = 0; i < sav->sav_count; i++) 1406 nvlist_free(l2cache[i]); 1407 if (sav->sav_count) 1408 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1409 } 1410 1411 static int 1412 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1413 { 1414 dmu_buf_t *db; 1415 char *packed = NULL; 1416 size_t nvsize = 0; 1417 int error; 1418 *value = NULL; 1419 1420 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1421 nvsize = *(uint64_t *)db->db_data; 1422 dmu_buf_rele(db, FTAG); 1423 1424 packed = kmem_alloc(nvsize, KM_SLEEP); 1425 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1426 DMU_READ_PREFETCH); 1427 if (error == 0) 1428 error = nvlist_unpack(packed, nvsize, value, 0); 1429 kmem_free(packed, nvsize); 1430 1431 return (error); 1432 } 1433 1434 /* 1435 * Checks to see if the given vdev could not be opened, in which case we post a 1436 * sysevent to notify the autoreplace code that the device has been removed. 1437 */ 1438 static void 1439 spa_check_removed(vdev_t *vd) 1440 { 1441 for (int c = 0; c < vd->vdev_children; c++) 1442 spa_check_removed(vd->vdev_child[c]); 1443 1444 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 1445 zfs_post_autoreplace(vd->vdev_spa, vd); 1446 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1447 } 1448 } 1449 1450 /* 1451 * Validate the current config against the MOS config 1452 */ 1453 static boolean_t 1454 spa_config_valid(spa_t *spa, nvlist_t *config) 1455 { 1456 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1457 nvlist_t *nv; 1458 1459 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1460 1461 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1462 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1463 1464 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1465 1466 /* 1467 * If we're doing a normal import, then build up any additional 1468 * diagnostic information about missing devices in this config. 1469 * We'll pass this up to the user for further processing. 1470 */ 1471 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1472 nvlist_t **child, *nv; 1473 uint64_t idx = 0; 1474 1475 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1476 KM_SLEEP); 1477 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1478 1479 for (int c = 0; c < rvd->vdev_children; c++) { 1480 vdev_t *tvd = rvd->vdev_child[c]; 1481 vdev_t *mtvd = mrvd->vdev_child[c]; 1482 1483 if (tvd->vdev_ops == &vdev_missing_ops && 1484 mtvd->vdev_ops != &vdev_missing_ops && 1485 mtvd->vdev_islog) 1486 child[idx++] = vdev_config_generate(spa, mtvd, 1487 B_FALSE, 0); 1488 } 1489 1490 if (idx) { 1491 VERIFY(nvlist_add_nvlist_array(nv, 1492 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1493 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1494 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1495 1496 for (int i = 0; i < idx; i++) 1497 nvlist_free(child[i]); 1498 } 1499 nvlist_free(nv); 1500 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1501 } 1502 1503 /* 1504 * Compare the root vdev tree with the information we have 1505 * from the MOS config (mrvd). Check each top-level vdev 1506 * with the corresponding MOS config top-level (mtvd). 1507 */ 1508 for (int c = 0; c < rvd->vdev_children; c++) { 1509 vdev_t *tvd = rvd->vdev_child[c]; 1510 vdev_t *mtvd = mrvd->vdev_child[c]; 1511 1512 /* 1513 * Resolve any "missing" vdevs in the current configuration. 1514 * If we find that the MOS config has more accurate information 1515 * about the top-level vdev then use that vdev instead. 1516 */ 1517 if (tvd->vdev_ops == &vdev_missing_ops && 1518 mtvd->vdev_ops != &vdev_missing_ops) { 1519 1520 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1521 continue; 1522 1523 /* 1524 * Device specific actions. 1525 */ 1526 if (mtvd->vdev_islog) { 1527 spa_set_log_state(spa, SPA_LOG_CLEAR); 1528 } else { 1529 /* 1530 * XXX - once we have 'readonly' pool 1531 * support we should be able to handle 1532 * missing data devices by transitioning 1533 * the pool to readonly. 1534 */ 1535 continue; 1536 } 1537 1538 /* 1539 * Swap the missing vdev with the data we were 1540 * able to obtain from the MOS config. 1541 */ 1542 vdev_remove_child(rvd, tvd); 1543 vdev_remove_child(mrvd, mtvd); 1544 1545 vdev_add_child(rvd, mtvd); 1546 vdev_add_child(mrvd, tvd); 1547 1548 spa_config_exit(spa, SCL_ALL, FTAG); 1549 vdev_load(mtvd); 1550 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1551 1552 vdev_reopen(rvd); 1553 } else if (mtvd->vdev_islog) { 1554 /* 1555 * Load the slog device's state from the MOS config 1556 * since it's possible that the label does not 1557 * contain the most up-to-date information. 1558 */ 1559 vdev_load_log_state(tvd, mtvd); 1560 vdev_reopen(tvd); 1561 } 1562 } 1563 vdev_free(mrvd); 1564 spa_config_exit(spa, SCL_ALL, FTAG); 1565 1566 /* 1567 * Ensure we were able to validate the config. 1568 */ 1569 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1570 } 1571 1572 /* 1573 * Check for missing log devices 1574 */ 1575 static int 1576 spa_check_logs(spa_t *spa) 1577 { 1578 switch (spa->spa_log_state) { 1579 case SPA_LOG_MISSING: 1580 /* need to recheck in case slog has been restored */ 1581 case SPA_LOG_UNKNOWN: 1582 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, 1583 DS_FIND_CHILDREN)) { 1584 spa_set_log_state(spa, SPA_LOG_MISSING); 1585 return (1); 1586 } 1587 break; 1588 } 1589 return (0); 1590 } 1591 1592 static boolean_t 1593 spa_passivate_log(spa_t *spa) 1594 { 1595 vdev_t *rvd = spa->spa_root_vdev; 1596 boolean_t slog_found = B_FALSE; 1597 1598 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1599 1600 if (!spa_has_slogs(spa)) 1601 return (B_FALSE); 1602 1603 for (int c = 0; c < rvd->vdev_children; c++) { 1604 vdev_t *tvd = rvd->vdev_child[c]; 1605 metaslab_group_t *mg = tvd->vdev_mg; 1606 1607 if (tvd->vdev_islog) { 1608 metaslab_group_passivate(mg); 1609 slog_found = B_TRUE; 1610 } 1611 } 1612 1613 return (slog_found); 1614 } 1615 1616 static void 1617 spa_activate_log(spa_t *spa) 1618 { 1619 vdev_t *rvd = spa->spa_root_vdev; 1620 1621 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1622 1623 for (int c = 0; c < rvd->vdev_children; c++) { 1624 vdev_t *tvd = rvd->vdev_child[c]; 1625 metaslab_group_t *mg = tvd->vdev_mg; 1626 1627 if (tvd->vdev_islog) 1628 metaslab_group_activate(mg); 1629 } 1630 } 1631 1632 int 1633 spa_offline_log(spa_t *spa) 1634 { 1635 int error = 0; 1636 1637 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1638 NULL, DS_FIND_CHILDREN)) == 0) { 1639 1640 /* 1641 * We successfully offlined the log device, sync out the 1642 * current txg so that the "stubby" block can be removed 1643 * by zil_sync(). 1644 */ 1645 txg_wait_synced(spa->spa_dsl_pool, 0); 1646 } 1647 return (error); 1648 } 1649 1650 static void 1651 spa_aux_check_removed(spa_aux_vdev_t *sav) 1652 { 1653 for (int i = 0; i < sav->sav_count; i++) 1654 spa_check_removed(sav->sav_vdevs[i]); 1655 } 1656 1657 void 1658 spa_claim_notify(zio_t *zio) 1659 { 1660 spa_t *spa = zio->io_spa; 1661 1662 if (zio->io_error) 1663 return; 1664 1665 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1666 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1667 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1668 mutex_exit(&spa->spa_props_lock); 1669 } 1670 1671 typedef struct spa_load_error { 1672 uint64_t sle_meta_count; 1673 uint64_t sle_data_count; 1674 } spa_load_error_t; 1675 1676 static void 1677 spa_load_verify_done(zio_t *zio) 1678 { 1679 blkptr_t *bp = zio->io_bp; 1680 spa_load_error_t *sle = zio->io_private; 1681 dmu_object_type_t type = BP_GET_TYPE(bp); 1682 int error = zio->io_error; 1683 1684 if (error) { 1685 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1686 type != DMU_OT_INTENT_LOG) 1687 atomic_add_64(&sle->sle_meta_count, 1); 1688 else 1689 atomic_add_64(&sle->sle_data_count, 1); 1690 } 1691 zio_data_buf_free(zio->io_data, zio->io_size); 1692 } 1693 1694 /*ARGSUSED*/ 1695 static int 1696 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1697 arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1698 { 1699 if (bp != NULL) { 1700 zio_t *rio = arg; 1701 size_t size = BP_GET_PSIZE(bp); 1702 void *data = zio_data_buf_alloc(size); 1703 1704 zio_nowait(zio_read(rio, spa, bp, data, size, 1705 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1706 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1707 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1708 } 1709 return (0); 1710 } 1711 1712 static int 1713 spa_load_verify(spa_t *spa) 1714 { 1715 zio_t *rio; 1716 spa_load_error_t sle = { 0 }; 1717 zpool_rewind_policy_t policy; 1718 boolean_t verify_ok = B_FALSE; 1719 int error; 1720 1721 zpool_get_rewind_policy(spa->spa_config, &policy); 1722 1723 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1724 return (0); 1725 1726 rio = zio_root(spa, NULL, &sle, 1727 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1728 1729 error = traverse_pool(spa, spa->spa_verify_min_txg, 1730 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1731 1732 (void) zio_wait(rio); 1733 1734 spa->spa_load_meta_errors = sle.sle_meta_count; 1735 spa->spa_load_data_errors = sle.sle_data_count; 1736 1737 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1738 sle.sle_data_count <= policy.zrp_maxdata) { 1739 int64_t loss = 0; 1740 1741 verify_ok = B_TRUE; 1742 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1743 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1744 1745 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1746 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1747 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1748 VERIFY(nvlist_add_int64(spa->spa_load_info, 1749 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1750 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1751 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1752 } else { 1753 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1754 } 1755 1756 if (error) { 1757 if (error != ENXIO && error != EIO) 1758 error = EIO; 1759 return (error); 1760 } 1761 1762 return (verify_ok ? 0 : EIO); 1763 } 1764 1765 /* 1766 * Find a value in the pool props object. 1767 */ 1768 static void 1769 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1770 { 1771 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1772 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1773 } 1774 1775 /* 1776 * Find a value in the pool directory object. 1777 */ 1778 static int 1779 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1780 { 1781 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1782 name, sizeof (uint64_t), 1, val)); 1783 } 1784 1785 static int 1786 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1787 { 1788 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1789 return (err); 1790 } 1791 1792 /* 1793 * Fix up config after a partly-completed split. This is done with the 1794 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1795 * pool have that entry in their config, but only the splitting one contains 1796 * a list of all the guids of the vdevs that are being split off. 1797 * 1798 * This function determines what to do with that list: either rejoin 1799 * all the disks to the pool, or complete the splitting process. To attempt 1800 * the rejoin, each disk that is offlined is marked online again, and 1801 * we do a reopen() call. If the vdev label for every disk that was 1802 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1803 * then we call vdev_split() on each disk, and complete the split. 1804 * 1805 * Otherwise we leave the config alone, with all the vdevs in place in 1806 * the original pool. 1807 */ 1808 static void 1809 spa_try_repair(spa_t *spa, nvlist_t *config) 1810 { 1811 uint_t extracted; 1812 uint64_t *glist; 1813 uint_t i, gcount; 1814 nvlist_t *nvl; 1815 vdev_t **vd; 1816 boolean_t attempt_reopen; 1817 1818 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1819 return; 1820 1821 /* check that the config is complete */ 1822 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1823 &glist, &gcount) != 0) 1824 return; 1825 1826 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1827 1828 /* attempt to online all the vdevs & validate */ 1829 attempt_reopen = B_TRUE; 1830 for (i = 0; i < gcount; i++) { 1831 if (glist[i] == 0) /* vdev is hole */ 1832 continue; 1833 1834 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1835 if (vd[i] == NULL) { 1836 /* 1837 * Don't bother attempting to reopen the disks; 1838 * just do the split. 1839 */ 1840 attempt_reopen = B_FALSE; 1841 } else { 1842 /* attempt to re-online it */ 1843 vd[i]->vdev_offline = B_FALSE; 1844 } 1845 } 1846 1847 if (attempt_reopen) { 1848 vdev_reopen(spa->spa_root_vdev); 1849 1850 /* check each device to see what state it's in */ 1851 for (extracted = 0, i = 0; i < gcount; i++) { 1852 if (vd[i] != NULL && 1853 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1854 break; 1855 ++extracted; 1856 } 1857 } 1858 1859 /* 1860 * If every disk has been moved to the new pool, or if we never 1861 * even attempted to look at them, then we split them off for 1862 * good. 1863 */ 1864 if (!attempt_reopen || gcount == extracted) { 1865 for (i = 0; i < gcount; i++) 1866 if (vd[i] != NULL) 1867 vdev_split(vd[i]); 1868 vdev_reopen(spa->spa_root_vdev); 1869 } 1870 1871 kmem_free(vd, gcount * sizeof (vdev_t *)); 1872 } 1873 1874 static int 1875 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 1876 boolean_t mosconfig) 1877 { 1878 nvlist_t *config = spa->spa_config; 1879 char *ereport = FM_EREPORT_ZFS_POOL; 1880 char *comment; 1881 int error; 1882 uint64_t pool_guid; 1883 nvlist_t *nvl; 1884 1885 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 1886 return (EINVAL); 1887 1888 ASSERT(spa->spa_comment == NULL); 1889 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 1890 spa->spa_comment = spa_strdup(comment); 1891 1892 /* 1893 * Versioning wasn't explicitly added to the label until later, so if 1894 * it's not present treat it as the initial version. 1895 */ 1896 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 1897 &spa->spa_ubsync.ub_version) != 0) 1898 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 1899 1900 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1901 &spa->spa_config_txg); 1902 1903 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1904 spa_guid_exists(pool_guid, 0)) { 1905 error = EEXIST; 1906 } else { 1907 spa->spa_config_guid = pool_guid; 1908 1909 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 1910 &nvl) == 0) { 1911 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 1912 KM_SLEEP) == 0); 1913 } 1914 1915 nvlist_free(spa->spa_load_info); 1916 spa->spa_load_info = fnvlist_alloc(); 1917 1918 gethrestime(&spa->spa_loaded_ts); 1919 error = spa_load_impl(spa, pool_guid, config, state, type, 1920 mosconfig, &ereport); 1921 } 1922 1923 spa->spa_minref = refcount_count(&spa->spa_refcount); 1924 if (error) { 1925 if (error != EEXIST) { 1926 spa->spa_loaded_ts.tv_sec = 0; 1927 spa->spa_loaded_ts.tv_nsec = 0; 1928 } 1929 if (error != EBADF) { 1930 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 1931 } 1932 } 1933 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 1934 spa->spa_ena = 0; 1935 1936 return (error); 1937 } 1938 1939 /* 1940 * Load an existing storage pool, using the pool's builtin spa_config as a 1941 * source of configuration information. 1942 */ 1943 static int 1944 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 1945 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 1946 char **ereport) 1947 { 1948 int error = 0; 1949 nvlist_t *nvroot = NULL; 1950 nvlist_t *label; 1951 vdev_t *rvd; 1952 uberblock_t *ub = &spa->spa_uberblock; 1953 uint64_t children, config_cache_txg = spa->spa_config_txg; 1954 int orig_mode = spa->spa_mode; 1955 int parse; 1956 uint64_t obj; 1957 boolean_t missing_feat_write = B_FALSE; 1958 1959 /* 1960 * If this is an untrusted config, access the pool in read-only mode. 1961 * This prevents things like resilvering recently removed devices. 1962 */ 1963 if (!mosconfig) 1964 spa->spa_mode = FREAD; 1965 1966 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1967 1968 spa->spa_load_state = state; 1969 1970 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 1971 return (EINVAL); 1972 1973 parse = (type == SPA_IMPORT_EXISTING ? 1974 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 1975 1976 /* 1977 * Create "The Godfather" zio to hold all async IOs 1978 */ 1979 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 1980 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 1981 1982 /* 1983 * Parse the configuration into a vdev tree. We explicitly set the 1984 * value that will be returned by spa_version() since parsing the 1985 * configuration requires knowing the version number. 1986 */ 1987 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1988 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 1989 spa_config_exit(spa, SCL_ALL, FTAG); 1990 1991 if (error != 0) 1992 return (error); 1993 1994 ASSERT(spa->spa_root_vdev == rvd); 1995 1996 if (type != SPA_IMPORT_ASSEMBLE) { 1997 ASSERT(spa_guid(spa) == pool_guid); 1998 } 1999 2000 /* 2001 * Try to open all vdevs, loading each label in the process. 2002 */ 2003 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2004 error = vdev_open(rvd); 2005 spa_config_exit(spa, SCL_ALL, FTAG); 2006 if (error != 0) 2007 return (error); 2008 2009 /* 2010 * We need to validate the vdev labels against the configuration that 2011 * we have in hand, which is dependent on the setting of mosconfig. If 2012 * mosconfig is true then we're validating the vdev labels based on 2013 * that config. Otherwise, we're validating against the cached config 2014 * (zpool.cache) that was read when we loaded the zfs module, and then 2015 * later we will recursively call spa_load() and validate against 2016 * the vdev config. 2017 * 2018 * If we're assembling a new pool that's been split off from an 2019 * existing pool, the labels haven't yet been updated so we skip 2020 * validation for now. 2021 */ 2022 if (type != SPA_IMPORT_ASSEMBLE) { 2023 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2024 error = vdev_validate(rvd, mosconfig); 2025 spa_config_exit(spa, SCL_ALL, FTAG); 2026 2027 if (error != 0) 2028 return (error); 2029 2030 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2031 return (ENXIO); 2032 } 2033 2034 /* 2035 * Find the best uberblock. 2036 */ 2037 vdev_uberblock_load(rvd, ub, &label); 2038 2039 /* 2040 * If we weren't able to find a single valid uberblock, return failure. 