xref: /titanic_44/usr/src/uts/common/fs/zfs/spa.c (revision 4bac220845f606f60663ed6f3a2b88caa00ae87e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains all the routines used when modifying on-disk SPA state.
31  * This includes opening, importing, destroying, exporting a pool, and syncing a
32  * pool.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zio.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/zio_compress.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/unique.h>
52 #include <sys/dsl_pool.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/fs/zfs.h>
56 #include <sys/callb.h>
57 
58 /*
59  * ==========================================================================
60  * SPA state manipulation (open/create/destroy/import/export)
61  * ==========================================================================
62  */
63 
64 static int
65 spa_error_entry_compare(const void *a, const void *b)
66 {
67 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
68 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
69 	int ret;
70 
71 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
72 	    sizeof (zbookmark_t));
73 
74 	if (ret < 0)
75 		return (-1);
76 	else if (ret > 0)
77 		return (1);
78 	else
79 		return (0);
80 }
81 
82 /*
83  * Utility function which retrieves copies of the current logs and
84  * re-initializes them in the process.
85  */
86 void
87 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
88 {
89 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
90 
91 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
92 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
93 
94 	avl_create(&spa->spa_errlist_scrub,
95 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
96 	    offsetof(spa_error_entry_t, se_avl));
97 	avl_create(&spa->spa_errlist_last,
98 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
99 	    offsetof(spa_error_entry_t, se_avl));
100 }
101 
102 /*
103  * Activate an uninitialized pool.
104  */
105 static void
106 spa_activate(spa_t *spa)
107 {
108 	int t;
109 
110 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
111 
112 	spa->spa_state = POOL_STATE_ACTIVE;
113 
114 	spa->spa_normal_class = metaslab_class_create();
115 
116 	for (t = 0; t < ZIO_TYPES; t++) {
117 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
118 		    8, maxclsyspri, 50, INT_MAX,
119 		    TASKQ_PREPOPULATE);
120 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
121 		    8, maxclsyspri, 50, INT_MAX,
122 		    TASKQ_PREPOPULATE);
123 	}
124 
125 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
126 
127 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
128 	    offsetof(vdev_t, vdev_dirty_node));
129 
130 	txg_list_create(&spa->spa_vdev_txg_list,
131 	    offsetof(struct vdev, vdev_txg_node));
132 
133 	avl_create(&spa->spa_errlist_scrub,
134 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
135 	    offsetof(spa_error_entry_t, se_avl));
136 	avl_create(&spa->spa_errlist_last,
137 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
138 	    offsetof(spa_error_entry_t, se_avl));
139 }
140 
141 /*
142  * Opposite of spa_activate().
143  */
144 static void
145 spa_deactivate(spa_t *spa)
146 {
147 	int t;
148 
149 	ASSERT(spa->spa_sync_on == B_FALSE);
150 	ASSERT(spa->spa_dsl_pool == NULL);
151 	ASSERT(spa->spa_root_vdev == NULL);
152 
153 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
154 
155 	txg_list_destroy(&spa->spa_vdev_txg_list);
156 
157 	list_destroy(&spa->spa_dirty_list);
158 
159 	rw_destroy(&spa->spa_traverse_lock);
160 
161 	for (t = 0; t < ZIO_TYPES; t++) {
162 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
163 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
164 		spa->spa_zio_issue_taskq[t] = NULL;
165 		spa->spa_zio_intr_taskq[t] = NULL;
166 	}
167 
168 	metaslab_class_destroy(spa->spa_normal_class);
169 	spa->spa_normal_class = NULL;
170 
171 	/*
172 	 * If this was part of an import or the open otherwise failed, we may
173 	 * still have errors left in the queues.  Empty them just in case.
174 	 */
175 	spa_errlog_drain(spa);
176 
177 	avl_destroy(&spa->spa_errlist_scrub);
178 	avl_destroy(&spa->spa_errlist_last);
179 
180 	spa->spa_state = POOL_STATE_UNINITIALIZED;
181 }
182 
183 /*
184  * Verify a pool configuration, and construct the vdev tree appropriately.  This
185  * will create all the necessary vdevs in the appropriate layout, with each vdev
186  * in the CLOSED state.  This will prep the pool before open/creation/import.
187  * All vdev validation is done by the vdev_alloc() routine.
188  */
189 static int
190 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
191     uint_t id, int atype)
192 {
193 	nvlist_t **child;
194 	uint_t c, children;
195 	int error;
196 
197 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
198 		return (error);
199 
200 	if ((*vdp)->vdev_ops->vdev_op_leaf)
201 		return (0);
202 
203 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
204 	    &child, &children) != 0) {
205 		vdev_free(*vdp);
206 		*vdp = NULL;
207 		return (EINVAL);
208 	}
209 
210 	for (c = 0; c < children; c++) {
211 		vdev_t *vd;
212 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
213 		    atype)) != 0) {
214 			vdev_free(*vdp);
215 			*vdp = NULL;
216 			return (error);
217 		}
218 	}
219 
220 	ASSERT(*vdp != NULL);
221 
222 	return (0);
223 }
224 
225 /*
226  * Opposite of spa_load().
227  */
228 static void
229 spa_unload(spa_t *spa)
230 {
231 	int i;
232 
233 	/*
234 	 * Stop async tasks.
235 	 */
236 	spa_async_suspend(spa);
237 
238 	/*
239 	 * Stop syncing.
240 	 */
241 	if (spa->spa_sync_on) {
242 		txg_sync_stop(spa->spa_dsl_pool);
243 		spa->spa_sync_on = B_FALSE;
244 	}
245 
246 	/*
247 	 * Wait for any outstanding prefetch I/O to complete.
248 	 */
249 	spa_config_enter(spa, RW_WRITER, FTAG);
250 	spa_config_exit(spa, FTAG);
251 
252 	/*
253 	 * Close the dsl pool.
254 	 */
255 	if (spa->spa_dsl_pool) {
256 		dsl_pool_close(spa->spa_dsl_pool);
257 		spa->spa_dsl_pool = NULL;
258 	}
259 
260 	/*
261 	 * Close all vdevs.
262 	 */
263 	if (spa->spa_root_vdev)
264 		vdev_free(spa->spa_root_vdev);
265 	ASSERT(spa->spa_root_vdev == NULL);
266 
267 	for (i = 0; i < spa->spa_nspares; i++)
268 		vdev_free(spa->spa_spares[i]);
269 	if (spa->spa_spares) {
270 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
271 		spa->spa_spares = NULL;
272 	}
273 	if (spa->spa_sparelist) {
274 		nvlist_free(spa->spa_sparelist);
275 		spa->spa_sparelist = NULL;
276 	}
277 
278 	spa->spa_async_suspended = 0;
279 }
280 
281 /*
282  * Load (or re-load) the current list of vdevs describing the active spares for
283  * this pool.  When this is called, we have some form of basic information in
284  * 'spa_sparelist'.  We parse this into vdevs, try to open them, and then
285  * re-generate a more complete list including status information.
286  */
287 static void
288 spa_load_spares(spa_t *spa)
289 {
290 	nvlist_t **spares;
291 	uint_t nspares;
292 	int i;
293 
294 	/*
295 	 * First, close and free any existing spare vdevs.
296 	 */
297 	for (i = 0; i < spa->spa_nspares; i++) {
298 		vdev_close(spa->spa_spares[i]);
299 		vdev_free(spa->spa_spares[i]);
300 	}
301 	if (spa->spa_spares)
302 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
303 
304 	if (spa->spa_sparelist == NULL)
305 		nspares = 0;
306 	else
307 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
308 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
309 
310 	spa->spa_nspares = (int)nspares;
311 	spa->spa_spares = NULL;
312 
313 	if (nspares == 0)
314 		return;
315 
316 	/*
317 	 * Construct the array of vdevs, opening them to get status in the
318 	 * process.
319 	 */
320 	spa->spa_spares = kmem_alloc(nspares * sizeof (void *), KM_SLEEP);
321 	for (i = 0; i < spa->spa_nspares; i++) {
322 		vdev_t *vd;
323 
324 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
325 		    VDEV_ALLOC_SPARE) == 0);
326 		ASSERT(vd != NULL);
327 
328 		spa->spa_spares[i] = vd;
329 
330 		if (vdev_open(vd) != 0)
331 			continue;
332 
333 		vd->vdev_top = vd;
334 		(void) vdev_validate_spare(vd);
335 	}
336 
337 	/*
338 	 * Recompute the stashed list of spares, with status information
339 	 * this time.
340 	 */
341 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
342 	    DATA_TYPE_NVLIST_ARRAY) == 0);
343 
344 	spares = kmem_alloc(spa->spa_nspares * sizeof (void *), KM_SLEEP);
345 	for (i = 0; i < spa->spa_nspares; i++)
346 		spares[i] = vdev_config_generate(spa, spa->spa_spares[i],
347 		    B_TRUE, B_TRUE);
348 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
349 	    spares, spa->spa_nspares) == 0);
350 	for (i = 0; i < spa->spa_nspares; i++)
351 		nvlist_free(spares[i]);
352 	kmem_free(spares, spa->spa_nspares * sizeof (void *));
353 }
354 
355 static int
356 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
357 {
358 	dmu_buf_t *db;
359 	char *packed = NULL;
360 	size_t nvsize = 0;
361 	int error;
362 	*value = NULL;
363 
364 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
365 	nvsize = *(uint64_t *)db->db_data;
366 	dmu_buf_rele(db, FTAG);
367 
368 	packed = kmem_alloc(nvsize, KM_SLEEP);
369 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
370 	if (error == 0)
371 		error = nvlist_unpack(packed, nvsize, value, 0);
372 	kmem_free(packed, nvsize);
373 
374 	return (error);
375 }
376 
377 /*
378  * Load an existing storage pool, using the pool's builtin spa_config as a
379  * source of configuration information.
380  */
381 static int
382 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
383 {
384 	int error = 0;
385 	nvlist_t *nvroot = NULL;
386 	vdev_t *rvd;
387 	uberblock_t *ub = &spa->spa_uberblock;
388 	uint64_t config_cache_txg = spa->spa_config_txg;
389 	uint64_t pool_guid;
390 	uint64_t version;
391 	zio_t *zio;
392 
393 	spa->spa_load_state = state;
394 
395 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
396 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
397 		error = EINVAL;
398 		goto out;
399 	}
400 
401 	/*
402 	 * Versioning wasn't explicitly added to the label until later, so if
403 	 * it's not present treat it as the initial version.
404 	 */
405 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
406 		version = ZFS_VERSION_INITIAL;
407 
408 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
409 	    &spa->spa_config_txg);
410 
411 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
412 	    spa_guid_exists(pool_guid, 0)) {
413 		error = EEXIST;
414 		goto out;
415 	}
416 
417 	spa->spa_load_guid = pool_guid;
418 
419 	/*
420 	 * Parse the configuration into a vdev tree.  We explicitly set the
421 	 * value that will be returned by spa_version() since parsing the
422 	 * configuration requires knowing the version number.
423 	 */
424 	spa_config_enter(spa, RW_WRITER, FTAG);
425 	spa->spa_ubsync.ub_version = version;
426 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
427 	spa_config_exit(spa, FTAG);
428 
429 	if (error != 0)
430 		goto out;
431 
432 	ASSERT(spa->spa_root_vdev == rvd);
433 	ASSERT(spa_guid(spa) == pool_guid);
434 
435 	/*
436 	 * Try to open all vdevs, loading each label in the process.
437 	 */
438 	if (vdev_open(rvd) != 0) {
439 		error = ENXIO;
440 		goto out;
441 	}
442 
443 	/*
444 	 * Validate the labels for all leaf vdevs.  We need to grab the config
445 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
446 	 * flag.