2041 */ 2042 if (ub->ub_txg == 0) { 2043 nvlist_free(label); 2044 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2045 } 2046 2047 /* 2048 * If the pool has an unsupported version we can't open it. 2049 */ 2050 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2051 nvlist_free(label); 2052 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2053 } 2054 2055 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2056 nvlist_t *features; 2057 2058 /* 2059 * If we weren't able to find what's necessary for reading the 2060 * MOS in the label, return failure. 2061 */ 2062 if (label == NULL || nvlist_lookup_nvlist(label, 2063 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2064 nvlist_free(label); 2065 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2066 ENXIO)); 2067 } 2068 2069 /* 2070 * Update our in-core representation with the definitive values 2071 * from the label. 2072 */ 2073 nvlist_free(spa->spa_label_features); 2074 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2075 } 2076 2077 nvlist_free(label); 2078 2079 /* 2080 * Look through entries in the label nvlist's features_for_read. If 2081 * there is a feature listed there which we don't understand then we 2082 * cannot open a pool. 2083 */ 2084 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2085 nvlist_t *unsup_feat; 2086 2087 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2088 0); 2089 2090 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2091 NULL); nvp != NULL; 2092 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2093 if (!zfeature_is_supported(nvpair_name(nvp))) { 2094 VERIFY(nvlist_add_string(unsup_feat, 2095 nvpair_name(nvp), "") == 0); 2096 } 2097 } 2098 2099 if (!nvlist_empty(unsup_feat)) { 2100 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2101 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2102 nvlist_free(unsup_feat); 2103 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2104 ENOTSUP)); 2105 } 2106 2107 nvlist_free(unsup_feat); 2108 } 2109 2110 /* 2111 * If the vdev guid sum doesn't match the uberblock, we have an 2112 * incomplete configuration. We first check to see if the pool 2113 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2114 * If it is, defer the vdev_guid_sum check till later so we 2115 * can handle missing vdevs. 2116 */ 2117 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2118 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2119 rvd->vdev_guid_sum != ub->ub_guid_sum) 2120 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2121 2122 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2123 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2124 spa_try_repair(spa, config); 2125 spa_config_exit(spa, SCL_ALL, FTAG); 2126 nvlist_free(spa->spa_config_splitting); 2127 spa->spa_config_splitting = NULL; 2128 } 2129 2130 /* 2131 * Initialize internal SPA structures. 2132 */ 2133 spa->spa_state = POOL_STATE_ACTIVE; 2134 spa->spa_ubsync = spa->spa_uberblock; 2135 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2136 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2137 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2138 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2139 spa->spa_claim_max_txg = spa->spa_first_txg; 2140 spa->spa_prev_software_version = ub->ub_software_version; 2141 2142 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2143 if (error) 2144 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2145 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2146 2147 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2148 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2149 2150 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2151 boolean_t missing_feat_read = B_FALSE; 2152 nvlist_t *unsup_feat; 2153 2154 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2155 &spa->spa_feat_for_read_obj) != 0) { 2156 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2157 } 2158 2159 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2160 &spa->spa_feat_for_write_obj) != 0) { 2161 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2162 } 2163 2164 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2165 &spa->spa_feat_desc_obj) != 0) { 2166 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2167 } 2168 2169 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2170 0); 2171 2172 if (!feature_is_supported(spa->spa_meta_objset, 2173 spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj, 2174 unsup_feat)) 2175 missing_feat_read = B_TRUE; 2176 2177 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2178 if (!feature_is_supported(spa->spa_meta_objset, 2179 spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj, 2180 unsup_feat)) 2181 missing_feat_write = B_TRUE; 2182 } 2183 2184 if (!nvlist_empty(unsup_feat)) { 2185 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2186 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2187 } 2188 2189 nvlist_free(unsup_feat); 2190 2191 if (!missing_feat_read) { 2192 fnvlist_add_boolean(spa->spa_load_info, 2193 ZPOOL_CONFIG_CAN_RDONLY); 2194 } 2195 2196 /* 2197 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2198 * twofold: to determine whether the pool is available for 2199 * import in read-write mode and (if it is not) whether the 2200 * pool is available for import in read-only mode. If the pool 2201 * is available for import in read-write mode, it is displayed 2202 * as available in userland; if it is not available for import 2203 * in read-only mode, it is displayed as unavailable in 2204 * userland. If the pool is available for import in read-only 2205 * mode but not read-write mode, it is displayed as unavailable 2206 * in userland with a special note that the pool is actually 2207 * available for open in read-only mode. 2208 * 2209 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2210 * missing a feature for write, we must first determine whether 2211 * the pool can be opened read-only before returning to 2212 * userland in order to know whether to display the 2213 * abovementioned note. 2214 */ 2215 if (missing_feat_read || (missing_feat_write && 2216 spa_writeable(spa))) { 2217 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2218 ENOTSUP)); 2219 } 2220 } 2221 2222 spa->spa_is_initializing = B_TRUE; 2223 error = dsl_pool_open(spa->spa_dsl_pool); 2224 spa->spa_is_initializing = B_FALSE; 2225 if (error != 0) 2226 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2227 2228 if (!mosconfig) { 2229 uint64_t hostid; 2230 nvlist_t *policy = NULL, *nvconfig; 2231 2232 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2233 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2234 2235 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2236 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2237 char *hostname; 2238 unsigned long myhostid = 0; 2239 2240 VERIFY(nvlist_lookup_string(nvconfig, 2241 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2242 2243 #ifdef _KERNEL 2244 myhostid = zone_get_hostid(NULL); 2245 #else /* _KERNEL */ 2246 /* 2247 * We're emulating the system's hostid in userland, so 2248 * we can't use zone_get_hostid(). 2249 */ 2250 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2251 #endif /* _KERNEL */ 2252 if (hostid != 0 && myhostid != 0 && 2253 hostid != myhostid) { 2254 nvlist_free(nvconfig); 2255 cmn_err(CE_WARN, "pool '%s' could not be " 2256 "loaded as it was last accessed by " 2257 "another system (host: %s hostid: 0x%lx). " 2258 "See: http://illumos.org/msg/ZFS-8000-EY", 2259 spa_name(spa), hostname, 2260 (unsigned long)hostid); 2261 return (EBADF); 2262 } 2263 } 2264 if (nvlist_lookup_nvlist(spa->spa_config, 2265 ZPOOL_REWIND_POLICY, &policy) == 0) 2266 VERIFY(nvlist_add_nvlist(nvconfig, 2267 ZPOOL_REWIND_POLICY, policy) == 0); 2268 2269 spa_config_set(spa, nvconfig); 2270 spa_unload(spa); 2271 spa_deactivate(spa); 2272 spa_activate(spa, orig_mode); 2273 2274 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2275 } 2276 2277 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2278 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2279 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2280 if (error != 0) 2281 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2282 2283 /* 2284 * Load the bit that tells us to use the new accounting function 2285 * (raid-z deflation). If we have an older pool, this will not 2286 * be present. 2287 */ 2288 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2289 if (error != 0 && error != ENOENT) 2290 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2291 2292 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2293 &spa->spa_creation_version); 2294 if (error != 0 && error != ENOENT) 2295 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2296 2297 /* 2298 * Load the persistent error log. If we have an older pool, this will 2299 * not be present. 2300 */ 2301 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2302 if (error != 0 && error != ENOENT) 2303 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2304 2305 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2306 &spa->spa_errlog_scrub); 2307 if (error != 0 && error != ENOENT) 2308 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2309 2310 /* 2311 * Load the history object. If we have an older pool, this 2312 * will not be present. 2313 */ 2314 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2315 if (error != 0 && error != ENOENT) 2316 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2317 2318 /* 2319 * If we're assembling the pool from the split-off vdevs of 2320 * an existing pool, we don't want to attach the spares & cache 2321 * devices. 2322 */ 2323 2324 /* 2325 * Load any hot spares for this pool. 2326 */ 2327 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2328 if (error != 0 && error != ENOENT) 2329 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2330 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2331 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2332 if (load_nvlist(spa, spa->spa_spares.sav_object, 2333 &spa->spa_spares.sav_config) != 0) 2334 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2335 2336 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2337 spa_load_spares(spa); 2338 spa_config_exit(spa, SCL_ALL, FTAG); 2339 } else if (error == 0) { 2340 spa->spa_spares.sav_sync = B_TRUE; 2341 } 2342 2343 /* 2344 * Load any level 2 ARC devices for this pool. 2345 */ 2346 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2347 &spa->spa_l2cache.sav_object); 2348 if (error != 0 && error != ENOENT) 2349 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2350 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2351 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2352 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2353 &spa->spa_l2cache.sav_config) != 0) 2354 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2355 2356 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2357 spa_load_l2cache(spa); 2358 spa_config_exit(spa, SCL_ALL, FTAG); 2359 } else if (error == 0) { 2360 spa->spa_l2cache.sav_sync = B_TRUE; 2361 } 2362 2363 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2364 2365 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2366 if (error && error != ENOENT) 2367 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2368 2369 if (error == 0) { 2370 uint64_t autoreplace; 2371 2372 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2373 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2374 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2375 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2376 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2377 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2378 &spa->spa_dedup_ditto); 2379 2380 spa->spa_autoreplace = (autoreplace != 0); 2381 } 2382 2383 /* 2384 * If the 'autoreplace' property is set, then post a resource notifying 2385 * the ZFS DE that it should not issue any faults for unopenable 2386 * devices. We also iterate over the vdevs, and post a sysevent for any 2387 * unopenable vdevs so that the normal autoreplace handler can take 2388 * over. 2389 */ 2390 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2391 spa_check_removed(spa->spa_root_vdev); 2392 /* 2393 * For the import case, this is done in spa_import(), because 2394 * at this point we're using the spare definitions from 2395 * the MOS config, not necessarily from the userland config. 2396 */ 2397 if (state != SPA_LOAD_IMPORT) { 2398 spa_aux_check_removed(&spa->spa_spares); 2399 spa_aux_check_removed(&spa->spa_l2cache); 2400 } 2401 } 2402 2403 /* 2404 * Load the vdev state for all toplevel vdevs. 2405 */ 2406 vdev_load(rvd); 2407 2408 /* 2409 * Propagate the leaf DTLs we just loaded all the way up the tree. 2410 */ 2411 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2412 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2413 spa_config_exit(spa, SCL_ALL, FTAG); 2414 2415 /* 2416 * Load the DDTs (dedup tables). 2417 */ 2418 error = ddt_load(spa); 2419 if (error != 0) 2420 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2421 2422 spa_update_dspace(spa); 2423 2424 /* 2425 * Validate the config, using the MOS config to fill in any 2426 * information which might be missing. If we fail to validate 2427 * the config then declare the pool unfit for use. If we're 2428 * assembling a pool from a split, the log is not transferred 2429 * over. 2430 */ 2431 if (type != SPA_IMPORT_ASSEMBLE) { 2432 nvlist_t *nvconfig; 2433 2434 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2435 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2436 2437 if (!spa_config_valid(spa, nvconfig)) { 2438 nvlist_free(nvconfig); 2439 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2440 ENXIO)); 2441 } 2442 nvlist_free(nvconfig); 2443 2444 /* 2445 * Now that we've validated the config, check the state of the 2446 * root vdev. If it can't be opened, it indicates one or 2447 * more toplevel vdevs are faulted. 2448 */ 2449 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2450 return (ENXIO); 2451 2452 if (spa_check_logs(spa)) { 2453 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2454 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2455 } 2456 } 2457 2458 if (missing_feat_write) { 2459 ASSERT(state == SPA_LOAD_TRYIMPORT); 2460 2461 /* 2462 * At this point, we know that we can open the pool in 2463 * read-only mode but not read-write mode. We now have enough 2464 * information and can return to userland. 2465 */ 2466 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2467 } 2468 2469 /* 2470 * We've successfully opened the pool, verify that we're ready 2471 * to start pushing transactions. 2472 */ 2473 if (state != SPA_LOAD_TRYIMPORT) { 2474 if (error = spa_load_verify(spa)) 2475 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2476 error)); 2477 } 2478 2479 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2480 spa->spa_load_max_txg == UINT64_MAX)) { 2481 dmu_tx_t *tx; 2482 int need_update = B_FALSE; 2483 2484 ASSERT(state != SPA_LOAD_TRYIMPORT); 2485 2486 /* 2487 * Claim log blocks that haven't been committed yet. 2488 * This must all happen in a single txg. 2489 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2490 * invoked from zil_claim_log_block()'s i/o done callback. 2491 * Price of rollback is that we abandon the log. 2492 */ 2493 spa->spa_claiming = B_TRUE; 2494 2495 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2496 spa_first_txg(spa)); 2497 (void) dmu_objset_find(spa_name(spa), 2498 zil_claim, tx, DS_FIND_CHILDREN); 2499 dmu_tx_commit(tx); 2500 2501 spa->spa_claiming = B_FALSE; 2502 2503 spa_set_log_state(spa, SPA_LOG_GOOD); 2504 spa->spa_sync_on = B_TRUE; 2505 txg_sync_start(spa->spa_dsl_pool); 2506 2507 /* 2508 * Wait for all claims to sync. We sync up to the highest 2509 * claimed log block birth time so that claimed log blocks 2510 * don't appear to be from the future. spa_claim_max_txg 2511 * will have been set for us by either zil_check_log_chain() 2512 * (invoked from spa_check_logs()) or zil_claim() above. 2513 */ 2514 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2515 2516 /* 2517 * If the config cache is stale, or we have uninitialized 2518 * metaslabs (see spa_vdev_add()), then update the config. 2519 * 2520 * If this is a verbatim import, trust the current 2521 * in-core spa_config and update the disk labels. 2522 */ 2523 if (config_cache_txg != spa->spa_config_txg || 2524 state == SPA_LOAD_IMPORT || 2525 state == SPA_LOAD_RECOVER || 2526 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2527 need_update = B_TRUE; 2528 2529 for (int c = 0; c < rvd->vdev_children; c++) 2530 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2531 need_update = B_TRUE; 2532 2533 /* 2534 * Update the config cache asychronously in case we're the 2535 * root pool, in which case the config cache isn't writable yet. 2536 */ 2537 if (need_update) 2538 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2539 2540 /* 2541 * Check all DTLs to see if anything needs resilvering. 2542 */ 2543 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2544 vdev_resilver_needed(rvd, NULL, NULL)) 2545 spa_async_request(spa, SPA_ASYNC_RESILVER); 2546 2547 /* 2548 * Delete any inconsistent datasets. 2549 */ 2550 (void) dmu_objset_find(spa_name(spa), 2551 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2552 2553 /* 2554 * Clean up any stale temporary dataset userrefs. 2555 */ 2556 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2557 } 2558 2559 return (0); 2560 } 2561 2562 static int 2563 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2564 { 2565 int mode = spa->spa_mode; 2566 2567 spa_unload(spa); 2568 spa_deactivate(spa); 2569 2570 spa->spa_load_max_txg--; 2571 2572 spa_activate(spa, mode); 2573 spa_async_suspend(spa); 2574 2575 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2576 } 2577 2578 /* 2579 * If spa_load() fails this function will try loading prior txg's. If 2580 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2581 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2582 * function will not rewind the pool and will return the same error as 2583 * spa_load(). 2584 */ 2585 static int 2586 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2587 uint64_t max_request, int rewind_flags) 2588 { 2589 nvlist_t *loadinfo = NULL; 2590 nvlist_t *config = NULL; 2591 int load_error, rewind_error; 2592 uint64_t safe_rewind_txg; 2593 uint64_t min_txg; 2594 2595 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2596 spa->spa_load_max_txg = spa->spa_load_txg; 2597 spa_set_log_state(spa, SPA_LOG_CLEAR); 2598 } else { 2599 spa->spa_load_max_txg = max_request; 2600 } 2601 2602 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2603 mosconfig); 2604 if (load_error == 0) 2605 return (0); 2606 2607 if (spa->spa_root_vdev != NULL) 2608 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2609 2610 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2611 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2612 2613 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2614 nvlist_free(config); 2615 return (load_error); 2616 } 2617 2618 if (state == SPA_LOAD_RECOVER) { 2619 /* Price of rolling back is discarding txgs, including log */ 2620 spa_set_log_state(spa, SPA_LOG_CLEAR); 2621 } else { 2622 /* 2623 * If we aren't rolling back save the load info from our first 2624 * import attempt so that we can restore it after attempting 2625 * to rewind. 2626 */ 2627 loadinfo = spa->spa_load_info; 2628 spa->spa_load_info = fnvlist_alloc(); 2629 } 2630 2631 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2632 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2633 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2634 TXG_INITIAL : safe_rewind_txg; 2635 2636 /* 2637 * Continue as long as we're finding errors, we're still within 2638 * the acceptable rewind range, and we're still finding uberblocks 2639 */ 2640 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2641 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2642 if (spa->spa_load_max_txg < safe_rewind_txg) 2643 spa->spa_extreme_rewind = B_TRUE; 2644 rewind_error = spa_load_retry(spa, state, mosconfig); 2645 } 2646 2647 spa->spa_extreme_rewind = B_FALSE; 2648 spa->spa_load_max_txg = UINT64_MAX; 2649 2650 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2651 spa_config_set(spa, config); 2652 2653 if (state == SPA_LOAD_RECOVER) { 2654 ASSERT3P(loadinfo, ==, NULL); 2655 return (rewind_error); 2656 } else { 2657 /* Store the rewind info as part of the initial load info */ 2658 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2659 spa->spa_load_info); 2660 2661 /* Restore the initial load info */ 2662 fnvlist_free(spa->spa_load_info); 2663 spa->spa_load_info = loadinfo; 2664 2665 return (load_error); 2666 } 2667 } 2668 2669 /* 2670 * Pool Open/Import 2671 * 2672 * The import case is identical to an open except that the configuration is sent 2673 * down from userland, instead of grabbed from the configuration cache. For the 2674 * case of an open, the pool configuration will exist in the 2675 * POOL_STATE_UNINITIALIZED state. 2676 * 2677 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2678 * the same time open the pool, without having to keep around the spa_t in some 2679 * ambiguous state. 2680 */ 2681 static int 2682 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2683 nvlist_t **config) 2684 { 2685 spa_t *spa; 2686 spa_load_state_t state = SPA_LOAD_OPEN; 2687 int error; 2688 int locked = B_FALSE; 2689 2690 *spapp = NULL; 2691 2692 /* 2693 * As disgusting as this is, we need to support recursive calls to this 2694 * function because dsl_dir_open() is called during spa_load(), and ends 2695 * up calling spa_open() again. The real fix is to figure out how to 2696 * avoid dsl_dir_open() calling this in the first place. 2697 */ 2698 if (mutex_owner(&spa_namespace_lock) != curthread) { 2699 mutex_enter(&spa_namespace_lock); 2700 locked = B_TRUE; 2701 } 2702 2703 if ((spa = spa_lookup(pool)) == NULL) { 2704 if (locked) 2705 mutex_exit(&spa_namespace_lock); 2706 return (ENOENT); 2707 } 2708 2709 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2710 zpool_rewind_policy_t policy; 2711 2712 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2713 &policy); 2714 if (policy.zrp_request & ZPOOL_DO_REWIND) 2715 state = SPA_LOAD_RECOVER; 2716 2717 spa_activate(spa, spa_mode_global); 2718 2719 if (state != SPA_LOAD_RECOVER) 2720 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2721 2722 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2723 policy.zrp_request); 2724 2725 if (error == EBADF) { 2726 /* 2727 * If vdev_validate() returns failure (indicated by 2728 * EBADF), it indicates that one of the vdevs indicates 2729 * that the pool has been exported or destroyed. If 2730 * this is the case, the config cache is out of sync and 2731 * we should remove the pool from the namespace. 2732 */ 2733 spa_unload(spa); 2734 spa_deactivate(spa); 2735 spa_config_sync(spa, B_TRUE, B_TRUE); 2736 spa_remove(spa); 2737 if (locked) 2738 mutex_exit(&spa_namespace_lock); 2739 return (ENOENT); 2740 } 2741 2742 if (error) { 2743 /* 2744 * We can't open the pool, but we still have useful 2745 * information: the state of each vdev after the 2746 * attempted vdev_open(). Return this to the user. 2747 */ 2748 if (config != NULL && spa->spa_config) { 2749 VERIFY(nvlist_dup(spa->spa_config, config, 2750 KM_SLEEP) == 0); 2751 VERIFY(nvlist_add_nvlist(*config, 2752 ZPOOL_CONFIG_LOAD_INFO, 2753 spa->spa_load_info) == 0); 2754 } 2755 spa_unload(spa); 2756 spa_deactivate(spa); 2757 spa->spa_last_open_failed = error; 2758 if (locked) 2759 mutex_exit(&spa_namespace_lock); 2760 *spapp = NULL; 2761 return (error); 2762 } 2763 } 2764 2765 spa_open_ref(spa, tag); 2766 2767 if (config != NULL) 2768 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2769 2770 /* 2771 * If we've recovered the pool, pass back any information we 2772 * gathered while doing the load. 2773 */ 2774 if (state == SPA_LOAD_RECOVER) { 2775 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2776 spa->spa_load_info) == 0); 2777 } 2778 2779 if (locked) { 2780 spa->spa_last_open_failed = 0; 2781 spa->spa_last_ubsync_txg = 0; 2782 spa->spa_load_txg = 0; 2783 mutex_exit(&spa_namespace_lock); 2784 } 2785 2786 *spapp = spa; 2787 2788 return (0); 2789 } 2790 2791 int 2792 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2793 nvlist_t **config) 2794 { 2795 return (spa_open_common(name, spapp, tag, policy, config)); 2796 } 2797 2798 int 2799 spa_open(const char *name, spa_t **spapp, void *tag) 2800 { 2801 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2802 } 2803 2804 /* 2805 * Lookup the given spa_t, incrementing the inject count in the process, 2806 * preventing it from being exported or destroyed. 2807 */ 2808 spa_t * 2809 spa_inject_addref(char *name) 2810 { 2811 spa_t *spa; 2812 2813 mutex_enter(&spa_namespace_lock); 2814 if ((spa = spa_lookup(name)) == NULL) { 2815 mutex_exit(&spa_namespace_lock); 2816 return (NULL); 2817 } 2818 spa->spa_inject_ref++; 2819 mutex_exit(&spa_namespace_lock); 2820 2821 return (spa); 2822 } 2823 2824 void 2825 spa_inject_delref(spa_t *spa) 2826 { 2827 mutex_enter(&spa_namespace_lock); 2828 spa->spa_inject_ref--; 2829 mutex_exit(&spa_namespace_lock); 2830 } 2831 2832 /* 2833 * Add spares device information to the nvlist. 2834 */ 2835 static void 2836 spa_add_spares(spa_t *spa, nvlist_t *config) 2837 { 2838 nvlist_t **spares; 2839 uint_t i, nspares; 2840 nvlist_t *nvroot; 2841 uint64_t guid; 2842 vdev_stat_t *vs; 2843 uint_t vsc; 2844 uint64_t pool; 2845 2846 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2847 2848 if (spa->spa_spares.sav_count == 0) 2849 return; 2850 2851 VERIFY(nvlist_lookup_nvlist(config, 2852 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2853 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2854 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2855 if (nspares != 0) { 2856 VERIFY(nvlist_add_nvlist_array(nvroot, 2857 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2858 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2859 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2860 2861 /* 2862 * Go through and find any spares which have since been 2863 * repurposed as an active spare. If this is the case, update 2864 * their status appropriately. 2865 */ 2866 for (i = 0; i < nspares; i++) { 2867 VERIFY(nvlist_lookup_uint64(spares[i], 2868 ZPOOL_CONFIG_GUID, &guid) == 0); 2869 if (spa_spare_exists(guid, &pool, NULL) && 2870 pool != 0ULL) { 2871 VERIFY(nvlist_lookup_uint64_array( 2872 spares[i], ZPOOL_CONFIG_VDEV_STATS, 2873 (uint64_t **)&vs, &vsc) == 0); 2874 vs->vs_state = VDEV_STATE_CANT_OPEN; 2875 vs->vs_aux = VDEV_AUX_SPARED; 2876 } 2877 } 2878 } 2879 } 2880 2881 /* 2882 * Add l2cache device information to the nvlist, including vdev stats. 2883 */ 2884 static void 2885 spa_add_l2cache(spa_t *spa, nvlist_t *config) 2886 { 2887 nvlist_t **l2cache; 2888 uint_t i, j, nl2cache; 2889 nvlist_t *nvroot; 2890 uint64_t guid; 2891 vdev_t *vd; 2892 vdev_stat_t *vs; 2893 uint_t vsc; 2894 2895 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2896 2897 if (spa->spa_l2cache.sav_count == 0) 2898 return; 2899 2900 VERIFY(nvlist_lookup_nvlist(config, 2901 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2902 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2903 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2904 if (nl2cache != 0) { 2905 VERIFY(nvlist_add_nvlist_array(nvroot, 2906 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2907 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2908 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2909 2910 /* 2911 * Update level 2 cache device stats. 2912 */ 2913 2914 for (i = 0; i < nl2cache; i++) { 2915 VERIFY(nvlist_lookup_uint64(l2cache[i], 2916 ZPOOL_CONFIG_GUID, &guid) == 0); 2917 2918 vd = NULL; 2919 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 2920 if (guid == 2921 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 2922 vd = spa->spa_l2cache.sav_vdevs[j]; 2923 break; 2924 } 2925 } 2926 ASSERT(vd != NULL); 2927 2928 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 2929 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 2930 == 0); 2931 vdev_get_stats(vd, vs); 2932 } 2933 } 2934 } 2935 2936 static void 2937 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 2938 { 2939 nvlist_t *features; 2940 zap_cursor_t zc; 2941 zap_attribute_t za; 2942 2943 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2944 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2945 2946 if (spa->spa_feat_for_read_obj != 0) { 2947 for (zap_cursor_init(&zc, spa->spa_meta_objset, 2948 spa->spa_feat_for_read_obj); 2949 zap_cursor_retrieve(&zc, &za) == 0; 2950 zap_cursor_advance(&zc)) { 2951 ASSERT(za.za_integer_length == sizeof (uint64_t) && 2952 za.za_num_integers == 1); 2953 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 2954 za.za_first_integer)); 2955 } 2956 zap_cursor_fini(&zc); 2957 } 2958 2959 if (spa->spa_feat_for_write_obj != 0) { 2960 for (zap_cursor_init(&zc, spa->spa_meta_objset, 2961 spa->spa_feat_for_write_obj); 2962 zap_cursor_retrieve(&zc, &za) == 0; 2963 zap_cursor_advance(&zc)) { 2964 ASSERT(za.za_integer_length == sizeof (uint64_t) && 2965 za.za_num_integers == 1); 2966 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 2967 za.za_first_integer)); 2968 } 2969 zap_cursor_fini(&zc); 2970 } 2971 2972 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 2973 features) == 0); 2974 nvlist_free(features); 2975 } 2976 2977 int 2978 spa_get_stats(const char *name, nvlist_t **config, 2979 char *altroot, size_t buflen) 2980 { 2981 int error; 2982 spa_t *spa; 2983 2984 *config = NULL; 2985 error = spa_open_common(name, &spa, FTAG, NULL, config); 2986 2987 if (spa != NULL) { 2988 /* 2989 * This still leaves a window of inconsistency where the spares 2990 * or l2cache devices could change and the config would be 2991 * self-inconsistent. 2992 */ 2993 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 2994 2995 if (*config != NULL) { 2996 uint64_t loadtimes[2]; 2997 2998 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 2999 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3000 VERIFY(nvlist_add_uint64_array(*config, 3001 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3002 3003 VERIFY(nvlist_add_uint64(*config, 3004 ZPOOL_CONFIG_ERRCOUNT, 3005 spa_get_errlog_size(spa)) == 0); 3006 3007 if (spa_suspended(spa)) 3008 VERIFY(nvlist_add_uint64(*config, 3009 ZPOOL_CONFIG_SUSPENDED, 3010 spa->spa_failmode) == 0); 3011 3012 spa_add_spares(spa, *config); 3013 spa_add_l2cache(spa, *config); 3014 spa_add_feature_stats(spa, *config); 3015 } 3016 } 3017 3018 /* 3019 * We want to get the alternate root even for faulted pools, so we cheat 3020 * and call spa_lookup() directly. 3021 */ 3022 if (altroot) { 3023 if (spa == NULL) { 3024 mutex_enter(&spa_namespace_lock); 3025 spa = spa_lookup(name); 3026 if (spa) 3027 spa_altroot(spa, altroot, buflen); 3028 else 3029 altroot[0] = '\0'; 3030 spa = NULL; 3031 mutex_exit(&spa_namespace_lock); 3032 } else { 3033 spa_altroot(spa, altroot, buflen); 3034 } 3035 } 3036 3037 if (spa != NULL) { 3038 spa_config_exit(spa, SCL_CONFIG, FTAG); 3039 spa_close(spa, FTAG); 3040 } 3041 3042 return (error); 3043 } 3044 3045 /* 3046 * Validate that the auxiliary device array is well formed. We must have an 3047 * array of nvlists, each which describes a valid leaf vdev. If this is an 3048 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3049 * specified, as long as they are well-formed. 3050 */ 3051 static int 3052 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3053 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3054 vdev_labeltype_t label) 3055 { 3056 nvlist_t **dev; 3057 uint_t i, ndev; 3058 vdev_t *vd; 3059 int error; 3060 3061 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3062 3063 /* 3064 * It's acceptable to have no devs specified. 3065 */ 3066 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3067 return (0); 3068 3069 if (ndev == 0) 3070 return (EINVAL); 3071 3072 /* 3073 * Make sure the pool is formatted with a version that supports this 3074 * device type. 3075 */ 3076 if (spa_version(spa) < version) 3077 return (ENOTSUP); 3078 3079 /* 3080 * Set the pending device list so we correctly handle device in-use 3081 * checking. 3082 */ 3083 sav->sav_pending = dev; 3084 sav->sav_npending = ndev; 3085 3086 for (i = 0; i < ndev; i++) { 3087 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3088 mode)) != 0) 3089 goto out; 3090 3091 if (!vd->vdev_ops->vdev_op_leaf) { 3092 vdev_free(vd); 3093 error = EINVAL; 3094 goto out; 3095 } 3096 3097 /* 3098 * The L2ARC currently only supports disk devices in 3099 * kernel context. For user-level testing, we allow it. 3100 */ 3101 #ifdef _KERNEL 3102 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3103 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3104 error = ENOTBLK; 3105 vdev_free(vd); 3106 goto out; 3107 } 3108 #endif 3109 vd->vdev_top = vd; 3110 3111 if ((error = vdev_open(vd)) == 0 && 3112 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3113 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3114 vd->vdev_guid) == 0); 3115 } 3116 3117 vdev_free(vd); 3118 3119 if (error && 3120 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3121 goto out; 3122 else 3123 error = 0; 3124 } 3125 3126 out: 3127 sav->sav_pending = NULL; 3128 sav->sav_npending = 0; 3129 return (error); 3130 } 3131 3132 static int 3133 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3134 { 3135 int error; 3136 3137 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3138 3139 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3140 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3141 VDEV_LABEL_SPARE)) != 0) { 3142 return (error); 3143 } 3144 3145 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3146 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3147 VDEV_LABEL_L2CACHE)); 3148 } 3149 3150 static void 3151 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3152 const char *config) 3153 { 3154 int i; 3155 3156 if (sav->sav_config != NULL) { 3157 nvlist_t **olddevs; 3158 uint_t oldndevs; 3159 nvlist_t **newdevs; 3160 3161 /* 3162 * Generate new dev list by concatentating with the 3163 * current dev list. 3164 */ 3165 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3166 &olddevs, &oldndevs) == 0); 3167 3168 newdevs = kmem_alloc(sizeof (void *) * 3169 (ndevs + oldndevs), KM_SLEEP); 3170 for (i = 0; i < oldndevs; i++) 3171 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3172 KM_SLEEP) == 0); 3173 for (i = 0; i < ndevs; i++) 3174 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3175 KM_SLEEP) == 0); 3176 3177 VERIFY(nvlist_remove(sav->sav_config, config, 3178 DATA_TYPE_NVLIST_ARRAY) == 0); 3179 3180 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3181 config, newdevs, ndevs + oldndevs) == 0); 3182 for (i = 0; i < oldndevs + ndevs; i++) 3183 nvlist_free(newdevs[i]); 3184 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3185 } else { 3186 /* 3187 * Generate a new dev list. 3188 */ 3189 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3190 KM_SLEEP) == 0); 3191 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3192 devs, ndevs) == 0); 3193 } 3194 } 3195 3196 /* 3197 * Stop and drop level 2 ARC devices 3198 */ 3199 void 3200 spa_l2cache_drop(spa_t *spa) 3201 { 3202 vdev_t *vd; 3203 int i; 3204 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3205 3206 for (i = 0; i < sav->sav_count; i++) { 3207 uint64_t pool; 3208 3209 vd = sav->sav_vdevs[i]; 3210 ASSERT(vd != NULL); 3211 3212 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3213 pool != 0ULL && l2arc_vdev_present(vd)) 3214 l2arc_remove_vdev(vd); 3215 } 3216 } 3217 3218 /* 3219 * Pool Creation 3220 */ 3221 int 3222 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3223 const char *history_str, nvlist_t *zplprops) 3224 { 3225 spa_t *spa; 3226 char *altroot = NULL; 3227 vdev_t *rvd; 3228 dsl_pool_t *dp; 3229 dmu_tx_t *tx; 3230 int error = 0; 3231 uint64_t txg = TXG_INITIAL; 3232 nvlist_t **spares, **l2cache; 3233 uint_t nspares, nl2cache; 3234 uint64_t version, obj; 3235 boolean_t has_features; 3236 3237 /* 3238 * If this pool already exists, return failure. 3239 */ 3240 mutex_enter(&spa_namespace_lock); 3241 if (spa_lookup(pool) != NULL) { 3242 mutex_exit(&spa_namespace_lock); 3243 return (EEXIST); 3244 } 3245 3246 /* 3247 * Allocate a new spa_t structure. 