447 	 */
448 	spa_config_enter(spa, RW_READER, FTAG);
449 	error = vdev_validate(rvd);
450 	spa_config_exit(spa, FTAG);
451 
452 	if (error != 0) {
453 		error = EBADF;
454 		goto out;
455 	}
456 
457 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
458 		error = ENXIO;
459 		goto out;
460 	}
461 
462 	/*
463 	 * Find the best uberblock.
464 	 */
465 	bzero(ub, sizeof (uberblock_t));
466 
467 	zio = zio_root(spa, NULL, NULL,
468 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
469 	vdev_uberblock_load(zio, rvd, ub);
470 	error = zio_wait(zio);
471 
472 	/*
473 	 * If we weren't able to find a single valid uberblock, return failure.
474 	 */
475 	if (ub->ub_txg == 0) {
476 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
477 		    VDEV_AUX_CORRUPT_DATA);
478 		error = ENXIO;
479 		goto out;
480 	}
481 
482 	/*
483 	 * If the pool is newer than the code, we can't open it.
484 	 */
485 	if (ub->ub_version > ZFS_VERSION) {
486 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
487 		    VDEV_AUX_VERSION_NEWER);
488 		error = ENOTSUP;
489 		goto out;
490 	}
491 
492 	/*
493 	 * If the vdev guid sum doesn't match the uberblock, we have an
494 	 * incomplete configuration.
495 	 */
496 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
497 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
498 		    VDEV_AUX_BAD_GUID_SUM);
499 		error = ENXIO;
500 		goto out;
501 	}
502 
503 	/*
504 	 * Initialize internal SPA structures.
505 	 */
506 	spa->spa_state = POOL_STATE_ACTIVE;
507 	spa->spa_ubsync = spa->spa_uberblock;
508 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
509 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
510 	if (error) {
511 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
512 		    VDEV_AUX_CORRUPT_DATA);
513 		goto out;
514 	}
515 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
516 
517 	if (zap_lookup(spa->spa_meta_objset,
518 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
519 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
520 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
521 		    VDEV_AUX_CORRUPT_DATA);
522 		error = EIO;
523 		goto out;
524 	}
525 
526 	if (!mosconfig) {
527 		nvlist_t *newconfig;
528 
529 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
530 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
531 			    VDEV_AUX_CORRUPT_DATA);
532 			error = EIO;
533 			goto out;
534 		}
535 
536 		spa_config_set(spa, newconfig);
537 		spa_unload(spa);
538 		spa_deactivate(spa);
539 		spa_activate(spa);
540 
541 		return (spa_load(spa, newconfig, state, B_TRUE));
542 	}
543 
544 	if (zap_lookup(spa->spa_meta_objset,
545 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
546 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
547 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
548 		    VDEV_AUX_CORRUPT_DATA);
549 		error = EIO;
550 		goto out;
551 	}
552 
553 	/*
554 	 * Load the bit that tells us to use the new accounting function
555 	 * (raid-z deflation).  If we have an older pool, this will not
556 	 * be present.
557 	 */
558 	error = zap_lookup(spa->spa_meta_objset,
559 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
560 	    sizeof (uint64_t), 1, &spa->spa_deflate);
561 	if (error != 0 && error != ENOENT) {
562 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
563 		    VDEV_AUX_CORRUPT_DATA);
564 		error = EIO;
565 		goto out;
566 	}
567 
568 	/*
569 	 * Load the persistent error log.  If we have an older pool, this will
570 	 * not be present.
571 	 */
572 	error = zap_lookup(spa->spa_meta_objset,
573 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
574 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
575 	if (error != 0 && error != ENOENT) {
576 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
577 		    VDEV_AUX_CORRUPT_DATA);
578 		error = EIO;
579 		goto out;
580 	}
581 
582 	error = zap_lookup(spa->spa_meta_objset,
583 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
584 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
585 	if (error != 0 && error != ENOENT) {
586 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
587 		    VDEV_AUX_CORRUPT_DATA);
588 		error = EIO;
589 		goto out;
590 	}
591 
592 	/*
593 	 * Load any hot spares for this pool.
594 	 */
595 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
596 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares_object);
597 	if (error != 0 && error != ENOENT) {
598 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
599 		    VDEV_AUX_CORRUPT_DATA);
600 		error = EIO;
601 		goto out;
602 	}
603 	if (error == 0) {
604 		ASSERT(spa_version(spa) >= ZFS_VERSION_SPARES);
605 		if (load_nvlist(spa, spa->spa_spares_object,
606 		    &spa->spa_sparelist) != 0) {
607 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
608 			    VDEV_AUX_CORRUPT_DATA);
609 			error = EIO;
610 			goto out;
611 		}
612 
613 		spa_config_enter(spa, RW_WRITER, FTAG);
614 		spa_load_spares(spa);
615 		spa_config_exit(spa, FTAG);
616 	}
617 
618 	/*
619 	 * Load the vdev state for all toplevel vdevs.
620 	 */
621 	vdev_load(rvd);
622 
623 	/*
624 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
625 	 */
626 	spa_config_enter(spa, RW_WRITER, FTAG);
627 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
628 	spa_config_exit(spa, FTAG);
629 
630 	/*
631 	 * Check the state of the root vdev.  If it can't be opened, it
632 	 * indicates one or more toplevel vdevs are faulted.
633 	 */
634 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
635 		error = ENXIO;
636 		goto out;
637 	}
638 
639 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
640 		dmu_tx_t *tx;
641 		int need_update = B_FALSE;
642 		int c;
643 
644 		/*
645 		 * Claim log blocks that haven't been committed yet.
646 		 * This must all happen in a single txg.
647 		 */
648 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
649 		    spa_first_txg(spa));
650 		(void) dmu_objset_find(spa->spa_name,
651 		    zil_claim, tx, DS_FIND_CHILDREN);
652 		dmu_tx_commit(tx);
653 
654 		spa->spa_sync_on = B_TRUE;
655 		txg_sync_start(spa->spa_dsl_pool);
656 
657 		/*
658 		 * Wait for all claims to sync.
659 		 */
660 		txg_wait_synced(spa->spa_dsl_pool, 0);
661 
662 		/*
663 		 * If the config cache is stale, or we have uninitialized
664 		 * metaslabs (see spa_vdev_add()), then update the config.
665 		 */
666 		if (config_cache_txg != spa->spa_config_txg ||
667 		    state == SPA_LOAD_IMPORT)
668 			need_update = B_TRUE;
669 
670 		for (c = 0; c < rvd->vdev_children; c++)
671 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
672 				need_update = B_TRUE;
673 
674 		/*
675 		 * Update the config cache asychronously in case we're the
676 		 * root pool, in which case the config cache isn't writable yet.
677 		 */
678 		if (need_update)
679 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
680 	}
681 
682 	error = 0;
683 out:
684 	if (error && error != EBADF)
685 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
686 	spa->spa_load_state = SPA_LOAD_NONE;
687 	spa->spa_ena = 0;
688 
689 	return (error);
690 }
691 
692 /*
693  * Pool Open/Import
694  *
695  * The import case is identical to an open except that the configuration is sent
696  * down from userland, instead of grabbed from the configuration cache.  For the
697  * case of an open, the pool configuration will exist in the
698  * POOL_STATE_UNITIALIZED state.
699  *
700  * The stats information (gen/count/ustats) is used to gather vdev statistics at
701  * the same time open the pool, without having to keep around the spa_t in some
702  * ambiguous state.
703  */
704 static int
705 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
706 {
707 	spa_t *spa;
708 	int error;
709 	int loaded = B_FALSE;
710 	int locked = B_FALSE;
711 
712 	*spapp = NULL;
713 
714 	/*
715 	 * As disgusting as this is, we need to support recursive calls to this
716 	 * function because dsl_dir_open() is called during spa_load(), and ends
717 	 * up calling spa_open() again.  The real fix is to figure out how to
718 	 * avoid dsl_dir_open() calling this in the first place.
719 	 */
720 	if (mutex_owner(&spa_namespace_lock) != curthread) {
721 		mutex_enter(&spa_namespace_lock);
722 		locked = B_TRUE;
723 	}
724 
725 	if ((spa = spa_lookup(pool)) == NULL) {
726 		if (locked)
727 			mutex_exit(&spa_namespace_lock);
728 		return (ENOENT);
729 	}
730 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
731 
732 		spa_activate(spa);
733 
734 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
735 
736 		if (error == EBADF) {
737 			/*
738 			 * If vdev_validate() returns failure (indicated by
739 			 * EBADF), it indicates that one of the vdevs indicates
740 			 * that the pool has been exported or destroyed.  If
741 			 * this is the case, the config cache is out of sync and
742 			 * we should remove the pool from the namespace.
743 			 */
744 			zfs_post_ok(spa, NULL);
745 			spa_unload(spa);
746 			spa_deactivate(spa);
747 			spa_remove(spa);
748 			spa_config_sync();
749 			if (locked)
750 				mutex_exit(&spa_namespace_lock);
751 			return (ENOENT);
752 		}
753 
754 		if (error) {
755 			/*
756 			 * We can't open the pool, but we still have useful
757 			 * information: the state of each vdev after the
758 			 * attempted vdev_open().  Return this to the user.
759 			 */
760 			if (config != NULL && spa->spa_root_vdev != NULL) {
761 				spa_config_enter(spa, RW_READER, FTAG);
762 				*config = spa_config_generate(spa, NULL, -1ULL,
763 				    B_TRUE);
764 				spa_config_exit(spa, FTAG);
765 			}
766 			spa_unload(spa);
767 			spa_deactivate(spa);
768 			spa->spa_last_open_failed = B_TRUE;
769 			if (locked)
770 				mutex_exit(&spa_namespace_lock);
771 			*spapp = NULL;
772 			return (error);
773 		} else {
774 			zfs_post_ok(spa, NULL);
775 			spa->spa_last_open_failed = B_FALSE;
776 		}
777 
778 		loaded = B_TRUE;
779 	}
780 
781 	spa_open_ref(spa, tag);
782 	if (locked)
783 		mutex_exit(&spa_namespace_lock);
784 
785 	*spapp = spa;
786 
787 	if (config != NULL) {
788 		spa_config_enter(spa, RW_READER, FTAG);
789 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
790 		spa_config_exit(spa, FTAG);
791 	}
792 
793 	/*
794 	 * If we just loaded the pool, resilver anything that's out of date.
795 	 */
796 	if (loaded && (spa_mode & FWRITE))
797 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
798 
799 	return (0);
800 }
801 
802 int
803 spa_open(const char *name, spa_t **spapp, void *tag)
804 {
805 	return (spa_open_common(name, spapp, tag, NULL));
806 }
807 
808 /*
809  * Lookup the given spa_t, incrementing the inject count in the process,
810  * preventing it from being exported or destroyed.
811  */
812 spa_t *
813 spa_inject_addref(char *name)
814 {
815 	spa_t *spa;
816 
817 	mutex_enter(&spa_namespace_lock);
818 	if ((spa = spa_lookup(name)) == NULL) {
819 		mutex_exit(&spa_namespace_lock);
820 		return (NULL);
821 	}
822 	spa->spa_inject_ref++;
823 	mutex_exit(&spa_namespace_lock);
824 
825 	return (spa);
826 }
827 
828 void
829 spa_inject_delref(spa_t *spa)
830 {
831 	mutex_enter(&spa_namespace_lock);
832 	spa->spa_inject_ref--;
833 	mutex_exit(&spa_namespace_lock);
834 }
835 
836 static void
837 spa_add_spares(spa_t *spa, nvlist_t *config)
838 {
839 	nvlist_t **spares;
840 	uint_t i, nspares;
841 	nvlist_t *nvroot;
842 	uint64_t guid;
843 	vdev_stat_t *vs;
844 	uint_t vsc;
845 
846 	if (spa->spa_nspares == 0)
847 		return;
848 
849 	VERIFY(nvlist_lookup_nvlist(config,
850 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
851 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
852 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
853 	if (nspares != 0) {
854 		VERIFY(nvlist_add_nvlist_array(nvroot,
855 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
856 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
857 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
858 
859 		/*
860 		 * Go through and find any spares which have since been
861 		 * repurposed as an active spare.  If this is the case, update
862 		 * their status appropriately.
863 		 */
864 		for (i = 0; i < nspares; i++) {
865 			VERIFY(nvlist_lookup_uint64(spares[i],
866 			    ZPOOL_CONFIG_GUID, &guid) == 0);
867 			if (spa_spare_inuse(guid)) {
868 				VERIFY(nvlist_lookup_uint64_array(
869 				    spares[i], ZPOOL_CONFIG_STATS,
870 				    (uint64_t **)&vs, &vsc) == 0);
871 				vs->vs_state = VDEV_STATE_CANT_OPEN;
872 				vs->vs_aux = VDEV_AUX_SPARED;
873 			}
874 		}
875 	}
876 }
877 
878 int
879 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
880 {
881 	int error;
882 	spa_t *spa;
883 
884 	*config = NULL;
885 	error = spa_open_common(name, &spa, FTAG, config);
886 
887 	if (spa && *config != NULL) {
888 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
889 		    spa_get_errlog_size(spa)) == 0);
890 
891 		spa_add_spares(spa, *config);
892 	}
893 
894 	/*
895 	 * We want to get the alternate root even for faulted pools, so we cheat
896 	 * and call spa_lookup() directly.
897 	 */
898 	if (altroot) {
899 		if (spa == NULL) {
900 			mutex_enter(&spa_namespace_lock);
901 			spa = spa_lookup(name);
902 			if (spa)
903 				spa_altroot(spa, altroot, buflen);
904 			else
905 				altroot[0] = '\0';
906 			spa = NULL;
907 			mutex_exit(&spa_namespace_lock);
908 		} else {
909 			spa_altroot(spa, altroot, buflen);
910 		}
911 	}
912 
913 	if (spa != NULL)
914 		spa_close(spa, FTAG);
915 
916 	return (error);
917 }
918 
919 /*
920  * Validate that the 'spares' array is well formed.  We must have an array of
921  * nvlists, each which describes a valid leaf vdev.
922  */
923 static int
924 spa_validate_spares(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
925 {
926 	nvlist_t **spares;
927 	uint_t i, nspares;
928 	vdev_t *vd;
929 	int error;
930 
931 	/*
932 	 * It's acceptable to have no spares specified.
933 	 */
934 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
935 	    &spares, &nspares) != 0)
936 		return (0);
937 
938 	if (nspares == 0)
939 		return (EINVAL);
940 
941 	/*
942 	 * Make sure the pool is formatted with a version that supports hot
943 	 * spares.
944 	 */
945 	if (spa_version(spa) < ZFS_VERSION_SPARES)
946 		return (ENOTSUP);
947 
948 	for (i = 0; i < nspares; i++) {
949 		if ((error = spa_config_parse(spa, &vd, spares[i], NULL, 0,
950 		    mode)) != 0)
951 			return (error);
952 
953 		if (!vd->vdev_ops->vdev_op_leaf) {
954 			vdev_free(vd);
955 			return (EINVAL);
956 		}
957 
958 		if ((error = vdev_open(vd)) != 0) {
959 			vdev_free(vd);
960 			return (error);
961 		}
962 
963 		vd->vdev_top = vd;
964 		if ((error = vdev_label_spare(vd, crtxg)) != 0) {
965 			vdev_free(vd);
966 			return (error);
967 		}
968 
969 		VERIFY(nvlist_add_uint64(spares[i], ZPOOL_CONFIG_GUID,
970 		    vd->vdev_guid) == 0);
971 
972 		vdev_free(vd);
973 	}
974 
975 	return (0);
976 }
977 
978 /*
979  * Pool Creation
980  */
981 int
982 spa_create(const char *pool, nvlist_t *nvroot, const char *altroot)
983 {
984 	spa_t *spa;
985 	vdev_t *rvd;
986 	dsl_pool_t *dp;
987 	dmu_tx_t *tx;
988 	int c, error = 0;
989 	uint64_t txg = TXG_INITIAL;
990 	nvlist_t **spares;
991 	uint_t nspares;
992 
993 	/*
994 	 * If this pool already exists, return failure.
995 	 */
996 	mutex_enter(&spa_namespace_lock);
997 	if (spa_lookup(pool) != NULL) {
998 		mutex_exit(&spa_namespace_lock);
999 		return (EEXIST);
1000 	}
1001 
1002 	/*
1003 	 * Allocate a new spa_t structure.
1004 	 */
1005 	spa = spa_add(pool, altroot);
1006 	spa_activate(spa);
1007 
1008 	spa->spa_uberblock.ub_txg = txg - 1;
1009 	spa->spa_uberblock.ub_version = ZFS_VERSION;
1010 	spa->spa_ubsync = spa->spa_uberblock;
1011 
1012 	/*
1013 	 * Create the root vdev.
1014 	 */
1015 	spa_config_enter(spa, RW_WRITER, FTAG);
1016 
1017 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1018 
1019 	ASSERT(error != 0 || rvd != NULL);
1020 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1021 
1022 	if (error == 0 && rvd->vdev_children == 0)
1023 		error = EINVAL;
1024 
1025 	if (error == 0 &&
1026 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1027 	    (error = spa_validate_spares(spa, nvroot, txg,
1028 	    VDEV_ALLOC_ADD)) == 0) {
1029 		for (c = 0; c < rvd->vdev_children; c++)
1030 			vdev_init(rvd->vdev_child[c], txg);
1031 		vdev_config_dirty(rvd);
1032 	}
1033 
1034 	spa_config_exit(spa, FTAG);
1035 
1036 	if (error != 0) {
1037 		spa_unload(spa);
1038 		spa_deactivate(spa);
1039 		spa_remove(spa);
1040 		mutex_exit(&spa_namespace_lock);
1041 		return (error);
1042 	}
1043 
1044 	/*
1045 	 * Get the list of spares, if specified.
1046 	 */
1047 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1048 	    &spares, &nspares) == 0) {
1049 		VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME,
1050 		    KM_SLEEP) == 0);
1051 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1052 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1053 		spa_config_enter(spa, RW_WRITER, FTAG);
1054 		spa_load_spares(spa);
1055 		spa_config_exit(spa, FTAG);
1056 		spa->spa_sync_spares = B_TRUE;
1057 	}
1058 
1059 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
1060 	spa->spa_meta_objset = dp->dp_meta_objset;
1061 
1062 	tx = dmu_tx_create_assigned(dp, txg);
1063 
1064 	/*
1065 	 * Create the pool config object.
1066 	 */
1067 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1068 	    DMU_OT_PACKED_NVLIST, 1 << 14,
1069 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1070 
1071 	if (zap_add(spa->spa_meta_objset,
1072 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1073 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1074 		cmn_err(CE_PANIC, "failed to add pool config");
1075 	}
1076 
1077 	/* Newly created pools are always deflated. */
1078 	spa->spa_deflate = TRUE;
1079 	if (zap_add(spa->spa_meta_objset,
1080 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1081 	    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
1082 		cmn_err(CE_PANIC, "failed to add deflate");
1083 	}
1084 
1085 	/*
1086 	 * Create the deferred-free bplist object.  Turn off compression
1087 	 * because sync-to-convergence takes longer if the blocksize
1088 	 * keeps changing.
1089 	 */
1090 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
1091 	    1 << 14, tx);
1092 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
1093 	    ZIO_COMPRESS_OFF, tx);
1094 
1095 	if (zap_add(spa->spa_meta_objset,
1096 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1097 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
1098 		cmn_err(CE_PANIC, "failed to add bplist");
1099 	}
1100 
1101 	dmu_tx_commit(tx);
1102 
1103 	spa->spa_sync_on = B_TRUE;
1104 	txg_sync_start(spa->spa_dsl_pool);
1105 
1106 	/*
1107 	 * We explicitly wait for the first transaction to complete so that our
1108 	 * bean counters are appropriately updated.
1109 	 */
1110 	txg_wait_synced(spa->spa_dsl_pool, txg);
1111 
1112 	spa_config_sync();
1113 
1114 	mutex_exit(&spa_namespace_lock);
1115 
1116 	return (0);
1117 }
1118 
1119 /*
1120  * Import the given pool into the system.  We set up the necessary spa_t and
1121  * then call spa_load() to do the dirty work.
1122  */
1123 int
1124 spa_import(const char *pool, nvlist_t *config, const char *altroot)
1125 {
1126 	spa_t *spa;
1127 	int error;
1128 	nvlist_t *nvroot;
1129 	nvlist_t **spares;
1130 	uint_t nspares;
1131 
1132 	if (!(spa_mode & FWRITE))
1133 		return (EROFS);
1134 
1135 	/*
1136 	 * If a pool with this name exists, return failure.
1137 	 */
1138 	mutex_enter(&spa_namespace_lock);
1139 	if (spa_lookup(pool) != NULL) {
1140 		mutex_exit(&spa_namespace_lock);
1141 		return (EEXIST);
1142 	}
1143 
1144 	/*
1145 	 * Create and initialize the spa structure.
1146 	 */
1147 	spa = spa_add(pool, altroot);
1148 	spa_activate(spa);
1149 
1150 	/*
1151 	 * Pass off the heavy lifting to spa_load().
1152 	 * Pass TRUE for mosconfig because the user-supplied config
1153 	 * is actually the one to trust when doing an import.
1154 	 */
1155 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
1156 
1157 	spa_config_enter(spa, RW_WRITER, FTAG);
1158 	/*
1159 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
1160 	 * and conflicts with spa_has_spare().
1161 	 */
1162 	if (spa->spa_sparelist) {
1163 		nvlist_free(spa->spa_sparelist);
1164 		spa->spa_sparelist = NULL;
1165 		spa_load_spares(spa);
1166 	}
1167 
1168 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1169 	    &nvroot) == 0);
1170 	if (error == 0)
1171 		error = spa_validate_spares(spa, nvroot, -1ULL,
1172 		    VDEV_ALLOC_SPARE);
1173 	spa_config_exit(spa, FTAG);
1174 
1175 	if (error != 0) {
1176 		spa_unload(spa);
1177 		spa_deactivate(spa);
1178 		spa_remove(spa);
1179 		mutex_exit(&spa_namespace_lock);
1180 		return (error);
1181 	}
1182 
1183 	/*
1184 	 * Override any spares as specified by the user, as these may have
1185 	 * correct device names/devids, etc.
1186 	 */
1187 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1188 	    &spares, &nspares) == 0) {
1189 		if (spa->spa_sparelist)
1190 			VERIFY(nvlist_remove(spa->spa_sparelist,
1191 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1192 		else
1193 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1194 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1195 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1196 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1197 		spa_config_enter(spa, RW_WRITER, FTAG);
1198 		spa_load_spares(spa);
1199 		spa_config_exit(spa, FTAG);
1200 		spa->spa_sync_spares = B_TRUE;
1201 	}
1202 
1203 	/*
1204 	 * Update the config cache to include the newly-imported pool.
1205 	 */
1206 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1207 
1208 	mutex_exit(&spa_namespace_lock);
1209 
1210 	/*
1211 	 * Resilver anything that's out of date.
1212 	 */
1213 	if (spa_mode & FWRITE)
1214 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1215 
1216 	return (0);
1217 }
1218 
1219 /*
1220  * This (illegal) pool name is used when temporarily importing a spa_t in order
1221  * to get the vdev stats associated with the imported devices.
1222  */
1223 #define	TRYIMPORT_NAME	"$import"
1224 
1225 nvlist_t *
1226 spa_tryimport(nvlist_t *tryconfig)
1227 {
1228 	nvlist_t *config = NULL;
1229 	char *poolname;
1230 	spa_t *spa;
1231 	uint64_t state;
1232 
1233 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
1234 		return (NULL);
1235 
1236 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
1237 		return (NULL);
1238 
1239 	/*
1240 	 * Create and initialize the spa structure.