3248 */ 3249 (void) nvlist_lookup_string(props, 3250 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3251 spa = spa_add(pool, NULL, altroot); 3252 spa_activate(spa, spa_mode_global); 3253 3254 if (props && (error = spa_prop_validate(spa, props))) { 3255 spa_deactivate(spa); 3256 spa_remove(spa); 3257 mutex_exit(&spa_namespace_lock); 3258 return (error); 3259 } 3260 3261 has_features = B_FALSE; 3262 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3263 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3264 if (zpool_prop_feature(nvpair_name(elem))) 3265 has_features = B_TRUE; 3266 } 3267 3268 if (has_features || nvlist_lookup_uint64(props, 3269 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3270 version = SPA_VERSION; 3271 } 3272 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3273 3274 spa->spa_first_txg = txg; 3275 spa->spa_uberblock.ub_txg = txg - 1; 3276 spa->spa_uberblock.ub_version = version; 3277 spa->spa_ubsync = spa->spa_uberblock; 3278 3279 /* 3280 * Create "The Godfather" zio to hold all async IOs 3281 */ 3282 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 3283 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 3284 3285 /* 3286 * Create the root vdev. 3287 */ 3288 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3289 3290 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3291 3292 ASSERT(error != 0 || rvd != NULL); 3293 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3294 3295 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3296 error = EINVAL; 3297 3298 if (error == 0 && 3299 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3300 (error = spa_validate_aux(spa, nvroot, txg, 3301 VDEV_ALLOC_ADD)) == 0) { 3302 for (int c = 0; c < rvd->vdev_children; c++) { 3303 vdev_metaslab_set_size(rvd->vdev_child[c]); 3304 vdev_expand(rvd->vdev_child[c], txg); 3305 } 3306 } 3307 3308 spa_config_exit(spa, SCL_ALL, FTAG); 3309 3310 if (error != 0) { 3311 spa_unload(spa); 3312 spa_deactivate(spa); 3313 spa_remove(spa); 3314 mutex_exit(&spa_namespace_lock); 3315 return (error); 3316 } 3317 3318 /* 3319 * Get the list of spares, if specified. 3320 */ 3321 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3322 &spares, &nspares) == 0) { 3323 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3324 KM_SLEEP) == 0); 3325 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3326 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3327 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3328 spa_load_spares(spa); 3329 spa_config_exit(spa, SCL_ALL, FTAG); 3330 spa->spa_spares.sav_sync = B_TRUE; 3331 } 3332 3333 /* 3334 * Get the list of level 2 cache devices, if specified. 3335 */ 3336 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3337 &l2cache, &nl2cache) == 0) { 3338 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3339 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3340 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3341 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3342 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3343 spa_load_l2cache(spa); 3344 spa_config_exit(spa, SCL_ALL, FTAG); 3345 spa->spa_l2cache.sav_sync = B_TRUE; 3346 } 3347 3348 spa->spa_is_initializing = B_TRUE; 3349 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3350 spa->spa_meta_objset = dp->dp_meta_objset; 3351 spa->spa_is_initializing = B_FALSE; 3352 3353 /* 3354 * Create DDTs (dedup tables). 3355 */ 3356 ddt_create(spa); 3357 3358 spa_update_dspace(spa); 3359 3360 tx = dmu_tx_create_assigned(dp, txg); 3361 3362 /* 3363 * Create the pool config object. 3364 */ 3365 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3366 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3367 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3368 3369 if (zap_add(spa->spa_meta_objset, 3370 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3371 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3372 cmn_err(CE_PANIC, "failed to add pool config"); 3373 } 3374 3375 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3376 spa_feature_create_zap_objects(spa, tx); 3377 3378 if (zap_add(spa->spa_meta_objset, 3379 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3380 sizeof (uint64_t), 1, &version, tx) != 0) { 3381 cmn_err(CE_PANIC, "failed to add pool version"); 3382 } 3383 3384 /* Newly created pools with the right version are always deflated. */ 3385 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3386 spa->spa_deflate = TRUE; 3387 if (zap_add(spa->spa_meta_objset, 3388 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3389 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3390 cmn_err(CE_PANIC, "failed to add deflate"); 3391 } 3392 } 3393 3394 /* 3395 * Create the deferred-free bpobj. Turn off compression 3396 * because sync-to-convergence takes longer if the blocksize 3397 * keeps changing. 3398 */ 3399 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3400 dmu_object_set_compress(spa->spa_meta_objset, obj, 3401 ZIO_COMPRESS_OFF, tx); 3402 if (zap_add(spa->spa_meta_objset, 3403 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3404 sizeof (uint64_t), 1, &obj, tx) != 0) { 3405 cmn_err(CE_PANIC, "failed to add bpobj"); 3406 } 3407 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3408 spa->spa_meta_objset, obj)); 3409 3410 /* 3411 * Create the pool's history object. 3412 */ 3413 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3414 spa_history_create_obj(spa, tx); 3415 3416 /* 3417 * Set pool properties. 3418 */ 3419 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3420 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3421 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3422 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3423 3424 if (props != NULL) { 3425 spa_configfile_set(spa, props, B_FALSE); 3426 spa_sync_props(spa, props, tx); 3427 } 3428 3429 dmu_tx_commit(tx); 3430 3431 spa->spa_sync_on = B_TRUE; 3432 txg_sync_start(spa->spa_dsl_pool); 3433 3434 /* 3435 * We explicitly wait for the first transaction to complete so that our 3436 * bean counters are appropriately updated. 3437 */ 3438 txg_wait_synced(spa->spa_dsl_pool, txg); 3439 3440 spa_config_sync(spa, B_FALSE, B_TRUE); 3441 3442 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL) 3443 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); 3444 spa_history_log_version(spa, LOG_POOL_CREATE); 3445 3446 spa->spa_minref = refcount_count(&spa->spa_refcount); 3447 3448 mutex_exit(&spa_namespace_lock); 3449 3450 return (0); 3451 } 3452 3453 #ifdef _KERNEL 3454 /* 3455 * Get the root pool information from the root disk, then import the root pool 3456 * during the system boot up time. 3457 */ 3458 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3459 3460 static nvlist_t * 3461 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3462 { 3463 nvlist_t *config; 3464 nvlist_t *nvtop, *nvroot; 3465 uint64_t pgid; 3466 3467 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3468 return (NULL); 3469 3470 /* 3471 * Add this top-level vdev to the child array. 3472 */ 3473 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3474 &nvtop) == 0); 3475 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3476 &pgid) == 0); 3477 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3478 3479 /* 3480 * Put this pool's top-level vdevs into a root vdev. 3481 */ 3482 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3483 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3484 VDEV_TYPE_ROOT) == 0); 3485 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3486 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3487 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3488 &nvtop, 1) == 0); 3489 3490 /* 3491 * Replace the existing vdev_tree with the new root vdev in 3492 * this pool's configuration (remove the old, add the new). 3493 */ 3494 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3495 nvlist_free(nvroot); 3496 return (config); 3497 } 3498 3499 /* 3500 * Walk the vdev tree and see if we can find a device with "better" 3501 * configuration. A configuration is "better" if the label on that 3502 * device has a more recent txg. 3503 */ 3504 static void 3505 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3506 { 3507 for (int c = 0; c < vd->vdev_children; c++) 3508 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3509 3510 if (vd->vdev_ops->vdev_op_leaf) { 3511 nvlist_t *label; 3512 uint64_t label_txg; 3513 3514 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3515 &label) != 0) 3516 return; 3517 3518 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3519 &label_txg) == 0); 3520 3521 /* 3522 * Do we have a better boot device? 3523 */ 3524 if (label_txg > *txg) { 3525 *txg = label_txg; 3526 *avd = vd; 3527 } 3528 nvlist_free(label); 3529 } 3530 } 3531 3532 /* 3533 * Import a root pool. 3534 * 3535 * For x86. devpath_list will consist of devid and/or physpath name of 3536 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3537 * The GRUB "findroot" command will return the vdev we should boot. 3538 * 3539 * For Sparc, devpath_list consists the physpath name of the booting device 3540 * no matter the rootpool is a single device pool or a mirrored pool. 3541 * e.g. 3542 * "/pci@1f,0/ide@d/disk@0,0:a" 3543 */ 3544 int 3545 spa_import_rootpool(char *devpath, char *devid) 3546 { 3547 spa_t *spa; 3548 vdev_t *rvd, *bvd, *avd = NULL; 3549 nvlist_t *config, *nvtop; 3550 uint64_t guid, txg; 3551 char *pname; 3552 int error; 3553 3554 /* 3555 * Read the label from the boot device and generate a configuration. 3556 */ 3557 config = spa_generate_rootconf(devpath, devid, &guid); 3558 #if defined(_OBP) && defined(_KERNEL) 3559 if (config == NULL) { 3560 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3561 /* iscsi boot */ 3562 get_iscsi_bootpath_phy(devpath); 3563 config = spa_generate_rootconf(devpath, devid, &guid); 3564 } 3565 } 3566 #endif 3567 if (config == NULL) { 3568 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3569 devpath); 3570 return (EIO); 3571 } 3572 3573 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3574 &pname) == 0); 3575 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3576 3577 mutex_enter(&spa_namespace_lock); 3578 if ((spa = spa_lookup(pname)) != NULL) { 3579 /* 3580 * Remove the existing root pool from the namespace so that we 3581 * can replace it with the correct config we just read in. 3582 */ 3583 spa_remove(spa); 3584 } 3585 3586 spa = spa_add(pname, config, NULL); 3587 spa->spa_is_root = B_TRUE; 3588 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3589 3590 /* 3591 * Build up a vdev tree based on the boot device's label config. 3592 */ 3593 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3594 &nvtop) == 0); 3595 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3596 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3597 VDEV_ALLOC_ROOTPOOL); 3598 spa_config_exit(spa, SCL_ALL, FTAG); 3599 if (error) { 3600 mutex_exit(&spa_namespace_lock); 3601 nvlist_free(config); 3602 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3603 pname); 3604 return (error); 3605 } 3606 3607 /* 3608 * Get the boot vdev. 3609 */ 3610 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3611 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3612 (u_longlong_t)guid); 3613 error = ENOENT; 3614 goto out; 3615 } 3616 3617 /* 3618 * Determine if there is a better boot device. 3619 */ 3620 avd = bvd; 3621 spa_alt_rootvdev(rvd, &avd, &txg); 3622 if (avd != bvd) { 3623 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3624 "try booting from '%s'", avd->vdev_path); 3625 error = EINVAL; 3626 goto out; 3627 } 3628 3629 /* 3630 * If the boot device is part of a spare vdev then ensure that 3631 * we're booting off the active spare. 3632 */ 3633 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3634 !bvd->vdev_isspare) { 3635 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3636 "try booting from '%s'", 3637 bvd->vdev_parent-> 3638 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3639 error = EINVAL; 3640 goto out; 3641 } 3642 3643 error = 0; 3644 spa_history_log_version(spa, LOG_POOL_IMPORT); 3645 out: 3646 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3647 vdev_free(rvd); 3648 spa_config_exit(spa, SCL_ALL, FTAG); 3649 mutex_exit(&spa_namespace_lock); 3650 3651 nvlist_free(config); 3652 return (error); 3653 } 3654 3655 #endif 3656 3657 /* 3658 * Import a non-root pool into the system. 3659 */ 3660 int 3661 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3662 { 3663 spa_t *spa; 3664 char *altroot = NULL; 3665 spa_load_state_t state = SPA_LOAD_IMPORT; 3666 zpool_rewind_policy_t policy; 3667 uint64_t mode = spa_mode_global; 3668 uint64_t readonly = B_FALSE; 3669 int error; 3670 nvlist_t *nvroot; 3671 nvlist_t **spares, **l2cache; 3672 uint_t nspares, nl2cache; 3673 3674 /* 3675 * If a pool with this name exists, return failure. 3676 */ 3677 mutex_enter(&spa_namespace_lock); 3678 if (spa_lookup(pool) != NULL) { 3679 mutex_exit(&spa_namespace_lock); 3680 return (EEXIST); 3681 } 3682 3683 /* 3684 * Create and initialize the spa structure. 3685 */ 3686 (void) nvlist_lookup_string(props, 3687 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3688 (void) nvlist_lookup_uint64(props, 3689 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3690 if (readonly) 3691 mode = FREAD; 3692 spa = spa_add(pool, config, altroot); 3693 spa->spa_import_flags = flags; 3694 3695 /* 3696 * Verbatim import - Take a pool and insert it into the namespace 3697 * as if it had been loaded at boot. 3698 */ 3699 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3700 if (props != NULL) 3701 spa_configfile_set(spa, props, B_FALSE); 3702 3703 spa_config_sync(spa, B_FALSE, B_TRUE); 3704 3705 mutex_exit(&spa_namespace_lock); 3706 spa_history_log_version(spa, LOG_POOL_IMPORT); 3707 3708 return (0); 3709 } 3710 3711 spa_activate(spa, mode); 3712 3713 /* 3714 * Don't start async tasks until we know everything is healthy. 3715 */ 3716 spa_async_suspend(spa); 3717 3718 zpool_get_rewind_policy(config, &policy); 3719 if (policy.zrp_request & ZPOOL_DO_REWIND) 3720 state = SPA_LOAD_RECOVER; 3721 3722 /* 3723 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3724 * because the user-supplied config is actually the one to trust when 3725 * doing an import. 3726 */ 3727 if (state != SPA_LOAD_RECOVER) 3728 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3729 3730 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3731 policy.zrp_request); 3732 3733 /* 3734 * Propagate anything learned while loading the pool and pass it 3735 * back to caller (i.e. rewind info, missing devices, etc). 3736 */ 3737 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3738 spa->spa_load_info) == 0); 3739 3740 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3741 /* 3742 * Toss any existing sparelist, as it doesn't have any validity 3743 * anymore, and conflicts with spa_has_spare(). 3744 */ 3745 if (spa->spa_spares.sav_config) { 3746 nvlist_free(spa->spa_spares.sav_config); 3747 spa->spa_spares.sav_config = NULL; 3748 spa_load_spares(spa); 3749 } 3750 if (spa->spa_l2cache.sav_config) { 3751 nvlist_free(spa->spa_l2cache.sav_config); 3752 spa->spa_l2cache.sav_config = NULL; 3753 spa_load_l2cache(spa); 3754 } 3755 3756 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3757 &nvroot) == 0); 3758 if (error == 0) 3759 error = spa_validate_aux(spa, nvroot, -1ULL, 3760 VDEV_ALLOC_SPARE); 3761 if (error == 0) 3762 error = spa_validate_aux(spa, nvroot, -1ULL, 3763 VDEV_ALLOC_L2CACHE); 3764 spa_config_exit(spa, SCL_ALL, FTAG); 3765 3766 if (props != NULL) 3767 spa_configfile_set(spa, props, B_FALSE); 3768 3769 if (error != 0 || (props && spa_writeable(spa) && 3770 (error = spa_prop_set(spa, props)))) { 3771 spa_unload(spa); 3772 spa_deactivate(spa); 3773 spa_remove(spa); 3774 mutex_exit(&spa_namespace_lock); 3775 return (error); 3776 } 3777 3778 spa_async_resume(spa); 3779 3780 /* 3781 * Override any spares and level 2 cache devices as specified by 3782 * the user, as these may have correct device names/devids, etc. 3783 */ 3784 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3785 &spares, &nspares) == 0) { 3786 if (spa->spa_spares.sav_config) 3787 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3788 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3789 else 3790 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3791 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3792 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3793 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3794 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3795 spa_load_spares(spa); 3796 spa_config_exit(spa, SCL_ALL, FTAG); 3797 spa->spa_spares.sav_sync = B_TRUE; 3798 } 3799 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3800 &l2cache, &nl2cache) == 0) { 3801 if (spa->spa_l2cache.sav_config) 3802 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3803 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3804 else 3805 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3806 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3807 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3808 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3809 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3810 spa_load_l2cache(spa); 3811 spa_config_exit(spa, SCL_ALL, FTAG); 3812 spa->spa_l2cache.sav_sync = B_TRUE; 3813 } 3814 3815 /* 3816 * Check for any removed devices. 3817 */ 3818 if (spa->spa_autoreplace) { 3819 spa_aux_check_removed(&spa->spa_spares); 3820 spa_aux_check_removed(&spa->spa_l2cache); 3821 } 3822 3823 if (spa_writeable(spa)) { 3824 /* 3825 * Update the config cache to include the newly-imported pool. 3826 */ 3827 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3828 } 3829 3830 /* 3831 * It's possible that the pool was expanded while it was exported. 3832 * We kick off an async task to handle this for us. 3833 */ 3834 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3835 3836 mutex_exit(&spa_namespace_lock); 3837 spa_history_log_version(spa, LOG_POOL_IMPORT); 3838 3839 return (0); 3840 } 3841 3842 nvlist_t * 3843 spa_tryimport(nvlist_t *tryconfig) 3844 { 3845 nvlist_t *config = NULL; 3846 char *poolname; 3847 spa_t *spa; 3848 uint64_t state; 3849 int error; 3850 3851 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3852 return (NULL); 3853 3854 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3855 return (NULL); 3856 3857 /* 3858 * Create and initialize the spa structure. 3859 */ 3860 mutex_enter(&spa_namespace_lock); 3861 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3862 spa_activate(spa, FREAD); 3863 3864 /* 3865 * Pass off the heavy lifting to spa_load(). 