1241 	 */
1242 	mutex_enter(&spa_namespace_lock);
1243 	spa = spa_add(TRYIMPORT_NAME, NULL);
1244 	spa_activate(spa);
1245 
1246 	/*
1247 	 * Pass off the heavy lifting to spa_load().
1248 	 * Pass TRUE for mosconfig because the user-supplied config
1249 	 * is actually the one to trust when doing an import.
1250 	 */
1251 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
1252 
1253 	/*
1254 	 * If 'tryconfig' was at least parsable, return the current config.
1255 	 */
1256 	if (spa->spa_root_vdev != NULL) {
1257 		spa_config_enter(spa, RW_READER, FTAG);
1258 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1259 		spa_config_exit(spa, FTAG);
1260 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
1261 		    poolname) == 0);
1262 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1263 		    state) == 0);
1264 
1265 		/*
1266 		 * Add the list of hot spares.
1267 		 */
1268 		spa_add_spares(spa, config);
1269 	}
1270 
1271 	spa_unload(spa);
1272 	spa_deactivate(spa);
1273 	spa_remove(spa);
1274 	mutex_exit(&spa_namespace_lock);
1275 
1276 	return (config);
1277 }
1278 
1279 /*
1280  * Pool export/destroy
1281  *
1282  * The act of destroying or exporting a pool is very simple.  We make sure there
1283  * is no more pending I/O and any references to the pool are gone.  Then, we
1284  * update the pool state and sync all the labels to disk, removing the
1285  * configuration from the cache afterwards.
1286  */
1287 static int
1288 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
1289 {
1290 	spa_t *spa;
1291 
1292 	if (oldconfig)
1293 		*oldconfig = NULL;
1294 
1295 	if (!(spa_mode & FWRITE))
1296 		return (EROFS);
1297 
1298 	mutex_enter(&spa_namespace_lock);
1299 	if ((spa = spa_lookup(pool)) == NULL) {
1300 		mutex_exit(&spa_namespace_lock);
1301 		return (ENOENT);
1302 	}
1303 
1304 	/*
1305 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
1306 	 * reacquire the namespace lock, and see if we can export.
1307 	 */
1308 	spa_open_ref(spa, FTAG);
1309 	mutex_exit(&spa_namespace_lock);
1310 	spa_async_suspend(spa);
1311 	mutex_enter(&spa_namespace_lock);
1312 	spa_close(spa, FTAG);
1313 
1314 	/*
1315 	 * The pool will be in core if it's openable,
1316 	 * in which case we can modify its state.
1317 	 */
1318 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
1319 		/*
1320 		 * Objsets may be open only because they're dirty, so we
1321 		 * have to force it to sync before checking spa_refcnt.
1322 		 */
1323 		spa_scrub_suspend(spa);
1324 		txg_wait_synced(spa->spa_dsl_pool, 0);
1325 
1326 		/*
1327 		 * A pool cannot be exported or destroyed if there are active
1328 		 * references.  If we are resetting a pool, allow references by
1329 		 * fault injection handlers.
1330 		 */
1331 		if (!spa_refcount_zero(spa) ||
1332 		    (spa->spa_inject_ref != 0 &&
1333 		    new_state != POOL_STATE_UNINITIALIZED)) {
1334 			spa_scrub_resume(spa);
1335 			spa_async_resume(spa);
1336 			mutex_exit(&spa_namespace_lock);
1337 			return (EBUSY);
1338 		}
1339 
1340 		spa_scrub_resume(spa);
1341 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
1342 
1343 		/*
1344 		 * We want this to be reflected on every label,
1345 		 * so mark them all dirty.  spa_unload() will do the
1346 		 * final sync that pushes these changes out.
1347 		 */
1348 		if (new_state != POOL_STATE_UNINITIALIZED) {
1349 			spa_config_enter(spa, RW_WRITER, FTAG);
1350 			spa->spa_state = new_state;
1351 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
1352 			vdev_config_dirty(spa->spa_root_vdev);
1353 			spa_config_exit(spa, FTAG);
1354 		}
1355 	}
1356 
1357 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1358 		spa_unload(spa);
1359 		spa_deactivate(spa);
1360 	}
1361 
1362 	if (oldconfig && spa->spa_config)
1363 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
1364 
1365 	if (new_state != POOL_STATE_UNINITIALIZED) {
1366 		spa_remove(spa);
1367 		spa_config_sync();
1368 	}
1369 	mutex_exit(&spa_namespace_lock);
1370 
1371 	return (0);
1372 }
1373 
1374 /*
1375  * Destroy a storage pool.
1376  */
1377 int
1378 spa_destroy(char *pool)
1379 {
1380 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
1381 }
1382 
1383 /*
1384  * Export a storage pool.
1385  */
1386 int
1387 spa_export(char *pool, nvlist_t **oldconfig)
1388 {
1389 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
1390 }
1391 
1392 /*
1393  * Similar to spa_export(), this unloads the spa_t without actually removing it
1394  * from the namespace in any way.
1395  */
1396 int
1397 spa_reset(char *pool)
1398 {
1399 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
1400 }
1401 
1402 
1403 /*
1404  * ==========================================================================
1405  * Device manipulation
1406  * ==========================================================================
1407  */
1408 
1409 /*
1410  * Add capacity to a storage pool.
1411  */
1412 int
1413 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1414 {
1415 	uint64_t txg;
1416 	int c, error;
1417 	vdev_t *rvd = spa->spa_root_vdev;
1418 	vdev_t *vd, *tvd;
1419 	nvlist_t **spares;
1420 	uint_t i, nspares;
1421 
1422 	txg = spa_vdev_enter(spa);
1423 
1424 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
1425 	    VDEV_ALLOC_ADD)) != 0)
1426 		return (spa_vdev_exit(spa, NULL, txg, error));
1427 
1428 	if ((error = spa_validate_spares(spa, nvroot, txg,
1429 	    VDEV_ALLOC_ADD)) != 0)
1430 		return (spa_vdev_exit(spa, vd, txg, error));
1431 
1432 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1433 	    &spares, &nspares) != 0)
1434 		nspares = 0;
1435 
1436 	if (vd->vdev_children == 0 && nspares == 0)
1437 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1438 
1439 	if (vd->vdev_children != 0) {
1440 		if ((error = vdev_create(vd, txg, B_FALSE)) != 0)
1441 			return (spa_vdev_exit(spa, vd, txg, error));
1442 
1443 		/*
1444 		 * Transfer each new top-level vdev from vd to rvd.
1445 		 */
1446 		for (c = 0; c < vd->vdev_children; c++) {
1447 			tvd = vd->vdev_child[c];
1448 			vdev_remove_child(vd, tvd);
1449 			tvd->vdev_id = rvd->vdev_children;
1450 			vdev_add_child(rvd, tvd);
1451 			vdev_config_dirty(tvd);
1452 		}
1453 	}
1454 
1455 	if (nspares != 0) {
1456 		if (spa->spa_sparelist != NULL) {
1457 			nvlist_t **oldspares;
1458 			uint_t oldnspares;
1459 			nvlist_t **newspares;
1460 
1461 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
1462 			    ZPOOL_CONFIG_SPARES, &oldspares, &oldnspares) == 0);
1463 
1464 			newspares = kmem_alloc(sizeof (void *) *
1465 			    (nspares + oldnspares), KM_SLEEP);
1466 			for (i = 0; i < oldnspares; i++)
1467 				VERIFY(nvlist_dup(oldspares[i],
1468 				    &newspares[i], KM_SLEEP) == 0);
1469 			for (i = 0; i < nspares; i++)
1470 				VERIFY(nvlist_dup(spares[i],
1471 				    &newspares[i + oldnspares],
1472 				    KM_SLEEP) == 0);
1473 
1474 			VERIFY(nvlist_remove(spa->spa_sparelist,
1475 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1476 
1477 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1478 			    ZPOOL_CONFIG_SPARES, newspares,
1479 			    nspares + oldnspares) == 0);
1480 			for (i = 0; i < oldnspares + nspares; i++)
1481 				nvlist_free(newspares[i]);
1482 			kmem_free(newspares, (oldnspares + nspares) *
1483 			    sizeof (void *));
1484 		} else {
1485 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1486 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1487 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1488 			    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1489 		}
1490 
1491 		spa_load_spares(spa);
1492 		spa->spa_sync_spares = B_TRUE;
1493 	}
1494 
1495 	/*
1496 	 * We have to be careful when adding new vdevs to an existing pool.
1497 	 * If other threads start allocating from these vdevs before we
1498 	 * sync the config cache, and we lose power, then upon reboot we may
1499 	 * fail to open the pool because there are DVAs that the config cache
1500 	 * can't translate.  Therefore, we first add the vdevs without
1501 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
1502 	 * and then let spa_config_update() initialize the new metaslabs.
1503 	 *
1504 	 * spa_load() checks for added-but-not-initialized vdevs, so that
1505 	 * if we lose power at any point in this sequence, the remaining
1506 	 * steps will be completed the next time we load the pool.
1507 	 */
1508 	(void) spa_vdev_exit(spa, vd, txg, 0);
1509 
1510 	mutex_enter(&spa_namespace_lock);
1511 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1512 	mutex_exit(&spa_namespace_lock);
1513 
1514 	return (0);
1515 }
1516 
1517 /*
1518  * Attach a device to a mirror.  The arguments are the path to any device
1519  * in the mirror, and the nvroot for the new device.  If the path specifies
1520  * a device that is not mirrored, we automatically insert the mirror vdev.
1521  *
1522  * If 'replacing' is specified, the new device is intended to replace the
1523  * existing device; in this case the two devices are made into their own
1524  * mirror using the 'replacing' vdev, which is functionally idendical to
1525  * the mirror vdev (it actually reuses all the same ops) but has a few
1526  * extra rules: you can't attach to it after it's been created, and upon
1527  * completion of resilvering, the first disk (the one being replaced)
1528  * is automatically detached.
1529  */
1530 int
1531 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
1532 {
1533 	uint64_t txg, open_txg;
1534 	int error;
1535 	vdev_t *rvd = spa->spa_root_vdev;
1536 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
1537 	vdev_ops_t *pvops;
1538 
1539 	txg = spa_vdev_enter(spa);
1540 
1541 	oldvd = vdev_lookup_by_guid(rvd, guid);
1542 
1543 	if (oldvd == NULL)
1544 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1545 
1546 	if (!oldvd->vdev_ops->vdev_op_leaf)
1547 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1548 
1549 	pvd = oldvd->vdev_parent;
1550 
1551 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
1552 	    VDEV_ALLOC_ADD)) != 0 || newrootvd->vdev_children != 1)
1553 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1554 
1555 	newvd = newrootvd->vdev_child[0];
1556 
1557 	if (!newvd->vdev_ops->vdev_op_leaf)
1558 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1559 
1560 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
1561 		return (spa_vdev_exit(spa, newrootvd, txg, error));
1562 
1563 	if (!replacing) {
1564 		/*
1565 		 * For attach, the only allowable parent is a mirror or the root
1566 		 * vdev.
1567 		 */
1568 		if (pvd->vdev_ops != &vdev_mirror_ops &&
1569 		    pvd->vdev_ops != &vdev_root_ops)
1570 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1571 
1572 		pvops = &vdev_mirror_ops;
1573 	} else {
1574 		/*
1575 		 * Active hot spares can only be replaced by inactive hot
1576 		 * spares.
1577 		 */
1578 		if (pvd->vdev_ops == &vdev_spare_ops &&
1579 		    pvd->vdev_child[1] == oldvd &&
1580 		    !spa_has_spare(spa, newvd->vdev_guid))
1581 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1582 
1583 		/*
1584 		 * If the source is a hot spare, and the parent isn't already a
1585 		 * spare, then we want to create a new hot spare.  Otherwise, we
1586 		 * want to create a replacing vdev.
1587 		 */
1588 		if (pvd->vdev_ops == &vdev_replacing_ops)
1589 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1590 		else if (pvd->vdev_ops != &vdev_spare_ops &&
1591 		    newvd->vdev_isspare)
1592 			pvops = &vdev_spare_ops;
1593 		else
1594 			pvops = &vdev_replacing_ops;
1595 	}
1596 
1597 	/*
1598 	 * Compare the new device size with the replaceable/attachable
1599 	 * device size.
1600 	 */
1601 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
1602 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
1603 
1604 	/*
1605 	 * The new device cannot have a higher alignment requirement
1606 	 * than the top-level vdev.
1607 	 */
1608 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
1609 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
1610 
1611 	/*
1612 	 * If this is an in-place replacement, update oldvd's path and devid
1613 	 * to make it distinguishable from newvd, and unopenable from now on.
1614 	 */
1615 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
1616 		spa_strfree(oldvd->vdev_path);
1617 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
1618 		    KM_SLEEP);
1619 		(void) sprintf(oldvd->vdev_path, "%s/%s",
1620 		    newvd->vdev_path, "old");
1621 		if (oldvd->vdev_devid != NULL) {
1622 			spa_strfree(oldvd->vdev_devid);
1623 			oldvd->vdev_devid = NULL;
1624 		}
1625 	}
1626 
1627 	/*
1628 	 * If the parent is not a mirror, or if we're replacing, insert the new
1629 	 * mirror/replacing/spare vdev above oldvd.
1630 	 */
1631 	if (pvd->vdev_ops != pvops)
1632 		pvd = vdev_add_parent(oldvd, pvops);
1633 
1634 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
1635 	ASSERT(pvd->vdev_ops == pvops);
1636 	ASSERT(oldvd->vdev_parent == pvd);
1637 
1638 	/*
1639 	 * Extract the new device from its root and add it to pvd.
1640 	 */
1641 	vdev_remove_child(newrootvd, newvd);
1642 	newvd->vdev_id = pvd->vdev_children;
1643 	vdev_add_child(pvd, newvd);
1644 
1645 	/*
1646 	 * If newvd is smaller than oldvd, but larger than its rsize,
1647 	 * the addition of newvd may have decreased our parent's asize.
1648 	 */
1649 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
1650 
1651 	tvd = newvd->vdev_top;
1652 	ASSERT(pvd->vdev_top == tvd);
1653 	ASSERT(tvd->vdev_parent == rvd);
1654 
1655 	vdev_config_dirty(tvd);
1656 
1657 	/*
1658 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
1659 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
1660 	 */
1661 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
1662 
1663 	mutex_enter(&newvd->vdev_dtl_lock);
1664 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
1665 	    open_txg - TXG_INITIAL + 1);
1666 	mutex_exit(&newvd->vdev_dtl_lock);
1667 
1668 	dprintf("attached %s in txg %llu\n", newvd->vdev_path, txg);
1669 
1670 	/*
1671 	 * Mark newvd's DTL dirty in this txg.
1672 	 */
1673 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
1674 
1675 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
1676 
1677 	/*
1678 	 * Kick off a resilver to update newvd.
1679 	 */
1680 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1681 
1682 	return (0);
1683 }
1684 
1685 /*
1686  * Detach a device from a mirror or replacing vdev.
1687  * If 'replace_done' is specified, only detach if the parent
1688  * is a replacing vdev.
1689  */
1690 int
1691 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
1692 {
1693 	uint64_t txg;
1694 	int c, t, error;
1695 	vdev_t *rvd = spa->spa_root_vdev;
1696 	vdev_t *vd, *pvd, *cvd, *tvd;
1697 	boolean_t unspare = B_FALSE;
1698 	uint64_t unspare_guid;
1699 
1700 	txg = spa_vdev_enter(spa);
1701 
1702 	vd = vdev_lookup_by_guid(rvd, guid);
1703 
1704 	if (vd == NULL)
1705 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1706 
1707 	if (!vd->vdev_ops->vdev_op_leaf)
1708 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1709 
1710 	pvd = vd->vdev_parent;
1711 
1712 	/*
1713 	 * If replace_done is specified, only remove this device if it's
1714 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
1715 	 * disk can be removed.
1716 	 */
1717 	if (replace_done) {
1718 		if (pvd->vdev_ops == &vdev_replacing_ops) {
1719 			if (vd->vdev_id != 0)
1720 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1721 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
1722 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1723 		}
1724 	}
1725 
1726 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
1727 	    spa_version(spa) >= ZFS_VERSION_SPARES);
1728 
1729 	/*
1730 	 * Only mirror, replacing, and spare vdevs support detach.
1731 	 */
1732 	if (pvd->vdev_ops != &vdev_replacing_ops &&
1733 	    pvd->vdev_ops != &vdev_mirror_ops &&
1734 	    pvd->vdev_ops != &vdev_spare_ops)
1735 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1736 
1737 	/*
1738 	 * If there's only one replica, you can't detach it.
1739 	 */
1740 	if (pvd->vdev_children <= 1)
1741 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1742 
1743 	/*
1744 	 * If all siblings have non-empty DTLs, this device may have the only
1745 	 * valid copy of the data, which means we cannot safely detach it.
1746 	 *
1747 	 * XXX -- as in the vdev_offline() case, we really want a more
1748 	 * precise DTL check.
1749 	 */
1750 	for (c = 0; c < pvd->vdev_children; c++) {
1751 		uint64_t dirty;
1752 
1753 		cvd = pvd->vdev_child[c];
1754 		if (cvd == vd)
1755 			continue;
1756 		if (vdev_is_dead(cvd))
1757 			continue;
1758 		mutex_enter(&cvd->vdev_dtl_lock);
1759 		dirty = cvd->vdev_dtl_map.sm_space |
1760 		    cvd->vdev_dtl_scrub.sm_space;
1761 		mutex_exit(&cvd->vdev_dtl_lock);
1762 		if (!dirty)
1763 			break;
1764 	}
1765 
1766 	/*
1767 	 * If we are a replacing or spare vdev, then we can always detach the
1768 	 * latter child, as that is how one cancels the operation.
1769 	 */
1770 	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
1771 	    c == pvd->vdev_children)
1772 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1773 
1774 	/*
1775 	 * If we are detaching the original disk from a spare, then it implies
1776 	 * that the spare should become a real disk, and be removed from the
1777 	 * active spare list for the pool.
1778 	 */
1779 	if (pvd->vdev_ops == &vdev_spare_ops &&
1780 	    vd->vdev_id == 0)
1781 		unspare = B_TRUE;
1782 
1783 	/*
1784 	 * Erase the disk labels so the disk can be used for other things.
1785 	 * This must be done after all other error cases are handled,
1786 	 * but before we disembowel vd (so we can still do I/O to it).
1787 	 * But if we can't do it, don't treat the error as fatal --
1788 	 * it may be that the unwritability of the disk is the reason
1789 	 * it's being detached!
1790 	 */
1791 	error = vdev_label_init(vd, 0, B_FALSE);
1792 	if (error)
1793 		dprintf("unable to erase labels on %s\n", vdev_description(vd));
1794 
1795 	/*
1796 	 * Remove vd from its parent and compact the parent's children.
1797 	 */
1798 	vdev_remove_child(pvd, vd);
1799 	vdev_compact_children(pvd);
1800 
1801 	/*
1802 	 * Remember one of the remaining children so we can get tvd below.
1803 	 */
1804 	cvd = pvd->vdev_child[0];
1805 
1806 	/*
1807 	 * If we need to remove the remaining child from the list of hot spares,
1808 	 * do it now, marking the vdev as no longer a spare in the process.  We
1809 	 * must do this before vdev_remove_parent(), because that can change the
1810 	 * GUID if it creates a new toplevel GUID.
1811 	 */
1812 	if (unspare) {
1813 		ASSERT(cvd->vdev_isspare);
1814 		spa_spare_remove(cvd->vdev_guid);
1815 		cvd->vdev_isspare = B_FALSE;
1816 		unspare_guid = cvd->vdev_guid;
1817 	}
1818 
1819 	/*
1820 	 * If the parent mirror/replacing vdev only has one child,
1821 	 * the parent is no longer needed.  Remove it from the tree.
1822 	 */
1823 	if (pvd->vdev_children == 1)
1824 		vdev_remove_parent(cvd);
1825 
1826 	/*
1827 	 * We don't set tvd until now because the parent we just removed
1828 	 * may have been the previous top-level vdev.
1829 	 */
1830 	tvd = cvd->vdev_top;
1831 	ASSERT(tvd->vdev_parent == rvd);
1832 
1833 	/*
1834 	 * Reopen this top-level vdev to reassess health after detach.
1835 	 */
1836 	vdev_reopen(tvd);
1837 
1838 	/*
1839 	 * If the device we just detached was smaller than the others,
1840 	 * it may be possible to add metaslabs (i.e. grow the pool).
1841 	 * vdev_metaslab_init() can't fail because the existing metaslabs
1842 	 * are already in core, so there's nothing to read from disk.
1843 	 */
1844 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
1845 
1846 	vdev_config_dirty(tvd);
1847 
1848 	/*
1849 	 * Mark vd's DTL as dirty in this txg.
1850 	 * vdev_dtl_sync() will see that vd->vdev_detached is set
1851 	 * and free vd's DTL object in syncing context.
1852 	 * But first make sure we're not on any *other* txg's DTL list,
1853 	 * to prevent vd from being accessed after it's freed.
1854 	 */
1855 	for (t = 0; t < TXG_SIZE; t++)
1856 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
1857 	vd->vdev_detached = B_TRUE;
1858 	vdev_dirty(tvd, VDD_DTL, vd, txg);
1859 
1860 	dprintf("detached %s in txg %llu\n", vd->vdev_path, txg);
1861 
1862 	error = spa_vdev_exit(spa, vd, txg, 0);
1863 
1864 	/*
1865 	 * If we are supposed to remove the given vdev from the list of spares,
1866 	 * iterate over all pools in the system and replace it if it's present.
1867 	 */
1868 	if (unspare) {
1869 		spa = NULL;
1870 		mutex_enter(&spa_namespace_lock);
1871 		while ((spa = spa_next(spa)) != NULL) {
1872 			if (spa->spa_state != POOL_STATE_ACTIVE)
1873 				continue;
1874 
1875 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
1876 		}
1877 		mutex_exit(&spa_namespace_lock);
1878 	}
1879 
1880 	return (error);
1881 }
1882 
1883 /*
1884  * Remove a device from the pool.  Currently, this supports removing only hot
1885  * spares.
1886  */
1887 int
1888 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
1889 {
1890 	vdev_t *vd;
1891 	nvlist_t **spares, *nv, **newspares;
1892 	uint_t i, j, nspares;
1893 	int ret = 0;
1894 
1895 	spa_config_enter(spa, RW_WRITER, FTAG);
1896 
1897 	vd = spa_lookup_by_guid(spa, guid);
1898 
1899 	nv = NULL;
1900 	if (spa->spa_spares != NULL &&
1901 	    nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
1902 	    &spares, &nspares) == 0) {
1903 		for (i = 0; i < nspares; i++) {
1904 			uint64_t theguid;
1905 
1906 			VERIFY(nvlist_lookup_uint64(spares[i],
1907 			    ZPOOL_CONFIG_GUID, &theguid) == 0);
1908 			if (theguid == guid) {
1909 				nv = spares[i];
1910 				break;
1911 			}
1912 		}
1913 	}
1914 
1915 	/*
1916 	 * We only support removing a hot spare, and only if it's not currently
1917 	 * in use in this pool.