3866 * Pass TRUE for mosconfig because the user-supplied config 3867 * is actually the one to trust when doing an import. 3868 */ 3869 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 3870 3871 /* 3872 * If 'tryconfig' was at least parsable, return the current config. 3873 */ 3874 if (spa->spa_root_vdev != NULL) { 3875 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3876 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 3877 poolname) == 0); 3878 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 3879 state) == 0); 3880 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3881 spa->spa_uberblock.ub_timestamp) == 0); 3882 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3883 spa->spa_load_info) == 0); 3884 3885 /* 3886 * If the bootfs property exists on this pool then we 3887 * copy it out so that external consumers can tell which 3888 * pools are bootable. 3889 */ 3890 if ((!error || error == EEXIST) && spa->spa_bootfs) { 3891 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3892 3893 /* 3894 * We have to play games with the name since the 3895 * pool was opened as TRYIMPORT_NAME. 3896 */ 3897 if (dsl_dsobj_to_dsname(spa_name(spa), 3898 spa->spa_bootfs, tmpname) == 0) { 3899 char *cp; 3900 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3901 3902 cp = strchr(tmpname, '/'); 3903 if (cp == NULL) { 3904 (void) strlcpy(dsname, tmpname, 3905 MAXPATHLEN); 3906 } else { 3907 (void) snprintf(dsname, MAXPATHLEN, 3908 "%s/%s", poolname, ++cp); 3909 } 3910 VERIFY(nvlist_add_string(config, 3911 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 3912 kmem_free(dsname, MAXPATHLEN); 3913 } 3914 kmem_free(tmpname, MAXPATHLEN); 3915 } 3916 3917 /* 3918 * Add the list of hot spares and level 2 cache devices. 3919 */ 3920 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3921 spa_add_spares(spa, config); 3922 spa_add_l2cache(spa, config); 3923 spa_config_exit(spa, SCL_CONFIG, FTAG); 3924 } 3925 3926 spa_unload(spa); 3927 spa_deactivate(spa); 3928 spa_remove(spa); 3929 mutex_exit(&spa_namespace_lock); 3930 3931 return (config); 3932 } 3933 3934 /* 3935 * Pool export/destroy 3936 * 3937 * The act of destroying or exporting a pool is very simple. We make sure there 3938 * is no more pending I/O and any references to the pool are gone. Then, we 3939 * update the pool state and sync all the labels to disk, removing the 3940 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 3941 * we don't sync the labels or remove the configuration cache. 3942 */ 3943 static int 3944 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 3945 boolean_t force, boolean_t hardforce) 3946 { 3947 spa_t *spa; 3948 3949 if (oldconfig) 3950 *oldconfig = NULL; 3951 3952 if (!(spa_mode_global & FWRITE)) 3953 return (EROFS); 3954 3955 mutex_enter(&spa_namespace_lock); 3956 if ((spa = spa_lookup(pool)) == NULL) { 3957 mutex_exit(&spa_namespace_lock); 3958 return (ENOENT); 3959 } 3960 3961 /* 3962 * Put a hold on the pool, drop the namespace lock, stop async tasks, 3963 * reacquire the namespace lock, and see if we can export. 3964 */ 3965 spa_open_ref(spa, FTAG); 3966 mutex_exit(&spa_namespace_lock); 3967 spa_async_suspend(spa); 3968 mutex_enter(&spa_namespace_lock); 3969 spa_close(spa, FTAG); 3970 3971 /* 3972 * The pool will be in core if it's openable, 3973 * in which case we can modify its state. 3974 */ 3975 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 3976 /* 3977 * Objsets may be open only because they're dirty, so we 3978 * have to force it to sync before checking spa_refcnt. 3979 */ 3980 txg_wait_synced(spa->spa_dsl_pool, 0); 3981 3982 /* 3983 * A pool cannot be exported or destroyed if there are active 3984 * references. If we are resetting a pool, allow references by 3985 * fault injection handlers. 3986 */ 3987 if (!spa_refcount_zero(spa) || 3988 (spa->spa_inject_ref != 0 && 3989 new_state != POOL_STATE_UNINITIALIZED)) { 3990 spa_async_resume(spa); 3991 mutex_exit(&spa_namespace_lock); 3992 return (EBUSY); 3993 } 3994 3995 /* 3996 * A pool cannot be exported if it has an active shared spare. 3997 * This is to prevent other pools stealing the active spare 3998 * from an exported pool. At user's own will, such pool can 3999 * be forcedly exported. 4000 */ 4001 if (!force && new_state == POOL_STATE_EXPORTED && 4002 spa_has_active_shared_spare(spa)) { 4003 spa_async_resume(spa); 4004 mutex_exit(&spa_namespace_lock); 4005 return (EXDEV); 4006 } 4007 4008 /* 4009 * We want this to be reflected on every label, 4010 * so mark them all dirty. spa_unload() will do the 4011 * final sync that pushes these changes out. 4012 */ 4013 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4014 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4015 spa->spa_state = new_state; 4016 spa->spa_final_txg = spa_last_synced_txg(spa) + 4017 TXG_DEFER_SIZE + 1; 4018 vdev_config_dirty(spa->spa_root_vdev); 4019 spa_config_exit(spa, SCL_ALL, FTAG); 4020 } 4021 } 4022 4023 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4024 4025 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4026 spa_unload(spa); 4027 spa_deactivate(spa); 4028 } 4029 4030 if (oldconfig && spa->spa_config) 4031 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4032 4033 if (new_state != POOL_STATE_UNINITIALIZED) { 4034 if (!hardforce) 4035 spa_config_sync(spa, B_TRUE, B_TRUE); 4036 spa_remove(spa); 4037 } 4038 mutex_exit(&spa_namespace_lock); 4039 4040 return (0); 4041 } 4042 4043 /* 4044 * Destroy a storage pool. 4045 */ 4046 int 4047 spa_destroy(char *pool) 4048 { 4049 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4050 B_FALSE, B_FALSE)); 4051 } 4052 4053 /* 4054 * Export a storage pool. 4055 */ 4056 int 4057 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4058 boolean_t hardforce) 4059 { 4060 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4061 force, hardforce)); 4062 } 4063 4064 /* 4065 * Similar to spa_export(), this unloads the spa_t without actually removing it 4066 * from the namespace in any way. 4067 */ 4068 int 4069 spa_reset(char *pool) 4070 { 4071 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4072 B_FALSE, B_FALSE)); 4073 } 4074 4075 /* 4076 * ========================================================================== 4077 * Device manipulation 4078 * ========================================================================== 4079 */ 4080 4081 /* 4082 * Add a device to a storage pool. 4083 */ 4084 int 4085 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4086 { 4087 uint64_t txg, id; 4088 int error; 4089 vdev_t *rvd = spa->spa_root_vdev; 4090 vdev_t *vd, *tvd; 4091 nvlist_t **spares, **l2cache; 4092 uint_t nspares, nl2cache; 4093 4094 ASSERT(spa_writeable(spa)); 4095 4096 txg = spa_vdev_enter(spa); 4097 4098 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4099 VDEV_ALLOC_ADD)) != 0) 4100 return (spa_vdev_exit(spa, NULL, txg, error)); 4101 4102 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4103 4104 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4105 &nspares) != 0) 4106 nspares = 0; 4107 4108 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4109 &nl2cache) != 0) 4110 nl2cache = 0; 4111 4112 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4113 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4114 4115 if (vd->vdev_children != 0 && 4116 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4117 return (spa_vdev_exit(spa, vd, txg, error)); 4118 4119 /* 4120 * We must validate the spares and l2cache devices after checking the 4121 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4122 */ 4123 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4124 return (spa_vdev_exit(spa, vd, txg, error)); 4125 4126 /* 4127 * Transfer each new top-level vdev from vd to rvd. 4128 */ 4129 for (int c = 0; c < vd->vdev_children; c++) { 4130 4131 /* 4132 * Set the vdev id to the first hole, if one exists. 4133 */ 4134 for (id = 0; id < rvd->vdev_children; id++) { 4135 if (rvd->vdev_child[id]->vdev_ishole) { 4136 vdev_free(rvd->vdev_child[id]); 4137 break; 4138 } 4139 } 4140 tvd = vd->vdev_child[c]; 4141 vdev_remove_child(vd, tvd); 4142 tvd->vdev_id = id; 4143 vdev_add_child(rvd, tvd); 4144 vdev_config_dirty(tvd); 4145 } 4146 4147 if (nspares != 0) { 4148 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4149 ZPOOL_CONFIG_SPARES); 4150 spa_load_spares(spa); 4151 spa->spa_spares.sav_sync = B_TRUE; 4152 } 4153 4154 if (nl2cache != 0) { 4155 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4156 ZPOOL_CONFIG_L2CACHE); 4157 spa_load_l2cache(spa); 4158 spa->spa_l2cache.sav_sync = B_TRUE; 4159 } 4160 4161 /* 4162 * We have to be careful when adding new vdevs to an existing pool. 4163 * If other threads start allocating from these vdevs before we 4164 * sync the config cache, and we lose power, then upon reboot we may 4165 * fail to open the pool because there are DVAs that the config cache 4166 * can't translate. Therefore, we first add the vdevs without 4167 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4168 * and then let spa_config_update() initialize the new metaslabs. 4169 * 4170 * spa_load() checks for added-but-not-initialized vdevs, so that 4171 * if we lose power at any point in this sequence, the remaining 4172 * steps will be completed the next time we load the pool. 4173 */ 4174 (void) spa_vdev_exit(spa, vd, txg, 0); 4175 4176 mutex_enter(&spa_namespace_lock); 4177 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4178 mutex_exit(&spa_namespace_lock); 4179 4180 return (0); 4181 } 4182 4183 /* 4184 * Attach a device to a mirror. The arguments are the path to any device 4185 * in the mirror, and the nvroot for the new device. If the path specifies 4186 * a device that is not mirrored, we automatically insert the mirror vdev. 4187 * 4188 * If 'replacing' is specified, the new device is intended to replace the 4189 * existing device; in this case the two devices are made into their own 4190 * mirror using the 'replacing' vdev, which is functionally identical to 4191 * the mirror vdev (it actually reuses all the same ops) but has a few 4192 * extra rules: you can't attach to it after it's been created, and upon 4193 * completion of resilvering, the first disk (the one being replaced) 4194 * is automatically detached. 4195 */ 4196 int 4197 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4198 { 4199 uint64_t txg, dtl_max_txg; 4200 vdev_t *rvd = spa->spa_root_vdev; 4201 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4202 vdev_ops_t *pvops; 4203 char *oldvdpath, *newvdpath; 4204 int newvd_isspare; 4205 int error; 4206 4207 ASSERT(spa_writeable(spa)); 4208 4209 txg = spa_vdev_enter(spa); 4210 4211 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4212 4213 if (oldvd == NULL) 4214 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4215 4216 if (!oldvd->vdev_ops->vdev_op_leaf) 4217 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4218 4219 pvd = oldvd->vdev_parent; 4220 4221 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4222 VDEV_ALLOC_ATTACH)) != 0) 4223 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4224 4225 if (newrootvd->vdev_children != 1) 4226 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4227 4228 newvd = newrootvd->vdev_child[0]; 4229 4230 if (!newvd->vdev_ops->vdev_op_leaf) 4231 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4232 4233 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4234 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4235 4236 /* 4237 * Spares can't replace logs 4238 */ 4239 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4240 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4241 4242 if (!replacing) { 4243 /* 4244 * For attach, the only allowable parent is a mirror or the root 4245 * vdev. 4246 */ 4247 if (pvd->vdev_ops != &vdev_mirror_ops && 4248 pvd->vdev_ops != &vdev_root_ops) 4249 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4250 4251 pvops = &vdev_mirror_ops; 4252 } else { 4253 /* 4254 * Active hot spares can only be replaced by inactive hot 4255 * spares. 4256 */ 4257 if (pvd->vdev_ops == &vdev_spare_ops && 4258 oldvd->vdev_isspare && 4259 !spa_has_spare(spa, newvd->vdev_guid)) 4260 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4261 4262 /* 4263 * If the source is a hot spare, and the parent isn't already a 4264 * spare, then we want to create a new hot spare. Otherwise, we 4265 * want to create a replacing vdev. The user is not allowed to 4266 * attach to a spared vdev child unless the 'isspare' state is 4267 * the same (spare replaces spare, non-spare replaces 4268 * non-spare). 4269 */ 4270 if (pvd->vdev_ops == &vdev_replacing_ops && 4271 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4272 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4273 } else if (pvd->vdev_ops == &vdev_spare_ops && 4274 newvd->vdev_isspare != oldvd->vdev_isspare) { 4275 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4276 } 4277 4278 if (newvd->vdev_isspare) 4279 pvops = &vdev_spare_ops; 4280 else 4281 pvops = &vdev_replacing_ops; 4282 } 4283 4284 /* 4285 * Make sure the new device is big enough. 4286 */ 4287 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4288 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4289 4290 /* 4291 * The new device cannot have a higher alignment requirement 4292 * than the top-level vdev. 4293 */ 4294 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4295 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4296 4297 /* 4298 * If this is an in-place replacement, update oldvd's path and devid 4299 * to make it distinguishable from newvd, and unopenable from now on. 4300 */ 4301 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4302 spa_strfree(oldvd->vdev_path); 4303 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4304 KM_SLEEP); 4305 (void) sprintf(oldvd->vdev_path, "%s/%s", 4306 newvd->vdev_path, "old"); 4307 if (oldvd->vdev_devid != NULL) { 4308 spa_strfree(oldvd->vdev_devid); 4309 oldvd->vdev_devid = NULL; 4310 } 4311 } 4312 4313 /* mark the device being resilvered */ 4314 newvd->vdev_resilvering = B_TRUE; 4315 4316 /* 4317 * If the parent is not a mirror, or if we're replacing, insert the new 4318 * mirror/replacing/spare vdev above oldvd. 4319 */ 4320 if (pvd->vdev_ops != pvops) 4321 pvd = vdev_add_parent(oldvd, pvops); 4322 4323 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4324 ASSERT(pvd->vdev_ops == pvops); 4325 ASSERT(oldvd->vdev_parent == pvd); 4326 4327 /* 4328 * Extract the new device from its root and add it to pvd. 4329 */ 4330 vdev_remove_child(newrootvd, newvd); 4331 newvd->vdev_id = pvd->vdev_children; 4332 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4333 vdev_add_child(pvd, newvd); 4334 4335 tvd = newvd->vdev_top; 4336 ASSERT(pvd->vdev_top == tvd); 4337 ASSERT(tvd->vdev_parent == rvd); 4338 4339 vdev_config_dirty(tvd); 4340 4341 /* 4342 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4343 * for any dmu_sync-ed blocks. It will propagate upward when 4344 * spa_vdev_exit() calls vdev_dtl_reassess(). 4345 */ 4346 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4347 4348 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4349 dtl_max_txg - TXG_INITIAL); 4350 4351 if (newvd->vdev_isspare) { 4352 spa_spare_activate(newvd); 4353 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4354 } 4355 4356 oldvdpath = spa_strdup(oldvd->vdev_path); 4357 newvdpath = spa_strdup(newvd->vdev_path); 4358 newvd_isspare = newvd->vdev_isspare; 4359 4360 /* 4361 * Mark newvd's DTL dirty in this txg. 4362 */ 4363 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4364 4365 /* 4366 * Restart the resilver 4367 */ 4368 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4369 4370 /* 4371 * Commit the config 4372 */ 4373 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4374 4375 spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL, 4376 "%s vdev=%s %s vdev=%s", 4377 replacing && newvd_isspare ? "spare in" : 4378 replacing ? "replace" : "attach", newvdpath, 4379 replacing ? "for" : "to", oldvdpath); 4380 4381 spa_strfree(oldvdpath); 4382 spa_strfree(newvdpath); 4383 4384 if (spa->spa_bootfs) 4385 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4386 4387 return (0); 4388 } 4389 4390 /* 4391 * Detach a device from a mirror or replacing vdev. 4392 * If 'replace_done' is specified, only detach if the parent 4393 * is a replacing vdev. 4394 */ 4395 int 4396 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4397 { 4398 uint64_t txg; 4399 int error; 4400 vdev_t *rvd = spa->spa_root_vdev; 4401 vdev_t *vd, *pvd, *cvd, *tvd; 4402 boolean_t unspare = B_FALSE; 4403 uint64_t unspare_guid; 4404 char *vdpath; 4405 4406 ASSERT(spa_writeable(spa)); 4407 4408 txg = spa_vdev_enter(spa); 4409 4410 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4411 4412 if (vd == NULL) 4413 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4414 4415 if (!vd->vdev_ops->vdev_op_leaf) 4416 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4417 4418 pvd = vd->vdev_parent; 4419 4420 /* 4421 * If the parent/child relationship is not as expected, don't do it. 4422 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4423 * vdev that's replacing B with C. The user's intent in replacing 4424 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4425 * the replace by detaching C, the expected behavior is to end up 4426 * M(A,B). But suppose that right after deciding to detach C, 4427 * the replacement of B completes. We would have M(A,C), and then 4428 * ask to detach C, which would leave us with just A -- not what 4429 * the user wanted. To prevent this, we make sure that the 4430 * parent/child relationship hasn't changed -- in this example, 4431 * that C's parent is still the replacing vdev R. 4432 */ 4433 if (pvd->vdev_guid != pguid && pguid != 0) 4434 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4435 4436 /* 4437 * Only 'replacing' or 'spare' vdevs can be replaced. 4438 */ 4439 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4440 pvd->vdev_ops != &vdev_spare_ops) 4441 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4442 4443 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4444 spa_version(spa) >= SPA_VERSION_SPARES); 4445 4446 /* 4447 * Only mirror, replacing, and spare vdevs support detach. 