1918 	 */
1919 	if (nv == NULL && vd == NULL) {
1920 		ret = ENOENT;
1921 		goto out;
1922 	}
1923 
1924 	if (nv == NULL && vd != NULL) {
1925 		ret = ENOTSUP;
1926 		goto out;
1927 	}
1928 
1929 	if (!unspare && nv != NULL && vd != NULL) {
1930 		ret = EBUSY;
1931 		goto out;
1932 	}
1933 
1934 	if (nspares == 1) {
1935 		newspares = NULL;
1936 	} else {
1937 		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
1938 		    KM_SLEEP);
1939 		for (i = 0, j = 0; i < nspares; i++) {
1940 			if (spares[i] != nv)
1941 				VERIFY(nvlist_dup(spares[i],
1942 				    &newspares[j++], KM_SLEEP) == 0);
1943 		}
1944 	}
1945 
1946 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
1947 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1948 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
1949 	    newspares, nspares - 1) == 0);
1950 	for (i = 0; i < nspares - 1; i++)
1951 		nvlist_free(newspares[i]);
1952 	kmem_free(newspares, (nspares - 1) * sizeof (void *));
1953 	spa_load_spares(spa);
1954 	spa->spa_sync_spares = B_TRUE;
1955 
1956 out:
1957 	spa_config_exit(spa, FTAG);
1958 
1959 	return (ret);
1960 }
1961 
1962 /*
1963  * Find any device that's done replacing, so we can detach it.
1964  */
1965 static vdev_t *
1966 spa_vdev_replace_done_hunt(vdev_t *vd)
1967 {
1968 	vdev_t *newvd, *oldvd;
1969 	int c;
1970 
1971 	for (c = 0; c < vd->vdev_children; c++) {
1972 		oldvd = spa_vdev_replace_done_hunt(vd->vdev_child[c]);
1973 		if (oldvd != NULL)
1974 			return (oldvd);
1975 	}
1976 
1977 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
1978 		oldvd = vd->vdev_child[0];
1979 		newvd = vd->vdev_child[1];
1980 
1981 		mutex_enter(&newvd->vdev_dtl_lock);
1982 		if (newvd->vdev_dtl_map.sm_space == 0 &&
1983 		    newvd->vdev_dtl_scrub.sm_space == 0) {
1984 			mutex_exit(&newvd->vdev_dtl_lock);
1985 			return (oldvd);
1986 		}
1987 		mutex_exit(&newvd->vdev_dtl_lock);
1988 	}
1989 
1990 	return (NULL);
1991 }
1992 
1993 static void
1994 spa_vdev_replace_done(spa_t *spa)
1995 {
1996 	vdev_t *vd;
1997 	vdev_t *pvd;
1998 	uint64_t guid;
1999 	uint64_t pguid = 0;
2000 
2001 	spa_config_enter(spa, RW_READER, FTAG);
2002 
2003 	while ((vd = spa_vdev_replace_done_hunt(spa->spa_root_vdev)) != NULL) {
2004 		guid = vd->vdev_guid;
2005 		/*
2006 		 * If we have just finished replacing a hot spared device, then
2007 		 * we need to detach the parent's first child (the original hot
2008 		 * spare) as well.
2009 		 */
2010 		pvd = vd->vdev_parent;
2011 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2012 		    pvd->vdev_id == 0) {
2013 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
2014 			ASSERT(pvd->vdev_parent->vdev_children == 2);
2015 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
2016 		}
2017 		spa_config_exit(spa, FTAG);
2018 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
2019 			return;
2020 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
2021 			return;
2022 		spa_config_enter(spa, RW_READER, FTAG);
2023 	}
2024 
2025 	spa_config_exit(spa, FTAG);
2026 }
2027 
2028 /*
2029  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
2030  * on spa_vdev_enter/exit() to synchronize the labels and cache.
2031  */
2032 int
2033 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
2034 {
2035 	vdev_t *rvd, *vd;
2036 	uint64_t txg;
2037 
2038 	rvd = spa->spa_root_vdev;
2039 
2040 	txg = spa_vdev_enter(spa);
2041 
2042 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2043 		/*
2044 		 * Determine if this is a reference to a hot spare.  In that
2045 		 * case, update the path as stored in the spare list.
2046 		 */
2047 		nvlist_t **spares;
2048 		uint_t i, nspares;
2049 		if (spa->spa_sparelist != NULL) {
2050 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
2051 			    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2052 			for (i = 0; i < nspares; i++) {
2053 				uint64_t theguid;
2054 				VERIFY(nvlist_lookup_uint64(spares[i],
2055 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
2056 				if (theguid == guid)
2057 					break;
2058 			}
2059 
2060 			if (i == nspares)
2061 				return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2062 
2063 			VERIFY(nvlist_add_string(spares[i],
2064 			    ZPOOL_CONFIG_PATH, newpath) == 0);
2065 			spa_load_spares(spa);
2066 			spa->spa_sync_spares = B_TRUE;
2067 			return (spa_vdev_exit(spa, NULL, txg, 0));
2068 		} else {
2069 			return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2070 		}
2071 	}
2072 
2073 	if (!vd->vdev_ops->vdev_op_leaf)
2074 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2075 
2076 	spa_strfree(vd->vdev_path);
2077 	vd->vdev_path = spa_strdup(newpath);
2078 
2079 	vdev_config_dirty(vd->vdev_top);
2080 
2081 	return (spa_vdev_exit(spa, NULL, txg, 0));
2082 }
2083 
2084 /*
2085  * ==========================================================================
2086  * SPA Scrubbing
2087  * ==========================================================================
2088  */
2089 
2090 void
2091 spa_scrub_throttle(spa_t *spa, int direction)
2092 {
2093 	mutex_enter(&spa->spa_scrub_lock);
2094 	spa->spa_scrub_throttled += direction;
2095 	ASSERT(spa->spa_scrub_throttled >= 0);
2096 	if (spa->spa_scrub_throttled == 0)
2097 		cv_broadcast(&spa->spa_scrub_io_cv);
2098 	mutex_exit(&spa->spa_scrub_lock);
2099 }
2100 
2101 static void
2102 spa_scrub_io_done(zio_t *zio)
2103 {
2104 	spa_t *spa = zio->io_spa;
2105 
2106 	zio_buf_free(zio->io_data, zio->io_size);
2107 
2108 	mutex_enter(&spa->spa_scrub_lock);
2109 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2110 		vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
2111 		spa->spa_scrub_errors++;
2112 		mutex_enter(&vd->vdev_stat_lock);
2113 		vd->vdev_stat.vs_scrub_errors++;
2114 		mutex_exit(&vd->vdev_stat_lock);
2115 	}
2116 	if (--spa->spa_scrub_inflight == 0) {
2117 		cv_broadcast(&spa->spa_scrub_io_cv);
2118 		ASSERT(spa->spa_scrub_throttled == 0);
2119 	}
2120 	mutex_exit(&spa->spa_scrub_lock);
2121 }
2122 
2123 static void
2124 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
2125     zbookmark_t *zb)
2126 {
2127 	size_t size = BP_GET_LSIZE(bp);
2128 	void *data = zio_buf_alloc(size);
2129 
2130 	mutex_enter(&spa->spa_scrub_lock);
2131 	spa->spa_scrub_inflight++;
2132 	mutex_exit(&spa->spa_scrub_lock);
2133 
2134 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2135 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
2136 
2137 	flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL;
2138 
2139 	zio_nowait(zio_read(NULL, spa, bp, data, size,
2140 	    spa_scrub_io_done, NULL, priority, flags, zb));
2141 }
2142 
2143 /* ARGSUSED */
2144 static int
2145 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
2146 {
2147 	blkptr_t *bp = &bc->bc_blkptr;
2148 	vdev_t *vd = spa->spa_root_vdev;
2149 	dva_t *dva = bp->blk_dva;
2150 	int needs_resilver = B_FALSE;
2151 	int d;
2152 
2153 	if (bc->bc_errno) {
2154 		/*
2155 		 * We can't scrub this block, but we can continue to scrub
2156 		 * the rest of the pool.  Note the error and move along.
2157 		 */
2158 		mutex_enter(&spa->spa_scrub_lock);
2159 		spa->spa_scrub_errors++;
2160 		mutex_exit(&spa->spa_scrub_lock);
2161 
2162 		mutex_enter(&vd->vdev_stat_lock);
2163 		vd->vdev_stat.vs_scrub_errors++;
2164 		mutex_exit(&vd->vdev_stat_lock);
2165 
2166 		return (ERESTART);
2167 	}
2168 
2169 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
2170 
2171 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
2172 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
2173 
2174 		ASSERT(vd != NULL);
2175 
2176 		/*
2177 		 * Keep track of how much data we've examined so that
2178 		 * zpool(1M) status can make useful progress reports.
2179 		 */
2180 		mutex_enter(&vd->vdev_stat_lock);
2181 		vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
2182 		mutex_exit(&vd->vdev_stat_lock);
2183 
2184 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
2185 			if (DVA_GET_GANG(&dva[d])) {
2186 				/*
2187 				 * Gang members may be spread across multiple
2188 				 * vdevs, so the best we can do is look at the
2189 				 * pool-wide DTL.
2190 				 * XXX -- it would be better to change our
2191 				 * allocation policy to ensure that this can't
2192 				 * happen.
2193 				 */
2194 				vd = spa->spa_root_vdev;
2195 			}
2196 			if (vdev_dtl_contains(&vd->vdev_dtl_map,
2197 			    bp->blk_birth, 1))
2198 				needs_resilver = B_TRUE;
2199 		}
2200 	}
2201 
2202 	if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
2203 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
2204 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
2205 	else if (needs_resilver)
2206 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
2207 		    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
2208 
2209 	return (0);
2210 }
2211 
2212 static void
2213 spa_scrub_thread(spa_t *spa)
2214 {
2215 	callb_cpr_t cprinfo;
2216 	traverse_handle_t *th = spa->spa_scrub_th;
2217 	vdev_t *rvd = spa->spa_root_vdev;
2218 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
2219 	int error = 0;
2220 	boolean_t complete;
2221 
2222 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
2223 
2224 	/*
2225 	 * If we're restarting due to a snapshot create/delete,
2226 	 * wait for that to complete.
2227 	 */
2228 	txg_wait_synced(spa_get_dsl(spa), 0);
2229 
2230 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
2231 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2232 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
2233 
2234 	spa_config_enter(spa, RW_WRITER, FTAG);
2235 	vdev_reopen(rvd);		/* purge all vdev caches */
2236 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
2237 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
2238 	spa_config_exit(spa, FTAG);
2239 
2240 	mutex_enter(&spa->spa_scrub_lock);
2241 	spa->spa_scrub_errors = 0;
2242 	spa->spa_scrub_active = 1;
2243 	ASSERT(spa->spa_scrub_inflight == 0);
2244 	ASSERT(spa->spa_scrub_throttled == 0);
2245 
2246 	while (!spa->spa_scrub_stop) {
2247 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2248 		while (spa->spa_scrub_suspended) {
2249 			spa->spa_scrub_active = 0;
2250 			cv_broadcast(&spa->spa_scrub_cv);
2251 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2252 			spa->spa_scrub_active = 1;
2253 		}
2254 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
2255 
2256 		if (spa->spa_scrub_restart_txg != 0)
2257 			break;
2258 
2259 		mutex_exit(&spa->spa_scrub_lock);
2260 		error = traverse_more(th);
2261 		mutex_enter(&spa->spa_scrub_lock);
2262 		if (error != EAGAIN)
2263 			break;
2264 
2265 		while (spa->spa_scrub_throttled > 0)
2266 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2267 	}
2268 
2269 	while (spa->spa_scrub_inflight)
2270 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2271 
2272 	spa->spa_scrub_active = 0;
2273 	cv_broadcast(&spa->spa_scrub_cv);
2274 
2275 	mutex_exit(&spa->spa_scrub_lock);
2276 
2277 	spa_config_enter(spa, RW_WRITER, FTAG);
2278 
2279 	mutex_enter(&spa->spa_scrub_lock);
2280 
2281 	/*
2282 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
2283 	 * AND the spa config lock to synchronize with any config changes
2284 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
2285 	 */
2286 	if (spa->spa_scrub_restart_txg != 0)
2287 		error = ERESTART;
2288 
2289 	if (spa->spa_scrub_stop)
2290 		error = EINTR;
2291 
2292 	/*
2293 	 * Even if there were uncorrectable errors, we consider the scrub
2294 	 * completed.  The downside is that if there is a transient error during
2295 	 * a resilver, we won't resilver the data properly to the target.  But
2296 	 * if the damage is permanent (more likely) we will resilver forever,
2297 	 * which isn't really acceptable.  Since there is enough information for
2298 	 * the user to know what has failed and why, this seems like a more
2299 	 * tractable approach.
2300 	 */
2301 	complete = (error == 0);
2302 
2303 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
2304 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2305 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
2306 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
2307 
2308 	mutex_exit(&spa->spa_scrub_lock);
2309 
2310 	/*
2311 	 * If the scrub/resilver completed, update all DTLs to reflect this.
2312 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
2313 	 */
2314 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
2315 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
2316 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
2317 	spa_errlog_rotate(spa);
2318 
2319 	spa_config_exit(spa, FTAG);
2320 
2321 	mutex_enter(&spa->spa_scrub_lock);
2322 
2323 	/*
2324 	 * We may have finished replacing a device.
2325 	 * Let the async thread assess this and handle the detach.
2326 	 */
2327 	spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
2328 
2329 	/*
2330 	 * If we were told to restart, our final act is to start a new scrub.
2331 	 */
2332 	if (error == ERESTART)
2333 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
2334 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
2335 
2336 	spa->spa_scrub_type = POOL_SCRUB_NONE;
2337 	spa->spa_scrub_active = 0;
2338 	spa->spa_scrub_thread = NULL;
2339 	cv_broadcast(&spa->spa_scrub_cv);
2340 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
2341 	thread_exit();
2342 }
2343 
2344 void
2345 spa_scrub_suspend(spa_t *spa)
2346 {
2347 	mutex_enter(&spa->spa_scrub_lock);
2348 	spa->spa_scrub_suspended++;
2349 	while (spa->spa_scrub_active) {
2350 		cv_broadcast(&spa->spa_scrub_cv);
2351 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2352 	}
2353 	while (spa->spa_scrub_inflight)
2354 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2355 	mutex_exit(&spa->spa_scrub_lock);
2356 }
2357 
2358 void
2359 spa_scrub_resume(spa_t *spa)
2360 {
2361 	mutex_enter(&spa->spa_scrub_lock);
2362 	ASSERT(spa->spa_scrub_suspended != 0);
2363 	if (--spa->spa_scrub_suspended == 0)
2364 		cv_broadcast(&spa->spa_scrub_cv);
2365 	mutex_exit(&spa->spa_scrub_lock);
2366 }
2367 
2368 void
2369 spa_scrub_restart(spa_t *spa, uint64_t txg)
2370 {
2371 	/*
2372 	 * Something happened (e.g. snapshot create/delete) that means
2373 	 * we must restart any in-progress scrubs.  The itinerary will
2374 	 * fix this properly.
2375 	 */
2376 	mutex_enter(&spa->spa_scrub_lock);
2377 	spa->spa_scrub_restart_txg = txg;
2378 	mutex_exit(&spa->spa_scrub_lock);
2379 }
2380 
2381 int
2382 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
2383 {
2384 	space_seg_t *ss;
2385 	uint64_t mintxg, maxtxg;
2386 	vdev_t *rvd = spa->spa_root_vdev;
2387 
2388 	if ((uint_t)type >= POOL_SCRUB_TYPES)
2389 		return (ENOTSUP);
2390 
2391 	mutex_enter(&spa->spa_scrub_lock);
2392 
2393 	/*
2394 	 * If there's a scrub or resilver already in progress, stop it.
2395 	 */
2396 	while (spa->spa_scrub_thread != NULL) {
2397 		/*
2398 		 * Don't stop a resilver unless forced.
2399 		 */
2400 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
2401 			mutex_exit(&spa->spa_scrub_lock);
2402 			return (EBUSY);
2403 		}
2404 		spa->spa_scrub_stop = 1;
2405 		cv_broadcast(&spa->spa_scrub_cv);
2406 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2407 	}
2408 
2409 	/*
2410 	 * Terminate the previous traverse.
2411 	 */
2412 	if (spa->spa_scrub_th != NULL) {
2413 		traverse_fini(spa->spa_scrub_th);
2414 		spa->spa_scrub_th = NULL;
2415 	}
2416 
2417 	if (rvd == NULL) {
2418 		ASSERT(spa->spa_scrub_stop == 0);
2419 		ASSERT(spa->spa_scrub_type == type);
2420 		ASSERT(spa->spa_scrub_restart_txg == 0);
2421 		mutex_exit(&spa->spa_scrub_lock);
2422 		return (0);
2423 	}
2424 
2425 	mintxg = TXG_INITIAL - 1;
2426 	maxtxg = spa_last_synced_txg(spa) + 1;
2427 
2428 	mutex_enter(&rvd->vdev_dtl_lock);
2429 
2430 	if (rvd->vdev_dtl_map.sm_space == 0) {
2431 		/*
2432 		 * The pool-wide DTL is empty.
2433 		 * If this is a resilver, there's nothing to do except
2434 		 * check whether any in-progress replacements have completed.
2435 		 */
2436 		if (type == POOL_SCRUB_RESILVER) {
2437 			type = POOL_SCRUB_NONE;
2438 			spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
2439 		}
2440 	} else {
2441 		/*
2442 		 * The pool-wide DTL is non-empty.
2443 		 * If this is a normal scrub, upgrade to a resilver instead.
2444 		 */
2445 		if (type == POOL_SCRUB_EVERYTHING)
2446 			type = POOL_SCRUB_RESILVER;
2447 	}
2448 
2449 	if (type == POOL_SCRUB_RESILVER) {
2450 		/*
2451 		 * Determine the resilvering boundaries.
2452 		 *
2453 		 * Note: (mintxg, maxtxg) is an open interval,
2454 		 * i.e. mintxg and maxtxg themselves are not included.
2455 		 *
2456 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
2457 		 * so we don't claim to resilver a txg that's still changing.
2458 		 */
2459 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
2460 		mintxg = ss->ss_start - 1;
2461 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
2462 		maxtxg = MIN(ss->ss_end, maxtxg);
2463 	}
2464 
2465 	mutex_exit(&rvd->vdev_dtl_lock);
2466 
2467 	spa->spa_scrub_stop = 0;
2468 	spa->spa_scrub_type = type;
2469 	spa->spa_scrub_restart_txg = 0;
2470 
2471 	if (type != POOL_SCRUB_NONE) {
2472 		spa->spa_scrub_mintxg = mintxg;
2473 		spa->spa_scrub_maxtxg = maxtxg;
2474 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
2475 		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
2476 		    ZIO_FLAG_CANFAIL);
2477 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
2478 		spa->spa_scrub_thread = thread_create(NULL, 0,
2479 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
2480 	}
2481 
2482 	mutex_exit(&spa->spa_scrub_lock);
2483 
2484 	return (0);
2485 }
2486 
2487 /*
2488  * ==========================================================================
2489  * SPA async task processing
2490  * ==========================================================================
2491  */
2492 
2493 static void
2494 spa_async_reopen(spa_t *spa)
2495 {
2496 	vdev_t *rvd = spa->spa_root_vdev;
2497 	vdev_t *tvd;
2498 	int c;
2499 
2500 	spa_config_enter(spa, RW_WRITER, FTAG);
2501 
2502 	for (c = 0; c < rvd->vdev_children; c++) {
2503 		tvd = rvd->vdev_child[c];
2504 		if (tvd->vdev_reopen_wanted) {
2505 			tvd->vdev_reopen_wanted = 0;
2506 			vdev_reopen(tvd);
2507 		}
2508 	}
2509 
2510 	spa_config_exit(spa, FTAG);
2511 }
2512 
2513 static void
2514 spa_async_thread(spa_t *spa)
2515 {
2516 	int tasks;
2517 
2518 	ASSERT(spa->spa_sync_on);
2519 
2520 	mutex_enter(&spa->spa_async_lock);
2521 	tasks = spa->spa_async_tasks;
2522 	spa->spa_async_tasks = 0;
2523 	mutex_exit(&spa->spa_async_lock);
2524 
2525 	/*
2526 	 * See if the config needs to be updated.
2527 	 */
2528 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
2529 		mutex_enter(&spa_namespace_lock);
2530 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2531 		mutex_exit(&spa_namespace_lock);
2532 	}
2533 
2534 	/*
2535 	 * See if any devices need to be reopened.
2536 	 */
2537 	if (tasks & SPA_ASYNC_REOPEN)
2538 		spa_async_reopen(spa);
2539 
2540 	/*
2541 	 * If any devices are done replacing, detach them.
2542 	 */
2543 	if (tasks & SPA_ASYNC_REPLACE_DONE)
2544 		spa_vdev_replace_done(spa);
2545 
2546 	/*
2547 	 * Kick off a scrub.
2548 	 */
2549 	if (tasks & SPA_ASYNC_SCRUB)
2550 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
2551 
2552 	/*
2553 	 * Kick off a resilver.
2554 	 */
2555 	if (tasks & SPA_ASYNC_RESILVER)
2556 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
2557 
2558 	/*
2559 	 * Let the world know that we're done.
2560 	 */
2561 	mutex_enter(&spa->spa_async_lock);
2562 	spa->spa_async_thread = NULL;
2563 	cv_broadcast(&spa->spa_async_cv);
2564 	mutex_exit(&spa->spa_async_lock);
2565 	thread_exit();
2566 }
2567 
2568 void
2569 spa_async_suspend(spa_t *spa)
2570 {
2571 	mutex_enter(&spa->spa_async_lock);
2572 	spa->spa_async_suspended++;
2573 	while (spa->spa_async_thread != NULL)
2574 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
2575 	mutex_exit(&spa->spa_async_lock);
2576 }
2577 
2578 void
2579 spa_async_resume(spa_t *spa)
2580 {
2581 	mutex_enter(&spa->spa_async_lock);
2582 	ASSERT(spa->spa_async_suspended != 0);
2583 	spa->spa_async_suspended--;
2584 	mutex_exit(&spa->spa_async_lock);
2585 }
2586 
2587 static void
2588 spa_async_dispatch(spa_t *spa)
2589 {
2590 	mutex_enter(&spa->spa_async_lock);
2591 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
2592 	    spa->spa_async_thread == NULL &&
2593 	    rootdir != NULL && !vn_is_readonly(rootdir))
2594 		spa->spa_async_thread = thread_create(NULL, 0,
2595 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
2596 	mutex_exit(&spa->spa_async_lock);
2597 }
2598 
2599 void
2600 spa_async_request(spa_t *spa, int task)
2601 {
2602 	mutex_enter(&spa->spa_async_lock);
2603 	spa->spa_async_tasks |= task;
2604 	mutex_exit(&spa->spa_async_lock);
2605 }
2606 
2607 /*
2608  * ==========================================================================
2609  * SPA syncing routines
2610  * ==========================================================================
2611  */
2612 
2613 static void
2614 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
2615 {
2616 	bplist_t *bpl = &spa->spa_sync_bplist;
2617 	dmu_tx_t *tx;
2618 	blkptr_t blk;
2619 	uint64_t itor = 0;
2620 	zio_t *zio;
2621 	int error;
2622 	uint8_t c = 1;
2623 
2624 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
2625 
2626 	while (bplist_iterate(bpl, &itor, &blk) == 0)
2627 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
2628 
2629 	error = zio_wait(zio);
2630 	ASSERT3U(error, ==, 0);
2631 
2632 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2633 	bplist_vacate(bpl, tx);
2634 
2635 	/*
2636 	 * Pre-dirty the first block so we sync to convergence faster.
2637 	 * (Usually only the first block is needed.)