4448 */ 4449 if (pvd->vdev_ops != &vdev_replacing_ops && 4450 pvd->vdev_ops != &vdev_mirror_ops && 4451 pvd->vdev_ops != &vdev_spare_ops) 4452 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4453 4454 /* 4455 * If this device has the only valid copy of some data, 4456 * we cannot safely detach it. 4457 */ 4458 if (vdev_dtl_required(vd)) 4459 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4460 4461 ASSERT(pvd->vdev_children >= 2); 4462 4463 /* 4464 * If we are detaching the second disk from a replacing vdev, then 4465 * check to see if we changed the original vdev's path to have "/old" 4466 * at the end in spa_vdev_attach(). If so, undo that change now. 4467 */ 4468 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4469 vd->vdev_path != NULL) { 4470 size_t len = strlen(vd->vdev_path); 4471 4472 for (int c = 0; c < pvd->vdev_children; c++) { 4473 cvd = pvd->vdev_child[c]; 4474 4475 if (cvd == vd || cvd->vdev_path == NULL) 4476 continue; 4477 4478 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4479 strcmp(cvd->vdev_path + len, "/old") == 0) { 4480 spa_strfree(cvd->vdev_path); 4481 cvd->vdev_path = spa_strdup(vd->vdev_path); 4482 break; 4483 } 4484 } 4485 } 4486 4487 /* 4488 * If we are detaching the original disk from a spare, then it implies 4489 * that the spare should become a real disk, and be removed from the 4490 * active spare list for the pool. 4491 */ 4492 if (pvd->vdev_ops == &vdev_spare_ops && 4493 vd->vdev_id == 0 && 4494 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4495 unspare = B_TRUE; 4496 4497 /* 4498 * Erase the disk labels so the disk can be used for other things. 4499 * This must be done after all other error cases are handled, 4500 * but before we disembowel vd (so we can still do I/O to it). 4501 * But if we can't do it, don't treat the error as fatal -- 4502 * it may be that the unwritability of the disk is the reason 4503 * it's being detached! 4504 */ 4505 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4506 4507 /* 4508 * Remove vd from its parent and compact the parent's children. 4509 */ 4510 vdev_remove_child(pvd, vd); 4511 vdev_compact_children(pvd); 4512 4513 /* 4514 * Remember one of the remaining children so we can get tvd below. 4515 */ 4516 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4517 4518 /* 4519 * If we need to remove the remaining child from the list of hot spares, 4520 * do it now, marking the vdev as no longer a spare in the process. 4521 * We must do this before vdev_remove_parent(), because that can 4522 * change the GUID if it creates a new toplevel GUID. For a similar 4523 * reason, we must remove the spare now, in the same txg as the detach; 4524 * otherwise someone could attach a new sibling, change the GUID, and 4525 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4526 */ 4527 if (unspare) { 4528 ASSERT(cvd->vdev_isspare); 4529 spa_spare_remove(cvd); 4530 unspare_guid = cvd->vdev_guid; 4531 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4532 cvd->vdev_unspare = B_TRUE; 4533 } 4534 4535 /* 4536 * If the parent mirror/replacing vdev only has one child, 4537 * the parent is no longer needed. Remove it from the tree. 4538 */ 4539 if (pvd->vdev_children == 1) { 4540 if (pvd->vdev_ops == &vdev_spare_ops) 4541 cvd->vdev_unspare = B_FALSE; 4542 vdev_remove_parent(cvd); 4543 cvd->vdev_resilvering = B_FALSE; 4544 } 4545 4546 4547 /* 4548 * We don't set tvd until now because the parent we just removed 4549 * may have been the previous top-level vdev. 4550 */ 4551 tvd = cvd->vdev_top; 4552 ASSERT(tvd->vdev_parent == rvd); 4553 4554 /* 4555 * Reevaluate the parent vdev state. 4556 */ 4557 vdev_propagate_state(cvd); 4558 4559 /* 4560 * If the 'autoexpand' property is set on the pool then automatically 4561 * try to expand the size of the pool. For example if the device we 4562 * just detached was smaller than the others, it may be possible to 4563 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4564 * first so that we can obtain the updated sizes of the leaf vdevs. 4565 */ 4566 if (spa->spa_autoexpand) { 4567 vdev_reopen(tvd); 4568 vdev_expand(tvd, txg); 4569 } 4570 4571 vdev_config_dirty(tvd); 4572 4573 /* 4574 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4575 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4576 * But first make sure we're not on any *other* txg's DTL list, to 4577 * prevent vd from being accessed after it's freed. 4578 */ 4579 vdpath = spa_strdup(vd->vdev_path); 4580 for (int t = 0; t < TXG_SIZE; t++) 4581 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4582 vd->vdev_detached = B_TRUE; 4583 vdev_dirty(tvd, VDD_DTL, vd, txg); 4584 4585 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4586 4587 /* hang on to the spa before we release the lock */ 4588 spa_open_ref(spa, FTAG); 4589 4590 error = spa_vdev_exit(spa, vd, txg, 0); 4591 4592 spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL, 4593 "vdev=%s", vdpath); 4594 spa_strfree(vdpath); 4595 4596 /* 4597 * If this was the removal of the original device in a hot spare vdev, 4598 * then we want to go through and remove the device from the hot spare 4599 * list of every other pool. 4600 */ 4601 if (unspare) { 4602 spa_t *altspa = NULL; 4603 4604 mutex_enter(&spa_namespace_lock); 4605 while ((altspa = spa_next(altspa)) != NULL) { 4606 if (altspa->spa_state != POOL_STATE_ACTIVE || 4607 altspa == spa) 4608 continue; 4609 4610 spa_open_ref(altspa, FTAG); 4611 mutex_exit(&spa_namespace_lock); 4612 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4613 mutex_enter(&spa_namespace_lock); 4614 spa_close(altspa, FTAG); 4615 } 4616 mutex_exit(&spa_namespace_lock); 4617 4618 /* search the rest of the vdevs for spares to remove */ 4619 spa_vdev_resilver_done(spa); 4620 } 4621 4622 /* all done with the spa; OK to release */ 4623 mutex_enter(&spa_namespace_lock); 4624 spa_close(spa, FTAG); 4625 mutex_exit(&spa_namespace_lock); 4626 4627 return (error); 4628 } 4629 4630 /* 4631 * Split a set of devices from their mirrors, and create a new pool from them. 4632 */ 4633 int 4634 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4635 nvlist_t *props, boolean_t exp) 4636 { 4637 int error = 0; 4638 uint64_t txg, *glist; 4639 spa_t *newspa; 4640 uint_t c, children, lastlog; 4641 nvlist_t **child, *nvl, *tmp; 4642 dmu_tx_t *tx; 4643 char *altroot = NULL; 4644 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4645 boolean_t activate_slog; 4646 4647 ASSERT(spa_writeable(spa)); 4648 4649 txg = spa_vdev_enter(spa); 4650 4651 /* clear the log and flush everything up to now */ 4652 activate_slog = spa_passivate_log(spa); 4653 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4654 error = spa_offline_log(spa); 4655 txg = spa_vdev_config_enter(spa); 4656 4657 if (activate_slog) 4658 spa_activate_log(spa); 4659 4660 if (error != 0) 4661 return (spa_vdev_exit(spa, NULL, txg, error)); 4662 4663 /* check new spa name before going any further */ 4664 if (spa_lookup(newname) != NULL) 4665 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4666 4667 /* 4668 * scan through all the children to ensure they're all mirrors 4669 */ 4670 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4671 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4672 &children) != 0) 4673 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4674 4675 /* first, check to ensure we've got the right child count */ 4676 rvd = spa->spa_root_vdev; 4677 lastlog = 0; 4678 for (c = 0; c < rvd->vdev_children; c++) { 4679 vdev_t *vd = rvd->vdev_child[c]; 4680 4681 /* don't count the holes & logs as children */ 4682 if (vd->vdev_islog || vd->vdev_ishole) { 4683 if (lastlog == 0) 4684 lastlog = c; 4685 continue; 4686 } 4687 4688 lastlog = 0; 4689 } 4690 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4691 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4692 4693 /* next, ensure no spare or cache devices are part of the split */ 4694 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4695 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4696 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4697 4698 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4699 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4700 4701 /* then, loop over each vdev and validate it */ 4702 for (c = 0; c < children; c++) { 4703 uint64_t is_hole = 0; 4704 4705 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4706 &is_hole); 4707 4708 if (is_hole != 0) { 4709 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4710 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4711 continue; 4712 } else { 4713 error = EINVAL; 4714 break; 4715 } 4716 } 4717 4718 /* which disk is going to be split? */ 4719 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4720 &glist[c]) != 0) { 4721 error = EINVAL; 4722 break; 4723 } 4724 4725 /* look it up in the spa */ 4726 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4727 if (vml[c] == NULL) { 4728 error = ENODEV; 4729 break; 4730 } 4731 4732 /* make sure there's nothing stopping the split */ 4733 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4734 vml[c]->vdev_islog || 4735 vml[c]->vdev_ishole || 4736 vml[c]->vdev_isspare || 4737 vml[c]->vdev_isl2cache || 4738 !vdev_writeable(vml[c]) || 4739 vml[c]->vdev_children != 0 || 4740 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4741 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4742 error = EINVAL; 4743 break; 4744 } 4745 4746 if (vdev_dtl_required(vml[c])) { 4747 error = EBUSY; 4748 break; 4749 } 4750 4751 /* we need certain info from the top level */ 4752 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4753 vml[c]->vdev_top->vdev_ms_array) == 0); 4754 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4755 vml[c]->vdev_top->vdev_ms_shift) == 0); 4756 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4757 vml[c]->vdev_top->vdev_asize) == 0); 4758 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4759 vml[c]->vdev_top->vdev_ashift) == 0); 4760 } 4761 4762 if (error != 0) { 4763 kmem_free(vml, children * sizeof (vdev_t *)); 4764 kmem_free(glist, children * sizeof (uint64_t)); 4765 return (spa_vdev_exit(spa, NULL, txg, error)); 4766 } 4767 4768 /* stop writers from using the disks */ 4769 for (c = 0; c < children; c++) { 4770 if (vml[c] != NULL) 4771 vml[c]->vdev_offline = B_TRUE; 4772 } 4773 vdev_reopen(spa->spa_root_vdev); 4774 4775 /* 4776 * Temporarily record the splitting vdevs in the spa config. This 4777 * will disappear once the config is regenerated. 4778 */ 4779 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4780 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4781 glist, children) == 0); 4782 kmem_free(glist, children * sizeof (uint64_t)); 4783 4784 mutex_enter(&spa->spa_props_lock); 4785 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4786 nvl) == 0); 4787 mutex_exit(&spa->spa_props_lock); 4788 spa->spa_config_splitting = nvl; 4789 vdev_config_dirty(spa->spa_root_vdev); 4790 4791 /* configure and create the new pool */ 4792 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4793 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4794 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4795 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4796 spa_version(spa)) == 0); 4797 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4798 spa->spa_config_txg) == 0); 4799 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4800 spa_generate_guid(NULL)) == 0); 4801 (void) nvlist_lookup_string(props, 4802 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4803 4804 /* add the new pool to the namespace */ 4805 newspa = spa_add(newname, config, altroot); 4806 newspa->spa_config_txg = spa->spa_config_txg; 4807 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4808 4809 /* release the spa config lock, retaining the namespace lock */ 4810 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4811 4812 if (zio_injection_enabled) 4813 zio_handle_panic_injection(spa, FTAG, 1); 4814 4815 spa_activate(newspa, spa_mode_global); 4816 spa_async_suspend(newspa); 4817 4818 /* create the new pool from the disks of the original pool */ 4819 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4820 if (error) 4821 goto out; 4822 4823 /* if that worked, generate a real config for the new pool */ 4824 if (newspa->spa_root_vdev != NULL) { 4825 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4826 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4827 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4828 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4829 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4830 B_TRUE)); 4831 } 4832 4833 /* set the props */ 4834 if (props != NULL) { 4835 spa_configfile_set(newspa, props, B_FALSE); 4836 error = spa_prop_set(newspa, props); 4837 if (error) 4838 goto out; 4839 } 4840 4841 /* flush everything */ 4842 txg = spa_vdev_config_enter(newspa); 4843 vdev_config_dirty(newspa->spa_root_vdev); 4844 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4845 4846 if (zio_injection_enabled) 4847 zio_handle_panic_injection(spa, FTAG, 2); 4848 4849 spa_async_resume(newspa); 4850 4851 /* finally, update the original pool's config */ 4852 txg = spa_vdev_config_enter(spa); 4853 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4854 error = dmu_tx_assign(tx, TXG_WAIT); 4855 if (error != 0) 4856 dmu_tx_abort(tx); 4857 for (c = 0; c < children; c++) { 4858 if (vml[c] != NULL) { 4859 vdev_split(vml[c]); 4860 if (error == 0) 4861 spa_history_log_internal(LOG_POOL_VDEV_DETACH, 4862 spa, tx, "vdev=%s", 4863 vml[c]->vdev_path); 4864 vdev_free(vml[c]); 4865 } 4866 } 4867 vdev_config_dirty(spa->spa_root_vdev); 4868 spa->spa_config_splitting = NULL; 4869 nvlist_free(nvl); 4870 if (error == 0) 4871 dmu_tx_commit(tx); 4872 (void) spa_vdev_exit(spa, NULL, txg, 0); 4873 4874 if (zio_injection_enabled) 4875 zio_handle_panic_injection(spa, FTAG, 3); 4876 4877 /* split is complete; log a history record */ 4878 spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL, 4879 "split new pool %s from pool %s", newname, spa_name(spa)); 4880 4881 kmem_free(vml, children * sizeof (vdev_t *)); 4882 4883 /* if we're not going to mount the filesystems in userland, export */ 4884 if (exp) 4885 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 4886 B_FALSE, B_FALSE); 4887 4888 return (error); 4889 4890 out: 4891 spa_unload(newspa); 4892 spa_deactivate(newspa); 4893 spa_remove(newspa); 4894 4895 txg = spa_vdev_config_enter(spa); 4896 4897 /* re-online all offlined disks */ 4898 for (c = 0; c < children; c++) { 4899 if (vml[c] != NULL) 4900 vml[c]->vdev_offline = B_FALSE; 4901 } 4902 vdev_reopen(spa->spa_root_vdev); 4903 4904 nvlist_free(spa->spa_config_splitting); 4905 spa->spa_config_splitting = NULL; 4906 (void) spa_vdev_exit(spa, NULL, txg, error); 4907 4908 kmem_free(vml, children * sizeof (vdev_t *)); 4909 return (error); 4910 } 4911 4912 static nvlist_t * 4913 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 4914 { 4915 for (int i = 0; i < count; i++) { 4916 uint64_t guid; 4917 4918 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 4919 &guid) == 0); 4920 4921 if (guid == target_guid) 4922 return (nvpp[i]); 4923 } 4924 4925 return (NULL); 4926 } 4927 4928 static void 4929 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 4930 nvlist_t *dev_to_remove) 4931 { 4932 nvlist_t **newdev = NULL; 4933 4934 if (count > 1) 4935 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 4936 4937 for (int i = 0, j = 0; i < count; i++) { 4938 if (dev[i] == dev_to_remove) 4939 continue; 4940 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 4941 } 4942 4943 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 4944 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 4945 4946 for (int i = 0; i < count - 1; i++) 4947 nvlist_free(newdev[i]); 4948 4949 if (count > 1) 4950 kmem_free(newdev, (count - 1) * sizeof (void *)); 4951 } 4952 4953 /* 4954 * Evacuate the device. 4955 */ 4956 static int 4957 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 4958 { 4959 uint64_t txg; 4960 int error = 0; 4961 4962 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4963 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4964 ASSERT(vd == vd->vdev_top); 4965 4966 /* 4967 * Evacuate the device. We don't hold the config lock as writer 4968 * since we need to do I/O but we do keep the 4969 * spa_namespace_lock held. Once this completes the device 4970 * should no longer have any blocks allocated on it. 4971 */ 4972 if (vd->vdev_islog) { 4973 if (vd->vdev_stat.vs_alloc != 0) 4974 error = spa_offline_log(spa); 4975 } else { 4976 error = ENOTSUP; 4977 } 4978 4979 if (error) 4980 return (error); 4981 4982 /* 4983 * The evacuation succeeded. Remove any remaining MOS metadata 4984 * associated with this vdev, and wait for these changes to sync. 4985 */ 4986 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 4987 txg = spa_vdev_config_enter(spa); 4988 vd->vdev_removing = B_TRUE; 4989 vdev_dirty(vd, 0, NULL, txg); 4990 vdev_config_dirty(vd); 4991 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4992 4993 return (0); 4994 } 4995 4996 /* 4997 * Complete the removal by cleaning up the namespace. 4998 */ 4999 static void 5000 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5001 { 5002 vdev_t *rvd = spa->spa_root_vdev; 5003 uint64_t id = vd->vdev_id; 5004 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5005 5006 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5007 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5008 ASSERT(vd == vd->vdev_top); 5009 5010 /* 5011 * Only remove any devices which are empty. 5012 */ 5013 if (vd->vdev_stat.vs_alloc != 0) 5014 return; 5015 5016 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5017 5018 if (list_link_active(&vd->vdev_state_dirty_node)) 5019 vdev_state_clean(vd); 5020 if (list_link_active(&vd->vdev_config_dirty_node)) 5021 vdev_config_clean(vd); 5022 5023 vdev_free(vd); 5024 5025 if (last_vdev) { 5026 vdev_compact_children(rvd); 5027 } else { 5028 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5029 vdev_add_child(rvd, vd); 5030 } 5031 vdev_config_dirty(rvd); 5032 5033 /* 5034 * Reassess the health of our root vdev. 5035 */ 5036 vdev_reopen(rvd); 5037 } 5038 5039 /* 5040 * Remove a device from the pool - 5041 * 5042 * Removing a device from the vdev namespace requires several steps 5043 * and can take a significant amount of time. As a result we use 5044 * the spa_vdev_config_[enter/exit] functions which allow us to 5045 * grab and release the spa_config_lock while still holding the namespace 5046 * lock. During each step the configuration is synced out. 5047 */ 5048 5049 /* 5050 * Remove a device from the pool. Currently, this supports removing only hot 5051 * spares, slogs, and level 2 ARC devices. 