2638 	 */
2639 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
2640 	dmu_tx_commit(tx);
2641 }
2642 
2643 static void
2644 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
2645 {
2646 	char *packed = NULL;
2647 	size_t nvsize = 0;
2648 	dmu_buf_t *db;
2649 
2650 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
2651 
2652 	packed = kmem_alloc(nvsize, KM_SLEEP);
2653 
2654 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
2655 	    KM_SLEEP) == 0);
2656 
2657 	dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
2658 
2659 	kmem_free(packed, nvsize);
2660 
2661 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
2662 	dmu_buf_will_dirty(db, tx);
2663 	*(uint64_t *)db->db_data = nvsize;
2664 	dmu_buf_rele(db, FTAG);
2665 }
2666 
2667 static void
2668 spa_sync_spares(spa_t *spa, dmu_tx_t *tx)
2669 {
2670 	nvlist_t *nvroot;
2671 	nvlist_t **spares;
2672 	int i;
2673 
2674 	if (!spa->spa_sync_spares)
2675 		return;
2676 
2677 	/*
2678 	 * Update the MOS nvlist describing the list of available spares.
2679 	 * spa_validate_spares() will have already made sure this nvlist is
2680 	 * valid and the vdevs are labelled appropriately.
2681 	 */
2682 	if (spa->spa_spares_object == 0) {
2683 		spa->spa_spares_object = dmu_object_alloc(spa->spa_meta_objset,
2684 		    DMU_OT_PACKED_NVLIST, 1 << 14,
2685 		    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2686 		VERIFY(zap_update(spa->spa_meta_objset,
2687 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES,
2688 		    sizeof (uint64_t), 1, &spa->spa_spares_object, tx) == 0);
2689 	}
2690 
2691 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2692 	if (spa->spa_nspares == 0) {
2693 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2694 		    NULL, 0) == 0);
2695 	} else {
2696 		spares = kmem_alloc(spa->spa_nspares * sizeof (void *),
2697 		    KM_SLEEP);
2698 		for (i = 0; i < spa->spa_nspares; i++)
2699 			spares[i] = vdev_config_generate(spa,
2700 			    spa->spa_spares[i], B_FALSE, B_TRUE);
2701 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2702 		    spares, spa->spa_nspares) == 0);
2703 		for (i = 0; i < spa->spa_nspares; i++)
2704 			nvlist_free(spares[i]);
2705 		kmem_free(spares, spa->spa_nspares * sizeof (void *));
2706 	}
2707 
2708 	spa_sync_nvlist(spa, spa->spa_spares_object, nvroot, tx);
2709 
2710 	spa->spa_sync_spares = B_FALSE;
2711 }
2712 
2713 static void
2714 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
2715 {
2716 	nvlist_t *config;
2717 
2718 	if (list_is_empty(&spa->spa_dirty_list))
2719 		return;
2720 
2721 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
2722 
2723 	if (spa->spa_config_syncing)
2724 		nvlist_free(spa->spa_config_syncing);
2725 	spa->spa_config_syncing = config;
2726 
2727 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
2728 }
2729 
2730 /*
2731  * Sync the specified transaction group.  New blocks may be dirtied as
2732  * part of the process, so we iterate until it converges.
2733  */
2734 void
2735 spa_sync(spa_t *spa, uint64_t txg)
2736 {
2737 	dsl_pool_t *dp = spa->spa_dsl_pool;
2738 	objset_t *mos = spa->spa_meta_objset;
2739 	bplist_t *bpl = &spa->spa_sync_bplist;
2740 	vdev_t *rvd = spa->spa_root_vdev;
2741 	vdev_t *vd;
2742 	dmu_tx_t *tx;
2743 	int dirty_vdevs;
2744 
2745 	/*
2746 	 * Lock out configuration changes.
2747 	 */
2748 	spa_config_enter(spa, RW_READER, FTAG);
2749 
2750 	spa->spa_syncing_txg = txg;
2751 	spa->spa_sync_pass = 0;
2752 
2753 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
2754 
2755 	tx = dmu_tx_create_assigned(dp, txg);
2756 
2757 	/*
2758 	 * If we are upgrading to ZFS_VERSION_RAIDZ_DEFLATE this txg,
2759 	 * set spa_deflate if we have no raid-z vdevs.
2760 	 */
2761 	if (spa->spa_ubsync.ub_version < ZFS_VERSION_RAIDZ_DEFLATE &&
2762 	    spa->spa_uberblock.ub_version >= ZFS_VERSION_RAIDZ_DEFLATE) {
2763 		int i;
2764 
2765 		for (i = 0; i < rvd->vdev_children; i++) {
2766 			vd = rvd->vdev_child[i];
2767 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
2768 				break;
2769 		}
2770 		if (i == rvd->vdev_children) {
2771 			spa->spa_deflate = TRUE;
2772 			VERIFY(0 == zap_add(spa->spa_meta_objset,
2773 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2774 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
2775 		}
2776 	}
2777 
2778 	/*
2779 	 * If anything has changed in this txg, push the deferred frees
2780 	 * from the previous txg.  If not, leave them alone so that we
2781 	 * don't generate work on an otherwise idle system.
2782 	 */
2783 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
2784 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
2785 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
2786 		spa_sync_deferred_frees(spa, txg);
2787 
2788 	/*
2789 	 * Iterate to convergence.
2790 	 */
2791 	do {
2792 		spa->spa_sync_pass++;
2793 
2794 		spa_sync_config_object(spa, tx);
2795 		spa_sync_spares(spa, tx);
2796 		spa_errlog_sync(spa, txg);
2797 		dsl_pool_sync(dp, txg);
2798 
2799 		dirty_vdevs = 0;
2800 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
2801 			vdev_sync(vd, txg);
2802 			dirty_vdevs++;
2803 		}
2804 
2805 		bplist_sync(bpl, tx);
2806 	} while (dirty_vdevs);
2807 
2808 	bplist_close(bpl);
2809 
2810 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
2811 
2812 	/*
2813 	 * Rewrite the vdev configuration (which includes the uberblock)
2814 	 * to commit the transaction group.
2815 	 *
2816 	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
2817 	 * Otherwise, pick a random top-level vdev that's known to be
2818 	 * visible in the config cache (see spa_vdev_add() for details).
2819 	 * If the write fails, try the next vdev until we're tried them all.
2820 	 */
2821 	if (!list_is_empty(&spa->spa_dirty_list)) {
2822 		VERIFY(vdev_config_sync(rvd, txg) == 0);
2823 	} else {
2824 		int children = rvd->vdev_children;
2825 		int c0 = spa_get_random(children);
2826 		int c;
2827 
2828 		for (c = 0; c < children; c++) {
2829 			vd = rvd->vdev_child[(c0 + c) % children];
2830 			if (vd->vdev_ms_array == 0)
2831 				continue;
2832 			if (vdev_config_sync(vd, txg) == 0)
2833 				break;
2834 		}
2835 		if (c == children)
2836 			VERIFY(vdev_config_sync(rvd, txg) == 0);
2837 	}
2838 
2839 	dmu_tx_commit(tx);
2840 
2841 	/*
2842 	 * Clear the dirty config list.
2843 	 */
2844 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
2845 		vdev_config_clean(vd);
2846 
2847 	/*
2848 	 * Now that the new config has synced transactionally,
2849 	 * let it become visible to the config cache.
2850 	 */
2851 	if (spa->spa_config_syncing != NULL) {
2852 		spa_config_set(spa, spa->spa_config_syncing);
2853 		spa->spa_config_txg = txg;
2854 		spa->spa_config_syncing = NULL;
2855 	}
2856 
2857 	/*
2858 	 * Make a stable copy of the fully synced uberblock.
2859 	 * We use this as the root for pool traversals.
2860 	 */
2861 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
2862 
2863 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
2864 
2865 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
2866 	spa->spa_traverse_wanted = 0;
2867 	spa->spa_ubsync = spa->spa_uberblock;
2868 	rw_exit(&spa->spa_traverse_lock);
2869 
2870 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
2871 
2872 	/*
2873 	 * Clean up the ZIL records for the synced txg.
2874 	 */
2875 	dsl_pool_zil_clean(dp);
2876 
2877 	/*
2878 	 * Update usable space statistics.
2879 	 */
2880 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
2881 		vdev_sync_done(vd, txg);
2882 
2883 	/*
2884 	 * It had better be the case that we didn't dirty anything
2885 	 * since vdev_config_sync().
2886 	 */
2887 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
2888 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
2889 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
2890 	ASSERT(bpl->bpl_queue == NULL);
2891 
2892 	spa_config_exit(spa, FTAG);
2893 
2894 	/*
2895 	 * If any async tasks have been requested, kick them off.
2896 	 */
2897 	spa_async_dispatch(spa);
2898 }
2899 
2900 /*
2901  * Sync all pools.  We don't want to hold the namespace lock across these
2902  * operations, so we take a reference on the spa_t and drop the lock during the
2903  * sync.
2904  */
2905 void
2906 spa_sync_allpools(void)
2907 {
2908 	spa_t *spa = NULL;
2909 	mutex_enter(&spa_namespace_lock);
2910 	while ((spa = spa_next(spa)) != NULL) {
2911 		if (spa_state(spa) != POOL_STATE_ACTIVE)
2912 			continue;
2913 		spa_open_ref(spa, FTAG);
2914 		mutex_exit(&spa_namespace_lock);
2915 		txg_wait_synced(spa_get_dsl(spa), 0);
2916 		mutex_enter(&spa_namespace_lock);
2917 		spa_close(spa, FTAG);
2918 	}
2919 	mutex_exit(&spa_namespace_lock);
2920 }
2921 
2922 /*
2923  * ==========================================================================
2924  * Miscellaneous routines
2925  * ==========================================================================
2926  */
2927 
2928 /*
2929  * Remove all pools in the system.
2930  */
2931 void
2932 spa_evict_all(void)
2933 {
2934 	spa_t *spa;
2935 
2936 	/*
2937 	 * Remove all cached state.  All pools should be closed now,
2938 	 * so every spa in the AVL tree should be unreferenced.
2939 	 */
2940 	mutex_enter(&spa_namespace_lock);
2941 	while ((spa = spa_next(NULL)) != NULL) {
2942 		/*
2943 		 * Stop async tasks.  The async thread may need to detach
2944 		 * a device that's been replaced, which requires grabbing
2945 		 * spa_namespace_lock, so we must drop it here.
2946 		 */
2947 		spa_open_ref(spa, FTAG);
2948 		mutex_exit(&spa_namespace_lock);
2949 		spa_async_suspend(spa);
2950 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
2951 		mutex_enter(&spa_namespace_lock);
2952 		spa_close(spa, FTAG);
2953 
2954 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2955 			spa_unload(spa);
2956 			spa_deactivate(spa);
2957 		}
2958 		spa_remove(spa);
2959 	}
2960 	mutex_exit(&spa_namespace_lock);
2961 }
2962 
2963 vdev_t *
2964 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
2965 {
2966 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
2967 }
2968 
2969 void
2970 spa_upgrade(spa_t *spa)
2971 {
2972 	spa_config_enter(spa, RW_WRITER, FTAG);
2973 
2974 	/*
2975 	 * This should only be called for a non-faulted pool, and since a
2976 	 * future version would result in an unopenable pool, this shouldn't be
2977 	 * possible.
2978 	 */
2979 	ASSERT(spa->spa_uberblock.ub_version <= ZFS_VERSION);
2980 
2981 	spa->spa_uberblock.ub_version = ZFS_VERSION;
2982 	vdev_config_dirty(spa->spa_root_vdev);
2983 
2984 	spa_config_exit(spa, FTAG);
2985 
2986 	txg_wait_synced(spa_get_dsl(spa), 0);
2987 }
2988 
2989 boolean_t
2990 spa_has_spare(spa_t *spa, uint64_t guid)
2991 {
2992 	int i;
2993 
2994 	for (i = 0; i < spa->spa_nspares; i++)
2995 		if (spa->spa_spares[i]->vdev_guid == guid)
2996 			return (B_TRUE);
2997 
2998 	return (B_FALSE);
2999 }
3000