5052 */ 5053 int 5054 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5055 { 5056 vdev_t *vd; 5057 metaslab_group_t *mg; 5058 nvlist_t **spares, **l2cache, *nv; 5059 uint64_t txg = 0; 5060 uint_t nspares, nl2cache; 5061 int error = 0; 5062 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5063 5064 ASSERT(spa_writeable(spa)); 5065 5066 if (!locked) 5067 txg = spa_vdev_enter(spa); 5068 5069 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5070 5071 if (spa->spa_spares.sav_vdevs != NULL && 5072 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5073 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5074 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5075 /* 5076 * Only remove the hot spare if it's not currently in use 5077 * in this pool. 5078 */ 5079 if (vd == NULL || unspare) { 5080 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5081 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5082 spa_load_spares(spa); 5083 spa->spa_spares.sav_sync = B_TRUE; 5084 } else { 5085 error = EBUSY; 5086 } 5087 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5088 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5089 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5090 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5091 /* 5092 * Cache devices can always be removed. 5093 */ 5094 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5095 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5096 spa_load_l2cache(spa); 5097 spa->spa_l2cache.sav_sync = B_TRUE; 5098 } else if (vd != NULL && vd->vdev_islog) { 5099 ASSERT(!locked); 5100 ASSERT(vd == vd->vdev_top); 5101 5102 /* 5103 * XXX - Once we have bp-rewrite this should 5104 * become the common case. 5105 */ 5106 5107 mg = vd->vdev_mg; 5108 5109 /* 5110 * Stop allocating from this vdev. 5111 */ 5112 metaslab_group_passivate(mg); 5113 5114 /* 5115 * Wait for the youngest allocations and frees to sync, 5116 * and then wait for the deferral of those frees to finish. 5117 */ 5118 spa_vdev_config_exit(spa, NULL, 5119 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5120 5121 /* 5122 * Attempt to evacuate the vdev. 5123 */ 5124 error = spa_vdev_remove_evacuate(spa, vd); 5125 5126 txg = spa_vdev_config_enter(spa); 5127 5128 /* 5129 * If we couldn't evacuate the vdev, unwind. 5130 */ 5131 if (error) { 5132 metaslab_group_activate(mg); 5133 return (spa_vdev_exit(spa, NULL, txg, error)); 5134 } 5135 5136 /* 5137 * Clean up the vdev namespace. 5138 */ 5139 spa_vdev_remove_from_namespace(spa, vd); 5140 5141 } else if (vd != NULL) { 5142 /* 5143 * Normal vdevs cannot be removed (yet). 5144 */ 5145 error = ENOTSUP; 5146 } else { 5147 /* 5148 * There is no vdev of any kind with the specified guid. 5149 */ 5150 error = ENOENT; 5151 } 5152 5153 if (!locked) 5154 return (spa_vdev_exit(spa, NULL, txg, error)); 5155 5156 return (error); 5157 } 5158 5159 /* 5160 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5161 * current spared, so we can detach it. 5162 */ 5163 static vdev_t * 5164 spa_vdev_resilver_done_hunt(vdev_t *vd) 5165 { 5166 vdev_t *newvd, *oldvd; 5167 5168 for (int c = 0; c < vd->vdev_children; c++) { 5169 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5170 if (oldvd != NULL) 5171 return (oldvd); 5172 } 5173 5174 /* 5175 * Check for a completed replacement. We always consider the first 5176 * vdev in the list to be the oldest vdev, and the last one to be 5177 * the newest (see spa_vdev_attach() for how that works). In 5178 * the case where the newest vdev is faulted, we will not automatically 5179 * remove it after a resilver completes. This is OK as it will require 5180 * user intervention to determine which disk the admin wishes to keep. 5181 */ 5182 if (vd->vdev_ops == &vdev_replacing_ops) { 5183 ASSERT(vd->vdev_children > 1); 5184 5185 newvd = vd->vdev_child[vd->vdev_children - 1]; 5186 oldvd = vd->vdev_child[0]; 5187 5188 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5189 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5190 !vdev_dtl_required(oldvd)) 5191 return (oldvd); 5192 } 5193 5194 /* 5195 * Check for a completed resilver with the 'unspare' flag set. 5196 */ 5197 if (vd->vdev_ops == &vdev_spare_ops) { 5198 vdev_t *first = vd->vdev_child[0]; 5199 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5200 5201 if (last->vdev_unspare) { 5202 oldvd = first; 5203 newvd = last; 5204 } else if (first->vdev_unspare) { 5205 oldvd = last; 5206 newvd = first; 5207 } else { 5208 oldvd = NULL; 5209 } 5210 5211 if (oldvd != NULL && 5212 vdev_dtl_empty(newvd, DTL_MISSING) && 5213 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5214 !vdev_dtl_required(oldvd)) 5215 return (oldvd); 5216 5217 /* 5218 * If there are more than two spares attached to a disk, 5219 * and those spares are not required, then we want to 5220 * attempt to free them up now so that they can be used 5221 * by other pools. Once we're back down to a single 5222 * disk+spare, we stop removing them. 5223 */ 5224 if (vd->vdev_children > 2) { 5225 newvd = vd->vdev_child[1]; 5226 5227 if (newvd->vdev_isspare && last->vdev_isspare && 5228 vdev_dtl_empty(last, DTL_MISSING) && 5229 vdev_dtl_empty(last, DTL_OUTAGE) && 5230 !vdev_dtl_required(newvd)) 5231 return (newvd); 5232 } 5233 } 5234 5235 return (NULL); 5236 } 5237 5238 static void 5239 spa_vdev_resilver_done(spa_t *spa) 5240 { 5241 vdev_t *vd, *pvd, *ppvd; 5242 uint64_t guid, sguid, pguid, ppguid; 5243 5244 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5245 5246 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5247 pvd = vd->vdev_parent; 5248 ppvd = pvd->vdev_parent; 5249 guid = vd->vdev_guid; 5250 pguid = pvd->vdev_guid; 5251 ppguid = ppvd->vdev_guid; 5252 sguid = 0; 5253 /* 5254 * If we have just finished replacing a hot spared device, then 5255 * we need to detach the parent's first child (the original hot 5256 * spare) as well. 5257 */ 5258 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5259 ppvd->vdev_children == 2) { 5260 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5261 sguid = ppvd->vdev_child[1]->vdev_guid; 5262 } 5263 spa_config_exit(spa, SCL_ALL, FTAG); 5264 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5265 return; 5266 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5267 return; 5268 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5269 } 5270 5271 spa_config_exit(spa, SCL_ALL, FTAG); 5272 } 5273 5274 /* 5275 * Update the stored path or FRU for this vdev. 5276 */ 5277 int 5278 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5279 boolean_t ispath) 5280 { 5281 vdev_t *vd; 5282 boolean_t sync = B_FALSE; 5283 5284 ASSERT(spa_writeable(spa)); 5285 5286 spa_vdev_state_enter(spa, SCL_ALL); 5287 5288 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5289 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5290 5291 if (!vd->vdev_ops->vdev_op_leaf) 5292 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5293 5294 if (ispath) { 5295 if (strcmp(value, vd->vdev_path) != 0) { 5296 spa_strfree(vd->vdev_path); 5297 vd->vdev_path = spa_strdup(value); 5298 sync = B_TRUE; 5299 } 5300 } else { 5301 if (vd->vdev_fru == NULL) { 5302 vd->vdev_fru = spa_strdup(value); 5303 sync = B_TRUE; 5304 } else if (strcmp(value, vd->vdev_fru) != 0) { 5305 spa_strfree(vd->vdev_fru); 5306 vd->vdev_fru = spa_strdup(value); 5307 sync = B_TRUE; 5308 } 5309 } 5310 5311 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5312 } 5313 5314 int 5315 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5316 { 5317 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5318 } 5319 5320 int 5321 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5322 { 5323 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5324 } 5325 5326 /* 5327 * ========================================================================== 5328 * SPA Scanning 5329 * ========================================================================== 5330 */ 5331 5332 int 5333 spa_scan_stop(spa_t *spa) 5334 { 5335 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5336 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5337 return (EBUSY); 5338 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5339 } 5340 5341 int 5342 spa_scan(spa_t *spa, pool_scan_func_t func) 5343 { 5344 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5345 5346 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5347 return (ENOTSUP); 5348 5349 /* 5350 * If a resilver was requested, but there is no DTL on a 5351 * writeable leaf device, we have nothing to do. 5352 */ 5353 if (func == POOL_SCAN_RESILVER && 5354 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5355 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5356 return (0); 5357 } 5358 5359 return (dsl_scan(spa->spa_dsl_pool, func)); 5360 } 5361 5362 /* 5363 * ========================================================================== 5364 * SPA async task processing 5365 * ========================================================================== 5366 */ 5367 5368 static void 5369 spa_async_remove(spa_t *spa, vdev_t *vd) 5370 { 5371 if (vd->vdev_remove_wanted) { 5372 vd->vdev_remove_wanted = B_FALSE; 5373 vd->vdev_delayed_close = B_FALSE; 5374 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5375 5376 /* 5377 * We want to clear the stats, but we don't want to do a full 5378 * vdev_clear() as that will cause us to throw away 5379 * degraded/faulted state as well as attempt to reopen the 5380 * device, all of which is a waste. 5381 */ 5382 vd->vdev_stat.vs_read_errors = 0; 5383 vd->vdev_stat.vs_write_errors = 0; 5384 vd->vdev_stat.vs_checksum_errors = 0; 5385 5386 vdev_state_dirty(vd->vdev_top); 5387 } 5388 5389 for (int c = 0; c < vd->vdev_children; c++) 5390 spa_async_remove(spa, vd->vdev_child[c]); 5391 } 5392 5393 static void 5394 spa_async_probe(spa_t *spa, vdev_t *vd) 5395 { 5396 if (vd->vdev_probe_wanted) { 5397 vd->vdev_probe_wanted = B_FALSE; 5398 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5399 } 5400 5401 for (int c = 0; c < vd->vdev_children; c++) 5402 spa_async_probe(spa, vd->vdev_child[c]); 5403 } 5404 5405 static void 5406 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5407 { 5408 sysevent_id_t eid; 5409 nvlist_t *attr; 5410 char *physpath; 5411 5412 if (!spa->spa_autoexpand) 5413 return; 5414 5415 for (int c = 0; c < vd->vdev_children; c++) { 5416 vdev_t *cvd = vd->vdev_child[c]; 5417 spa_async_autoexpand(spa, cvd); 5418 } 5419 5420 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5421 return; 5422 5423 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5424 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5425 5426 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5427 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5428 5429 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5430 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5431 5432 nvlist_free(attr); 5433 kmem_free(physpath, MAXPATHLEN); 5434 } 5435 5436 static void 5437 spa_async_thread(spa_t *spa) 5438 { 5439 int tasks; 5440 5441 ASSERT(spa->spa_sync_on); 5442 5443 mutex_enter(&spa->spa_async_lock); 5444 tasks = spa->spa_async_tasks; 5445 spa->spa_async_tasks = 0; 5446 mutex_exit(&spa->spa_async_lock); 5447 5448 /* 5449 * See if the config needs to be updated. 5450 */ 5451 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5452 uint64_t old_space, new_space; 5453 5454 mutex_enter(&spa_namespace_lock); 5455 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5456 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5457 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5458 mutex_exit(&spa_namespace_lock); 5459 5460 /* 5461 * If the pool grew as a result of the config update, 5462 * then log an internal history event. 5463 */ 5464 if (new_space != old_space) { 5465 spa_history_log_internal(LOG_POOL_VDEV_ONLINE, 5466 spa, NULL, 5467 "pool '%s' size: %llu(+%llu)", 5468 spa_name(spa), new_space, new_space - old_space); 5469 } 5470 } 5471 5472 /* 5473 * See if any devices need to be marked REMOVED. 5474 */ 5475 if (tasks & SPA_ASYNC_REMOVE) { 5476 spa_vdev_state_enter(spa, SCL_NONE); 5477 spa_async_remove(spa, spa->spa_root_vdev); 5478 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5479 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5480 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5481 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5482 (void) spa_vdev_state_exit(spa, NULL, 0); 5483 } 5484 5485 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5486 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5487 spa_async_autoexpand(spa, spa->spa_root_vdev); 5488 spa_config_exit(spa, SCL_CONFIG, FTAG); 5489 } 5490 5491 /* 5492 * See if any devices need to be probed. 5493 */ 5494 if (tasks & SPA_ASYNC_PROBE) { 5495 spa_vdev_state_enter(spa, SCL_NONE); 5496 spa_async_probe(spa, spa->spa_root_vdev); 5497 (void) spa_vdev_state_exit(spa, NULL, 0); 5498 } 5499 5500 /* 5501 * If any devices are done replacing, detach them. 5502 */ 5503 if (tasks & SPA_ASYNC_RESILVER_DONE) 5504 spa_vdev_resilver_done(spa); 5505 5506 /* 5507 * Kick off a resilver. 5508 */ 5509 if (tasks & SPA_ASYNC_RESILVER) 5510 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5511 5512 /* 5513 * Let the world know that we're done. 5514 */ 5515 mutex_enter(&spa->spa_async_lock); 5516 spa->spa_async_thread = NULL; 5517 cv_broadcast(&spa->spa_async_cv); 5518 mutex_exit(&spa->spa_async_lock); 5519 thread_exit(); 5520 } 5521 5522 void 5523 spa_async_suspend(spa_t *spa) 5524 { 5525 mutex_enter(&spa->spa_async_lock); 5526 spa->spa_async_suspended++; 5527 while (spa->spa_async_thread != NULL) 5528 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5529 mutex_exit(&spa->spa_async_lock); 5530 } 5531 5532 void 5533 spa_async_resume(spa_t *spa) 5534 { 5535 mutex_enter(&spa->spa_async_lock); 5536 ASSERT(spa->spa_async_suspended != 0); 5537 spa->spa_async_suspended--; 5538 mutex_exit(&spa->spa_async_lock); 5539 } 5540 5541 static void 5542 spa_async_dispatch(spa_t *spa) 5543 { 5544 mutex_enter(&spa->spa_async_lock); 5545 if (spa->spa_async_tasks && !spa->spa_async_suspended && 5546 spa->spa_async_thread == NULL && 5547 rootdir != NULL && !vn_is_readonly(rootdir)) 5548 spa->spa_async_thread = thread_create(NULL, 0, 5549 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5550 mutex_exit(&spa->spa_async_lock); 5551 } 5552 5553 void 5554 spa_async_request(spa_t *spa, int task) 5555 { 5556 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5557 mutex_enter(&spa->spa_async_lock); 5558 spa->spa_async_tasks |= task; 5559 mutex_exit(&spa->spa_async_lock); 5560 } 5561 5562 /* 5563 * ========================================================================== 5564 * SPA syncing routines 5565 * ========================================================================== 5566 */ 5567 5568 static int 5569 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5570 { 5571 bpobj_t *bpo = arg; 5572 bpobj_enqueue(bpo, bp, tx); 5573 return (0); 5574 } 5575 5576 static int 5577 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5578 { 5579 zio_t *zio = arg; 5580 5581 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5582 zio->io_flags)); 5583 return (0); 5584 } 5585 5586 static void 5587 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5588 { 5589 char *packed = NULL; 5590 size_t bufsize; 5591 size_t nvsize = 0; 5592 dmu_buf_t *db; 5593 5594 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5595 5596 /* 5597 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5598 * information. This avoids the dbuf_will_dirty() path and 5599 * saves us a pre-read to get data we don't actually care about. 5600 */ 5601 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5602 packed = kmem_alloc(bufsize, KM_SLEEP); 5603 5604 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5605 KM_SLEEP) == 0); 5606 bzero(packed + nvsize, bufsize - nvsize); 5607 5608 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5609 5610 kmem_free(packed, bufsize); 5611 5612 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5613 dmu_buf_will_dirty(db, tx); 5614 *(uint64_t *)db->db_data = nvsize; 5615 dmu_buf_rele(db, FTAG); 5616 } 5617 5618 static void 5619 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5620 const char *config, const char *entry) 5621 { 5622 nvlist_t *nvroot; 5623 nvlist_t **list; 5624 int i; 5625 5626 if (!sav->sav_sync) 5627 return; 5628 5629 /* 5630 * Update the MOS nvlist describing the list of available devices. 5631 * spa_validate_aux() will have already made sure this nvlist is 5632 * valid and the vdevs are labeled appropriately. 5633 */ 5634 if (sav->sav_object == 0) { 5635 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5636 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5637 sizeof (uint64_t), tx); 5638 VERIFY(zap_update(spa->spa_meta_objset, 5639 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5640 &sav->sav_object, tx) == 0); 5641 } 5642 5643 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5644 if (sav->sav_count == 0) { 5645 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5646 } else { 5647 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5648 for (i = 0; i < sav->sav_count; i++) 5649 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5650 B_FALSE, VDEV_CONFIG_L2CACHE); 5651 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5652 sav->sav_count) == 0); 5653 for (i = 0; i < sav->sav_count; i++) 5654 nvlist_free(list[i]); 5655 kmem_free(list, sav->sav_count * sizeof (void *)); 5656 } 5657 5658 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5659 nvlist_free(nvroot); 5660 5661 sav->sav_sync = B_FALSE; 5662 } 5663 5664 static void 5665 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5666 { 5667 nvlist_t *config; 5668 5669 if (list_is_empty(&spa->spa_config_dirty_list)) 5670 return; 5671 5672 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5673 5674 config = spa_config_generate(spa, spa->spa_root_vdev, 5675 dmu_tx_get_txg(tx), B_FALSE); 5676 5677 spa_config_exit(spa, SCL_STATE, FTAG); 5678 5679 if (spa->spa_config_syncing) 5680 nvlist_free(spa->spa_config_syncing); 5681 spa->spa_config_syncing = config; 5682 5683 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5684 } 5685 5686 static void 5687 spa_sync_version(void *arg1, void *arg2, dmu_tx_t *tx) 5688 { 5689 spa_t *spa = arg1; 5690 uint64_t version = *(uint64_t *)arg2; 5691 5692 /* 5693 * Setting the version is special cased when first creating the pool. 5694 */ 5695 ASSERT(tx->tx_txg != TXG_INITIAL); 5696 5697 ASSERT(version <= SPA_VERSION); 5698 ASSERT(version >= spa_version(spa)); 5699 5700 spa->spa_uberblock.ub_version = version; 5701 vdev_config_dirty(spa->spa_root_vdev); 5702 } 5703 5704 /* 5705 * Set zpool properties. 5706 */ 5707 static void 5708 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx) 5709 { 5710 spa_t *spa = arg1; 5711 objset_t *mos = spa->spa_meta_objset; 5712 nvlist_t *nvp = arg2; 5713 nvpair_t *elem = NULL; 5714 5715 mutex_enter(&spa->spa_props_lock); 5716 5717 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5718 uint64_t intval; 5719 char *strval, *fname; 5720 zpool_prop_t prop; 5721 const char *propname; 5722 zprop_type_t proptype; 5723 zfeature_info_t *feature; 5724 5725 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5726 case ZPROP_INVAL: 5727 /* 5728 * We checked this earlier in spa_prop_validate(). 5729 */ 5730 ASSERT(zpool_prop_feature(nvpair_name(elem))); 5731 5732 fname = strchr(nvpair_name(elem), '@') + 1; 5733 VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature)); 5734 5735 spa_feature_enable(spa, feature, tx); 5736 break; 5737 5738 case ZPOOL_PROP_VERSION: 5739 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5740 /* 5741 * The version is synced seperatly before other 5742 * properties and should be correct by now. 5743 */ 5744 ASSERT3U(spa_version(spa), >=, intval); 5745 break; 5746 5747 case ZPOOL_PROP_ALTROOT: 5748 /* 5749 * 'altroot' is a non-persistent property. It should 5750 * have been set temporarily at creation or import time. 5751 */ 5752 ASSERT(spa->spa_root != NULL); 5753 break; 5754 5755 case ZPOOL_PROP_READONLY: 5756 case ZPOOL_PROP_CACHEFILE: 5757 /* 5758 * 'readonly' and 'cachefile' are also non-persisitent 5759 * properties. 5760 */ 5761 break; 5762 case ZPOOL_PROP_COMMENT: 5763 VERIFY(nvpair_value_string(elem, &strval) == 0); 5764 if (spa->spa_comment != NULL) 5765 spa_strfree(spa->spa_comment); 5766 spa->spa_comment = spa_strdup(strval); 5767 /* 5768 * We need to dirty the configuration on all the vdevs 5769 * so that their labels get updated. It's unnecessary 5770 * to do this for pool creation since the vdev's 5771 * configuratoin has already been dirtied. 5772 */ 5773 if (tx->tx_txg != TXG_INITIAL) 5774 vdev_config_dirty(spa->spa_root_vdev); 5775 break; 5776 default: 5777 /* 5778 * Set pool property values in the poolprops mos object. 5779 */ 5780 if (spa->spa_pool_props_object == 0) { 5781 spa->spa_pool_props_object = 5782 zap_create_link(mos, DMU_OT_POOL_PROPS, 5783 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5784 tx); 5785 } 5786 5787 /* normalize the property name */ 5788 propname = zpool_prop_to_name(prop); 5789 proptype = zpool_prop_get_type(prop); 5790 5791 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5792 ASSERT(proptype == PROP_TYPE_STRING); 5793 VERIFY(nvpair_value_string(elem, &strval) == 0); 5794 VERIFY(zap_update(mos, 5795 spa->spa_pool_props_object, propname, 5796 1, strlen(strval) + 1, strval, tx) == 0); 5797 5798 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5799 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5800 5801 if (proptype == PROP_TYPE_INDEX) { 5802 const char *unused; 5803 VERIFY(zpool_prop_index_to_string( 5804 prop, intval, &unused) == 0); 5805 } 5806 VERIFY(zap_update(mos, 5807 spa->spa_pool_props_object, propname, 5808 8, 1, &intval, tx) == 0); 5809 } else { 5810 ASSERT(0); /* not allowed */ 5811 } 5812 5813 switch (prop) { 5814 case ZPOOL_PROP_DELEGATION: 5815 spa->spa_delegation = intval; 5816 break; 5817 case ZPOOL_PROP_BOOTFS: 5818 spa->spa_bootfs = intval; 5819 break; 5820 case ZPOOL_PROP_FAILUREMODE: 5821 spa->spa_failmode = intval; 5822 break; 5823 case ZPOOL_PROP_AUTOEXPAND: 5824 spa->spa_autoexpand = intval; 5825 if (tx->tx_txg != TXG_INITIAL) 5826 spa_async_request(spa, 5827 SPA_ASYNC_AUTOEXPAND); 5828 break; 5829 case ZPOOL_PROP_DEDUPDITTO: 5830 spa->spa_dedup_ditto = intval; 5831 break; 5832 default: 5833 break; 5834 } 5835 } 5836 5837 /* log internal history if this is not a zpool create */ 5838 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY && 5839 tx->tx_txg != TXG_INITIAL) { 5840 spa_history_log_internal(LOG_POOL_PROPSET, 5841 spa, tx, "%s %lld %s", 5842 nvpair_name(elem), intval, spa_name(spa)); 5843 } 5844 } 5845 5846 mutex_exit(&spa->spa_props_lock); 5847 } 5848 5849 /* 5850 * Perform one-time upgrade on-disk changes. spa_version() does not 5851 * reflect the new version this txg, so there must be no changes this 5852 * txg to anything that the upgrade code depends on after it executes. 5853 * Therefore this must be called after dsl_pool_sync() does the sync 5854 * tasks. 5855 */ 5856 static void 5857 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 5858 { 5859 dsl_pool_t *dp = spa->spa_dsl_pool; 5860 5861 ASSERT(spa->spa_sync_pass == 1); 5862 5863 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 5864 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 5865 dsl_pool_create_origin(dp, tx); 5866 5867 /* Keeping the origin open increases spa_minref */ 5868 spa->spa_minref += 3; 5869 } 5870 5871 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 5872 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 5873 dsl_pool_upgrade_clones(dp, tx); 5874 } 5875 5876 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 5877 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 5878 dsl_pool_upgrade_dir_clones(dp, tx); 5879 5880 /* Keeping the freedir open increases spa_minref */ 5881 spa->spa_minref += 3; 5882 } 5883 5884 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 5885 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 5886 spa_feature_create_zap_objects(spa, tx); 5887 } 5888 } 5889 5890 /* 5891 * Sync the specified transaction group. New blocks may be dirtied as 5892 * part of the process, so we iterate until it converges. 5893 */ 5894 void 5895 spa_sync(spa_t *spa, uint64_t txg) 5896 { 5897 dsl_pool_t *dp = spa->spa_dsl_pool; 5898 objset_t *mos = spa->spa_meta_objset; 5899 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj; 5900 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 5901 vdev_t *rvd = spa->spa_root_vdev; 5902 vdev_t *vd; 5903 dmu_tx_t *tx; 5904 int error; 5905 5906 VERIFY(spa_writeable(spa)); 5907 5908 /* 5909 * Lock out configuration changes. 5910 */ 5911 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5912 5913 spa->spa_syncing_txg = txg; 5914 spa->spa_sync_pass = 0; 5915 5916 /* 5917 * If there are any pending vdev state changes, convert them 5918 * into config changes that go out with this transaction group. 5919 */ 5920 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5921 while (list_head(&spa->spa_state_dirty_list) != NULL) { 5922 /* 5923 * We need the write lock here because, for aux vdevs, 5924 * calling vdev_config_dirty() modifies sav_config. 5925 * This is ugly and will become unnecessary when we 5926 * eliminate the aux vdev wart by integrating all vdevs 5927 * into the root vdev tree. 5928 */ 5929 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5930 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 5931 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 5932 vdev_state_clean(vd); 5933 vdev_config_dirty(vd); 5934 } 5935 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5936 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 5937 } 5938 spa_config_exit(spa, SCL_STATE, FTAG); 5939 5940 tx = dmu_tx_create_assigned(dp, txg); 5941 5942 /* 5943 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 5944 * set spa_deflate if we have no raid-z vdevs. 5945 */ 5946 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 5947 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 5948 int i; 5949 5950 for (i = 0; i < rvd->vdev_children; i++) { 5951 vd = rvd->vdev_child[i]; 5952 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 5953 break; 5954 } 5955 if (i == rvd->vdev_children) { 5956 spa->spa_deflate = TRUE; 5957 VERIFY(0 == zap_add(spa->spa_meta_objset, 5958 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 5959 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 5960 } 5961 } 5962 5963 /* 5964 * If anything has changed in this txg, or if someone is waiting 5965 * for this txg to sync (eg, spa_vdev_remove()), push the 5966 * deferred frees from the previous txg. If not, leave them 5967 * alone so that we don't generate work on an otherwise idle 5968 * system. 5969 */ 5970 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 5971 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 5972 !txg_list_empty(&dp->dp_sync_tasks, txg) || 5973 ((dsl_scan_active(dp->dp_scan) || 5974 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 5975 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5976 VERIFY3U(bpobj_iterate(defer_bpo, 5977 spa_free_sync_cb, zio, tx), ==, 0); 5978 VERIFY3U(zio_wait(zio), ==, 0); 5979 } 5980 5981 /* 5982 * Iterate to convergence. 5983 */ 5984 do { 5985 int pass = ++spa->spa_sync_pass; 5986 5987 spa_sync_config_object(spa, tx); 5988 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 5989 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 5990 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 5991 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 5992 spa_errlog_sync(spa, txg); 5993 dsl_pool_sync(dp, txg); 5994 5995 if (pass <= SYNC_PASS_DEFERRED_FREE) { 5996 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5997 bplist_iterate(free_bpl, spa_free_sync_cb, 5998 zio, tx); 5999 VERIFY(zio_wait(zio) == 0); 6000 } else { 6001 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6002 defer_bpo, tx); 6003 } 6004 6005 ddt_sync(spa, txg); 6006 dsl_scan_sync(dp, tx); 6007 6008 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6009 vdev_sync(vd, txg); 6010 6011 if (pass == 1) 6012 spa_sync_upgrades(spa, tx); 6013 6014 } while (dmu_objset_is_dirty(mos, txg)); 6015 6016 /* 6017 * Rewrite the vdev configuration (which includes the uberblock) 6018 * to commit the transaction group. 6019 * 6020 * If there are no dirty vdevs, we sync the uberblock to a few 6021 * random top-level vdevs that are known to be visible in the 6022 * config cache (see spa_vdev_add() for a complete description). 6023 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6024 */ 6025 for (;;) { 6026 /* 6027 * We hold SCL_STATE to prevent vdev open/close/etc. 6028 * while we're attempting to write the vdev labels. 6029 */ 6030 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6031 6032 if (list_is_empty(&spa->spa_config_dirty_list)) { 6033 vdev_t *svd[SPA_DVAS_PER_BP]; 6034 int svdcount = 0; 6035 int children = rvd->vdev_children; 6036 int c0 = spa_get_random(children); 6037 6038 for (int c = 0; c < children; c++) { 6039 vd = rvd->vdev_child[(c0 + c) % children]; 6040 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6041 continue; 6042 svd[svdcount++] = vd; 6043 if (svdcount == SPA_DVAS_PER_BP) 6044 break; 6045 } 6046 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6047 if (error != 0) 6048 error = vdev_config_sync(svd, svdcount, txg, 6049 B_TRUE); 6050 } else { 6051 error = vdev_config_sync(rvd->vdev_child, 6052 rvd->vdev_children, txg, B_FALSE); 6053 if (error != 0) 6054 error = vdev_config_sync(rvd->vdev_child, 6055 rvd->vdev_children, txg, B_TRUE); 6056 } 6057 6058 spa_config_exit(spa, SCL_STATE, FTAG); 6059 6060 if (error == 0) 6061 break; 6062 zio_suspend(spa, NULL); 6063 zio_resume_wait(spa); 6064 } 6065 dmu_tx_commit(tx); 6066 6067 /* 6068 * Clear the dirty config list. 6069 */ 6070 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6071 vdev_config_clean(vd); 6072 6073 /* 6074 * Now that the new config has synced transactionally, 6075 * let it become visible to the config cache. 6076 */ 6077 if (spa->spa_config_syncing != NULL) { 6078 spa_config_set(spa, spa->spa_config_syncing); 6079 spa->spa_config_txg = txg; 6080 spa->spa_config_syncing = NULL; 6081 } 6082 6083 spa->spa_ubsync = spa->spa_uberblock; 6084 6085 dsl_pool_sync_done(dp, txg); 6086 6087 /* 6088 * Update usable space statistics. 6089 */ 6090 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6091 vdev_sync_done(vd, txg); 6092 6093 spa_update_dspace(spa); 6094 6095 /* 6096 * It had better be the case that we didn't dirty anything 6097 * since vdev_config_sync(). 6098 */ 6099 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6100 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6101 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6102 6103 spa->spa_sync_pass = 0; 6104 6105 spa_config_exit(spa, SCL_CONFIG, FTAG); 6106 6107 spa_handle_ignored_writes(spa); 6108 6109 /* 6110 * If any async tasks have been requested, kick them off. 6111 */ 6112 spa_async_dispatch(spa); 6113 } 6114 6115 /* 6116 * Sync all pools. We don't want to hold the namespace lock across these 6117 * operations, so we take a reference on the spa_t and drop the lock during the 6118 * sync. 6119 */ 6120 void 6121 spa_sync_allpools(void) 6122 { 6123 spa_t *spa = NULL; 6124 mutex_enter(&spa_namespace_lock); 6125 while ((spa = spa_next(spa)) != NULL) { 6126 if (spa_state(spa) != POOL_STATE_ACTIVE || 6127 !spa_writeable(spa) || spa_suspended(spa)) 6128 continue; 6129 spa_open_ref(spa, FTAG); 6130 mutex_exit(&spa_namespace_lock); 6131 txg_wait_synced(spa_get_dsl(spa), 0); 6132 mutex_enter(&spa_namespace_lock); 6133 spa_close(spa, FTAG); 6134 } 6135 mutex_exit(&spa_namespace_lock); 6136 } 6137 6138 /* 6139 * ========================================================================== 6140 * Miscellaneous routines 6141 * ========================================================================== 6142 */ 6143 6144 /* 6145 * Remove all pools in the system. 6146 */ 6147 void 6148 spa_evict_all(void) 6149 { 6150 spa_t *spa; 6151 6152 /* 6153 * Remove all cached state. All pools should be closed now, 6154 * so every spa in the AVL tree should be unreferenced. 6155 */ 6156 mutex_enter(&spa_namespace_lock); 6157 while ((spa = spa_next(NULL)) != NULL) { 6158 /* 6159 * Stop async tasks. The async thread may need to detach 6160 * a device that's been replaced, which requires grabbing 6161 * spa_namespace_lock, so we must drop it here. 6162 */ 6163 spa_open_ref(spa, FTAG); 6164 mutex_exit(&spa_namespace_lock); 6165 spa_async_suspend(spa); 6166 mutex_enter(&spa_namespace_lock); 6167 spa_close(spa, FTAG); 6168 6169 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6170 spa_unload(spa); 6171 spa_deactivate(spa); 6172 } 6173 spa_remove(spa); 6174 } 6175 mutex_exit(&spa_namespace_lock); 6176 } 6177 6178 vdev_t * 6179 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6180 { 6181 vdev_t *vd; 6182 int i; 6183 6184 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6185 return (vd); 6186 6187 if (aux) { 6188 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6189 vd = spa->spa_l2cache.sav_vdevs[i]; 6190 if (vd->vdev_guid == guid) 6191 return (vd); 6192 } 6193 6194 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6195 vd = spa->spa_spares.sav_vdevs[i]; 6196 if (vd->vdev_guid == guid) 6197 return (vd); 6198 } 6199 } 6200 6201 return (NULL); 6202 } 6203 6204 void 6205 spa_upgrade(spa_t *spa, uint64_t version) 6206 { 6207 ASSERT(spa_writeable(spa)); 6208 6209 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6210 6211 /* 6212 * This should only be called for a non-faulted pool, and since a 6213 * future version would result in an unopenable pool, this shouldn't be 6214 * possible. 6215 */ 6216 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 6217 ASSERT(version >= spa->spa_uberblock.ub_version); 6218 6219 spa->spa_uberblock.ub_version = version; 6220 vdev_config_dirty(spa->spa_root_vdev); 6221 6222 spa_config_exit(spa, SCL_ALL, FTAG); 6223 6224 txg_wait_synced(spa_get_dsl(spa), 0); 6225 } 6226 6227 boolean_t 6228 spa_has_spare(spa_t *spa, uint64_t guid) 6229 { 6230 int i; 6231 uint64_t spareguid; 6232 spa_aux_vdev_t *sav = &spa->spa_spares; 6233 6234 for (i = 0; i < sav->sav_count; i++) 6235 if (sav->sav_vdevs[i]->vdev_guid == guid) 6236 return (B_TRUE); 6237 6238 for (i = 0; i < sav->sav_npending; i++) { 6239 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6240 &spareguid) == 0 && spareguid == guid) 6241 return (B_TRUE); 6242 } 6243 6244 return (B_FALSE); 6245 } 6246 6247 /* 6248 * Check if a pool has an active shared spare device. 6249 * Note: reference count of an active spare is 2, as a spare and as a replace 6250 */ 6251 static boolean_t 6252 spa_has_active_shared_spare(spa_t *spa) 6253 { 6254 int i, refcnt; 6255 uint64_t pool; 6256 spa_aux_vdev_t *sav = &spa->spa_spares; 6257 6258 for (i = 0; i < sav->sav_count; i++) { 6259 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6260 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6261 refcnt > 2) 6262 return (B_TRUE); 6263 } 6264 6265 return (B_FALSE); 6266 } 6267 6268 /* 6269 * Post a sysevent corresponding to the given event. The 'name' must be one of 6270 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6271 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6272 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6273 * or zdb as real changes. 6274 */ 6275 void 6276 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6277 { 6278 #ifdef _KERNEL 6279 sysevent_t *ev; 6280 sysevent_attr_list_t *attr = NULL; 6281 sysevent_value_t value; 6282 sysevent_id_t eid; 6283 6284 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6285 SE_SLEEP); 6286 6287 value.value_type = SE_DATA_TYPE_STRING; 6288 value.value.sv_string = spa_name(spa); 6289 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6290 goto done; 6291 6292 value.value_type = SE_DATA_TYPE_UINT64; 6293 value.value.sv_uint64 = spa_guid(spa); 6294 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6295 goto done; 6296 6297 if (vd) { 6298 value.value_type = SE_DATA_TYPE_UINT64; 6299 value.value.sv_uint64 = vd->vdev_guid; 6300 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6301 SE_SLEEP) != 0) 6302 goto done; 6303 6304 if (vd->vdev_path) { 6305 value.value_type = SE_DATA_TYPE_STRING; 6306 value.value.sv_string = vd->vdev_path; 6307 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6308 &value, SE_SLEEP) != 0) 6309 goto done; 6310 } 6311 } 6312 6313 if (sysevent_attach_attributes(ev, attr) != 0) 6314 goto done; 6315 attr = NULL; 6316 6317 (void) log_sysevent(ev, SE_SLEEP, &eid); 6318 6319 done: 6320 if (attr) 6321 sysevent_free_attr(attr); 6322 sysevent_free(ev); 6323 #endif 6324 } 6325